
Redundant-Digit Floating-Point Addition
Scheme Based on a Stored Rounding Value

Ghassem Jaberipur, Behrooz Parhami, Fellow, IEEE, and Saeid Gorgin

Abstract—Due to the widespread use and inherent complexity of floating-point addition, much effort has been devoted to its speedup

via algorithmic and circuit techniques. We propose a new redundant-digit representation for floating-point numbers that leads to

computation speedup in two ways: 1) Reducing the per-operation latency when multiple floating-point additions are performed before

result conversion to nonredundant format and 2) Removing the addition associated with rounding. While the first of these advantages

is offered by other redundant representations, the second one is unique to our approach, which replaces the power- and area-intensive

rounding addition by low-latency insertion of a rounding two-valued digit, or twit, in a position normally assigned to a redundant twit

within the redundant-digit format. Instead of conventional sign-magnitude representation, we use a sign-embedded encoding that

leads to lower hardware redundancy, and thus, reduced power dissipation. While our intermediate redundant representations remain

incompatible with the IEEE 754-2008 standard, many application-specific systems, such as those in DSP and graphics domains, can

benefit from our designs. Description of our radix-16 redundant representation and its addition algorithm is followed by the architecture

of a floating-point adder based on this representation. Detailed circuit designs are provided for many of the adder’s critical

subfunctions. Simulation and synthesis based on a 0:13 �m CMOS standard process show a latency reduction of 15 percent or better,

and both area and power savings of around 58 percent, compared with the best designs reported in the literature.

Index Terms—Adder/subtractor, computer arithmetic, floating point, redundant format, rounding, signed-digit number system.

Ç

1 INTRODUCTION

FLOATING-POINT addition is believed to be the most frequent

computer arithmetic operation. Intricacies of floating-

point number representation make floating-point addition

inherently more complex than integer addition. Thus,

methods for speeding up floating-point addition are of

utmost importance. A floating-point number is convention-

ally composed of a sign bit, an exponent, and a significand

[1]. Since the ANSI/IEEE standard for binary floating-point

arithmetic [2] (IEEE 754 for short) was introduced in 1985,

virtually all implementations have adhered to its representa-

tion formats, even when they do not follow the full

provisions of the standard, or its revised version, IEEE 754-

2008 [3]. Implementations in this category include systems

for digital signal/image processing [4] and computer

graphics [5]. The short (long), also known as 32-bit or single

(64-bit or double), normalized standard format incorporates

a sign bit s, a biased excess-127 (excess-1023) representation e

for the exponent, and a significand � composed of 23 (52) bits

to the right of the binary point that has a hidden 1 to its left. A

short (long) floating-point number f ¼ ðs; e; �Þ represents the

real value ð�1Þs2e�bias 1:�, where 1:� stands for 1þ ��
2�23ð2�52Þ and e is an unsigned 8-bit (11-bit) integer. Besides

“ordinary” floating-point numbers just described, some

special values (such as �0;�1, and NaN) have unique

codes assigned to them.
The operation of floating-point addition/subtraction

consists of several steps, as outlined in Algorithm 1.
Description of each step is followed, in square brackets,
by the order of its worst-case latency, assuming a fast
implementation.

Algorithm 1. Floating-point (FP) addition/subtraction

Inputs: FP operands f1 ¼ ðs1; "; �1Þ and f2 ¼ ðs2; �; �2Þ,
op (þ or �), and rounding mode

Output: FP result f3 ¼ f1 � f2

1. Exponent difference: Compute � ¼ "� � and determine

the operand with smaller exponent [�ðlogðwidthðe))].
2. Alignment shift: Right-shift the significand of the number

having the smaller exponent by an amount derived
from �; for exponent base of 2, the right-shift amount is

min(j�j, width(�)) bits [�ðlogðwidthð�ÞÞ].
3. Add-or-subtract decision: Determine the actual operation

to be performed on the significands based on the

operand signs and the specified operation (þ or �);

swap the operands, if necessary [O(1), possibly

overlapped with the previous steps].

4. Sign and significand derivation: Perform the actual
operation determined in step 3, thus obtaining the sign

and significand of the result [�ðlogðwidthð�ÞÞ].
5. Leading 0 digits: Detect the number of leading 0 digits in

the result [�ðlogðwidthð�ÞÞ].
6. Postnormalization: Normalize the result, if nonzero, via

694 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 5, MAY 2010

. G. Jaberipur is with the Department of Electrical and Computer
Engineering, Shahid Beheshti University, Tehran 19839-63113, Iran, and
the School of Computer Science, Institute for Research in Fundamental
Sciences, Tehran, Iran.

. B. Parhami is with the Department of Electrical and Computer
Engineering, University of California, Santa Barbara, CA 93106-9560.

. S. Gorgin is with the Department of Electrical and Computer Engineering,
Shahid Beheshti University, Tehran 19839-63113, Iran.

Manuscript received 2 Sept. 2008; revised 9 Aug. 2009; accepted 17 Sept.
2009; published online 29 Sept. 2009.
Recommended for acceptance by E.M. Schwarz.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2008-09-0447.
Digital Object Identifier no. 10.1109/TC.2009.152.

0018-9340/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 29,2010 at 14:18:56 EDT from IEEE Xplore. Restrictions apply.

shifting, such that there is a single 1 (the new hidden
1) to the left of the binary point [�ðlogðwidthð�ÞÞ].

7. Exponent adjustment: Adjust the result exponent to

compensate for the shift in step 6 [�ðlogðwidthðeÞÞ, but

overlapped with step 6].

8. Rounding: Use information provided by the extra bits

maintained in the internal format to round the result

and adjust its exponent, if needed [�ðlogðwidthð�ÞÞ].
Each of the steps above may consist of a number of

simpler substeps. To minimize the addition latency, clever
methods have been developed to allow concurrent execu-
tion of (sub)steps in Algorithm 1 (e.g., [6], [7], [8], [9]).
Rounding, in particular, is problematic, because it could
introduce a second power/area-intensive word-width ad-
dition (actually, an incrementation). Pipelining of steps in
floating-point operations has also reduced the average
latency per operation. Further per-addition speedup is
possible with redundant representation of intermediate
results, thus allowing carry-free addition, provided that a
series of floating-point operations is performed before there
is a need to store a result in memory or to send it to an
output device. The rounding-packet forwarding scheme of
Nielsen et al. [7] keeps values in binary signed-digit (BSD)
form, resulting in double-size registers (in view of the 2 bits
required in each radix-2 position). The latest relevant work,
by Fahmy and Flynn [10], uses sign-magnitude addition
with redundant high-radix signed digits, that leads to lower
redundancy. In the latter work, rounding is done concur-
rently with the exponent comparison of the next floating-
point addition, or an unrounded value is used in a
subsequent operation which also receives a “rounding
value” to be included in the significand addition.

In this paper, we follow the approach of Fahmy and
Flynn, but with our particular redundant encoding of digits,
which significantly reduces the active hardware redun-
dancy through sign-embedding and obviates one of the two
challenges cited in [10]; namely, recognition and transfor-
mation of insignificant digits in the process of leading-
nonzero-digit detection. We use a redundant representation
dubbed stored-unibit-transfer, or SUT [11], where the
encoding provides room in the transfer part of the least-
significant position of the result for the three possible
rounding values �1, 0, and 1. Other features of our
approach include:

. redundant-digit internal format with embedded sign,

. carry-free addition/subtraction,

. simple detection of the leading nonzero digit, and

. elimination of rounding increment operation and
postrounding exponent adjustment.

