
Highly Scalable Self-Healing Algorithms for
High Performance Scientific Computing

Zizhong Chen, Member, IEEE, and Jack Dongarra, Fellow, IEEE

Abstract—As the number of processors in today’s high-performance computers continues to grow, the mean-time-to-failure of these

computers is becoming significantly shorter than the execution time of many current high-performance computing applications.

Although today’s architectures are usually robust enough to survive node failures without suffering complete system failure, most of

today’s high-performance computing applications cannot survive node failures. Therefore, whenever a node fails, all surviving

processes on surviving nodes usually have to be aborted and the whole application has to be restarted. In this paper, we present a

framework for building self-healing high-performance numerical computing applications so that they can adapt to node or link failures

without aborting themselves. The framework is based on FT-MPI and diskless checkpointing. Our diskless checkpointing uses

weighted checksum schemes, a variation of Reed-Solomon erasure codes over floating-point numbers. We introduce several scalable

encoding strategies into the existing diskless checkpointing and reduce the overhead to survive k failures in p processes from

2dlog pe:kðð� þ 2�Þmþ �Þ to ð1þOð
ffiffi
p
pffiffiffi
m
p ÞÞ2:kð� þ 2�Þm, where � is the communication latency, 1

� is the network bandwidth between

processes, 1
� is the rate to perform calculations, and m is the size of local checkpoint per process. When additional checkpoint

processors are used, the overhead can be reduced to ð1þOð 1ffiffiffi
m
p ÞÞ:kð� þ 2�Þm, which is independent of the total number of

computational processors. The introduced self-healing algorithms are scalable in the sense that the overhead to survive k failures in

p processes does not increase as the number of processes p increases. We evaluate the performance overhead of our self-healing

approach by using a preconditioned conjugate gradient equation solver as an example. Experimental results demonstrate that our self-

healing scheme can survive multiple simultaneous process failures with low-performance overhead and little numerical impact.

Index Terms—Self-healing, diskless checkpointing, fault tolerance, pipeline, parallel and distributed systems, high-performance

computing, Message Passing Interface.

Ç

1 INTRODUCTION

AS the unquenchable desire of today’s scientists to run
ever larger simulations and analyze ever larger data

sets drives the size of high-performance computers from
hundreds, to thousands, and even tens of thousands of
processors, the mean-time-to-failure (MTTF) of these
computers is becoming significantly shorter than the
execution time of many current high-performance comput-
ing applications.

Even when making generous assumptions on the relia-
bility of a single processor or link, it is clear that as the
processor count in high-end clusters grows into the tens of
thousands, the mean-time-to-failure of these clusters will
drop from a few years to a few days, or less. The current
DOE ASCI computer (IBM Blue Gene L) is designed with
1,31,000 processors. The mean-time-to-failure of some nodes
or links for this system is reported to be only six days on
average [1].

In recent years, the trend of the high-performance
computing [9] has been shifting from the expensive

massively parallel computer systems to clusters of com-
modity off-the-shelf systems [9]. While commodity off-the-
shelf cluster systems have excellent price-performance ratio,
the low reliability of the off-the-shelf components in these
systems leads a growing concern with the fault tolerance
issue. The recently emerging computational grid environ-
ments [3], [14] with dynamic resources have further
exacerbated the problem.

However, driven by the desire of scientists for ever
higher levels of detail and accuracy in their simulations,
many computational science programs are now being
designed to run for days or even months. To avoid restarting
computations after failures, the next-generation high-per-
formance computing applications need to be able to
continue execution despite of failures.

Today’s long-running scientific applications typically
tolerate failures by writing checkpoints into stable storage
periodically. If a process failure occurs, then all surviving
application processes are aborted and the whole application
is restarted from the last checkpoint. The major source of
overhead in all stable-storage-based checkpoint systems is
the time it takes to write checkpoints to stable storage [23].
The checkpoint of an application on a, say, ten-thousand-
processor computer implies that all critical data for the
application on all ten thousand processors have to be written
into stable storage periodically, which may introduce an
unacceptable amount of overhead into the checkpointing
system. The restart of such an application implies that all
processes have to be recreated and all data for each process
have to be reread from stable storage into memory or

1512 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 11, NOVEMBER 2009

. Z. Chen is with the Department of Mathematical and Computer Sciences,
Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401.
E-mail: zchen@mines.edu.

. J. Dongarra is with the Department of Electrical Engineering and
Computer Science, University of Tennessee, 1122 Volunteer Blvd,
Knoxville, TN 37996-3450. E-mail: dongarra@cs.utk.edu.

Manuscript received 27 May 2008; revised 26 Nov. 2008; accepted 23 Feb.
2009; published online 4 Mar. 2009.
Recommended for acceptance by D.R. Avresky, H. Prokop, and D.C. Verma.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2008-05-0234.
Digital Object Identifier no. 10.1109/TC.2009.42.

0018-9340/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

regenerated by computation, which often brings a large
amount of overhead into restart. It may also be very
expensive or unrealistic for many large systems such as
grids to provide the large amount of stable storage necessary
to hold all process state of an application of thousands of
processes.

Furthermore, as the number of processors in the system
increases, the total number of process states that need to be
written into the stable storage also increases linearly. There-
fore, the fault tolerance overhead increases linearly. Fig. 1
shows how a typical checkpoint/restart approach works.

Due to the high frequency of failures and the large number
of processors in next-generation computing systems, the
classical checkpoint/restart fault tolerance approach may
become a very inefficient way to handle failures. Alternative
fault tolerance approaches need to be investigated.

In this paper, we present an alternative self-healing
approach that is based on FT-MPI, a fault-tolerant version of
MPI [7], [11], [12], and diskless checkpointing [7], [23].
Applications built in our framework are self-healing and
can survive multiple simultaneous node or link failures.
When part of an application’s processes failed due to node
or link failure, unlike in classical checkpoint/restart fault
tolerance paradigm, the application in our fault tolerance
framework will not be aborted. Instead, it will keep all its
surviving processes and adapt itself to failures.

Our diskless checkpointing uses weighted checksum

schemes, a variation of Reed-Solomon erasure codes over

floating-point numbers. Several new encoding strategies are

introduced into diskless checkpointing to improve the

scalability of the technique. The introduced schemes reduce

the fault tolerance overhead to survive k failures in

p processes from 2dlog pe � kðð� þ 2�Þmþ �Þ to ð1þOð
ffiffi
p
pffiffiffi
m
p ÞÞ2�

kð� þ 2�Þm, where � is the communication latency, 1
� is the

network bandwidth between processes, 1
� is the rate to

perform calculations, andm is the size of local checkpoint per

process. When additional checkpoint processors are used, the

overhead can be reduced to ð1þOð 1ffiffiffi
m
p ÞÞ � kð� þ 2�Þm, which

is independent of the total number of computational

processors. The proposed self-healing schemes are scalable

in the sense that the overhead to survive k failures in

p processes does not increase as the total number of

application processes p increases.
We give a detailed presentation on how to write self-

healing high-performance computing applications with
FT-MPI using diskless checkpointing and evaluate the
performance overhead of our self-healing approach by
using a preconditioned conjugate gradient equation solver
as an example. Experimental results demonstrate that our
self-healing approach can survive a small number of

simultaneous processor failures with low-performance
overhead and little numerical impact.

The rest of this paper is organized as follows: Section 2
introduces FT-MPI, a fault-tolerant version of MPI imple-
mentation. In Section 3, we introduce a pipeline-based
encoding algorithm to improve the scalability of diskless
checkpointing. In Section 4, we present scalable coding
strategies to survive multiple simultaneous failures. In
Section 5, we give a detailed presentation on how to write
a fault-survivable application with FT-MPI by using a
conjugate gradient equation solver as an example. In
Section 6, we evaluate both the performance overhead of
our fault tolerance approach and the numerical impact of our
floating-point arithmetic encoding. Section 7 discusses the
limitations of our approach and possible improvements.
Section 8 concludes the paper and discusses future work.

