High Throughput Disk Scheduling with Fair
Bandwidth Distribution

Paolo Valente, Fabio Checconi

Abstract— Mainstream applications—such as file copy/transfer, by just delaying the dispatching of the preceding requeksenT
Web, DBMS, or video streaming-typically issue synchronous disk a delayed synchronous request may get a higher timestarhp wit
requests. As shown in this paper, this fact may cause work- regpect to the one it would have got if not delayed. This highe
conserving schedulers to fail both to enforce guarantees and timestamp may finally let the request wait for the service of

to provide a high disk throughput. A high throughput can be - . .
however recovered by just idling the disk for a short time interval more requests before being dispatched to the disk. Unfately)

after the completion of each request. In contrast, guaranteemay ~ delaying the service and hence the completion of the requiést
still be violated by existing timestamp-based schedulers, becausedelay the arrival of the successive synchronous requeshef t
of the rules they use to tag requests. same application, and so on. In the end, by just delaying the
~ Budget Fair Queueing (BFQ), the new disk scheduler presented service of its requests, the scheduler may force the apiolico

in this paper, is an example of how disk idling, combined ;sq 6 requests atdeceptivelylower rate. If this anomaly occurs,

with proper back-shifting of request timestamps, may allow a - . .
timestamp-based disk scheduler to preserve both guaranteesthe scheduler just fails to guarantee the reserved bankiwidhe

and a high throughput. Under BFQ each application is always 2asSigned request completion times to the application (¢vem
guaranteed—over any time interval and independently of whether greedy one).
it issues synchronous requests—a bounded lag with respect to its In addition, a minimum amount of time is needed for an
reserved fraction of the total number of bytes transferred bythe application to handle a completed request and to submitee n
disk device. , ,) _synchronous one. On one hand, this fact may further coréribu
We show the single-disk performance of our implementation . \iqjating guarantees with timestamp-based schedu@msthe
of BFQ in the Linux kernel through experiments with real and - .
emulated mainstream applications. other har_ld,_ it may also_ prevent a work-conservmg_ sched_uler
from achieving a high disk throughput. From the disk device
standpoint, an application ideceptively idleuntil it issues the
next synchronous request [1]. During one such idle timegdtkle
head may be moved away from the current position by a work-
|. INTRODUCTION conserving scheduler, thus losing the chance of a closessicce
OST mainstream applications, such as file transfer, Welloy applications performing mostly sequential 10. The peoi
DBMS, Video on Demand or Internet TV, require movings mitigated by the fact that operating systems typicallyfqren
data to/from disk devices. Meeting the disk bandwidth and peead-aheadfor request patterns deemed sequential.
request delay requirements of these applications and atatime Over-provisioningwould be a way to easily guarantee a pre-
time achieving a high throughput is not an easy task. The fidictable and short request service time without dealindp \thie
problem is that the time needed to serve a request once cligghat above problems. Unfortunately it entails high purchaseygring
to the disk device, hereafter callsdrvice timeis highly variable. and cooling costs [2], and purposely wastes disk bandwidth.
Causes are seek and rotational latencies, variation ofrdéinsfer fact, the only option to improve the disk utilization and e
rate with the sector position, cachindn addition, few if any of requirements of many competing applications is propethedal-
the existing controllers export these physical paramgtehich ing disk requests. Several schedulers—such as SCAN (Bfgvat
makes it difficult to predict service times based on request-p C-SCAN, LOOK or C-LOOK [3]-have been defined to achieve
tions on the disk. Finally, most mainstream applicationgallg the first goal. These algorithms are often implemented aisiolé
issue one request or batch of requests at a time. Especiaiygdern disk devices, which can internally queue requests an
they block until the only outstanding request/batch has beeservice them in the best order to boost the throughput. liyjrtal
completed. We denote this type of request or batch of regueathieve a high throughput also in presence of deceptivaédks
as synchronousfor it can be issued only after the outstandingnost Linux standard disk schedulers extend these policigs w
batch/request has been completed. The peculiar arrividrpatf disk idling they do not dispatch any other request to the disk
synchronous requests may cause guarantee and disk thrgughgr a short time interval (in the order of the seek and rotetlo
problems. latencies) after a synchronous request has been compRByed.
Guarantee violations may occur with timestamp-based schetbing so they give a chance to the (possible) next requesteof t
ulers, i.e., schedulers that timestamp requests as adamufttheir same application to arrive before the disk arm is moved away.
arrival time and in essence dispatch them to the disk in @segn The Anticipatory (AS) disk scheduler [1], extends C-LOOK in
timestamp order. The root of the problem is that the arrifa o this sense.
synchronous request may be arbitrarily delayed by a schedul However, to meet the requirements of most types of applica-
b Val i< with the D . Engineering of Moddak tions, guarantees must also be provided on bandwidth llisivin
P Glete s i e Depof Computer Engineerg of Mod: ot request completon times. In his respect, the probleraigs-

10ther less influential sources of variability are sectorisgeand dynamic 'ithms aimed only at maximising the_ disk throughput is _tlmahe
variation of the disk parameters due to thermal variations. worst case they may delay the service of a request until thadewvh

Index Terms— Scheduling, secondary storage, quality of ser-
vice.

disk has been read or written (age-based policies, as in#@8be a slightly extended version of W+ [14], a proportional share
added to mitigate the problem). In contrast, many schesiutes (fair-queuing) packet scheduler. B-W®+ basically differs from
e.g., SCAN-EDF [4], SATF-DAS [5], JIT [6], Hybrid [7], YFQ the original packet scheduler in that, first, it handles thsec
[8], pClock [9], adaptive DRR [10], CFQ [11] and adaptationsvhere an application becomes idle before consuming all f it
of SFQ [12] have been proposed to provide control on requésidget, and, second, it properifts backwardgimestamps to
completion time and/or on bandwidth distribution, whiletaé conceal delayed arrivals. Thanks to this characteristicsta the
same time trying to keep the throughput high. fact that it works in the service and not in the time domain,

Apart from CFQ, all of these schedulers are work-conservirBFQ provides the following guarantee to each applicatiorer o
and none of them takes the delayed arrival problem into atcouany time interval, with any workload and regardless of the disk
Hence, as previously discussed, they may provide a low dipkysical parameters: each application is guaranteed thiennm
throughput and, if timestamp-based, may violate guarantéer possibldag, achievable by serving applications budget-by-budget,
similar reasons, guarantees for synchronous requestdcaged with respect to the minimum amount of service, measured in
with any scheduler if the disk device performs internal sqgieg, number of sectors transferred, that the application shreddive
as discussed in more detail in Section IV. Our experimentatcording to its reserved share of the disk throughput arttieo
results with a single disk thoroughly confirm the expecteskslototal amount of service provided by the system. A loose upper
of guarantees for all the analyzed work-conserving tintepta bound to this lag i8S Byaz, WhereBp,q. is the maximum budget
based schedulers, as well as a loss of disk throughput inafas¢hat can be assigned to any application. In general, BFQ ean b
applications performing mostly sequential accesses. Ofsegp on fine-tuned to achieve the desired trade-off between thnpuigh
the opposite end, adopting aiva disk idling approach in a multi- boosting and maximum per-application lag, by tuniBg.. and
disk system, i.e., idling the entire array of disks on the plation a few other configuration parameters. In addition, a singalifi
of each sequential synchronous request, may cause throughpterface is provided for users not concerned with lowdeve
loss [13F. Some more effective strategies are mentioned togetastails.
with our proposal in the next subsection. The abovesectorguarantees can be turned intme guarantees

In contrast, a non timestamp-based scheduler should nfer subs follows. First, the aggregate throughput achieved wli t
from either problems, provided that some mechanism is &dopdesired values of the configuration parameters must be meshsu
to handle deceptive idleness. This is the case for roundhrolfor the expected worst-case request pattern (see Sectid®). |
schedulers, as, e.g., CFQ, which does perform disk idlimfotd Then, worst-case time guarantees can be computed as aofuncti
tunately, as discussed in Section IV and experimentallysha of the aggregate throughput with a simple closed-form esgios.
Section V, they exhibit a higher delay/jitter in request @betion Note that, on one side no other disk physical parameter needs
times than the timestamp-based scheduler we propose. to be known or measured, whereas, on the other side, there
is no possibility with any scheduler to provide practicahei
guarantees without knowing at some degree at least theitiocal
of the expected request pattern.