Here is a roadmap for the rest of this paper. Section 2
contains an overview of the state of the art in the design of
floating-point adders, including one by Fahmy [12]. In
Section 3, we review the SUT encoding of a class of
redundant numbers and present the associated carry-free
adder/subtractor that uses only standard full/half-adders.
Sections 4-7 are devoted to key design considerations of our
dual-path floating-point adder: redundant internal number
format, path separation, extra (guard, round, and sticky)
digits, and rounding decision. Analytical and simulation

results, presented in Section 8, are used to compare our

designs with those of [12]. Conclusions and directions for

further work appear in Section 9. Drawbacks of the work in

[12] in way of possible bad rounding positions, along with

the difficulty of adherence to IEEE 754-2008 standard with
either SUT or maximally redundant signed-digit number

representation, are discussed in the Appendix.

2 FLOATING-POINT ADDITION

Design of hardware floating-point units has a long history,
dating back to early digital computers that were used

primarily for scientific computations [13]. Initial efforts in

providing high performance in floating-point units were

impeded by the exorbitant cost of hardware. This forced

serialization of potentially parallel steps to allow hardware

reduction and sharing, even in top-of-the-line supercompu-
ters [14]. As hardware cost decreased, an array of innovative

designs began to emerge. Once the more or less straightfor-

ward performance enhancement schemes were exhausted,

replication of units and other hardware-intensive methods

were employed to squeeze out incremental gains. The state

of the art in floating-point adder design uses dual data
paths, as depicted in Fig. 1, to separate the relatively slow

alignment and postnormalization shifts (Steps 2 and 6 of

Algorithm 1) into different paths. This parallelization, based

on the exponent difference, is credited to Farmwald [6].

Others have refined the path separation criteria. For

example, Seidel and Even [15] use both the exponent
difference and the actual operation for this purpose.

The innovations cited above notwithstanding, there is

still room for fine-tuning and improvements in speed,

latency-area tradeoffs, and energy dissipation given the

following challenges in high-speed floating-point adders/

subtractors:

. The prevalent sign-magnitude encoding leads to a
more complex significand addition process than
1’s-or 2’s-complement format. Some techniques
meant to speed up the addition of sign-magnitude
significands (e.g., [16]) entail additional chip-area
and power overheads.

JABERIPUR ET AL.: REDUNDANT-DIGIT FLOATING-POINT ADDITION SCHEME BASED ON A STORED ROUNDING VALUE 695

Fig. 1. Dual-path implementation of Algorithm 1. Box heights are meant

to reflect circuit latencies.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 29,2010 at 14:18:56 EDT from IEEE Xplore. Restrictions apply.

. Postnormalization via counting the leading (non)-
zero digits is a log-latency operation at best.
However, the count of leading 0/1 digits can be
obtained concurrently with addition, perhaps by
deriving an approximate count quickly and fine-
tuning the result at the end [7].

. Rounding to nearest may require an incrementation
and possible exponent adjustment. With some extra
hardware (e.g., the parallel-prefix adder of [15]),
both the normal and an incremented result can be
computed in parallel, thus allowing rapid selection
of the rounded value.

Many computations involve a sequence of arithmetic
operations, without a need to store a result in memory.
Converting an operand loaded from memory to an
intermediate redundant encoding is possible in a small
constant time, independent of operand width. Carry-free
addition/subtraction of redundant operands reduces the
latency of each operation, at the cost of wider register files
to accommodate the redundant representation. However,
the final result must be converted back to nonredundant
form before it is stored in memory. This process is at best a
logarithmic-time operation, but its latency is more than
compensated for by the per-add savings, compounded over
many redundant addition levels. Also, the conversion delay
can be hidden by the memory store operation.

The redundant floating-point addition scheme of Nielsen
et al. [7] employs double-size registers to accommodate the
intermediate BSD results. Using radix-16 signed-digit repre-
sentation, Fahmy and Flynn [10] introduced a floating-point
adder design with fewer redundant bits. The following
paragraphs highlight their approach and its challenges:

. Redundant number system: A maximally redun-
dant radix-16 signed-digit (MRSD) encoding is used
for intermediate values. Signed digits in [�15, 15] are
represented by a 5-bit 2’s-complement encoding,
which is not faithful because it allows the undesired
value �16, though this value is not generated by the
addition algorithm. The claim that narrower digit
sets ([�14, 14] or narrower) may complicate the
design is used to justify the MRSD choice [12].
However, maximal redundancy allows for cancella-
tion of several nonzero digits, beginning with 1 (�1)
and followed by a chain of �15 (15) digits to the
right. This property complicates leading nonzero
digit detection. Note that for narrower digit sets,
cancellation can occur only for the leading 1 (�1).

. Path separation: “The cancellation path is used only
in the case of an effective subtraction with an exponent
difference of zero or an effective subtraction with an
exponent difference of one and a cancellation of some
of the leading digits occurring in the result. In all other
cases, the far path is used.” [10].

. Rounding: Another challenge is the handling of the
rounding increment/decrement operation. Assimi-
lation of the increment/decrement is postponed and
is performed concurrently with the exponent differ-
ence computation of the next addition. The problem
here is that the rounding position (i.e., the exact
binary position for inserting the rounding value),

should be determined based on what the rounding
position would be after converting to nonredundant
IEEE 754 format. It turns out that there may be four
bad rounding positions to the right of the least
significant digit of the unrounded redundant result.
The first of these is handled by extending the
significand adder to the right, and the rest are
prevented in the process of leading nonzero digit
detection via PN recoding [17]. More detail is
supplied in the Appendix, where we show the
difficulties of handling the bad rounding positions.

Before proceeding to our redundant-digit floating-point
design in Section 4, we compare some of the possible
approaches to the design of floating-point addition
schemes. The coarse comparison in Table 1 (to be
supplemented with more detailed simulation results in
Section 8), is based on latency and active hardware
redundancy, with the latter also serving as an indicator of
power requirements.

In column 1 of Table 1, we list actual and potential
implementations of Algorithm 1. Columns 2-5 show the
number of steps whose latency is proportional to the
logarithm of the given column parameter (per the bracketed
latency formula appearing after each step of Algorithm 1).
We assume that, where applicable, carry acceleration is
employed to achieve logarithmic latency, with the needed
extra hardware in terms of units of width (�) given in column
6. Full replication (e.g., SD adders to concurrently compute
sum and sum� 1 in [12, Fig. C.1]) is cited in column 7. The
last row of Table 1 is included for completeness; its entries
will be justified once we have explained our work. Other
parts are explained below, with the understanding that
Steps 1 and 3 (7 and 8) in Algorithm 1 may be overlapped,
with no cost penalty.

. Single-path implementation: In this implementa-
tion, Steps 2, 4, 5, 6, and 8 operate on the full
significand (4 and 5 possibly in parallel). Hardware
components used for Steps 1, 2, 4, 5, 6, 7, and 8,
require seven carry acceleration mechanisms. Use of
compound adders for rounding may require full
hardware replication.

. Dual-path implementation: Here, owing to the
inclusion of Steps 2 and 6 in separate paths, fewer
stages in pipelined implementation and a lower
latency than that of single-path implementation are
both achieved, but at the cost of greater hardware
redundancy. Each path needs at least one significand
adder, with more copies of the adder required in
some designs, depending on how signed-magnitude
addition is implemented.

696 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 5, MAY 2010

TABLE 1
Comparison of Different Implementations of Algorithm 1

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 29,2010 at 14:18:56 EDT from IEEE Xplore. Restrictions apply.