2 FT-MPI: A FAULT-TOLERANT MESSAGE

PASSING INTERFACE

Current parallel programming paradigms for high-perfor-
mance distributed computing systems are typically based
on the Message Passing Interface (MPI) specification [19].
However, the current MPI specification does not specify the
behavior of an MPI implementation when one or more
process failures occur during runtime. MPI gives the user
the choice between two possibilities on how to handle
failures. The first one, which is the default mode of MPI, is
to immediately abort all surviving processes of the applica-
tion. The second possibility is just slightly more flexible,
handing control back to the user application without
guaranteeing that any further communication can occur.

2.1 FT-MPI Overview

FT-MPI [7], [11], [12] is a fault-tolerant version of MPI that is
able to provide basic system services to support fault-
survivable applications. FT-MPI implements the complete
MPI-1.2 specification and parts of the MPI-2 functionality,
and extends some of the semantics of MPI to support self-
healing applications. FT-MPI is able to survive the failure of
n� 1 processes in an n-process job, and, if required, can
respawn the failed processes. However, fault-tolerant
applications have to be implemented in a self-healing way
so that they can survive failures.

Although FT-MPI provides basic system services to
support self-healing applications, prevailing benchmarks
show that the performance of FT-MPI is comparable [13] to
the current state-of-the-art nonfault-tolerant MPI imple-
mentations.

2.2 FT-MPI Semantics

FT-MPI provides semantics that answer the following
questions:

1. What is the status of an MPI communicator after
recovery?

2. What is the status of the ongoing communication
and messages during and after recovery?

When running an FT-MPI application, there are two
parameters used to specify which modes the application
is running.

CHEN AND DONGARRA: HIGHLY SCALABLE SELF-HEALING ALGORITHMS FOR HIGH PERFORMANCE SCIENTIFIC COMPUTING 1513

Fig. 1. Tolerate failures by checkpoint/restart approach.

The first parameter is communicator mode which indicates
the status of an MPI object after recovery. FT-MPI provides
four different communicator modes, which can be specified
when starting the application.

. ABORT: Like any other MPI implementation, in
this FT-MPI mode, the application aborts itself
after failure.

. BLANK: Failed processes are not replaced, all
surviving processes have the same rank as before
the crash, and MPI_COMM_WORLD has the same
size as before.

. SHRINK: Failed processes are not replaced; how-
ever, the new communicator after the crash has no
“holes” in its list of processes. Thus, processes might
have a new rank after recovery and the size of
MPI_COMM_WORLD will change.

. REBUILD: Failed processes are respawned, and
surviving processes have the same rank as before.
The REBUILD mode is the default and the most used
mode of FT-MPI.

The second parameter, the communication mode, indicates
how messages, which are sent but not received while a
failure occurs, are treated. FT-MPI provides two different
communication modes, which can be specified while
starting the application:

. CONT/CONTINUE: All operations which returned
the error code MPI_SUCCESS will finish properly,
even if a process failure occurs during the operation
(unless the communication partner has failed).

. NOOP/RESET: All pending messages are dropped.
The assumption behind this mode is that on error,
the application returns to its last consistent state, and
all currently pending operations are not of any
further interest.

2.3 FT-MPI Usage

It usually takes three steps to tolerate a failure: 1) failure
detection, 2) failure notification, and 3) recovery. The only
assumption the FT-MPI specification makes about the first
two points is that the runtime environment discovers
failures and all remaining processes in the parallel job are
notified about these events. The recovery procedure consists
of two steps: recovering the MPI runtime environment and
recovering the application data. The latter one is considered
to be the responsibility of the application developer. In the
FT-MPI specification, the communicator mode discovers the
status of MPI objects after recovery, and the message mode
ascertains the status of ongoing messages during and after
recovery. FT-MPI offers for each of these modes several
possibilities. This allows application developers to take the
specific characteristics of their application into account and
use the best-suited method to tolerate failures.

3 A SCALABLE ENCODING ALGORITHM

FOR DISKLESS CHECKPOINTING

Diskless checkpointing [23] is a technique to save the state
of a long-running computation on a distributed system
without relying on stable storage. With diskless checkpoint-
ing, each processor involved in the computation stores a

copy of its state locally, either in memory or on local disk. In
addition, encodings of these checkpoints are stored in local
memory or on local disk of some processors which may or
may not be involved in the computation. When a failure
occurs, each live processor may roll its state back to its last
local checkpoint, and the failed processor’s state may be
calculated from the local checkpoints of the surviving
processors and the checkpoint encodings. By eliminating
stable storage from checkpointing and replacing it with
memory and processor redundancy, diskless checkpointing
removes the main source of overhead in checkpointing on
distributed systems [23].

In typical long-running scientific applications, when
diskless checkpointing is taken from application level, what
needs to be checkpointed is often some numerical data [18].
These numerical data can either be treated as bitstreams
or as floating-point numbers. If the data are treated as
bitstreams, then bitstream operations such as parity can be
used to encode the checkpoint. Otherwise, floating-point
arithmetic such as addition can be used to encode the data.

However, compared with treating checkpoint data as
numerical numbers, treating them as bitstreams usually has
the following disadvantages:

1. To survive general multiple process failures, treating
checkpoint data as bitstreams often involves the
introduction of Galois Field arithmetic in the
calculation of checkpoint encoding and recovery
decoding [20]. If the checkpoint data are treated as
numerical numbers, then only floating-point arith-
metic is needed to calculate the checkpoint encoding
and recovery decoding. Floating-point arithmetic is
usually simpler to implement and more efficient
than Galois Field arithmetic.

2. Treating checkpoint data as bitstreams rules out a
heterogeneous recovery. The checkpoint data may
have different bitstream representation on different
platforms and even have different bitstream length
on different architectures. The introduction of a
unified representation of the checkpoint data on
different platforms within an application for check-
point purposes sacrifices too much performance and
is unrealistic in practice.

3. In some cases, treating checkpoint data as bitstreams
does not work. For example, in [18], in order to
reduce memory overhead in fault-tolerant dense
matrix computation, no local checkpoints are main-
tained on computation processors; only the check-
sums of the local checkpoints are maintained on the
checkpoint processors.

The main disadvantage of treating the checkpoint data as
floating-point numbers is the introduction of round-off
errors into the checkpoint and recovery operations. Round-
off error is a limitation of any floating-point number
calculation. Even without checkpoint and recovery, scien-
tific computing applications are still affected by round-off
errors. In practice, the increased possibility of overflows,
underflows, and cancellations due to round-off errors in
numerically stable checkpoint and recovery algorithms is
often negligible.

1514 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 11, NOVEMBER 2009

In this paper, we treat the checkpoint data as floating-
point numbers rather than bitstreams. However, the corre-
sponding bitstream version schemes could also be used if the
application programmer thinks they are more appropriate.
In the following section, we discuss how the local checkpoint
can be encoded so that applications can survive single
process failure.

3.1 The Binary Encoding Algorithm for
Diskless Checkpointing

Assume that diskless checkpointing is performed in a
parallel system with p processors and the size of
checkpoint on each processor is m bytes. Also assume that
it takes �þ �x to transfer a message of size x bytes
between two processors regardless of which two proces-
sors are involved. The variable � is often called latency of
the network and 1

� is called the bandwidth of the network.
Assume that the rate to calculate the sum of two arrays is
� seconds per byte. We also assume that it takes �þ �x to
write x bytes of data into the stable storage. Our default
network model is the duplex model where a processor is
able to concurrently send a message to one partner and
receive a message from a possibly different partner. The
more restrictive simplex model permits only one commu-
nication direction per processor. We also assume that
disjoint pairs of processors can communicate each other
without interfering each other.