In this paper we propose proportional sharetimestamp- jth regard to computational cost and implementation issue
based disk scheduler, called Budget Fair Queueing (BFQ). 8%Q is defined without using disk physical parameters, arel ha
in any proportional share scheduler, in BFQ each applina8o O(jogN) worst-case cost, in the number of competing appli-
guaranteed its reserved fraction (share) of the disk thrpug cations, per request insertion or dispatch (this cost baiwn
irrespective of its behaviour. Hence neither the requesvedr to O(1) if approximate implementations [15] of B-WB+ are
pattern of the application needs to be known or the apptiati adopted). We have implemented BFQ in the Linux kernel (cur-
itself needs to be modified to provide such a guarantee. rently for 2.6.21-29 kernels [16]) and experimentally exzéd

BFQ serves applications as follows. First, when enqueued, igs single-disk performance with file transfer, Web ser@BMS
application is assignedtaudget measured in number of sectors taand video streaming applications (Section V). In genetad, t
transfer. Once selected, the application gets exclusivesado the main contribution of this paper is showing through BFQ a way
disk. During the service of the application disk idling isfeemed to combine disk idling and timestamp back-shifting to prese
to wait for the arrival of synchronous requests (only if ﬂﬂESbo'[h guarantees and a high throughput in presence of symzinso
requests are deemed sequential, see Subsection II-B)lyFifia requests. This technique may be applied also to other timgst
the application runs out of either its backlog or its bud@ets based schedulers. Finally, to preserve a high throughpu in
deselected and assigned a new budget. This service schieme almultiple-disk system, the disk idling scheme described @o f
BFQ to achieve a high throughput if applications issue myostshould be extended to allow, e.g., one outstanding request p
sequential requests. In contrast, for random workloads itat disk. Or a|ternati\/e|y a hierarchical approach migh[bemdd‘
as optimal as a global policy, like, e.g., C-LOOK. It is howeV |eaving the disk idling task only to the local per-disk schiegs.
worth noting that with random workloads even an optimal @oli Carefully investigating these solutions is out of the scopéhis
can achieve only a small fraction of the disk rate. In factereh paper.
possible, caches are usually tuned so as to reduce diskszaés
achieve feasible response times.

Applications are scheduled by the internal BudgetA@F (B- B. Organization of the Paper
WF?Q+) scheduler as a function of their budgets. The latter is

A. Proposed Solution

In Section Il we describe BFQ and report its computational
2 . . . cost, whereas in Section Il we show its service properties i
In [13] an extensive comparative analysis of the performarfceeweral

disk schedulers is reported, in terms of aggregate throughyth different the sector and time doma.'ns- In. SeCt'On IV we provide a brief

workloads and also in presence of internal queueing and pleildisks. survey of related work. Finally, in Section V we compare the

ﬁfq‘ﬂé%ts B SEmpLtatbn_- f”gﬁz!" R
—-LOOK -
Aél I.2 @ Appl. 1| Request Queue Scheduler
requests — . . regﬁes]fs ji‘ Y .
& add_request(i, B~ BFQ dispatch() — "QSS%ES%EXE
. Schedul ; i selectior
: cheduler Dlzls'lée i, S
Appl.] i add | -LOOK : \
" Appl. hedul /
ré%ﬁje’s\{s S p— request(i, R) regﬁes% Request Queue Scheduler | |dispatcn
— 78 s
Fig. 1. System model. ’ ap;ﬁﬁ:tgff?on
(’:\‘oenﬁ)eyadt%eow pudget |/ deselection
TABLE | C-LOOK
Pl Ny Re;qi‘uest ueue scheduler Check of exhaustion
DEFINITIONS. og;eorpgml)?gbglég%%
. BFQ Schedule
Symbol | Meaning
R/ j-th request issued by theth application Fig. 2. BFQ Logical Scheme.
L Size of R!
Lomaz max; j L]
aj, 57, c; | Arrival, start and completion time aR; time of a request the time instantg, s/ and ¢/ at which the
%i((tg) ?(:‘t‘;“;‘:nzf zfrc‘)’f'cseerrj‘;‘(i";ee‘:_ bé’r;ze;h ?ﬁg':ﬁg"m requestR’ is issued by the-th application, starts to be served
u | [\
- - - y e syster and is completely served by the disk device, respectivel.say
Twait Time waited before deeming an application as idle h . h Y be i db licati
Bi.mas | Maximum budget assigned to thah appiication that a request isync ronou !t can be issued by an app ication
Boan max; By.maz only aﬁgr the completion of its previous request. Otheewntise
1, t2) | flt2) — f(t1) request is denoted asynchronous
i Weight of thei-th application We say that an application ieceiving servicdrom the storage
Trrro | Queueing time after which (queued) requests must be servedsystem if one of its requests is currently being served. Both
in FIFO order the amount of servicéV;(t) received by an application and the

total amount of servicéV (¢) delivered by the storage system are
) measured in number of sectors transferred dujing. For each
performance of BFQ against several research and prOdUCtE’éblicatiom’, we let B; ,,q, denote the dynamically configurable
schedulers. maximum budget, in number of sectors, that BFQ can assign to
it. We defineBmas = max; B; maz-
II. BFQ We say that an application isackloggedif it has pending
After defining the system model in the next subsection, w&duests. In addition, to deal with the delayed arrival anel t
introduce the logical scheme and the main algorithm in tHteceptive idleness problems an application is denotequasi-
successive two subsections, where BA@F is used as a black backloggedat time ¢ if either it is backlogged, or it is not
box providing application enqueue/dequeue operationsthaie backlogged but its backlog emptied not before time Ty,

describe B-WEQ+ in detail in Subsections II-D and II-E. where Ty, is @ system-wide dynamically configurable time
interval. Otherwise the application is deemedidls. Moreover

we say that an applicatiom enjoys theshort-or-independent

arrival property (S| property for short) if, for each request
We consider astorage systensomposed of a disk device anng, either B! is asynchronous, or! — c—g‘l < Twait- The

the BFQ scheduler, as in Fig. 1. The former contains a diskctual adherence of real-world applications to the Sl mtgpe

which we model as a sequence of contiguous fixed size sect@ssdiscussed in Section lll, whereas hereafter we assumte tha

each identified by itgpositionin the sequence. The disk deviceapplications do enjoy this property.

services two types oflisk requestsrespectively the reading and Each application has a fixed weight assigned to it. Without

the writing of a set of contiguous sectors. After receivilg t |osing generality, we assume th@fl\’:1 ¢q < 1. Given a generic

A. System model

start commancbr completing a request, the disk glgvice asks fqnction of time f(t), we define f(t7) = lim, ,- f(t) and
the next request to serve by invoking the functidnspat ch fti,t2) = f(t2) — f(t1). Finally, given any time interval
exported by the BFQ scheduler. [t1,t2] during which thei-th application is continuously quasi-

At the opposite end, requests are issued byXhapplications backlogged, we define itseserved serviceduring [t1,t5] as
served by the storage system (applications here stand éor &QW(tl,tg). Suppose thak’*! is a synchronous request, and let
possible entities that can compete for disk. access in ayetdrg, Eg‘ be the time instant at whEch the requ@twould be completed
as, e.g.threads or processes The meaning of the notationsif ihe -th application received exactly its reserved serviceruyri

hereafter introduced is also summarized in Table I. THh [, &]. We say that the arrival ok’ ™! is (deceptively)delayed
application issues itg-th requestr! by invoking the function ;" _j '

=)
add_request exported by the scheduler, and passing the index PG

i and the requesk’. We define asize L] of R! the number of _

sectors to read or write, and @ssition/endof R/ the position B- Logical scheme

of the first/last of these sectors. We say that two requests ar The logical scheme of BFQ is depicted in Fig. 2. Differently
sequentialif the position of the second request is just after thttom Fig. 1, here solid arrows represent the paths followgd b
end of the first one. We define asrival, start and completion requests until they reach the disk device. On the contraghed

arrows represent flows of information or internal commanda. larger cumulative size than the last assigned budget. djenc
Finally, circles represent algorithms or operations. €her a the application budget is increased by a configurable quyanti
request queugor each application. Requests are inserted into thpgovided that the resulting value is not higher thayn,, ... (lines
right queue by thedd_r equest function. 30-34). Finally, the application is enqueued into B-A@+ with