. MRSD floating-point adder: In Fahmy’s design
[12], Step 4 entails digit-length (i.e., h-bit) carry
propagation. But either Step 2 or Steps 5-6 require
dwidthð�Þ=he-digit operations in the worst case. The
delay for exponent difference computation (Step 1)
is hidden by postponed rounding. The rather high
hardware overhead is due to two shifters and five
SD adders used (four in the normalization path and
one in the alignment path), with each adder
internally triplicated to also compute sum� 1. Each
of these 15 adders, the two shifters, and the leading
zeros predictor (18 units in all) is assumed to
contain carry acceleration circuitry.

3 REDUNDANT REPRESENTATIONS

To allow the use of conventional arithmetic components for
bit compression and manipulation, redundant digits are
often encoded as weighted bit sets. We have previously
studied weighted-bit-set (WBS) encodings for digit sets and
extended them to include the use of other two-valued digits
[11]. Graphically, we use an extended dot notation: . for a
bit or posibit in f0; 1g, � for a negabit in f�1; 0g, for a
unibit in f�1; 1g. Symbolically, we distinguish the latter two
with letters or constants (0, 1) bearing the superscripts �

and �, respectively (Table 2). Generalized two-valued digits
(twits) lead to weighted twit-set (WTS) encoding of digit
sets. Logically, we use 0 for the smaller and 1 for the larger
of the two twit values, a convention leading to inverted
encoding of negabits (0 denotes �1 and 1 denotes 0),
complementary to the common usage. Such encodings
(Table 2) have been shown to result in efficient, VLSI-
friendly adder designs [11], [18].

As noted in Section 2, the rounding-packet forwarding
scheme of Nielsen et al. [7] requires double-size registers
and the MRSD adder uses three parallel 5-bit 2’s-comple-
ment adders. The area and power dissipation penalties of
this triplication of active hardware are significant. The
maximally redundant radix-16 digit set [�15, 15] also
complicates the leading nonzero digit detection. Both of
the latter undesirable characteristics may be mitigated
through improved encoding and/or adder design. For
example, clever designs [19], [20] provide MRSD adders
with no hardware redundancy, but the problem of
cancellation of leading digits persists.

As another example, the stored-posibit-transfer (SPT)
encoding [18] of the radix-16 digit set [�8, 8], where there can

be at most one leading insignificant 1 (�1) followed to the
right by �8 (8), obviates the need for any complex provision
to convert leading insignificant nonzero digits. But the active
hardware replication factor of the SPT adder is only
modestly less than that in the design of Fahmy and Flynn.
Nevertheless, the SPT adder has an edge in terms of latency.

The minimally asymmetric digit set [�9, 8] of this paper,
which uses the SUT encoding [11], also has at most one
insignificant leading 1 or �1 digit. The corresponding adder
uses two rows of full-adders, which is equivalent to
hardware duplication, and exhibits the same latency as the
SPT adder just cited. More importantly, however, it obviates
the need for rounding increment due to its ability to store the
rounding value as a unibit. The cardinality of SPT or SUT
digit sets is slightly more than half that of the maximally
redundant radix-16 digit set. But this is not a disadvantage,
because all three schemes require the same number of
redundant radix-16 digits after conversion from nonredun-
dant format (e.g., 7 for IEEE 754-2008 short format).

As shown in Fig. 2, each radix-16 SUT digit has a main
2’s-complement part in [�8, 7] and a transfer part in {�1, 1}.
A high-level design for the ith block of a radix-16 SUT
adder/subtractor, mainly composed of full-adder blocks, is
shown in Fig. 3. Each input’s type is symbolically denoted
using our extended dot notation. Note that due to our twit
encoding scheme, standard full-adders can receive and
produce a variety of twit combinations, as justified in [11].

The critical path in Fig. 3 (heavy line) has a latency of five
cascaded full-adders. Note, however, that the bottom full-
adder row in Fig. 3 may be augmented by carry-lookahead
logic for greater speed. The collective arithmetic value of the
two external inputs of the lower full-adder in position 0 of the

JABERIPUR ET AL.: REDUNDANT-DIGIT FLOATING-POINT ADDITION SCHEME BASED ON A STORED ROUNDING VALUE 697

TABLE 2
Naming Conventions for Twits

Fig. 2. SUT representation in radix 16.

Fig. 3. The ith block of SUT adder/subtractor; the leftmost FA, rendered
in gray, belongs to the next higher block. Vertical dotted lines represent
radix-16 digit boundaries.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 29,2010 at 14:18:56 EDT from IEEE Xplore. Restrictions apply.

least-significant digit (i.e., i ¼ 0) is normally zero. Therefore,
these inputs can accommodate a rounding digit in [�1, 1]
used in lieu of rounding decrement or increment. Conversion
of a 2’s-complement number to an SUT number is possible in
constant time (Table 3); details are given in Section 4.

4 A REDUNDANT RADIX-16 REPRESENTATION

For brevity, and without loss of generality, let the
nonredundant inputs be in IEEE short format (� in Fig. 4).
Note, however, that the experimental results in Section 8 are
based on the long format, as are those of [12]. Our
redundant binary and radix-16 representations correspond
to formats � and � in Fig. 4. Recall that we distinguish
negabits and unibits with letters or constants (0, 1) bearing
the superscripts � and � (Table 2). Also, primed and
double-primed symbols in the same position denote equally
weighted entities. The variables s, ei, and �i (0 � i � 7)
represent the sign, exponent twits, and radix-16-digit
components of the significand.

The process of converting from IEEE 754-2008 to SUT
format is described next. The explanations may be long, but
the process itself is quite simple in hardware cost and latency.
Conversion from other nonredundant formats is similar.

Exponent conversion. The biased input exponent e ¼
e7e6e5e4e3e2e1e0 is converted to the unbiased exponent e0 ¼
e07e
0�
6 e
0�
5 e
0�
4 e
0�
3 e
0�
2 e
0�
1 e
0�
0 by simple copying: e0i ¼ ei. Using kbk

to denote the arithmetic value of a bit-string b, the fact that
the same exponent bit-string interpreted differently be-
comes the unbiased internal exponent is justified by:

ke0k ¼ ke07e0�6 . . . e�0 k ¼ ke7ðe6 � 1Þ . . . ðe0 � 1k
¼ ke7e7 . . . e0k � 127 ¼ kek � 127:

Due to inverted encoding of negabits, the lowest (highest)
possible value for e0, that is, �127 (128), is represented by a
string of eight 0s (1s). Therefore, ease of comparison (i.e.,
the rationale for conventional use of a biased exponent) is
achieved here, with the unbiased exponent e0.

Significand conversion. Each bit-pair x4jx4j�1ð0 < j < 6Þ
is independently transformed, leading also to the introduc-
tion of a transfer in position 4j (see Table 3). The following
equations govern all transformations:

x00 ¼ x0; x00�0 ¼ x0; x0�4j�1 ¼ x4j�1 ð1 � j � 5Þ;
x04j ¼ x4j � x4j�1 x00�4j ¼ x4j _ x4j�1 ð1 � j � 5Þ;
x04jþ1 ¼ x4jþ1; x04jþ2 ¼ x4jþ2 ð1 � j � 5Þ:

Radix conversion for the significand. Starting at the
right end of the format � in Fig. 4, every four positions, up
to but not including the leftmost part of the significand,
may be viewed as a redundant SUT digit � with a 4-bit
2’s-complement main part and a stored unibit in its least-
significant position. The proper handling of the leftmost
4-bit group in the significand will be discussed along with
the conversion of the exponent base to 16.