In classical diskless checkpointing, binary-tree-based
encoding algorithm is often used to perform the checkpoint
encoding [8], [18], [20], [23], [25]. By organizing all
processors as a binary tree and sending local checkpoints
along the tree to the checkpoint processor (see Fig. 2 [23]),
the time to perform one checkpoint for a binary-tree-based
encoding algorithm, Tdiskless�binary, can be represented as

Tdiskless�binary ¼ 2dlog pe � ðð� þ �Þmþ �Þ: ð1Þ

In high-performance scientific computing, the local
checkpoint is often a relatively large message (megabyte
level), so ð� þ �Þm is usually much larger than �. Therefore,
Tdiskless�binary � 2dlog pe : ð� þ �Þm.

Note that, in a typical checkpoint/restart approach (see
Fig. 1 in Section 1) where �m is usually much larger than �,
the time to perform one checkpoint, Tcheckpoint=restart, is

Tcheckpoint=restart ¼ p � ð�mþ �Þ
� p � �m:

Therefore, by eliminating stable storage from check-
pointing and replacing it with memory and processor
redundancy, diskless checkpointing improves the scal-
ability of checkpointing greatly on parallel and distributed
systems.

3.2 A Chain-Pipelined Encoding Algorithm
for Diskless Checkpointing

Although the classical diskless checkpointing technique

improves the scalability of checkpointing dramatically on

parallel and distributed systems, the overhead to perform

one checkpoint still increases logarithmically because

Tdiskless�binary � 2dlog pe � ð� þ �Þm) as the number of pro-

cessors increases. In this section, we propose a new style of

encoding algorithm which improves the scalability of

diskless checkpointing significantly. The new encoding

algorithm is based on the pipeline idea.
The key idea of pipelining is 1) the segmenting of

messages and 2) the simultaneous nonblocking transmis-

sion and receipt of data. By breaking up a large message

into smaller segments and sending these smaller messages

through the network, pipelining allows the receiver to begin

forwarding a segment while receiving another segment.

Data pipelining can produce several significant improve-

ments in the process of checkpoint encoding. First, pipelin-

ing masks the processor and network latencies that are

known to be an important factor in high-bandwidth local

area networks. Second, it allows the simultaneous sending

and receiving of data, and hence exploits the full duplex

nature of the interconnect links in the parallel system.

Third, it allows different segments of a large message being

transmitted in different interconnect links in parallel after a

pipeline is established, hence fully utilize the multiple

interconnects of a parallel and distributed system.

When the number of processors is one or two, there is

not much that we can improve. Therefore, in what follows,

we assume that the number of processors is at least three

(i.e., p � 3).

Assume that there are p� 1 computational processors

and one checkpoint processor. Let m½i� denotes the data on

the ith processor, where i ¼ 0; 1; 2; . . . , and p� 2. The task

of checkpoint encoding is to calculate the encoding which is

m½0� þm½1� þ � � � þm½p� 2� and deliver the encoding to the

checkpoint processor.

The chain-pipelined encoding algorithm in a p-processor

system works as follows. First, organize all p� 1 computa-

tional processors and the checkpoint processor as a chain.

Second, divide the data on each processor into many small

pieces. Assume that the data on each processor are divided

into t segments of size s. The jth segment of m½i� is

denoted as m½i�½j�. Third, m½0� þm½1� þ � � � þm½p� 2� are

calculated by calculating m½0�½j� þm½1�½j� þ � � � þm½p� 2�½j�
for each 0 � j � t� 1 in a pipelined way. Fourth, when the

jth segment of encoding m½0�½j� þm½1�½j� þ � � � þm½p� 2�½j�
is available, start to send it to the checkpoint processor.

Fig. 3 demonstrates an example of calculating a chain-

pipelined checkpoint encoding for three processors (pro-

cessor 0, processor 1, and processor 2) and deliver it to the

checkpoint processor (processor 3). In step 0, processor 0

sends its m½0�½0� to processor 1. Processor 1 receives m½0�½0�
from processor 0 and calculates m½0�½0� þm½1�½0�. In step 1,

processor 0 sends its m½0�½1� to processor 1. Processor 1 first

concurrently receives m½0�½1� from processor 0 and sends

m½0�½0� þm½1�½0� to processor 2, and then calculates

CHEN AND DONGARRA: HIGHLY SCALABLE SELF-HEALING ALGORITHMS FOR HIGH PERFORMANCE SCIENTIFIC COMPUTING 1515

Fig. 2. Encoding local checkpoints using the binary tree algorithm.

m½0�½1� þm½1�½1�. Processor 2 first receives m½0�½0� þm½1�½0�
from processor 1 and then calculates m½0�½0� þm½1�½0�þ
m½2�½0�. As the procedure continues, at the end of step 2, the

checkpoint processor will be able to get its first segment of

encoding m½0�½0� þm½1�½0� þm½2�½0�. From now on, the

checkpoint processor will be able to receive a segment of

the encoding at the end of each step. After the checkpoint

processor receives the last checkpoint encoding, the

checkpoint is finished.

3.3 Overhead and Scalability Analysis
of the Chain-Pipelined Encoding

In the above chain-pipelined checkpoint encoding, the time

for each step can be modeled by Teach�step ¼ �þ �sþ �s.
Since there are p processors in the system, it takes p� 1

steps for the checkpoint processor to get the encoding of the

first segment. After the checkpoint processor gets the

encoding of the first segment, the pipeline is established.

After the pipeline is established, it takes t� 1 steps for the

checkpoint processor to get the encoding of the rest t� 1

segments. Therefore, the number of steps to encode and

deliver t segments in a p-processor system is ðp� 1Þ þ
ðt� 1Þ. If we assume that the size of data on each processor

is m (¼ ts, where s is the size of the segment), then the total

time for encoding and delivery all t segments is

TtotalðsÞ ¼ ½ðp� 1Þ þ ðt� 1Þ�ð�þ �sþ �sÞ

¼ p� 2þm
s

� �
ð�þ �sþ �sÞ:

Note that

T 00totalðsÞ ¼
2m�

s3
� 0;

and

lim
s�!1

TtotalðsÞ ¼ lim
s�!0

TtotalðsÞ ¼ 1:

Therefore, there is a minimum for Ttotal when s changes.
By solving

T 0totalðsÞ ¼ �
m�

s2
þ ðp� 2Þð� þ �Þ ¼ 0;

we get the critical point

s1 ¼
ffi

m�

ðp� 2Þð� þ �Þ

r
:

If m > s1, then TtotalðsÞ reaches its minimum at s ¼ s1.

Otherwise, TtotalðsÞ reaches its minimum at s ¼ m.

When s ¼ s1,

TtotalðsÞ ¼ ðp� 2Þ�þ ð� þ �Þmþ 2
ffi
ðp� 2Þ�ð� þ �Þm

p
¼ ð� þ �Þm : 1þ 2

ffi
ðp� 2Þ�
ð� þ �Þm

s
þ ðp� 2Þ�
ð� þ �Þm

 !

¼ ð� þ �Þm : 1þ

ffi
ðp� 2Þ�
ð� þ �Þm

s !2

¼ ð� þ �Þm : 1þO
ffiffiffi
p
pffiffiffiffiffi
m
p
� �� �2

:

ð2Þ

Therefore, when m >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m�
ðp�2Þð�þ�Þ

q
, by choosing an optimal

segment size, the chain-pipelined encoding algorithm is able

to reduce the checkpoint overhead to tolerate single failure

from 2dlog pe � ðð� þ �Þmþ �Þ to ð1þOð
ffiffi
p
pffiffiffi
m
p ÞÞ2 � ð� þ �Þm.