At any time each application has laudget assigned to it, its new budget (line36). Then, if no application is active (lines
measured in number of sectors. L&t be thel-th budget assigned 39-43), the next active application is picked (and removed) from
to the i-th application. At system start-up, all applications arthe B-WFQ+ scheduler. The next requéstio serve is extracted
assigned the samdefault budget BY. Disk access is granted from the queue of the active application and the remainirdgbti
to one application at a time, denoted as Hwtive application counter is decremented (lineg-49).
When the new active application is selected, its currengbtid Finally, if the queue of the active application becomes gmpt
is assigned to a speciaémaining budgetcounter. Each time the timer is set to the current time pld%,.;; (lines50-51). If no
a request of the active application is dispatched, the mingi new request is issued by the application before timer ettpira
budget counter is decreased by the size of the request. Mareothe functionti mer _expirati on (lines 59-66) gets called:
if the request queue gets empty at titme timer is set té+Ty,4;: the application is declared idle, and a new budget equal @o th
to wait for the possible arrival of the next request. This re@we previously consumed one is assigned to it. Finally, the stan@ps
the disk idle, but prevents BFQ from switching to a differendf the application are properly updated to account only Fer t
application if the active application is deceptively idiedeenjoys actual amount of service it received (see the next subsgctio
the Sl property. In addition to not breaking a possible seqe®f The adopted simple linear increase/instantaneous decofas
close or sequential accesses, this waiting is also institahé" pudgets is of course only one of the possible options. It sidow
concealing delayed arrivals, as shown in Subsection Il-&H good performance in terms of both aggregate throughput and
ever, waiting for the arrival of non-sequential requestsvistes short term guarantees in our experiments. For simplicitgnyn
no benefit. Hence, as CFQ, BFQ automatically reddcgs; to a low-level details have been omitted here, as the fact thsk di
very low (configurable) value for applications performimgndom idling is obviously performed only for synchronous regsest
IO (currently 2 ms, see the code for details [16]). If the activeThe interested reader is referred to [16]. Before leaving th
application issues no new request before the timer expmatt subsection, it is worth noting that BFQ actually providesaifile
is deemed idle. The active application is exclusively sgmetil framework, in that both the B-WiQ+ and C-LOOK schedulers
either there is not enough remaining budget to serve the newh be replaced with different schedulers (Fig. 2). Heniéerent
request, or the application becomes idle. At this point tegtn trade-offs among type of guarantees, computational codt an
budget B/ of the application is computed. Basicall}™ is throughput boosting degree can be achieved.
obtained by increasing or decreasimy, depending on whether
the application consumed all of its budget or ran out of itskbzg
before consuming it. The next active application is therseimdoy D. Disk Weighted Fair Queueing

2 - - . .
B-WF-Q+, which schedules enqueued applications as a function, this subsection we provide a brief survey of the main

of their budgets (see Subsection II-E). , _ concepts behind the original WB+ algorithm (see [14] and [17]
_ To guarantee a controllable per-application maximum queLe fo getails), (re)formulated in the disk scheduling domaihese
time, the order in which the requests are extracted from tieeig concepts are the basis for B-W®+, which is then described in
of the active application depends on a user-configurd@ero getail in the next subsection.

parameter. When the njext request of it application is to be areatter we use the terbatchto denote the set of the requests
dlspatchec; attime, if a; +Trrro > t holds for all the queued goryeq ysing a given budget. We define a batch as pending at
requestsk;, then the next request is chosen in C-LOOK ord&fme ¢ if it has not yet been completely served at timgeach

[3], otherwise the oldest request is picked. application has at most one pending batch at a time). We define
_ _ two systems asorrespondingf they serve the same applications
C. Main algorithm and, at any time instant, they provide the same total amofint o

The main BFQ algorithm is shown in Fig. 3 using pseudsservice per time unit.
code. The functioradd_r equest first inserts the new request WF?Q+ approximates on a packet-by-packet basis the ideal
R in the application queue, then, if there are more than oservice provided by a work-conserving packet-babed system
request, nothing is to be done. Otherwise, if the applicat® In B-WF?Q+ we map the concept of packet into the concept
not the active one, the application is enqueued in the BX@#F of batch: B-WEQ+ approximates on a batch-by-batch basis the
scheduler. If the (active) application is waiting for theival of service provided by a corresponding fluid system that mayeser
the next request, the timer is unset. more than one application at a time. Hereafter this systeralied

The functiondi spat ch returns ano requestindication if all just the ideal system, as opposed to the real system, i.¢heto
applications are idle or if the active application is waitifor storage system in Fig. 1. The ideal system is used as a reteren
the arrival of the next request (disk idling). On the contraf because it distributes the total service among applicatgmas
the active application has not enough remaining budgettfor to guarantee to each application a bounded lag, over any time
next request, the application is deselected (line88). Moreover, interval, with respect to its reserved service (see the ragipdor
through the call to the functiob- wf 2qg+_updat e_vfi nti ne details). Moreover, in the ideal system, each request ipbeted
(described in the next subsection) at li¥s28, the application no later than the time instant at which it has to be completed
timestamps are updated to account only for the servicewadei according to the reserved service of the issuing applicaf@n
The fact that the application did not empty all of its backieg the contrary, as shown in the Section Ill, this does not holthe
assumed as an indication that it issues batches of requéhts weal system. Hence a synchronous request in the real sységm m

active_appl = none
remaining.budget =

; 11 reference to the currently active application
0 ; // remaining budget of the active appl.

/1 input: application index, request issued by the application
add.request(nt i, request R){
appl = applications[i] ; // reference to the i-th application

/1 insert R in the application queue
enqueue (R, appl.queue)

© O N OO AWwN R

=
P o

if (appl.queue.size == 1Y // the queue was empty
if (appl != activeappl)
b—wf2g+_insert(appl) ; // Secll-E
else // applis the active application
if (waiting_for_next.req ()) // deceptive idleness
unsettimer () ; // nextreq arrived: stop waiting

B R R e e
N o o s wN

}
18 }

20 request dispatch (){ // output: request to serve
21 if (all_applic.are.idle () OR waitingfor_next.req())

22 return no.request ;

23

24 if (active_appl != none AND

25 remainingbudget <

26 C-LOOK_nextreq(activeappl.queue).size}{
27 b—wf2q+_updatevfintime (active.appl ,

28 active.appl.budget— remainingbudget)
29

30 if (active_appl.budget + BUDGNC_STEP <=

active_appl.maxbudget)
active.appl.budget += BUDGNC_STEP ;
else
active_appl.budget = activeappl.maxbudget;
b—wf2q+_insert (activeappl) ;
active_appl = none

39 if (active_appl == none){

/1 get and extract the next active appl. from b-wf2g+ (Sec. II-E)
active.appl = b-wf2g+_get-next_application() ;
remaining.budget = activeappl.budget

/1 get and remove the next request from the queue of the active appiicatio
next.-request = dequeumext.req(activeappl.queue) ;

/1 for simplicity at this point we assume that negtuest.size<

/1 remainingbudget, see the code [16] for details
remainingbudget —= next.request.size ;

if (is_.empty(activeappl.queue))

51 settimer (T_wait) ; // start waiting for the next request

53 /1 account for this service in b-wf2g+
54 b—wf2q+_inc_tot_service (nextrequest.size) ;

56 return

57 }

timer_expiration () { // called on timer expiration
60 active.appl.budget =

next.request ;

61 active.appl.budget— remainingbudget

62 b—wf2q+_updatevfintime (active.appl ,

63 active_appl.budget) ;// Sec. ll-E

64 active_appl = none ; // no more the active application

65 /1 dispatch() will take care of selecting the next active application

Fig. 3. BFQ Main Algorithm

arrive later than in the ideal system. This fact may causaas
arrivals to be deceptively delayed in the real system.
An application iseligible at time¢ if its pending batch would

pending batch in the ideal system. These two values aredcalle
virtual start andfinish time .S;(¢) and F;(t), of the application or,
equivalently, of its pending batch at timeThey are computed as

a function of a commorsystem virtual timdéunction V (¢) when

an application is (re)inserted into the scheduler (see §1417]).
Although it seems a contradiction in terms, the unit of measu
of the virtual time is the service (see the appendix for d&tai
Especially the virtual time of each backlogged applicatipows

as the amount of service received by the application, dil/iole

its weight.