Radix-16 exponent. The radix-16 exponent is actually
e07e
0�
6 e
0�
5 e
0�
4 e
0�
3 e
0�
2 , with the effect of e0�1 e

0�
0 taken into account

by appropriate binary shift of the significand so as to
preserve the value of the floating-point number. The process
is shown in Table 4 for positive significands, where the
� variables are radix-16 SUT digits. The radix point is
between �6 and �5, with �6 � 1; hence, we have a normalized
radix-16 floating-point representation. To have a full radix-16
SUT digit before the radix point, we extend the significand
width to 28 bits, with the following shift decisions in effect
(dashed lines near the lower-right corner of Fig. 4 show the
four possible alignments that might arise):

. ke0�1 e0�0 k ¼ 0: No shifting is needed, but the 23-bit
significand is extended to the right by one binary
position, which is filled with the effective arithmetic
value 0. The appearance of x22 to the left of the radix
point is due to the SUT transformation. The hidden 1
is accommodated as a unibit and the effective
arithmetic value of the three most-significant bits is 0.

. ke0�1 e0�0 k ¼ �1: The fractional part of the original
significand is right-shifted by one binary position to

698 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 5, MAY 2010

TABLE 3
Truth Table for Significand Transformation

Fig. 4. Short (single) floating-point format �, with the hidden 1 exposed; an equivalent representation �, with redundant significand and unbiased
exponent; and the internal radix-16 redundant format � used in our design.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 29,2010 at 14:18:56 EDT from IEEE Xplore. Restrictions apply.

compensate for ignoring the value of ke0�1 e0�0 k. With
this right shift, the hidden 1 moves to the right of the
binary point, but to conform with SUT format, we
transform the hidden 1 to a negabit 0� (with
arithmetic value �1) in the same position and a
unibit 1� (with effective arithmetic value 2) in the
next higher position. The arithmetic value of the
other four leftmost bits is zero.

. ke0�1 e0�0 k ¼ �2: A right shift by two binary positions
to compensate for ignoring the value of ke0�1 e0�0 kmay
denormalize the radix-16 representation. We there-
fore use a 2-position left shift instead, and compen-
sate for it by storing a 0� in place of e00�2 under e0�2 .
The rationale for storing an adjustment, instead of
decrementing the exponent, is to minimize the
conversion latency.

. ke0�1 e0�0 k ¼ �3: An argument similar to the one just
offered substantiates a binary left shift by one
position.

Sign embedding. When the original floating-point
number is negative, we embed the sign into the internal
radix-16 representation by negating each of the seven
radix-16 SUT digits of the transformed significand (Table 4)
in parallel. Likewise, when the required operation is
subtraction, the subtractor is negated, with the result added
to the subtrahend. Therefore, the actual operation is always
addition, leading to the elimination of the following
provisions and corresponding reductions in the hardware
complexity and latency:

. detection of the actual operation,

. possible swapping of the operands,

. postcomplementation, and

. widening of the addition circuitry to capture extra
digits for rounding.

One drawback of SUT paradigm, although not proble-

matic for subtraction (see Fig. 3), is that negation of an SUT

digit involves digitwide carry propagation in general, given

the asymmetry of the digit set [21]. Here, however, the value

interdependence between the posibit and unibit in position 0

of each SUT digit (see Table 4), produced by the conversion

outlined above, obviates the need for carry propagation in

digit-by-digit negation. An SUT digit is negated by inversion

of its unibit transfer and 2’s-complementation of its main part.

The latter requires carry propagation in general, but for the

digits �1 through �5, as well as for �6 in the bottom two rows of

Table 4, position 0 of each digit � holds a posibit p ¼xjþ1 � xj
and a unibit u� ¼ ðxjþ1 V xjÞ�. Complementing all twits and

adding a constant posibit 1 in position 0 of the latter digits

leaves the three twits 1, p, and u� in position 0. The first two of

these may be replaced by the original p ¼ 1	 p and a carry p

into the next position. Collectively, the value of this carry (i.e.,

2ðxjþ1 	 xjÞÞ and the unibit u� (i.e., �1þ 2u�Þ is 2ðxjþ1 	
xjÞ � 1þ 2xjþ1V xj, which can be accommodated by a unibit

ðxjþ1xjÞ�, as justified in Table 5, where only the second

column from the right holds arithmetic constants. The value-

specific SUT digits �0 as well as instances of �6 in the upper

two rows of Table 4 are easily negated independently.
Based on the observations above, the two-step process

for accommodating the sign of a negative nonredundant
floating-point number in its equivalent radix-16 SUT
encoding can be reduced to a direct process (Table 6).
Moreover, examination of Tables 4 and 5 shows that the
overall conversion process can be summarized as follows
for hardware implementation:

. Extend the nonredundant floating-point number by
one radix-2 position to the right and perform no
operation, 1-bit right shift, 2-bit left shift, or 1-bit
left shift, for ke0�1 e0�0 k ¼ 0, �1, �2, or �3, respec-
tively. In other words, we can use e0�1 to control
right ðe0�1 ¼ 1Þ or left ðe0�1 ¼ 0Þ and e0�0 for choosing
odd (e0�0 ¼ 0, 1-bit shift) or even (e0�0 ¼ 1, 0-bit right
or 2-bit left) shift amount.

. Exclusive-or the sign bit with all bits of the significand.

. Restructure into SUT format.

JABERIPUR ET AL.: REDUNDANT-DIGIT FLOATING-POINT ADDITION SCHEME BASED ON A STORED ROUNDING VALUE 699

TABLE 4
Transformed Significand for Different Values of e0�1 e

0�
0 ¼ (� Stands for Exclusive NOR Operator)

TABLE 5
Deriving the Unibit Transfer After Negation

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 29,2010 at 14:18:56 EDT from IEEE Xplore. Restrictions apply.

The latency for conversion from nonredundant floating-
point format to SUT format equals the delay of 2 bit-shifts,
an XOR gate for sign embedding, and an OR gate for the
final restructuring into SUT format.

5 PATH SELECTION

With the embedded sign representation of Section 4,
addition and subtraction operations do not need to be
distinguished in implementation. Therefore, we focus only
on the radix-16 exponent difference �00 ¼ "00 � �00 used for
path separation, where "00 ¼ "07"0�6 "0�5 "0�4 "0�3 ½"0�2 "00�2
 and �00 ¼
�07�

0�
6 �
0�
5 �
0�
4 �
0�
3 ½�0�2 �00�2
 represent the exponents of the two

operands f1 and f2 according to the encoding � of Fig. 4.
The binary positions enclosed in square brackets indicate
equally weighted negabits in the least-significant positions
of the two exponents. As is common in high-performance
floating-point units, we develop a dual-path adder, with
the alignment path allowing word-length alignment shifts
and the normalization path going through a postaddition
normalizing shifter. Both paths are active in every add/
subtract operation, but one of the results may be wrong.
The correct result is obtained through multiplexing the
result from the alignment and normalization paths. The
selection is based on the exponent difference �00, as
detailed in the following paragraphs.

Fig. 5 depicts our dual-path adder. The two paths have
shared exponent difference and rounding logic. To avoid
hardware redundancy owing to concurrent shifted and
nonshifted additions, no prediction logic for exponent
difference is used in the normalization path. We can now
explain the entries of the last row of Table 1. The rounding
block latency (to be discussed in Section 7) amounts to only
three logic levels, and as such cannot hide the latency of
exponent difference computation. However, the exponent
difference computation for the next floating-point addition
may begin at the same time as the process of rounding
decision, thereby taking the latter off the critical path.
Leading zero detection and the following normalization
shifts contribute to the column titled dwidthð�Þ=he, while the
former adder latency is proportional to logh. The two adders,
two shifters, exponent subtractor, and detection logic (total of
six) use carry acceleration circuitry, and there are three
instances of hardware replication arising from adders, each
with internal duplication due to two full-adder rows in Fig. 3.