In diskless checkpointing, the size of checkpoint m is

often large (megabytes level). The latency � is often

negligible compared with the time to send a large message.

When ð� þ �Þm� ðp� 2Þ�, both 2
ffiffiffiffiffiffiffiffiffiffiffiffi
ðp�2Þ�
ð�þ�Þm

q
and ðp�2Þ�

ð�þ�Þm are

negligible. Ttotal � ð� þ �Þm. Therefore, in practice, the

number of processors often has very little impact on the

time to perform one checkpoint when p is relatively small

(i.e., when p satisfies ð� þ �Þm� ðp� 2Þ�).

For example, if p < 100,m > 10 Mbytes,� ¼ 10�5 seconds,
1
� ¼ 100 Mbytes/seconds, and 1

� ¼ 1;000 Mbytes/seconds,

then ð� þ �Þm > 0:11; ðp� 2Þ� < 0:001, and
ffiffiffiffiffiffiffiffiffiffiffiffi
ðp�2Þ�
ð�þ�Þm

q
< 0:01.

Therefore,

Ttotal ¼ ð� þ �Þm : 1þ

ffi
ðp� 2Þ�
ð� þ �Þm

s !2

� 0:11ð1þ 0:01Þ2

� 0:11;

which does not change as p changes.
However, if p does become very large (i.e., p does not

satisfy ð� þ �Þm� ðp� 2Þ� any more), then strategies in
Sections 4.2 and 4.3 have to be used.

4 CODING TO TOLERATE MULTIPLE

SIMULTANEOUS PROCESS FAILURES

To tolerate multiple simultaneous process failures of
arbitrary patterns with minimum process redundancy, a
weighted checksum scheme can be used. A weighted
checksum scheme can be viewed as a version of the Reed-
Solomon erasure coding scheme [20] in the real number
field. The basic idea of this scheme works as follows. Each
processor takes a local in-memory checkpoint, and
M equalities are established by saving weighted checksums
of the local checkpoint into M checksum processors. When
f failures happen, where f �M; the M equalities become
M equations with f unknowns. By appropriately choosing
the weights of the weighted checksums, the lost data on the
f failed processors can be recovered by solving these
M equations.

1516 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 11, NOVEMBER 2009

Fig. 3. Chain-pipelined encoding for diskless checkpointing.

4.1 The Basic Weighted Checksum Scheme

Suppose there are n processors used for computation.

Assume that the checkpoint data on the ith computation

processor is Pi. In order to be able to reconstruct the lost

data on failed processors, another M processors are

dedicated to hold M encodings (weighted checksums) of

the checkpoint data (see Fig. 4).
The weighted checksum Cj on the jth checksum

processor can be calculated from

a11P1 þ � � � þ a1nPn ¼ C1

..

.

aM1P1 þ � � � þ aMnPn ¼ CM;

8><
>: ð3Þ

where aij, i ¼ 1; 2; . . . ;M, j ¼ 1; 2; . . . ; n, is the weight we

need to choose. Let A ¼ ðaijÞMn. We call A the checkpoint

matrix for the weighted checksum scheme.
Suppose k computation processors andM � h checkpoint

processors have failed. Then, there are n� k computation

processors and h checkpoint processors that have survived.

If we look at the data on the failed processors as unknowns,

then (3) becomes M equations with M � ðh� kÞ unknowns.
If k > h, then there are fewer equations than unknowns.

There is no unique solution for (3), and the lost data on the

failed processors cannot be recovered.
However, if k < h, then there are more equations than

unknowns. By appropriately choosing A, a unique solution

for (3) can be guaranteed, and the lost data on the failed

processors can be recovered by solving (3).
Without loss of generality, we assume that 1) the

computational processors j1; j2; . . . ; jk failed and the

computational processors jkþ1; jkþ2; . . . ; jn survived; 2) the

checkpoint processors i1; i2; . . . ; ih survived and the check-

point processors ihþ1; ihþ2; . . . ; iM failed. Then, in (3),

Pj1
; . . . ; Pjk and Cihþ1

; . . . ; CiM become unknowns after the

failure occurs. If we restructure (3), we can get

ai1j1Pj1 þ � � � þ ai1jkPjk ¼ Ci1 �
Pn

t¼kþ1 ai1jtPjt

..

.

aihj1Pj1 þ � � � þ aihjkPjk ¼ Cih �
Pn

t¼kþ1 aihjtPjt ;

8><
>: ð4Þ

and

Cihþ1
¼ aihþ11P1 þ � � � þ aihþ1nPn

..

.

CiM ¼ aiM1P1 þ � � � þ aiMnPn:

8><
>: ð5Þ

Let Ar denote the coefficient matrix of the linear system
(4). If Ar has full column rank, then Pj1 ; . . . ; Pjk can be
recovered by solving (4), and Cihþ1

; . . . ; CiM can be recovered
by substituting Pj1 ; . . . ; Pjk into (5).

Whether we can recover the lost data on the failed
processes or not directly depends on whether Ar has full
column rank or not. However, Ar in (4) can be any
submatrix (including minor) of A depending on the
distribution of the failed processors. If any square subma-
trix (including minor) of A is nonsingular and there are no
more than M processes failed, then Ar can be guaranteed to
have full column rank. Therefore, to be able to recover from
no more than m failures, the checkpoint matrix A has to
satisfy the condition that any square submatrix (including
minor) of A is nonsingular.

How can we find such kind of matrices? It is well known
that some structured matrices such as Vandermonde matrix
satisfy this condition.

However, in computer floating-point arithmetic where
no computation is exact due to round-off errors, it is well
known [17] that, in solving a linear system of equations, a
condition number of 10k for the coefficient matrix leads to a
loss of accuracy of about k decimal digits in the solution.
Therefore, in order to get a reasonably accurate recovery,
the checkpoint matrix A actually has to satisfy the condition
that any square submatrix (including minor) of A is well
conditioned.

It is well known [10] that Gaussian random matrices
are well conditioned. To estimate how well conditioned
Gaussian random matrices are, we have proved the
following theorem in [5].

Theorem 1. Let Gm	n be an m	 n real random matrix whose
elements are independent and identically distributed standard
normal random variables, and let �2ðGm	nÞ be the 2-norm
condition number of Gm	n. Then, for any m � 2; n � 2; and
x � jn�mj þ 1, �2ðGm	nÞ satisfies

P
�2ðGm	nÞ

n=ðjn�mj þ 1Þ > x

� �
<

1ffiffiffiffiffiffi
2�
p C

x

� �jn�mjþ1

and

Eðln�2ðGm	nÞÞ < ln
n

jn�mj þ 1
þ 2:258;

where 0:245 � c � 2:000 and 5:013 � C � 6:414 are uni-
versal positive constants independent of m, n, and x.

Note that any submatrix of a Gaussian random matrix is
still a Gaussian random matrix. Therefore, a Gaussian
random matrix would satisfy the condition that any
submatrix of the matrix is well conditioned with high
probability. Due to their nice numerical property, Gaussian
random matrices are used as the generator matrices for real
number codes in [4].

Theorem 1 can be used to estimate the accuracy of
recovery in the weighted checksum scheme. For example, if
an application uses 1;00;000 processors to perform compu-
tation and 20 processors to perform checkpointing, then the
checkpoint matrix is a 20	 1;00;000 Gaussian random
matrix. If 10 processors fail concurrently, then the coefficient

CHEN AND DONGARRA: HIGHLY SCALABLE SELF-HEALING ALGORITHMS FOR HIGH PERFORMANCE SCIENTIFIC COMPUTING 1517

Fig. 4. Basic weighted checksum scheme for diskless checkpointing.

matrix Ar in the recovery algorithm is a 20	 10 Gaussian
random matrix. From Theorem 1, we can get

Eðlog10 �2ðArÞÞ < 1:25;

and

P ð�2ðArÞ > 100Þ < 3:1	 10�11:

Therefore, on average, we will lose about one decimal digit
in the recovered data and the probability to lose two digits
is less than 3:1	 10�11.