E. B-WFQ+ and timestamp back-shifting

1V =0 ; // system virtual time

2

3 // input: the application to insert

4 b—wf2g+_insert(appl) {

5 if (appl !'= activeappl) // then an asynchronous req arrived
6 appl.S = max(V, appl.F) ;// use actual arrival time

7 else // in this case the active appl. is being deactivated

8 /1 to preserve guarantees in case of delayed arrival, timestamp

9 /1 the application as if the next request to serve arrived at the same

i
[S)

/1 time as the last request of the just terminated batch
appl.S = appl.F ;
appl.F = appl.S + appl.budget / appl.weight ;
/1 add the application to the internal data structure
setof_enqueuedappl.insert(appl) ;

B R R R R R
o o b wN P

17 /] extract and return the next application to serve
18 b—wf2q+_get-next.application () {
19 if (there.is_no_eligible_appl())
/1 certainly there are enqueued applications, otherwise this
/1 function does not get called (see function dispatch)
V = set.of_enqueuedappl.minS ()
next.appl = eligibleappl-with_minF () ;
setof_enqueuedappl.remove(nextappl) ;
return next.appl ;

2 }

/1 called upon each request dispatch

b—wf2q+_inc_tot_service (service){
V =V + service ;

31}

/1 update application virtual finish time
b—wf2q+_updatevfintime (appl, receivedservice) {

appl.F = appl.S + receivedervice / appl.weight ;
36 }

28

Fig. 4. B-WPQ-+.

The B-WFQ+ algorithm is shown in Fig. 4 using pseudo-
code. An application is inserted into the scheduler by mglthe
function b- wf 2g+_i nsert . If the application is not the active
one, then, sincd,,,;; is waited for before deactivating an appli-
cation and applications enjoy the Sl propettywf 2q+_i nsert
is called as a consequence of the arrival of an asynchronous
request. In this case the virtual start and finish times of the
application are computed as a function of the actual timehéathv
b-wf 2g+.i nsert is called, i.e., the actual request arrival time,
using the same formulas as in W@+ [14].

On the other hand, if the application to insert is the actiwe,o

have already started to be served in the ideal system ati#imehen according to Fig. 3 ling6, the application is necessarily
B-WF?Q+ tries to complete the service of application batches ieing enqueued into B-WR+ after a deactivation and not
the same order as the ideal system. Moreover, it chooses#te hecause of the arrival of a request. L&t be the next request to

application to serve only among the eligible ones.

serve of the application (there is certainly one). As expdi

This policy is efficiently implemented by timestamping eacbelow in detail, after a deactivatio; is assigned the value

application with the values assumed by a speeigplication

assumed by the application virtual time upon the completibn

virtual time function at the start and completion times of itghe last served request, in this caRé_l, in the ideal system

(Fig.3 lines27-28). Let F; be this value. According to [14], the only for the actual service received.
exact value of the application virtual time upon the arriolr’ Finally, B-WFQ+ can be implemented &(log N) or O(1)
should have been equal tieax(F;, V(a{)). On the contrary, in B- cost per application insertion/extraction [15], depegdion
WF2Q+ F; is unconditionally assigned t§;, as if R/ had arrived whether exact or approximate timestamps are used. Since all
at a time instant between the arrival timg " and the completion the other operations in Fig. 3 ha(1) cost, the overall BFQ
time in the ideal system of the previous requeést '. This Scheduler can be implemented @(log V) or O(1) cost per
fictitious backward shift conceals the possibly delayedainof ~request insertion/extraction. . .
R and of the successive requests served using the same badget &he basic algorithm reported in this subsection does ndagon
Rf Moreover, the worst-case guarantees of the other apiplisat many of the details of the complete vgrsu_)n. The latter,, e.g.
are not endangered, as the guarantees provided to eacbaippli 2Utonomously adapts to a dynamic application set and, ewall
are independent of the arrival time of the requests of therotH€ USers to choose the weights in a simpler and more flexible
applications. way, it poses no co_nstramt on the values of thjs weights [D8].
The function b- wf 2q+_get _next _appl i cati on returns COUrS€n this case ,'t may happen. tetor = 3 i1 ¢i > L, ‘?Ut
the eligible application with the minimum virtual finish ten € Service properties of BFQ still hold after replacing with

and removes it from the internal data structure (lim8s25). ®ror N the following inequalities.
In case there are quasi-backlogged applications, but noione IIl. SERVICE PROPERTIES
eligible (lines19-22), V(t) is pushed-upgo the minimum virtual

. : o In this section we report the service properties of BFQ, ithbo
start time amongll the quasi-backlogged applications (the latter . A . :
coincide with tgr?e appﬂcations engl?euedp?n B-?/(L)l(when sector (bandwidth distribution) and time domains. We alsoas

b- wf 2g+_get _next _appl i cat i on is invoked). Since an ap- EQW Itlo perforhm adrr]’mssLon cohqtrol E;Ed tg pr_ov:jdt: t';ne gflrjfafl
plication is eligible if and only if its virtual start time isot higher inafly we show now 1o achieve the desired frade-off between

than the system virtual time, this jump guarantees B*Q¥ to faimess granularity and throughput boosting.

be work-conserving [14]. However, as shown in SubsectieB Il a Bﬁ:;g?onszg?edmgh Itthéssénrquganrto tgrt_lg:nct#‘ymt:he ;et a(ljf
the overall BFQ algorithm is not work-conserving, as it \sditr pplcat wh vice propert Q adyu

- - hold also in presence of delayed arrivals. From Section Il we
the arrival of a new request before serving the next one. P y

Pushing up the system virtual time is a delicate operatidgh wi.knOW that BFQ conceals the delayed arrivals of the requests

respect to the fictitious backward shift of arrival timest Itiee issued by the applications that meet the SI property. Herie@ B

i-th application be one of the applications that are idle &rial guarantees to these applications the same amount of semite

system at time when a jump is performed. Suppose for a momertﬁ]e same per-request completion time as if the arival oh exic

. NSRS their synchronous requests would not have been delayed. As a
that a delayed synchronous requ>arrives after time. Since consequence, one would Bt as high as possible to include
the i-th application is not taken into account in computivigt), q ' ait 9 P

the jump would be conceptually incompatible with a fictiou EZsmain?/ma%Fr)tl:riui?:Saif opr??r?:eblgi.skH ?:rl g\ljerﬁ t:te l\t/arLuf“Q‘flvi d
backward shift of the arrival ok’ to (or before) time. Hence itis X P gnhput. Y PX

easy to show that it would not be possible to conceal thisygela _S|gn|f|can_t b_oostmg in presence of deceptive |(_Jllenessoblyt i
. . S . its value is in the order of the seek and rotational latenfigs
arrival without violating the guarantees of thidh application.

:) - : - namely a few milliseconds. In contrast, higher values maysea
Fortunately, if thei-th application enjoys the Sl property, it is not
. J = . progressive performance degradation, as the disk may billief
possible that;] > ¢, becausd’,,;; seconds are waited for beforefor 100 long
invoking b- wf 2g+_get _next _appl i cati on. o . .
V(t) is also incremented by the size of the J.uanApphcatlons commonly alternate phases during which they

dispatched ¢ h ¢ dispatch (funct ake intense use of the disk device and phases during which
Ispatched request upon each request —dispalc (func {%y rarely access it. Fortunately, even for the above roeeati
b-wf 2g+.i nc_t ot _servi ce at lines 29-31). For a perfect

. : . ficial | I fTwaits ing the f h he Sl
tracking of the ideal system}/(¢t) should be continuously beneficial low value o v during the former phases the S

.) ! . . property holds for the majority of mainstream applicatio®s
increased by the amount of service provided by the disk devi S .
Of course, this is impossible in a real system, because tie d he other hand, should an application not meet the Si profiert

device does not export continuous information on the amofmt£he other phases, the possible degradation of the guasaotee
service provided SFLppose that an idle application issuaeva bandwidth distribution and request completion times wddste

o Z ! a negligible impact on the overall application performance
requestR while a requestr is under service, and let be the glg P PP P

completion time ofR. Due to the step-wise increment of(¢),
the application may be timestamped askifactually arrived at
time . Of course, since the application is enqueued before tim?
t, the worst-case effect of this wrong time-stamping is delgy 0
the service ofR as if it arrived at timet. The consequences o
this fact on the service guarantees are shown in Section Il

A. Sector-domain properties

To show BFQ sector guarantees, we refer to a sector-variant
the Bit-Worst-case Fair Index (Bit-WFI), originally deéd in
fpacket systems [14]. This index, which we denote as Sectéir-W
allows us to predict the minimum amount of service guarahtee
by a system to an application over any time interval duringctvh

i i -+ +
. The last important difference between B and ngQ the application is continuously quasi-backlogged (Sectip The
is that the latter also handles the fact that an applicatiay m .
following theorem holds.

not use all of its budget. This possibility affects only time Theorem 1:For any time intervalti, t] during which thei-

guarantees, as shown in Subsection IlI-B. Here we highjigstt S ; :
that, before an application that did not use all of its budgay maattpphcatlon Is continuously quasi-backlogged, BFQ gotges

be enqueued again, its virtual finish time is properly updidte
calling b- wf 2g+_updat e_vfi nti ne (lines 34-36) to account ¢i - W(t1, t2) — W;(t1, t2) < Bmaz + Bimaz + Lmaz. (1)