Alignment path. For �00 � 2, the latency of alignment
shift is significant, while that of normalization shift is
minimal. This is because for the operand having the larger
exponent (say f1), we have �6j j � 1 and �9 � �5 � 8, while
for the operand with the smaller exponent (f2), the
postalignment values are �6 ¼ �5 ¼ 0. When j�6j � 2 for f1,
MSD of the result is nonzero and there is no normalization
shift. When j�6j ¼ 1 for f1, the transfer value to the most-
significant digit of the result may make it zero. In this case,
however, the next most-significant digit cannot be zero,
given the �5 values for the two operands. Thus, we will
either have a normalized result or need a single-digit right/
left shift to normalize it. The sign and magnitude of the
exponent difference are derived by Algorithm 2 below.
Note that inverted encoding of negabits is in effect.

Normalization path. For �00 ¼ 0, no exponent compar-
ison, swapping, or postcomplementation is needed. This is
due to sign-embedded representation of significands that
allows the result to be negative. In case of �00 ¼ 1, there is
only a 1-digit alignment right shift, but in both cases (i.e.,
�00 � 1), a lengthy normalization shift may be necessary. To
compute the amount of normalization postshift, we need to
locate the first nonzero digit. Because the SUT-encoded

700 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 5, MAY 2010

TABLE 6
Truth Table for Significand Transformation

Fig. 5. Dual-path SUT floating-point adder.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 29,2010 at 14:18:56 EDT from IEEE Xplore. Restrictions apply.

result does not allow leading insignificant digits, except for
a single 1 or �1, conventional leading nonzero digit detector
may be used and no extra provisions, such as PN recoding
circuitry [22], as used for the maximally redundant signed-
digit encoding of Fahmy and Flynn [10], is required.

Algorithm 2. Computing the exponent difference

�00 ¼ "00 � �00
1. Negating the 2nd exponent: Invert all bits of �00. Since the

encoding has a symmetric range [�32, 32], simple

parallel inversion is sufficient (see Theorem 1 in [21]).

2. Deriving the exponent difference: Use a 6-bit ripple-carry

adder (or an equivalent fast adder) to derive

�00 ¼ d06d0�5 d0�4 d0�3 d0�2 d0�1 ½d0�0 d00�0
, where all full-adders,
except the one in the leftmost position, receive three

negabits. The fourth negabit in the rightmost position is

kept intact, so that d00�0 ¼ �00�2 . Therefore,

k�00k ¼ 26d06 þ
P

5
i¼12iðd0�i � 1Þ þ d0�0 � 1þ d00�0 � 1.

The latter can be reduced to k�00k ¼ 26ðd0�6 � 1Þ þ �,
where � ¼

P
5
i¼12id

0�
i þ d0�0 þ d00�0 � 26:

3. Sign of the difference: Complement the most-significant

posibit to obtain the sign. The reason is that d06 ¼ 0

(1) leads to k�00k � 0 ðk�00k � 0Þ.
4. Magnitude of the difference: The absolute value of k�00k is

26 � �, for d06 ¼ 0, and �, for d06 ¼ 1. The latter is

represented by d0�5 d
0�
4 d
0�
3 d
0�
2 d
0�
1 ½d0�0 d00�0
 and the former

by d0�5 d0�4 d0�3 d0�2 d0�1 ½d0�0 d00�0
. Therefore, the negabits of

�00 or their complements, which represent the

magnitude of the exponent difference, can be used to

control a parallel (e.g., barrel) shifter directly.

When k�00k > 6 ðk�00k < �6Þ, all the digits of the oper-

and with the smaller exponent will be shifted out. There-

fore, only d0�2 d
0�
1 ½d0�0 d00�0
 ðd0�2 d0�1 ½d0�0 d00�0
Þ are needed to

control the parallel shifter. Shifting is not required when

d0�5 d
0�
4 d
0�
3 6¼ 000 ðd0�5 d0�4 d0�3 6¼ 000Þ; in this case, no addition

is necessary, but the shifted-out digits may contribute to the

rounding decision.

6 GUARD, ROUND, AND STICKY DIGITS

In the alignment path, two or more radix-16 digits (i.e., SUT
digits in [�9, 8]) of the operand with the smaller exponent
are shifted out. As discussed in Section 5, normalization
postshift in this path is limited to one digit. Therefore, one
needs only to save as a guard digit the most significant one
of the digits that were shifted out. This guard digit may
then be shifted back during the postnormalization process.
The other shifted-out digits are only needed to the extent
that they affect the rounding decision.

For conventional floating-point units, an extra round bit
and a sticky bit (logical OR of all subsequent bits) suffice for
correct rounding, where the sticky bit being 0 signals the
need for applying the halfway rule of the round-to-nearest-
even mode. For redundant-digit floating-point units, how-
ever, round and sticky information should carry informa-
tion about the range of the shifted-out digits, at least
indicating whether the fractional value represented by the
shifted-out digits is negative, zero, or positive.

In our radix-16 SUT floating-point adder, we recognize
three (four) possibilities for sticky (guard and round) digit

values. We use the equally weighted posibit s0 and negabit s00�

to represent sticky information such that s0s00� ¼ 00�, 01�,
and 11� (10� not used) represent a negative, zero, and
positive value passed into and through the sticky position,
respectively. Rounding information, on the other hand, is
encoded as r�1 r0 0� 0; 0� 1; 1� 0, and 1� 1 representing the
following values/ranges �9, �8, [�7, 7], and 8, respectively.
A zero-valued shifted-out digit does not change the sticky
digit, but a positive (negative) one makes the sticky digit also
positive (negative).

Fig. 6 depicts the logic required for deriving the new
sticky digit from the old one, where z and p indicate that the
shifted-out digit, represented by input twits z0�3 z

0
2z
0
1 ðz00z00�0 Þ,

is zero or positive, respectively. The output bits s0 and s00� at
the right edge of Fig. 6 are to be latched back to inputs with
the same names appearing at the left, with the initial value
s0s00� ¼ 01� (i.e., zero) and inverted encoding of negabits in
effect. Note that in case of no normalization shift, the guard
digit will serve as the round digit and the original round
digit should be fed in to the logic of Fig. 6 for updating the
sticky digit. As in nonredundant floating-point addition, in
the alignment path of SUT floating-point addition, a one-
digit normalization right shift may also occur, in which case
the postaddition shifted-out digit serves as the round digit.
The original guard and round digits should then modify the
sticky digit through the logic of Fig. 6.

In the normalization path, where alignment shift is
limited to one right shift, maintaining the guard digit is still
required. With one alignment shift and no postshift (a one-
digit postshift to the right), the guard (shifted-out) digit
serves the same purpose as the round digit and sticky digit
is zero (is derived from the guard digit). But when there
are one or more shifts to the left, no rounding action is
necessary, given that the round and sticky digits are zero.

7 ROUNDING DECISION

In this section, we describe how the round-to-nearest-even
mode might be implemented with our SUT floating-point
addition scheme. The main idea is to compute a rounding
value Rv to be stored as the transfer part of the least-
significant digit in the final sum. Note that the SUT addition
scheme (described in Section 3) does not generate a value
for the transfer part of the least-significant digit, thus
leaving it available for our rounding scheme. Unfortu-
nately, however, this simple rounding decision does not
always work correctly. The challenges include the possible
shifting of the transferless LSD and bad rounding positions.
We discuss the former below, and deal with the latter in the

JABERIPUR ET AL.: REDUNDANT-DIGIT FLOATING-POINT ADDITION SCHEME BASED ON A STORED ROUNDING VALUE 701

Fig. 6. The logic for deriving a new sticky digit from the old one and the
shifted-out digit.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 29,2010 at 14:18:56 EDT from IEEE Xplore. Restrictions apply.