LetTdiskless pipelineðk; pÞdenote the encoding time to tolerate
k simultaneous failures in a p-processor system using the
chain-pipelined encoding algorithm and Tdiskless binaryðk; pÞ
denote the corresponding encoding time using the binary tree
encoding algorithm.

When tolerating k simultaneous failures, k basic encod-
ings have to be performed. Note that, in addition to the
summation operation, there is an additional multiplication
operation involved. Therefore, the computation time for
each number will increase from � to 2�. Hence, when the
binary tree encoding algorithm is used to perform the
weighted checksum encoding, the time for one basic
encoding is 2dlog pe : ðð� þ 2�Þmþ �Þ. Therefore, the time
for k basic encodings is

Tdiskless binaryðk; pÞ ¼ k : 2dlog pe : ðð� þ 2�Þmþ �Þ
� 2dlog pe : kð� þ 2�Þm:

ð6Þ

When the chain-pipelined encoding algorithm is used to
perform the checkpoint encoding, the overhead to tolerate
k simultaneous failures becomes

Tdiskless pipelineðk; pÞ ¼ k : 1þO
ffiffiffi
p
pffiffiffiffiffi
m
p
� �� �2

ð� þ 2�Þm

¼ 1þO
ffiffiffi
p
pffiffiffiffiffi
m
p
� �� �2

: kð� þ 2�Þm:
ð7Þ

When the number of processors p is not too large, the
overhead for the basic weighted checksum scheme
Tdiskless pipelineðk; pÞ � kð� þ 2�Þm.

However, in today’s large computing systems, the
number of processors p may become very large. If we do
have a large number of processors in the computing systems,
either the one-dimensional weighted checksum scheme in
Section 4.2 or the localized weighted checksum scheme in
Section 4.3 can be used.

4.2 One-Dimensional Weighted Checksum Scheme

The one-dimensional weighted checksum scheme works
as follows. Assume that the program is running on
p ¼ g	 s processors. Partition the g	 s processors into
s groups with g processors in each group. Dedicate
another M checksum processors for each group. In each
group, the checkpoints are performed using the basic
weighted checksum scheme (see Fig. 5). This scheme can
survive M processor failures in each group. The advan-
tage of this scheme is that the checkpoints are localized to
a subgroup of processors, so the checkpoint encoding in
each subgroup can be performed in parallel. Therefore,
compared with the basic weighted checksum scheme, the
performance of the one-dimensional weighted checksum
scheme is usually better.

By using a pipelined encoding algorithm in each
subgroup, the time to tolerate k simultaneous failures in a
p-processor system is now reduced to

Tdiskless pipelineðk; pÞ ¼ Tdiskless pipelineðk; gÞ

¼ 1þO
ffiffiffi
g
pffiffiffiffiffi
m
p
� �� �2

: kð� þ 2�Þm

¼ 1þO 1ffiffiffiffiffi
m
p
� �� �

: kð� þ 2�Þm;

ð8Þ

which is independent of the total number of processors p in
the computing system. Therefore, the overhead to survive
k failures in a p-processor system does not increase as the
total number of processors p increases. It is in this sense that
the subgroup-based chain-pipelined checkpoint encoding
algorithm is a super-scalable self-healing algorithm.

4.3 Localized Weighted Checksum Scheme

The localized weighted checksum scheme works as follows.
Assume that we want to tolerate k simultaneous process
failures. Divide all processes into subgroups of size
kðkþ 1Þ. In each group, the checkpoint encoding is
performed like the basic weighted checksum scheme (see
Fig. 6). But each encoding is distributed into kþ 1 processes

1518 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 11, NOVEMBER 2009

Fig. 5. One-dimensional weighted checksum scheme for diskless

checkpointing.

Fig. 6. Localized weighted checksum scheme for diskless checkpointing.

in the subgroup. Note that there are kðkþ 1Þ processes in

each subgroup; therefore, all k encodings can be replicated

in kþ 1 processes, with each process holding only one

encoding. This scheme can survive k processor failures in

each group. The advantage of this scheme is that the

checkpoints are localized to a subgroup of processors, so

the checkpoint encoding in each subgroup can be done in

parallel. Therefore, compared with the basic weighted

checksum scheme, the performance of the localized

weighted checksum scheme is usually better. Another

advantage of the localized weighted checksum scheme is

that it does not require dedicated processes to hold the

checkpoint encoding.
Let Tdc pip locðk; pÞ denote the encoding time for localized

weighted checksum scheme and TbcastðpÞ denote the time to

broadcast a message of size m to p processors. The pipeline

idea can also be used to broadcast messages. By using a

pipelined style of algorithms to broadcast and encoding, the

time to perform one checkpoint in the localized weighted

checksum scheme is

Tdc pip locðk; pÞ ¼ Tdiskless pipelineðk; kðkþ 1ÞÞ
þ Tbcastðkþ 1Þ

¼ 1þO
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 1Þ

p
ffiffiffiffiffi
m
p

 ! !2

kð� þ 2�Þm

þ 1þO
ffiffiffiffiffiffiffiffiffiffiffi
kþ 1
p ffiffiffiffiffi

m
p

� �� �2

: �m

¼ 1þO kffiffiffiffiffi
m
p
� �� �2

ðkþ 1Þð� þ 2�Þm;

ð9Þ

which is also independent of the total number of

processors p in the computing system.

5 A FAULT-SURVIVABLE ITERATIVE

EQUATION SOLVER

In this section, we give a detailed presentation on how to

incorporate fault tolerance into applications by using a

preconditioned conjugate gradient equation solver as an

example.

5.1 Preconditioned Conjugate Gradient Algorithm

The Preconditioned Conjugate Gradient (PCG) method is

the most commonly used algorithm to solve the linear

system Ax ¼ b, when the coefficient matrix A is sparse and

symmetric positive definite. The method proceeds by

generating vector sequences of iterates (i.e., successive

approximations to the solution), residuals corresponding

to the iterates, and search directions used in updating the

iterates and residuals. Although the length of these

sequences can become large, only a small number of vectors

needs to be kept in memory. In every iteration of the method,

two inner products are performed in order to compute

update scalars that are defined to make the sequences satisfy

certain orthogonality conditions. The pseudocode for the

PCG is given in Fig. 7. For more details of the algorithm, we

refer the reader to [2].

5.2 Incorporating Fault Tolerance into PCG

We first implemented the parallel nonfault-tolerant PCG.

The preconditioner M we use is the diagonal part of the

coefficient matrix A. The matrix A is stored as sparse-row-

compressed format in memory. The PCG code is imple-

mented such that any symmetric, positive-definite matrix

using the Harwell Boeing format or the Matrix Market

format can be used as a test problem. One can also choose to

generate the test matrices in memory according to testing

requirements.
We then incorporate the basic weighted checksum

scheme into the PCG code. Assume that the PCG code

uses n MPI processes to do computation. We dedicate

another M MPI processes to hold the weighted checksums

of the local checkpoint of the n computation processes. The

checkpoint matrix we use is a pseudorandom matrix. Note

that the sparse matrix does not change during computation;

therefore, we only need to checkpoint three vectors (i.e., the

iterate, the residual, and the search direction) and two

scalars (i.e., the iteration index and �ði�1Þ in Fig. 7).
The communicator mode we use is the REBUILD mode.