The right hand side in (1) is the Sector-WFI of BFQ. Note that, Theorem 2:Given a requestR{, let 1 < a{ be a generic
if an application enjoys the Sl property, then the time w3 time instant such that theth application is continuously quasi-

during which it needs to access the disk safely coincide withacklogged duringt;, c]]. Let Tugy be the minimum aggregate

the time intervals during which it is quasi-backlogged. éiv disk throughput during an intervéd;, ¢/] under the above worst-
the strong similarities between W@+ and BFQ, the proof of case assumptions. Finally, [&f be the size ok’ and A, (t1,a’ +
Theorem 1 is basically an extension of the proof of the Bith&f= 7, -) be the sum of the sizes of the requests issued by-the
WF2Q+ [14]. Whereas the full proof is reported in the appendith application duringft:,a! + Trrro) plus L. The following
an intuitive justification of each component of the bounddiek. inequality holds:

The componentB,,., measures the deviation from the ideal

service due to not respecting the batch completion ordeh®f t _ i - o—t <

ideal system. More precisely, if theth applications has a lower Qilty)+A’(t1"a’?+TiIif)+(B?‘_L7‘HB"’*”“"T + 2)
virtual finish time than the active one, but becomes baclddgg Jr‘%maﬁB%,maﬁme’

too late it may unjustly wait for the service of at mo#t,,a. @99

sectors before accessing the disk. whereQ;(t;) is the sum of the sizes of the requests of kb

The second component3; .., stems from the fact that, application not yet completed immediately before time and
if there is no constraint on the request arrival pattern, BF@! is (the size of) the budget assigned to thtr application to
guarantees the real system to be in advance in serving-theserve the batch thak’ belongs to.
th application for at most3; ..., sectors with respect to the As before, the proof of this theorem, which can be found in the
minimum guaranteed service at time The application may pay appendix, is just an extension of the proof of the Time-WFI of
back for this extra service durinfi,t>]. However, it is worth WF?Q+. We discuss here the terms in (2), and in Subsec. IlI-C
noting that this may happen only if a requégtmay arrive before how to use (2) to perform admission control and to providect
the maximum completion time guaranteed in the ideal systemtime guarantees.
the previous requesk’/ '. Hence, on the opposite end, if this The right hand side of (2) can be rewritten %STngJ .

never occurs, i.e., the application newasks formore than its (Qi(tf) + Ai(ty,d? +TFIF0)) +d. Itis easy to see that the

reserved service, the compondsy,,,.. IS not present at all.) . ;
PONER nas Lp L first component represents the worst-case completion tinme/ o
The last term follows from the stepwise approximation o . - : . i
. . . In an ideal system guaranteeing no lagging behind the rederv
V(t). Basically, due to wrong time-stamping, requests may be ;

erroneously treated as if arrived, with respect to the aetraval SErvice over any time interval, l n contragjtrepresents the/_orst.
. L) . . case delaywith respect to the ideal worst-case completion time.
time, after a time interval during which the ideal system rhaye . . . L

With regard to the first component, note that, if thih application
served at mosL,q, Sectors.

o . . issues only synchronous requests, the latter are alwaysdser
It is important to note that the rightmost term in (1) does n ysy q ' Y

grow with the time or the (total) amount of service, hence thel'.T_(r?eofri(:setr'sz;éi:r?tu'ovfaltigt \f\?oist?:;;f?jle f %__%j stems
long term bandwidth distribution isnconditionallyguaranteed. from that the batch thak? belongs to is not tim’esta;n'ped (and
Furthermore, (1) provides a simple relationship betweerstiort- o . . :
term bandwidth distribution and the value of the parametieas Scheduled) as a function af}, but as a function o;. Hence, in
influence the aggregate disk throughput, as detailed inedtibs e V\{orst-case]the ser\(|ceB€ may be delayed proportionally to
I-D. Finally, it is easy to prove that no scheduler that lexc the differenceB; —L;. Finally, the Binaz, Bimax (Which appears
sively serves applications batch-by-batch may guarantever twice in @) and Linq. terms can be explained using the same
Sector-WFI than BFQ. Hence BFQ provides optimal worst-cagéguments as for the same terms in (1).
bandwidth distribution guarantees among this class ofdidees.

C. Admission control and time guarantees

B. Time-domain properties We now discu.ss. how to use (2) .for performing admisgion
])))) control and providing actual bandwidth and completion time
The following theorem is the starting point for computing th guarantees. First of all, the aggregate throughpit, must be
time guarantees of BFQ. Lei < o] be a generic time instant .,oun at some extent. The tricky aspect is thal, is in
such that thei-th application is continuously quasi-backloggeds tyrn a function of the many user-configurable parameters
during [t1,c!]. To compute a worst-case upper boundc_»ztowe Bimazs Bmaz, Te1ro, Tmaz and Tyai. However, as shown
assume that all the applications, except for tith one, ideally ;. Jetail in Subsection I1I-D, basing upon (2), the desirgatie-
start to issue asynchronous requests back-to-back fro®#im o petween completion times an@,,, can be achieved by
(i.e., without waiting for the completion of their outstand jieratively tuning the values either of each of these patarae
requests). Moreover, to prevent BFQ from increasing budgef; of just the throughput boosting level parameter. The rmu

and hence boosting the throughput more than it would happgf the computed guarantees then depends on how accurately
in the actual scenario, we assume that the maximum valueesof tfaagg itself is known (worst-case or average value, variance,

budget of each application, except for thén application, is set .ynfigence interval, ...). In this respect recall that mfier to

to its average value in the real scenario. Finally, thank$h® the expected throughput/service time, albeit unavoidakiscted
fact that BFQ conceals delayed arrivals for applicatiorjsyéng by approximations, is the only option to provide practidate

the SI property, ifR] is a delayed synchronous request but th&uarantees with any disk scheduling algorithm.

application does enjoy the SI property, in the followingdfEm ~ 5nce known the worst-case throughput, the requirementa of a
ag_can be safely assumed to be equal to the time instant at Wh%blication requesting a long term throughpytand no other
R} would have arrived if it had not been delayed. type of guarantee can be fulfilled by assigning to it a weight

P = Tf;g. The application is then admitted only if the resulting According to (1) and (2), in addition to influencing the disk
sum of the Weightgé\’zl ¢4 is still no higher thart. throughput, all these parameters directly or indirectlfluience
In contrast, to provide guarantees on single request cdiople @lS0 guarantees. Hence, to set the desired trade-off betwee
times to an application, the request arrival pattern of thplia 9guarantee granularity and throughput boosting, the vaitigsese
cation needs to be modeled too. A general request arrivaemo@arameters must be (iteratively) tuned by (iteratively)asweing
is the periodic or sporadic pattern: the application issegsiests the resulting throughput. BFQ also provides a simplifieérifatce,
with a size of at mos®); sectors, and with a period or minimumWwhich allows a user not interested in full control over aleth
inter-arrival time of P, seconds. This pattern models soft realP@rameters to avoid the resulting tuning complexity. Thisriface
time applications, as, e.g., audio or video streaming oBexe has been used in the experiments reported in Section V, and is
Tagg - P; sectors are transferred durimy, it follows that, to meet described in detail in Subsection V-A.
the throughput requirements of the application, it is efotogset Whatever interface is used, to evaluate both the (worst)cas
b; = TGQ{P%. As before, for the application to be admitted thdhroughput and the (worst-case) guarantees as a functideof
resultinégsum of the weights must still be no higher than parameters, and to tune the latter, it is necessary to measur
With regard to the guarantees on request completion timé¥ aggregate throughput against some (worst-case) bankhm
provided to such a type of applications, it is worth notingtth request pattern. Such a pattern may be defined as a functtbe of
P; coincides with the maximum time needed by the ideal systeffPected one. For example, the following conservative iase
to complete the last issued request. Hence, at&ifn&’ has been Pattern may be used to evaluate the expected minimum aggrega
certainly completed in the ideal system, and, for what isl gai throughput for simultaneous sequential reads. After ptadivo
the previous two subsections, th& ... component is absent files with sizeS,,;,, equal to the (portions of the) files that will

from (2). In the end, the application must tolerate a woestec P€ interested by sequential accesses, at the maximum fgossib
d8|ay (jittel’) distance in Pfirst, P)last]v WhereP’last - Pfirst is the maximum

span of the positions of the requests issued by the applitata
) (3) simultaneous sequential read of the two files may be perfidrme
,) o ~As confirmed also by our experiments, the resulting aggeegat
where Li min = min; Lj. Stated in other terms, it is possibleq,ghput provides a lower bound to the aggregate thrautgbp
to meet the requirements of periodic/sporadic soft reaeti nargjiel file reads as well as Web server workloads. For rando
applications with relative deadlines equal 8+ d; ma.- These orkloads, a request arrival pattern with the same localityhe
requirements do match, e.g., (buffered) video and aude@Bing gynected one can be used to estimate the expected aggregate

applications. throughput. An example of the aggregate throughput actieve

To show possible values of the bounds (2) and (3) in a regf a random workload is reported in Subsection V-F.
system, and to demonstrate the feasibility of interactive soft

real-time applications with BFQ, a Web, DBMS and Video-on-
Demand service are considered in Section V.