Appendix, where we identify two bad rounding positions,

to the right of the LSD, that may lead to a redundant value

different from that obtained by nonredundant floating-

point operations in accordance with IEEE 754-2008 stan-

dard. For the sake of a comprehensive comparison, we also

show that a simple rounding decision scheme in case of [7]

fails in four bad positions.
Unfortunately, there seems to be no simple solution for

correct rounding in the case of bad rounding positions such

that the requirements of IEEE 754-2008 are met. This is true

for both our SUT representation and for Fahmy and Flynn’s

scheme. The reason is that the combined contribution of the

rounding value and the other bits at position Rp or higher is

less than 1 ulp, and thus, cannot be stored with the LSD.

However, no problem arises for rounding after conversion to

nonredundant format. To solve the problem, Fahmy and

Flynn introduce additional complexity to overcome the

problem of bad positions, as noted in the Appendix.

Alternate redundant number systems are under investiga-

tion by the authors to alleviate this problem. Meanwhile, the

SUT floating-point scheme, primarily owing to the advan-

tages arising from “sign embedding” (refer to Section 4), may

find applications in special-purpose processors and em-

bedded systems, where full compliance with IEEE 754-2008

is not a requirement.

7.1 Shifting of the Transferless LSD

Due to normalization shifts, the transferless LSD may be

shifted right or left, and replaced by the next more

significant digit or by the guard digit, respectively. Both

replacements lead to a new LSD with a transfer digit, and

thus, no room for storing the rounding value. We consider

the cases of right, left, and no shift separately (Figs. 7a, 7b,

and 7c, respectively), and summarize the results in Table 7.

7.1.1 Normalization Right Shift

The LSD of the right-shifted result (i.e., the new LSD) has a

nonempty unibit transfer u00�. Let Rd (for rounding digit)

denote the collective value of u00� and the last shifted-out

digit (i.e., the old transferless LSD). The twits that constitute

Rd have actually been generated as the sum of two radix-16

SUT digits in LSD positions of the two operands and then

shifted one radix-16 position to the right. The following

interval equation summarizes the process:

½�9 ulp; 8 ulp
 þ ½�9 ulp; 8 ulp
 ½�18 ulp; 16 ulp

¼)
shift

Rd 2 ½�ð18=16Þ ulp; ulp
:

We can now extract Rv in f�ulp; 0; ulpg for different

subranges of Rd as follows:

� 18

16
ulp � Rd < �

ulp

2
¼)Rv ¼ �1;

� ulp
2

< Rd <
ulp

2
¼) Rv ¼ 0;

ulp

2
< Rd � ulp ¼) Rv ¼ 1:

In case of the two singular boundary cases (i.e., �ulp=2 and

ulp=2), Rv again in f�ulp; 0; ulpg is decided by the sticky

digit, and parity of the new LSD.

7.1.2 Normalization Left Shift

In this case, a nonzero Rv occurs only in the alignment path,

where a shifted-out digit may be placed back in the LSD

position. The transfer part of this digit and the main part of

the next digit to the right, if any (i.e., Rd as defined in

Section 7.1.1), have been generated either as the sum of two

radix-16 SUT digits from the previous addition, or through

conversion of a nonredundant operand to SUT format. The

former may be treated exactly as Section 7.1.1. For the latter,

702 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 5, MAY 2010

Fig. 7. The rounding digit illustrated.

TABLE 7
Derivation of Rounding Value and Adjustment of LSB

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 29,2010 at 14:18:56 EDT from IEEE Xplore. Restrictions apply.

observe that by significand conversion method, explained

in Section 4, Rd lies in [�ð17=16Þ ulp, (24/16) ulp]. Rv can

now be extracted as follows:

� 17

16
ulp � Rd < �

ulp

2
¼) Rv ¼ �1;

� ulp
2
< Rd < �

ulp

2
¼) Rv ¼ 0;

ulp

2
< Rd < � 24

16
ulp ¼) Rv ¼ 1:

For the singular cases of �ulp=2, the rounding decision is

as in Section 7.1.1. Note that depending on the sticky digit,

Rd ¼ 24=16 ulp could lead to Rv ¼ 2. However, given the

significand conversion equations of Section 4, the latter

situation occurs only for lb ¼ 0, where lb is the least-significant

posibit of LSD; hence, the possibility of storingRv in lieu of the

two least-significant twits of LSD (#20 in Table 7).

7.1.3 No Normalization Shift

The LSD is transferless in this case. For the sake of uniformity

in the rounding decision, however, we assume a unibit u00� in

the least-significant end of LSD. This unibit may be

produced by placing a second full-adder in the low end of

the SUT digit adder handling the LSD position (similar to the

lower right full-adder of Fig. 3), and setting its input negabit

to 1 and the right input posibit to 0, collectively representing

the arithmetic value 0. Entries #1 to #4 in Table 7 occur

particularly in this case when the collective arithmetic value

of lb and u00� is 0. Other entries for the no-shift case are shared

by the cases of normalization shift.
Table 7 shows 21 combinations in deriving the rounding

value; the other 43 possible combinations cannot occur and

constitute don’t-care conditions. Here, u00�; r�1 r0; s
0s00�, and

Rv represent the unibit transfer of LSD, round, and sticky

digits, as defined in Section 6, and the rounding value. The

rightmost posibits of the LSD before and after storing Rv are

indicated as lb and la, and r00� is the stored rounding unibit.

Note that the rounding value computation is done after

normalization shifts have taken place, and the first digit

after LSD is viewed as the round digit. The rounding value

�2 (2) is taken care of by la ¼ 0 (1) and r00� ¼ 0 (1), since

they can only occur when lb is adjusted to 1 (u00� ¼ 0) and

0 (u00� ¼ 1), respectively. Fig. 8 depicts the simple logic

implementing the following equations for r00� and la, based

on Table 7:

r00� ¼ r�1 lbr0s
0 _ u00�ðr�1 _ lb _ r0s

0Þ;
la ¼ ðr�1 	 lbÞ _ r0s0 _ ðr�1 	 lbÞr0s

00� _ ðr�1 lbr0Þ:

8 COMPARATIVE EVALUATIONS

The redundant digit floating-point addition scheme of
Fahmy [12] and the one proposed in this paper are both
based on radix-16 signed-digit number representation. We
now show that the coarse comparison of Table 1 is supported
by detailed analytical evaluation of both schemes. For a fair
comparison, we follow the analytical model of [12]. In this
model, the FO4 delays of a full-adder, a k-bit fast adder, an
m-to-1 multiplexer, and an n-way shifter are as in Table 8,
where f (fan-in) is the maximum number of inputs for a gate
in the design. Based on the component delays of Table 8, the
overall FO4 delays (the unit being an inverter delay with fan-
out of 4) of the redundant-digit floating-point adders of [12]
and [7] are represented by the following equations (adapted
from [12]), where h ¼ 1 in [7]. Recall that �, e, and h
refer to significand, exponent, and digit width (h ¼ log2r),
respectively:

�Ref:½12
 ¼ 16þ 2 logf�1ð width ðeÞ=fd e � 1
� �

þ 2 log4ð width ð�Þ=hd eðhþ 1d eþ log2ð½widthð�Þ=hd e
þ 2 logf�1ð hþ 1Þ=fd e � 1Þ
� �

þ log4ðhþ 1Þd e;
�Ref:½7
 ¼ 15þ 2 logf�1ð width ðeÞ=fd e � 1Þ

� �

þ 2 log4ðwidth ð�ÞÞd e þ log2ðwidthð�ÞÞd e:

Using the same component delays for the critical path of
our design (Fig. 5) yields the following equation, where the
five variable terms that follow the fixed latency of 16 are
due to exponent-difference, shifter, adder, and leading zero
detector (two terms) units, respectively:

�Proposed ¼ 16þ 2 logf�1ð ðwidthðeÞ � log2 hÞ=fd e � 1Þ
� �

þ log2ð widthð�Þ=hd eÞd e þ 2 logf�1ð h=fd e � 1Þ
� �

þ log2ð widthð�Þ=hd eÞd e þ logfðhþ 1Þ
� �

:

The preceding analysis yields 34 FO4 gate delays for the
design of [12], versus 28 for our design (using f ¼ 3, h ¼ 4).
The delay values for width (�) ranging from 8 to 120 are
plotted in Fig. 9.