The communication mode we use is the NOOP/RESET

mode. Therefore, when processes failed, FT-MPI will drop

all pending messages and respawn all failed processes

without changing the rank of the surviving processes.
An FT-MPI application can detect and handle failure

events using two different methods: either the return code

of every MPI function is checked, or the application makes

use of MPI error handlers. The second mode gives users the

possibility of incorporating fault tolerance into applications

that call existing parallel numerical libraries that do not

check the return code of their MPI calls. In the PCG code,

we detect and handle failure events by checking the return

code of every MPI function.
The recovery algorithm in PCG makes use of the longjmp

function of the C-standard. In case the return code of an

MPI function indicates that an error has occurred, all

surviving processes set their state variable to RECOVER

CHEN AND DONGARRA: HIGHLY SCALABLE SELF-HEALING ALGORITHMS FOR HIGH PERFORMANCE SCIENTIFIC COMPUTING 1519

Fig. 7. Preconditioned conjugate gradient algorithm.

and jump to the recovery section in the code. The recovery

algorithm consists of the following steps:

1. Respawn the failed processes and recover the FT-
MPI runtime environment by calling a specific,
predefined MPI function.

2. Determining how many processes have died and
who has died.

3. Recover the lost data from the weighted checksums
using the algorithm described in Section 4.1.

4. Resume the computation.

Another issue is how a process can determine whether it

is a surviving process or it is a respawned process. FT-MPI

offers the user two possibilities to solve this problem:

. In the first method, when a process is a replacement
for a failed process, the return value of its MPI_Init
call will be set to a specific new FT-MPI constant
(MPI_INIT_RESTARTED_PROCS).

. The second possibility is that the application
introduces a static variable. By comparing the value
of this variable to the value on the other processes,
the application can detect whether everybody has
been newly started (in which case all processes will
have the preinitialized value), or whether a subset of
processes have a different value, since each process
modifies the value of this variable after the initial
check. This second approach is somewhat more
complex; however, it is fully portable and can also be
used with any other nonfault-tolerant MPI library.

In PCG, each process checks whether it is a respawned

process or a surviving process by checking the return code

of its MPI_Init call.
The relevant section with respect to fault tolerance is

shown in the source code below.

/* Determine who is re-spawned */

rc = MPI_Init(&argc, &argv);

if (rc==MPI_INIT_RESTARTED_NODE) {

/* re-spawned procs initialize */

...

} else {

/* Original procs initialize*/

...

}

/*Failed procs jump to here to recover*/

setjmp(env);

/* Execute recovery if necessary */

if (state == RECOVER) {

/*Recover MPI environment*/

newcomm = FT_MPI_CHECK_RECOVER;

MPI_Comm_dup(oldcomm, &newcomm);

/*Recover application data*/

recover_data (A, b, r, p, x, . . .);

/*Reset state-variable*/

state = NORMAL;

}

/*Major computation loop*/

do {

/*Checkpoint every K iterations*/

if (num_iter % K ==0)

checkpoint_data(r, p, x, . . .);

/*Check the return of communication

calls to detect failure. If failure

occurs, jump to recovery point*/

rc = MPI_Send (. . .)

if (rc == MPI_ERR_OTHER) {

state = RECOVER;

longjmp (env, state);

}

} while (not converge);

6 EXPERIMENTAL EVALUATION

In this section, we evaluate both the performance overhead
of the proposed weighted checksum schemes (based on the
chain-pipelined encoding) and the numerical impact of our
floating-point arithmetic encoding using the PCG code
implemented in the last section.

We performed five sets of experiments to answer the
following five questions:

1. What is the performance of FT-MPI compared
with other state-of-the-art nonfault-tolerant MPI
implementations?

2. What is the performance overhead of performing
checkpoint as the number of checkpointing proces-
sors increases?

3. What is the performance overhead of performing
recovery as the number of simultaneous processor
failures increases?

4. What is the numerical impact of round-off errors
when recovering from multiple simultaneous pro-
cessor failures?

5. What is the scalability of the pipeline-based self-
healing algorithm when the number of simultaneous
processor failures is fixed but the total number of
application processors increases?

In the first four sets of experiments, we test PCG with
four different problems in each set of experiments. The size
of the problems and the number of computation processors
used (not including checkpoint processors) for each problem
are listed in Table 1. All experiments were performed on a
cluster of 64 dual-processor 2.4 GHz AMD Opteron nodes.
Each node of the cluster has 2 GB of memory and runs the
Linux operating system. The nodes are connected with a
Gigabit Ethernet. The timer we used in all measurements is
MPI_Wtime.

For the fifth set of experiments, we increase the total
number of processors for computing, but choose the
problems to solve carefully such that the size of checkpoint

1520 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 11, NOVEMBER 2009

TABLE 1
Experiment Configurations for Each Problem

on each processor is always the same in every experiment. By
keeping the size of checkpoint per processor fixed, we are able
to observe the impact of the total number of computing
processors on the performance of the checkpointing.

6.1 Performance of PCG with Different MPI
Implementations

The first set of experiments was designed to compare the
performance of different MPI implementations and evalu-
ate the overhead of surviving a single failure with FT-MPI.
We ran PCG with MPICH-1.2.6 [16], MPICH2-0.96, FT-MPI,
FT-MPI with one checkpoint processor and no failure, and
FT-MPI with one checkpoint processor and one failure for
2,000 iterations. For PCG with FT-MPI with checkpoint, we
checkpoint every 100 iterations. For PCG with FT-MPI with
recovery, we simulate a processor failure by exiting one
process at the 1,000th iteration. The execution times of all
tests are reported in Table 2.

Fig. 8 compares the execution time of PCG with
MPICH-1.2.6, MPICH2-0.96, FT-MPI, FT-MPI with one
checkpoint processor and no failure, and FT-MPI with
one checkpoint processor and one failure for different
sizes of problems. Fig. 8 indicates that the performance of
FT-MPI is slightly better than MPICH2-0.96. Both FT-MPI
and MPICH2-0.96 are much faster than MPICH-1.2.6.
Even if with checkpointing and/or recovery, the perfor-
mance of PCG with FT-MPI is still at least comparable to
MPICH2-0.96.

6.2 Performance Overhead of Taking Checkpoint

The purpose of the second set of experiments is to measure
the performance penalty of taking checkpoints to survive
general multiple simultaneous processor failures. There are
no processor failures involved in this set of experiments. At
each run, we divided the processors into two classes. The first
class of processors is dedicated to perform PCG computation
work. The second class of processors is dedicated to perform

checkpoint. In Tables 3 and 4, the first column of the table
indicates the number of checkpoint processors used in each
test. If the number of checkpoint processors used in a run is
zero, then there is no checkpoint in this run. For all
experiments, we ran PCG for 2,000 iterations and checkpoint
every 100 iterations.

Table 3 reports the execution time of each test. In order
to reduce the disturbance of the noise of the program
execution time to the checkpoint time, we measure the time
used for checkpointing separately for all experiments.

Table 4 reports the individual checkpoint time for each
experiment. Fig. 11 compares the checkpoint overhead
(percent) of surviving different numbers of simultaneous
processor failures for different size of problems.

Table 4 indicates that as the number of checkpoint
processors increases, the time for checkpointing in each test
problem increases roughly linearly. The increase in time for
each additional checkpoint processor is approximately the
same for each test problem. However, the increase of the
time for each additional checkpoint processor is smaller
than the time for using only one checkpoint processor. This
is because from no checkpoint to checkpoint with one
checkpoint processor, PCG has to first set up the checkpoint
environment and then do one encoding. However, from
checkpoint with k (where k > 0) processors to checkpoint
with kþ 1 processors, the only additional work is to
perform one more encoding.