dimaz = max; dj < Bi maz—Limin + Buimas+Lmax
) = ja; <

£ Tagg Tﬂr.q.q

IV. RELATED WORK

Existing algorithms for providing a predictable disk see/can
) be broadly divided into three groups: tBal-timedisk schedulers
D. Throughput Boosting [19], ; 2) proportional shareor bandwidth reservatiotimestamp-
Larger budgets increase the probability of serving largests based disk schedulers (also knownfas-queueingschedulers);
of close or even sequential requests, and hence of achievingnd 3)proportional shareround robin disk schedulers. In addi-
higher throughput. Besides, a large valueTof; o may boost tion, examples of frameworks for providing QoS guarantees a
the throughput in presence of asynchronous requests. & tfiello [20], APEX [21], PRISM [22] and Argon [23]. It is worth
respect, also recall that most mainstream applicationeissly mentioning also real-time operating systems such as thedere
synchronous requests. Hence, in a system serving this KindReal-Time Operating System (DROPS) [5] and RT-Mach [6], and
applicationsTr; o has no impact either on the throughput oReal-Time Database Systems (RTDBS), which are archiestur
on the time guarantees (Subsection IlI-B). In contf@st;; may for performing database operations with real-time consisd24].
be just set to the most effective value for the target diskagev There is no relation between any of the scheduling problems
equal to the device-dependent average cost of seek annatiat highlighted in this paper, namely loss of throughput andaar-
latencies, usually betweenands8 ms (and set by default tbms antees due to deceptive idleness and/or delayed arrivadsarsy
in the current release of BFQ). characteristic of the above mentioned frameworks for Qavipr
BFQ exports a last low-level configuration parameter relate sioning and RTDBSes (apart from which underlying schedulin
disk throughput, namely the system-wide maximtime budget algorithm(s) they rely on). Accordingly, after the follavg note
Tmaz (pOssibly automatically computed, see Subsection V-About disk internal queueing, in the next subsections wesfoc
Once got access to the disk, each active application mustico® only on each of the above listed classes of scheduling dhgosi
all of its time budget or backlog within no more thaf,q. Disk internal queueing can be used only if disk idling is
time units, otherwise it is unconditionally (over)chargtmt a disabled, which ultimately causes loss of guarantees with a
B;.mas Service and the next active application is selected. Thisheduler/framework for applications issuing synchrenoa-
additional mechanism prevents applications performingdoan quests. Consider, e.g., a proportional share schedulksigpose
IO from substantially decreasing the disk throughput. Heitc that thei-th application has an arbitrarily high weight. After
guarantees practical bandwidths and delays, which areselye each requesR! of the application is completed, the disk starts
proportional to the aggregate throughput (Subsec. llli@gppli- serving its next internally queued request, or immediadshs for
cations performing mostly sequential 10. In contrast, mgplons a new request, without waiting fd%{“ to arrive. Hence another
performing random 10 virtually receive no service guaraste application is served, independently of Whethﬁﬁl would then

happen to be the next request to serve. In the end, the gaasanaccesses with mainstream applications performing seigli¢®t
assigned to the application may be easily violated. Moreover, guarantees may be violated for an applicatiomngs
synchronous requests: even if the application has a (mughgh
weight than the others, no more than one request of the afiplic
)) will be served for each batch.

Real-tlmt_e schedulers _[4], [19] are timestamp-based sdbexlu SFQ(D) and FSFQ(D) [12] allow a configurable number of
that associate a deadline to each request. They usually Sffistanding requests to be dispatched, where, each time one of
from an Earliest Deadline First (EDF) [25] schedule, andden o outstanding requests completes, the next one is imteddia
reque.sts to reduce seek and rotational latency withouttig dispatched. SFQ(D) selects requests according to a vaoiant
deadlines. _ ~ SFQ that does not suffer from loss of fairness in presence of

Each time the next request to serve must be picked, Rot&tiong,yications not consuming their fair share of the disk tigio
Position-Aware disk schedu!lng based on a Dynamic Actlvlgut_ FSFQ(D) is a further refinement of SFQ(D) that tries to
Subset (SATF-DAS) [5] iteratively constructs and servesitssst compensate the possible loss of service of an applicatian du
of the outstanding requests, called Dynamic Active SUB8S) 5 the |ate arrival of its requests. Similarly to SFQ(D) and
and such that any throughput boosting algorithm can be wedHsEQ (D), Hybrid [7] allows a configurable amount of outstagd
order the_requests in the DAS without V|_olat|ng Service guar requests to be chosen by an internal WF2Q+ scheduler, aral to b
tees. _Deflned aslack of a request f[he o_llfference _between théeordered by the desired throughput boosting algorithmavisd
deadline of the request and the earliest time by which thee®lq giaryation Hybrid periodically flushes all the outstandiaguests.
can be served, Just-In-Time Slack Stealing (JIT) [6] is 8a®® Ag jn BFQ the internal scheduler works in the service domain.
serving rquests cIoger to the disk head i.n'stead of requatts Finally, pClock [9] is based on a more general scheme: throug
lower deadlines but with large enough positive slack. SGBDF 4rival curves, application requirements are expresseténms
[4] serves requests in EDF order, but if several request® hay% throughput, latency and maximum burst size. Application
the same deadline, they are scheduled using a seek optonizatg|iowing their arrival curve are proven to never miss their
algorithm (e.g., SCAN or C-LOOK). Finally, other proposal® geadiines.

Priority SCAN (PSCAN), Earliest Deadline SCAN and Feasible Differently from BFQ and Hybrid, YFQ, SFQ(D), FSFQ(D)
Deadline SCAN (FD-SCAN) [24], which are quite similar ingng pclock directly target proportional time allocatiorstizad
principle to the above described ones. of sector allocation, and the accuracy of their disk thrqugh

With regard to throughput boosting, in both SATF-DAS andjisyribution depends on the accuracy in estimating regsessice
JIT there is no cgntrol either on the size of the DAS, or Ofimes. The main problem is however that, as real-time sdeesju
the amount of available slack. In contrast, the authors AAISC) the schedulers mentioned in this section timestampeastgLas
EDF propose enlarging the request size and extending velaty fynction of their actual arrival times. Hence, indeperiyeof
deadlines beyond the period to effectively trade respoimse t \yhether disk idling is performed, they may fail to distrieuhe

and buffer requirements for throughput boosting. bandwidth as desired in presence of synchronous requests. O
Problems arise if applications issuing synchronous réqu@8 eyperimental results confirm this problem.

scheduled with real-time bandwidth servers built on top tef t
above real-tlme schedulers. Flrgt, as all of these schedale C. Round Robin Schedulers
work-conserving, throughput is likely to be very low. Hoveey . . .)

this problem can be easily solved by extending these sckejul CFQ is @ proportional share disk scheduler that grants disk
where possible, to perform disk idling as in BFQ, CFQ or AACCess to each application for a fixed time slice. Slices are

The second problem follows from the fact that deadlines ey SCheduled according to a round robin policy. This time-Hase
missed, mainly because of the non-preemptability of theiger allocation, equal to the one adopted in the Argon framewoak,

of a request. The consequent delayed arrivals, plus thetifact the advantage of implicitly charging each application fee seek
in bandwidth servers the absolute deadlines of the requests and rotational latencies it incurs. Unfortunately thisestie may
usually computed by summing their relative deadlines tar theuffer from unfairness problems also towards applicatioaking
arrival times, may cause delayed requests to be unjustigrees th.e bgst posgble use of the d|§k bgndW|dth. Even if the smt
higher deadlines. As discussed in the introduction, thisy m&!ice iS assigned to two applications, they may get a differe

cause the desired bandwidth distribution to be violatedthBot"oughput each, as a function of the positions on the disk of
problems clearly manifest themselves in our experimemtilts teir requests. BFQ owes to CFQ the idea of exclusively agrvi
(Section V). each application for a while, but provides strong guarantee

bandwidth distribution because the assigned budgets aasurezl
)] in number of sectors.