For more realistic results, we produced VHDL code for
both schemes and ran simulations and synthesis using the
Synopsis Design Compiler. The target library is based on
TSMC 0.13 �m standard CMOS technology. For dynamic and
leakage power, we have used the Synopsis Power Compiler.
The same design environment (e.g., operating conditions
and wire model) and design constraints (e.g., maximum path
delay and area consumption) are assumed for both floating-
point adders being compared. The results, as depicted in
Table 9, show that our proposed floating-point adder is both

JABERIPUR ET AL.: REDUNDANT-DIGIT FLOATING-POINT ADDITION SCHEME BASED ON A STORED ROUNDING VALUE 703

Fig. 8. Rounding logic.

TABLE 8
FO4 Delays Used in Our Analytical Model

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 29,2010 at 14:18:56 EDT from IEEE Xplore. Restrictions apply.

faster and significantly outperforms the design of [12] in

terms of power and area. The following differences are
responsible for the improved performance, power consump-
tion, and layout area:

1. Less hardware redundancy in the main signed-digit
adder. In reference [12], three signed-digit adders
are used to form sum, sumþ 1, and sum� 1
simultaneously.

2. Removal of the need for postcomplementing the
significand in case of equal exponents due to the
sign-embedded representation. To avoid added
latency, the design of [12] includes extensive hard-
ware redundancy, in the form of multiple adders to
compute A�B, B�A, A�Bshifted, and B�Ashifted.
It also uses two shifters in the normalization path and
a 5-to-1 final selector (versus 2-to-1 in our design).

3. Elimination of rounding increment; [12, Fig. 4.2]
includes four active rounding increment/decre-
ment modules.

4. No need for PN recoding.

9 CONCLUSION

We have described a new redundant-digit representation for
floating-point numbers that leads to computation speedup as

well as reduced layout area and power dissipation. These
benefits have been confirmed by approximate analyses and
through more detailed simulation results.

. Speedup:

- Smaller per-operation latency for multiple float-
ing-point additions performed before result
conversion,

- Faster rounding decision, and
- Removal of the digit-width addition during

rounding.
. Area and power:

- Removal of swapping, postcomplementation,
and out-of-word-boundary adder logic of con-
ventional designs,

- Drastic reduction in hardware redundancy, and
- Simpler logic for rounding decision.

By describing algorithms and circuit implementations for
a floating-point adder based on a redundant-digit repre-
sentation, we have shown that the new representation offers
the unique advantage of replacing the slow full-width
addition required for rounding by the insertion of a
rounding value, derived by a simple three-level logic
circuit, in a position normally assigned to a redundant
“twit” within the redundant format. We have also demon-
strated that our scheme leads to a simpler rounding
decision and immediate incorporation of the rounding
value so that, in case of conversion to nonredundant format,
no additional time beyond that of redundant-to-binary
conversion is required. The cost paid for these advantages is
a one-time, two-multiplexer latency for converting IEEE
754-2008 floating-point numbers to our internal format.

Although our scheme does not provide a simple solution
to the problem of lack of full IEEE 754-2008 compliance with
redundant representations, it does reduce the number of
bad rounding positions from four, in the existing scheme of
[23], to only two. Intuitively, this improvement is, in part,
due to the lower redundancy of the SUT representation:
digit set [�9, 8], redundancy index 	 ¼ 2, compared with
[�15, 15], 	 ¼ 15. Research is now in progress on seeking
suitable redundant number systems without bad rounding
positions or, alternatively, proving that no such representa-
tion can exist.

APPENDIX

FLOATING ROUNDING POSITION

IEEE 754-2008 requires that in any compound operation
corresponding to a sequence of basic operations, the final
result be the same as what would have been obtained if
intermediate results were correctly rounded after each step.
For this property to hold, it must be the case that converting
the unrounded result to its nonredundant equivalent and
then rounding it leads to the same result as rounding the
redundant result first and then converting to its nonredun-
dant equivalent.

To deal with this challenge, we follow Fahmy’s approach
[12] in predicting the position of the leading 1 in the
converted (i.e., nonredundant) result and accordingly

704 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 5, MAY 2010

TABLE 9
Synthesis Results Based on 0.13 Micrometer Standard CMOS Technology

Fig. 9. Delays of three redundant-digit floating-point adders in units of
FO4 gate delays.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 29,2010 at 14:18:56 EDT from IEEE Xplore. Restrictions apply.

locating the “rounding position” within the LSD of the
redundant result. The rounding position within the LSD
corresponds to the leading 1 in the MSD, except that
conversion to nonredundant format may shift the leading 1
to the right by one position. There would be no propagating
1 during the conversion process, given that the radix-16
digits of the converted result can accommodate the SUT
digits in [0, 8]. However, negative SUT digits in [�9, �1]
generate a propagating �1, leaving behind a radix-16 digit
in [7, 15]. Therefore, if a propagating �1 reaches the MSD, it
may turn the latter into 0, with the next digit to the right
being in [6, 15]. In this case, the leading 1 after conversion
will be 1-2 binary positions to the right of the MSD,
implying that the rounding position, before conversion,
may be 1-2 binary positions to the right of the LSD. With
maximally redundant digits in [�15, 15], as used in [23],
however, a propagating �1 may leave behind a digit in [0,
15]. This leads to the rounding position falling as far as four
binary positions to the right of the LSD. The most-
significant one of these positions is handled in [23] by
extending the adder to the right and the other three are
prevented via PN recoding logic.

The latency of the latter prediction process is at best
logarithmic in the number of significand digits. However,
given that storing of the rounding value does not lead to
any exponent adjustment, the prediction process may be
taken off the critical path by overlapping it with the
exponent difference computation of the next floating-point
addition. Having obtained the rounding position, we
recognize two cases for storing the rounding value:

. Good rounding positions: When the computed round-
ing position Rp coincides with one of the binary
positions of the result’s LSD, the posibits to the right
of that position affect the rounding value Rv to be
added in position Rp.

. Bad rounding positions: In the two cases when Rp falls
to the right of the LSD, the most-significant bit that
contributes to the rounding value weighs ulp=4 or
ulp=8. The resulting rounding value that is not an
integral multiple of ulp, regardless of the sign,
cannot be stored with the LSD. After conversion to
nonredundant format, however, a normalization
shift of 1-2 bits moves the rounding position to the
rightmost position of the LSD.

ACKNOWLEDGMENTS

Research of Ghassem Jaberipur was supported in part by the
Institute for Research in Fundamental Sciences under Grant
CS1383-4-02, and in part by Shahid Beheshti University. The
authors gratefully acknowledge anonymous reviewers’
contributions to improving the manuscript.

REFERENCES

[1] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs,
second ed. Oxford Univ. Press, 2010.