Note that we are performing checkpoint every 100 itera-
tions and run PCG for 2,000 iterations; therefore, from
Table 3, we can calculate the checkpoint interval for each
test. Our checkpoint interval ranges from 25 seconds
(Prob #1) to 330 seconds (Prob #4). In practice, there is an
optimal checkpoint interval which depends on the failure
rate, the time cost of each checkpoint, and the time cost of
each recovery. Much literature about the optimal check-
point interval [15], [24], [27] is available. We will not
address this issue further here.

From Fig. 9, we can see that even if we checkpoint every
25 seconds (Prob #1), the performance overhead of
checkpointing to survive five simultaneous processor fail-
ures is still within 2 percent of the original program

CHEN AND DONGARRA: HIGHLY SCALABLE SELF-HEALING ALGORITHMS FOR HIGH PERFORMANCE SCIENTIFIC COMPUTING 1521

TABLE 2
PCG Execution Time (in Seconds)
with Different MPI Implementations

Fig. 8. PCG performance with different MPI implementations.

TABLE 3
PCG Execution Time (in Seconds) with Checkpoint

TABLE 4
PCG Checkpointing Time (in Seconds)

execution time, which actually falls into the noise margin of
the program execution time. If we checkpoint every
5.5 minutes (Prob #4) and assume a processor fails one
after another (one checkpoint processor case), then the
overhead is only 0.1 percent.

6.3 Performance Overhead of Performing Recovery

The third set of experiments is designed to measure the
performance overhead to perform recovery. All experiment
configurations are the same as in the previous section
except that we simulate a failure of k (k equals the number
of checkpoint processors in the run) processors by exiting
k processes at the 1,000th iteration in each run.

Table 5 reports the execution time of PCG with recovery.
In order to reduce the disturbance of the noise of the
program execution time to the recovery time, we measure
the time used for recovery separately for all experiments.
Table 6 reports the recovery time in each experiment. Fig. 10
compares the recovery overhead (percent) from different
numbers of simultaneous processor failures for different
sizes of problems.

From Table 6, we can see that the recovery time increases
approximately linearly as the number of failed processors
increases. However, the recovery time for a failure of one
processor is much longer than the increase of the recovery
time from a failure of k (where k > 0) processors to a failure
of kþ 1 processors. This is because from no failure to a
failure with one failed processor, the additional work the
PCG has to perform includes first setting up the recovery

environment and then recovering data. However, from a
failure with k (where k > 0) processors to a failure with
kþ 1 processors, the only additional work is to recover data
for an additional processor.

From Fig. 10, we can see that the overheads for recovery
in all tests are within 1 percent of the program execution
time, which is again within the noise margin of the program
execution time.

6.4 Numerical Impact of Round-Off
Errors in Recovery

As discussed in Section 3, our diskless checkpointing
schemes are based on floating-point arithmetic encodings,
which introduce round-off errors into the checkpointing
system. The experiments in this section are designed to
measure the numerical impact of the round-off errors in our
checkpointing system. All experiment configurations are
the same as in the previous section except that we report the
norm of the residual at the end of each computation.

Note that if no failures occur, the computation proceeds
with the same computational data as without checkpoint.
Therefore, the computational results are affected only when
there is a recovery in the computation. Table 7 reports the
norm of the residual at the end of each computation when
there are 0, 1, 2, 3, 4, and 5 simultaneous process failures.

From Table 7, we can see that the norms of the residuals are
different for different numbers of simultaneous process
failures. This is because after recovery, due to the impact of
round-off errors in the recovery algorithm, the PCG compu-
tations are performed based on slightly different recovered
data. However, Table 7 also indicates that the residuals with
recovery do not have much difference from the residuals
without recovery.

6.5 Scalability Test

The fifth set of experiments was designed to test the
scalability of the introduced self-healing algorithm (chain-
pipeline-based weighted checksum algorithm). Problems to

1522 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 11, NOVEMBER 2009

Fig. 9. PCG checkpoint overhead.

TABLE 5
PCG Execution Time (in Seconds) with Recovery

TABLE 6
PCG Recovery Time (in Seconds)

Fig. 10. PCG recovery overhead.

TABLE 7
Numerical Impact of Round-Off Errors in PCG Recovery

solve are chosen very carefully so that the size of checkpoint
per process is always the same in each experiment. Fig. 11
shows the time to perform one single-failure checkpoint
encoding using the chain-pipelined encoding algorithm
with 8 Mbytes local checkpoint data on each processor. The
experiments are performed on boba and frodo, two Linux
clusters, at the University of Tennessee, Knoxville. Fig. 12
reports both the checkpoint and the recovery overhead for
tolerating four simultaneous process failures on an IBM RS/
6,000 with 176 Winterhawk II thin nodes (each with four
375 MHz Power3-II processors), a parallel platform at Oak
Ridge National Laboratory.

Fig. 11 indicates that the time to perform one checkpoint
encoding using the chain-pipelined encoding algorithm is
almost constant as the number of processors increases.
Fig. 12 demonstrates that both the checkpoint overhead and
the recovery overhead are very stable as the total number of
computing processes increases from 60 to 480. These
experimental results are consistent with our theoretical
result (Tdiskless pipelineðk; pÞ � kð� þ 2�Þm.) in Section 4.1.

7 DISCUSSION

The size of the checkpoint affects the performance of any
checkpointing scheme. The larger the checkpoint size is, the
higher the diskless checkpoint overhead will be. In the PCG
example, we only need to checkpoint three vectors and two
scalars periodically; therefore, the performance overhead is
very low. If the size of checkpoint increases, the overhead
will increase proportionally.

The basic weighted checksum scheme implemented in
the PCG example has a higher performance overhead than
other schemes discussed in Section 5. When an application
is executed on a large number of processors, to survive
general multiple simultaneous processor failures, the one-
dimensional weighted checksum scheme will achieve lower
performance overhead than the basic weighted checksum
scheme. If processors fail one after another (i.e., no multiple
simultaneous processor failures), the neighbor-based
schemes can achieve even lower performance overhead. It
was shown in [8] that neighbor-based checkpointing is an
order of magnitude faster than parity-based checkpointing,
but takes twice as much storage overhead.

Diskless checkpointing cannot survive a failure of all
processors. Also, to survive a failure occurring during

checkpoint or recovery, the storage overhead would double.

If an application needs to tolerate these types of failures, a

two-level recovery scheme [26], which uses both diskless

checkpointing and stable-storage-based checkpointing, is a

good choice.
Another drawback of our fault tolerance approach is that

it requires the application developers to be involved in the

fault tolerance. However, if the fault tolerance schemes are

implemented into numerical software packages such as LFC

[6], then transparent fault tolerance can also be achieved for

application developers using these software tools.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a self-healing framework to

build fault-tolerant high-performance computing applica-

tions so that they can survive processes failures without

aborting themselves. Several checkpoint encoding algo-

rithms were introduced into diskless checkpointing to

improve the scalability. The introduced checkpoint encod-

ing algorithms are scalable in the sense that the overhead to

survive k failures in p processes does not increase as the

number of processes p increases. An example self-healing

high-performance computing application was also devel-

oped. Experimental results demonstrate that our self-

healing approach is able to survive multiple simultaneous

processor failures with low-performance overhead and little

numerical impact.
In the future, we would like to evaluate our self-healing

technique on larger systems and incorporate this technique

into more high-performance computing applications.

ACKNOWLEDGMENTS

Part of this work was published in the Proceedings of the

ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming (PPoPP ’05), Chicago, Illinois, 15-17

June 2005 [7].

REFERENCES

[1] N.R. Adiga et al. “An Overview of the BlueGene/L Super-
computer,” Proc. Supercomputing Conf. (SC ’02), pp. 1-22, 2002.

[2] R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine, and H.V. der Vorst, Templates for
the Solution of Linear Systems: Building Blocks for Iterative Methods,
second ed. SIAM, 1994.

[3] F. Berman, G. Fox, and A. Hey, Grid Computing: Making the Global
Infrastructure a Reality. Wiley, 2003.