B. Proportional Share Timestamp-based Schedulers Strong service distribution guarantees on a per-requesis ba

YFQ [8] dispatches requests to the disk devicebeiches are provided also by the adaptive Deficit Round Robin propose
In particular, before the next batch is served, all the retmiein [10], as it measures the amount of service received by any
in the current batch are dispatched. The requests to ingertapplication in terms of number of requests served. To aehiev
each batch are chosen using WFQ [14], and may be ordered wvilib desired trade-off between fairness and 1/O efficienay th
the desired throughput boosting algorithm within the bafite scheduler is also configurable in terms of maximum number
fact that the limited room in a batch is in general filled wittof outstanding requests and maximum per-application nuhe
requests issued by all the backlogged applications redtlees of requests dispatched in each round. Unfortunately, asamyd
probability of inserting a high number of requests of the samobin scheduler, both this scheduler and CFQ are charaetkri
application. This may reduce the number of close or secalentby an O(N) worst-case jitter in request completion time, where

A. Real-time Schedulers

10

N is the number of competing applications. In contrast, tsankode [16]). All the requests with the same deadline and &l th
to the accurate service distribution of the internal BA@F requests in a batch are served in C-LOOK order.

scheduler, BFQ exhibit®(1) jitter according to (2) with respect

to the number of applications. A quantitative evaluationttod B. Experiments

consequences of this different short term guarantees arheof

above mentioned unfairness of CFQ is reported in Section V. 1h€ experiments were aimed at measuring the aggregate
throughput, long-term bandwidth distribution and (shertn)

per-request completion time guaranteed by the six schedule
with the following applications/workloads: simultanecgeguen-

In this section we report the results of our single-disk expetial reads, Web server (emulated), DBMS (emulated) and dnixe
iments with BFQ, SCAN-EDF, YFQ, CFQ, C-LOOK, and AS.ideo-streaming/file reads. All these applications onfues syn-
on a system running the Linux 2.6.21 kernel. We first providehronous requests on a Linux system. In addition, as disduss
implementation and configuration details in the next sutisec the end of Subsection V-C the same results in terms of aggrega
Then we describe the experimental setup and report thetsesful throughput would be achieved with all these applicatioqmra
each set of experiments in the successive ones. from DBMS, in case they would issue asynchronous requests.
Hence, only in the DBMS case we also showed the different
performance of the schedulers with an asynchronous watkloa
o) . Due to space limitations, only a synthesis of the resultsperted

If the simplified interface of BFQ is usedr1ro IS SEt 10 pere The complete results and all the programs used to afener
the default value used by the other schedulers |n7the SYS@8m can be found in [16].
(typically 100 ms), Tinaz is dynamically set/updated 13 times \yg ran the experiments on a PC equipped with a 1 GHz AMD
the average time needed t0 CONSUMRax SECIOIS,Vi Bimaz Athlon processor768 MB RAM, and a30 GB IBM-DTLA-
is set t0 Bmaz, and either ahroughput boosting levelanging - 347030 ATA IDE hard drive (roughlgé MB/sec peak bandwidth
from 0 10 1, or just Brma. are exported as the only configuration, e outer zonesy 35% lower throughput in the inner zones),
parameter. In the first case, the back-end of the interfai¢éake ,.cassed in UDMA mode. Using this low performance disk devic
care of settingBma. accordingly, from the minimum possible yg|heq ys guarantee that the disk was the only bottleneckotSe
request size, to the number of sectors serveziinms. The latter \yere 512 pytes long éxt2 file-system). The disk was partitioned
value is automatically computed/updated [16] and guaemnt§n, 30 consecutive slices of equal size, the first slice covering
a high throughput, as shown in Subsection V-C. We used &, qyter part of the disk, the last one covering the innet. par
simplified interface and set only the maximum bud@Biaz in A the programs were run from an auxiliary disk. For eachetyp
our experiments. , of experiment and set of values of the parameters, the same

~As no code of SCAN-EDF and YFQ was available for the,periment was repeater times (the buffer cache was flushed
Linux ker_nel,we |mplem_ented a slightly extende(_j versmaaxﬁh_ before each experiment). The minimum, maximum, and mean
of them in the 2.6.21 Linux kernel [16]. In our implementatio 51y together with its associated’ confidence interval were
of SCAN-EDF, each application is associated with a dynaliyica .o mnted for each output quantity. In what follows any mean

configurable relative deadline, equal e.g., to the applio® 5,6, is reported in the forms + s, wheres is the semi-width
period. This relative deadline is assigned to each reqsesed by ¢ the 959% confidence interval fo.

the application. The resulting algorithm can be seen as plsim

real-time bandwidth server. Suppose that thén application

issues requests of the same size back-to-back, and that a C- Adgregate throughput

relative deadline equal t&; is assigned to all of its requests. The The first set of experiments was aimed at estimating the worst

computed absolute deadlines of the requests will be the s@amecase aggregate throughput guaranteed by each schedulasen c

if the application was periodic with periof;. Hence, in a full- of simultaneous sequential reads. As can be seen in the next

loaded system, the application should be guaranteed aofnaet subsections, according to our experiments these resutisalfen

the bandwidth equal té;/P;. Finally, to deal with the deceptive for a Web server workload. Under BFQ and YFQ, all application

idleness, after the completion of the last request of aniegiin, were assigned the same weight, whereas they were assigned

both implementations keep the disk idle until either a neguest the same priority under CFQ (which allows applications to be

of the just served application arrives, or a configurahlg;; time assigned different priorities). Under SCAN-EDF all the uests

interval elapses. were assigned the same deadline, equa<ons. The whole set
To trade response time for throughput boosting the authast different experiments was given by the combinations @& th

of SCAN-EDF suggest both to change the request size afullowing 5 values: scheduler ifiBFQ, SCAN-EDF, YFQ, CFQ,

the coarsen deadline granularity. Unfortunately, the Btsitegy C-LOOK, AS}; cardinality of the set of distinct files to read in

cannot be used in the Linux kernel, as the request size is {@a{3,4,5} (for each set, the files were placed in slices at the

controlled by the disk schedulers. In contrast, our implet@igon maximum possible distance from each other, with each file in

of SCAN-EDF allows a system-widgranularity parameterA to a distinct slice); value of the scheduleonfiguration parameter

be set. Given a request with absolute deadlinand the smallest maximum budgetB,.q. in {512,1024,2048, 4096, 8192, 16384}

n such that-A > d, the request is scheduled as if its deadline wesectors for BFQ, batch sizeTs;,. in {4, 8,16} requests for YFQ,

n - A. With regard to YFQ, the batch size, measured in numbdeadline granularityA in {20, 40, 80,160,320} ms for SCAN-

of requests, is configured through ti##ry,.. parameter. Batch EDF, and time sliceTy;;.. equal to100 ms (the default value)

overlapping, one of the enhancements proposed by the autfiorfor CFQ; Ty, In {0,4} ms for SCAN-EDF and YFQ, and

YFQ to increase disk throughput, is performed as well (see tif,,;; = 4 ms for BFQ (CFQ automatically sets/changés,;:);

V. EXPERIMENTAL RESULTS

A. Scheduler implementation and configuration

11

CFQ agg. thr AS agg. thr e

Scheduler Mean Agg. Thr | Value of Bpax C-LOOK agg. thr - BFQ agg. thr s—j
[MB/S] Tstices A, BTsize . B ! ‘ ‘ ‘ ‘ 7

BFQ 22.46 + 0.81 16384 sect 3 30 E
SCAN-EDF 2 :]
Twait =0 mMs 21.18 +0.47 640 ms é— 25 £ E
Twair =4 ms || 23.39+0.51 5 : o
YFQ g 20F e =
Twait =0 ms 10.64 £0.25 16 regs o E T]
Twair =4 ms || 10.80 +0.20 5 15F :
CFQ 16.91 &+ 1.30 100 ms S of o E
C-LOOK 20.59 £ 0.76 < E o]
AS 32.97 £ 1.89 é 5F E
TABLE II o B ! | ! | e
512 1024 2048 4096 8192 16384

AGGREGATE THROUGHPUT FOR TWO SIMULTANEOUS READS .
Maximum budget [sectors]