[2] Institute of Electrical and Electronics Engineers, IEEE Standard for
Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985, Aug.
1985.

[3] Institute of Electrical and Electronics Engineers, IEEE Standard for
Floating-Point Arithmetic, IEEE Std 754-2008, Aug. 2008.

[4] T.-J. Lin, H.-Y. Lin, C.-M. Chao, and C.-W. Liu, “A Compact DSP
Core with Static Floating-Point Arithmetic,” J. VLSI Signal
Processing, vol. 42, no. 2, pp. 127-138, Feb. 2006.

[5] R. Oslejsek and J. Sochor, “Generic Graphics Architecture,”
Proc. Conf. Theory and Practice of Computer Graphics, pp. 105-
112, 2003.

[6] P.M. Farmwald, “On the Design of High Performance Digital
Arithmetic Units,” PhD thesis, Stanford Univ., Aug. 1981.

[7] A.M. Nielsen, D.W. Matula, C.N. Lyu, and G. Even, “An IEEE
Compliant Floating-Point Adder that Conforms with the Pipe-
lined Packet-Forwarding Paradigm,” IEEE Trans. Computers,
vol. 49, no. 1, pp. 33-47, Jan. 2000.

[8] S.F. Oberman and M.J. Flynn, “Reducing the Mean Latency of
Floating-Point Addition,” Theoretical Computer Science, vol. 196,
pp. 201-214, 1998.

[9] P.-M. Seidel and G. Even, “On the Design of Fast IEEE Floating-
Point Adders,” Proc. 15th IEEE Symp. Computer Arithmetic, pp. 184-
194, 2001.

[10] H.A.H. Fahmy and M.J. Flynn, “The Case for a Redundant Format
in Floating-Point Arithmetic,” Proc. 16th IEEE Symp. Computer
Arithmetic, pp. 95-102, 2003.

[11] G. Jaberipur, B. Parhami, and M. Ghodsi, “Weighted Two-Valued
Digit-Set Encodings: Unifying Efficient Hardware Representation
Schemes for Redundant Number Systems,” IEEE Trans. Circuits
and Systems I, vol. 52, no. 7, pp. 1348-1357, July 2005.

[12] H.A.H. Fahmy, “A Redundant Digit Floating Point System,” PhD
thesis, Stanford Univ., June 2003.

[13] S.G. Campbell, “Floating-Point Operations,” Planning a Computer
System, W. Buchholz, ed., pp. 92-106, McGraw-Hill, 1962.

[14] S.F. Anderson, J.G. Earle, R.E. Goldschmidt, and D.M. Powers,
“The IBM System/360 Model 91: Floating-Point Execution Unit,”
IBM J. Research and Development, vol. 11, no. 1, pp. 34-53, 1967.

[15] P.-M. Seidel and G. Even, “Delay-Optimized Implementation of
IEEE Floating-Point Addition,” IEEE Trans. Computers, vol. 53,
no. 2, pp. 97-113, Feb. 2004.

[16] S. Vassiliadis, D.S. Lemon, and M. Putrino, “S/370 Sign-
Magnitude Floating-Point Adder,” IEEE J. Solid-State Circuits,
vol. 24, no. 4, pp. 1062-1070, Aug. 1989.

[17] D.W. Matula and A.M. Nielsen, “Pipelined Packet-Forwarding
Floating Point: I. Foundations and a Rounder,” Proc. 13th IEEE
Symp. Computer Arithmetic, pp. 140-147, 1997.

[18] G. Jaberipur, B. Parhami, and M. Ghodsi, “An Efficient Universal
Addition Scheme for All Hybrid-Redundant Representations with
Weighted Bit-Set Encoding,” J. VLSI Signal Processing, vol. 42,
no. 2, pp. 149-158, Feb. 2006.

[19] M.C. Mekhallalati and M.K. Ibrahim, “New High Radix Maxi-
mally Redundant Signed Digit Adder,” Proc. Int’l Symp. Circuits
and Systems, vol. 1, pp. 459-462, 1999.

[20] G. Jaberipur and S. Gorgin, “A Nonspeculative One-Step
Maximally Redundant Signed Digit Adder,” Comm. Computer
and Information Science, vol. 6, pp. 235-242, 2008.

[21] G. Jaberipur and B. Parhami, “Constant-Time Addition with
Hybrid-Redundant Numbers: Theory and Implementations,”
Integration: The VLSI J., vol. 41, no. 1, pp. 49-64, Jan. 2008.

[22] M. Daumas and D.W. Matula, “Further Reducing the Redundancy
of a Notation over a Minimally Redundant Digit Set,” J. VLSI
Signal Processing, vol. 33, pp. 7-18, 2003.

[23] H.A.H. Fahmy and M.J. Flynn, “Rounding in Redundant Digit
Floating Point Systems,” Proc. SPIE Conf. Algorithms, Architectures,
and Devices, Aug. 2003.

Ghassem Jaberipur received the BS degree in
electrical engineering and the PhD degree in
computer engineering from Sharif University of
Technology in 1974 and 2004, respectively, the
MS degree in engineering from the UCLA in
1976, and the MS degree in computer science
from the University of Wisconsin, Madison, in
1979. He is currently an associate professor of
computer engineering in the Department of
Electrical and Computer Engineering of Shahid

Beheshti University, Tehran, Iran. He is also affiliated with the School of
Computer Science, Institute for Research in Fundamental Sciences,
Tehran, Iran. His main research interest is in computer arithmetic.

JABERIPUR ET AL.: REDUNDANT-DIGIT FLOATING-POINT ADDITION SCHEME BASED ON A STORED ROUNDING VALUE 705

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 29,2010 at 14:18:56 EDT from IEEE Xplore. Restrictions apply.

Behrooz Parhami received the PhD degree
from the University of California, Los Angeles, in
1973. He is currently a professor of electrical and
computer engineering and associate dean for
academic affairs, College of Engineering, at the
University of California, Santa Barbara. He has
research interests in computer arithmetic, paral-
lel processing, and dependable computing. In his
previous position with Sharif University of Tech-
nology, Tehran, Iran, during 1974-1988, he was

also involved in educational planning, curriculum development, standar-
dization efforts, technology transfer, and various editorial responsibil-
ities, including a five-year term as editor of Computer Report, a Persian
language computing periodical. His technical publications include more
than 260 papers in peer-reviewed journals and international confer-
ences, a Persian-language textbook, and an English/Persian glossary of
computing terms. Among his publications are three textbooks on parallel
processing (Plenum, 1999), computer architecture (Oxford Univ. Press,
2005), and computer arithmetic (Oxford Univ. Press, second ed., 2010).
He is currently serving on the editorial boards of IEEE Transactions on
Parallel and Distributed Systems, IEEE Transactions on Computers, and
International Journal of Parallel, Emergent and Distributed Systems. He
is a fellow of the IEEE, the IET, and the British Computer Society, a
member of the Association for Computing Machinery, and a distin-
guished member of the Informatics Society of Iran for which he served
as a founding member and president during 1979-1984. He also served
as the chairman of the IEEE Iran Section during 1977-1986 and received
the IEEE Centennial Medal in 1984.

Saeid Gorgin received the BS and MS degrees
in computer engineering from the South Branch,
and the Science and Research Branch, of Azad
University of Tehran in 2001 and 2004, respec-
tively. Since 2005, he has been working toward
the PhD degree in the Department of Electrical
and Computer Engineering, Shahid Beheshti
University, Tehran, Iran. His research interests
include computer arithmetic and VLSI design.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

706 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 5, MAY 2010

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 29,2010 at 14:18:56 EDT from IEEE Xplore. Restrictions apply.