CHEN AND DONGARRA: HIGHLY SCALABLE SELF-HEALING ALGORITHMS FOR HIGH PERFORMANCE SCIENTIFIC COMPUTING 1523

Fig. 11. Performance of pipeline encoding with 8 Mbytes local

checkpoint data on each processor.

Fig. 12. Scalability of the checkpoint encoding and recovery decoding.

[4] Z. Chen and J. Dongarra, “Numerically Stable Real Number
Codes Based on Random Matrices,” Proc. Fifth Int’l Conf.
Computational Science (ICCS ’05), May 2005.

[5] Z. Chen and J. Dongarra, “Condition Numbers of Gaussian
Random Matrices,” SIAM J. Matrix Analysis and Applications,
vol. 27, no. 3, pp. 603-620, 2005.

[6] Z. Chen, J. Dongarra, P. Luszczek, and K. Roche, “Self-Adapting
Software for Numerical Linear Algebra and LAPACK for
Clusters,” Parallel Computing, vol. 29, nos. 11/12, pp. 1723-1743,
Nov./Dec. 2003.

[7] Z. Chen, G.E. Fagg, E. Gabriel, J. Langou, T. Angskun, G. Bosilca,
and J. Dongarra, “Fault Tolerant High Performance Computing by
a Coding Approach,” Proc. ACM SIGPLAN Symp. Principles and
Practice of Parallel Programming (PPoPP ’05), June 2005.

[8] T.C. Chiueh and P. Deng, “Evaluation of Checkpoint Mechanisms
for Massively Parallel Machines,” Proc. 26th Ann. Int’l Symp. Fault-
Tolerant Computing (FTCS ’96), pp. 370-379, 1996.

[9] J. Dongarra, H. Meuer, and E. Strohmaier, “TOP500 Super-
computer Sites, 24th Edition,” Proc. Supercomputing Conf.
(SC ’2004), 2004.

[10] A. Edelman, “Eigenvalues and Condition Numbers of Random
Matrices,” SIAM J. Matrix Analysis and Applications, vol. 9, no. 4,
pp. 543-560, 1988.

[11] G.E. Fagg and J. Dongarra, “FT-MPI: Fault Tolerant MPI,
Supporting Dynamic Applications in a Dynamic World,”
Proc. Parallel Virtual Machine/Message Passing Interface Conf.
(PVM/MPI ’00), pp. 346-353, 2000.

[12] G.E. Fagg, E. Gabriel, G. Bosilca, T. Angskun, Z. Chen, J. Pjesivac-
Grbovic, K. London, and J.J. Dongarra, “Extending the MPI
Specification for Process Fault Tolerance on High Performance
Computing Systems,” Proc. Int’l Supercomputer Conf., 2004.

[13] G.E. Fagg, E. Gabriel, Z. Chen, T. Angskun, G. Bosilca, J. Pjesivac-
Grbovic, and J.J. Dongarra, “Process Fault-Tolerance: Semantics,
Design and Applications for High Performance Computing,” Int’l
J. High Performance Computing Applications, vol. 19, no. 4, pp. 465-
477, 2005.

[14] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kauffman, 1999.

[15] E. Gelenbe, “On the Optimum Checkpoint Interval,” J. ACM,
vol. 26, no. 2, pp. 259-270, 1979.

[16] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A High-
Performance, Portable Implementation of the MPI Message
Passing Interface Standard,” Parallel Computing, vol. 22, no. 6,
pp. 789-828, Sept. 1996.

[17] G.H. Golub and C.F. Van Loan, Matrix Computations. The Johns
Hopkins Univ. Press, 1989.

[18] Y. Kim, “Fault Tolerant Matrix Operations for Parallel and
Distributed Systems,” PhD dissertation, Univ. of Tennessee, June
1996.

[19] Message Passing Interface Forum “MPI: A Message Passing
Interface Standard,” Technical Report ut-cs-94-230, Univ. of
Tennessee, 1994.

[20] J.S. Plank, “A Tutorial on Reed-Solomon Coding for Fault-
Tolerance in RAID-Like Systems,” Software—Practice & Experience,
vol. 27, no. 9, pp. 995-1012, Sept. 1997.

[21] J.S. Plank, Y. Kim, and J. Dongarra, “Fault-Tolerant Matrix
Operations for Networks of Workstations Using Diskless Check-
pointing,” J. Parallel and Distributed Computing, vol. 43, no. 2,
pp. 125-138, 1997.

[22] J.S. Plank and K. Li, “Faster Checkpointing with nþ 1 Parity,”
Proc. Int’l Symp. Fault-Tolerant Computing (FTCS), pp. 288-297,
1994.

[23] J.S. Plank, K. Li, and M.A. Puening, “Diskless Checkpointing,”
IEEE Trans. Parallel and Distributed Systems, vol. 9, no. 10, pp. 972-
986, Oct. 1998.

[24] J.S. Plank and M.G. Thomason, “Processor Allocation and
Checkpoint Interval Selection in Cluster Computing Systems,”
J. Parallel and Distributed Computing, vol. 61, no. 11, pp. 1570-1590,
Nov. 2001.

[25] L.M. Silva and J.G. Silva, “An Experimental Study about Diskless
Checkpointing,” Proc. EUROMICRO ’98 Conf., pp. 395-402, 1998.

[26] N.H. Vaidya, “A Case for Two-Level Recovery Schemes,” IEEE
Trans. Computers, vol. 47, no. 6, pp. 656-666, June 1998.

[27] J.W. Young, “A First Order Approximation to the Optimal
Checkpoint Interval,” Comm. ACM, vol. 17, no. 9, pp. 530-531,
1974.

Zizhong Chen received the BS degree in
mathematics from Beijing Normal University,
People’s Republic of China, in 1997, and the
MS and PhD degrees in computer science from
the University of Tennessee, Knoxville, in 2003
and 2006, respectively. He is currently an
assistant professor of computer science at the
Colorado School of Mines. His research inter-
ests include high-performance computing; par-
allel, distributed, and grid computing; fault

tolerance and reliability; numerical linear algebra algorithms and
software; and computational science and engineering. He is a member
of the IEEE.

Jack Dongarra received the Bachelor of
Science degree in mathematics from Chicago
State University in 1972, the Master of Science
degree in computer science from the Illinois
Institute of Technology in 1973, and the PhD
degree in applied mathematics from the Uni-
versity of New Mexico in 1980. He worked at the
Argonne National Laboratory until 1989, becom-
ing a senior scientist. He now holds an appoint-
ment as a University Distinguished Professor of

Computer Science in the Electrical Engineering and Computer Science
Department at the University of Tennessee, has the position of a
distinguished research staff member in the Computer Science and
Mathematics Division at Oak Ridge National Laboratory (ORNL), is a
Turing fellow in the Computer Science and Mathematics Schools at the
University of Manchester, and is an adjunct professor in the Computer
Science Department at Rice University. He specializes in numerical
algorithms in linear algebra, parallel computing, the use of advanced
computer architectures, programming methodology, and tools for
parallel computers. His research includes the development, testing,
and documentation of high-quality mathematical software. He has
contributed to the design and implementation of the following open-
source software packages and systems: EISPACK, LINPACK, the
BLAS, LAPACK, ScaLAPACK, Netlib, PVM, MPI, NetSolve, Top500,
ATLAS, and PAPI. He has published approximately 200 articles, papers,
reports, and technical memoranda, and he is a coauthor of several
books. He was awarded the IEEE Sid Fernbach Award in 2004 for his
contributions in the application of high-performance computers using
innovative approaches. He is a fellow of the AAAS, the ACM, and the
IEEE, and a member of the National Academy of Engineering.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1524 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 11, NOVEMBER 2009