Fig. 5. Mean aggregate throughput, and associated 95% auefval,
achieved by BFQ (as a function @), CFQ, C-LOOK and AS in case

size of every file in{128,256, 512,1024} MB. Of course,T,,,;; °f Simultaneous reads of twa28 MB long, files.
is implicitly 0 ms in C-LOOK, whereas it was set toms in AS

with any additional fairness policy deactivated. The mimimfile

size was (experimentally) chosen so as to let the resultsube ('%gQ Fllnally, I I:and'bi seerll that theh_agr:]]gregate tErOUQhFljm.Wll
only to the disk schedulers, without significant distoriatue to Is close to the disk peak rate, which means that exclysive

unrelated short-term factors such as CPU scheduling. serving each application for a certain amount of time—as@Q

With any scheduler, the lowest throughputs were achieved ?Hd BFQ go—le_ads n practlcg to the highest possmle_ thipuigh
. . . . if ‘applications issue sequential requests. This also &spthat

case of two,128 MB long, files, most certainly because in thISSCAN-EDF and YFQ certainly would not achieve a higher

case the disk head covers the longest distance and (spemds %Oroughput if these applicationsyissued asynchronousefﬂqug

time moving) between the files (the influence of the lengththef t

files was in the order of a few tenths of a MB/s). For this scenar

Table Il reports both the maximum value of the mean aggregd®e Simultaneous sequential reads
throughput achieved by the six schedulers, and the valuaeof t The second feature we evaluated is the accuracy of the sched-
configuration parameter for which this value was achieved: ylers in providing the desired bandwidth fraction to apmiions
Whereas the highest throughput is achieved by AS, the bpdrforming sequential reads. For brevity, for BFQ we onlyorg
performance of C-LOOK is due to the fact that it frequentlyhe results forB;,.. = 4096 sectors. Similarly, for SCAN-EDF,
switches from one file to the other, for it does not perforrive consider onlyA = 80 ms because for this value SCAN-EDF
disk idling. It is easy to see that, faB... = 16384 sectors, achieves an aggregate throughput close to BFQ. Finallyuin o
a maximum length budget is served in ab2o® ms under BFQ, experiments the batch size had no influence on the guarantees
which confirms that a high throughput is achieved if a thrqmgh provided by YFQ. We report the results f®T,;.. = 4 requests.
boosting level ofl is set with the simplified interface. Moreover, We first considered the case where all the applications are
the higher throughput achieved by BFQ and SCAN-EDF withllocated the same fraction of the disk bandwidth. In pakic
respect to CFQ results from the higher number of (sequéntiauring the same experiments used to evaluate the aggregate
sectors of a file that can be read before switching to the othtfoughput, we measured the throughput of each (file read)
file. More precisely, considering the disk peak rate, it isyet application. For each scheduler, the highest deviatiom fthe
see that less thar384 sectors can be read 00 ms (which is ideal distribution occurred fot28 MB long files. Moreover, we
the value ofTy;;.. for CFQ), whereas more thal6384 sectors observed that thg5% confidence interval for the mean throughput
can be read i640 ms (which is the value of for SCAN-EDF). of thei-th application in case of and4 files was always smaller
Notably, Ty,4i: does not influence much the aggregate throughp(r greater) than that obtained in case in case ¢br 2) files.
with SCAN-EDF. In fact, as the system performs read-ahead fohisinclusion propertyheld also in case of asymmetric allocation
sequential accesses, it tends to asynchronously issueetkte fisee below). Hence, for brevity, we report only the resudtstivo
request before the completion of the current one (this atdpsh and five,128 MB long, files. Finally, we consider only,,,;; = 4
C-LOOK). Finally, the poor performance of YFQ and the facitth ms for SCAN-EDF and YFQ in Table Ill.
it is independent of botlT,.;; and the batch size (not shown), BFQ, YFQ and C-LOOK exhibit the most accurate bandwidth
confirm the arguments in Subsection IV-B. distribution (C-LOOK basically performs a round robin argon
According to the observations in Subsection IlI-D, to evalhe batch of requests issued by the read-ahead mechanisfoj- U
uate the possible trade offs between guarantee granukandy tunately, as previously seen, YFQ has a low throughput. SCAN
aggregate throughput with BFQ, it is necessary to know hoaDF is less accurate farfiles, but it provides a higher throughput
the throughput varies as a function 8,4, in the worst-case than YFQ. Consistently with the arguments in Subsection IV-
scenario. This piece of information is shown in Fig. 5 in casB, CFQ fails to fairly distribute the throughput because loé t
the simultaneous sequential reads of tvi@8 MB long, files varying sector transfer speed. Finally, as expected AS has t
are used as worst-case pattern. The aggregate throughpuimokt asymmetric bandwidth distribution. Moreover the higéith
CFQ, C-LOOK and AS are reported as a reference too. Fof the confidence interval for AS is a consequence of the fact
Bmae = 4096 sectors BFQ guarantees a higher throughput théimat sometimes the waiting timer may expire before the next

12

Throughput || 9.95 9.81 Weight 2 2 2 1 1
(2 files) +0.43 +0.47 Throughput || 14.62 7.31
Throughput || 4.20 | 4.30 | 4.30 | 4.29 | 4.31 (2 files) || +0.60 4+0.32
(5 files) || £0.10 | £0.09 | £0.07 | £0.10 | £0.09 Throughput || 5.60 | 5.60 | 560 | 2.81 | 2.81

BFQ (Bimas = 4096 Sectors) (5 files) || £0.08 | £0.08 | £0.08 | £0.04 | £0.04

Throughput || 10.72 9.62 Weight 10 2 2 1 1
Throughput|| 2.17 | 2.17 | 2.7 | 217 | 2.19 (2files) || +0.60 +0.16
(5files) | +0.02 | +£0.02 | £0.02 | +£0.02 | +0.03 Throughput || 16.06 | 3.25 | 3.25 | 1.64 | 1.6
SCANEDF (A = 80 . Tours —4m9) (5 files) || +£0.28 | £0.07 | £0.07 | £0.04 | £0.04

Throughput || 5.44 5.44 TABLE IV

(2 files) +0.10 +0.10 BFQ WITH ASYMMETRIC WEIGHTS.
Throughput || 1.39 1.39 1.39 1.39 1.39

(5 files) +0.02 | +0.02 | £0.02 | £0.02 | £+0.03
YFQ (BTsize = 4 requestslyyqit = 4ms)

Throughput || 11.92 8.61 inclusion property holds also in case of asymmetric aliocat
Téfoﬂ'geszjut i50§4 o7 66 5 jzo(f for brevity we report the results with BFQ only for tleand 5
. : : : : : files scenarios in Table IV.
(5 fles) io';l:Q (io]..ls - ;g';;) £0.10 | £0.17 With regard to SCAN-EDF and YFQ, in accordance with what
sreee is said in Subsections IV-A and IV-B, both failed to guarante
Throughput || 11.52 10.57 the desired bandwidth distribution in all the experimerfer
Téfoz'ges‘))ut i;ézs e 205535 example, in case of applications with weights0 and 1, the
(5 files) 1067 | 2041 | 2050 | 4035 | 0.0 throughputs werg26.58 + 0.50, 6.92 + 0.20} MB/s for SCAN-
EDF, and{22.70+0.12, 5.41+0.12} MB/s for YFQ (the skewness

C-LOOK . R . :
is even attenuated by the fact that the application with &drig
Throughput | 32.41 17.78 weight has to read a longer file, and hence it gets exclusivesac
(2 files) +13.39 +1.10

Throughput|| 32.83 | 3172 | 2080 | 1256 | 18.20 to the disk after the other one finished).

(5 files) +11.95 | +£1.37 | 4£0.50 | £10.46 | +0.43
AS E. Web server

In this set of experiments we estimated the per-request com-
pletion time guaranteed by the schedulers against thewfibltp
Web server-like workload:100 processes (all with the same
weight/priority) continuously read files one after the otheach
of the files to read may have been, with probability, a small
)) 16kB (html) file at a random position in the first half of the disk,
synchronous request arrives. In that case also AS swittht®t o ith probability0.1, a large file with random size i1, 30] MB
service of another application. at a random position in the second half of the disk. Eve@rfiles,

It is important to observe that the accurate throughputidist egch process appended a random amount of bytes, fram. 6
tion of YFQ and SCAN-EDF is mostly related to the symmetrgB, to a common log file. Such a scenario allows the performanc
of the bandwidth allocation. To measure the accuracy of ﬂ@? the schedulers to be measured for a mainstream apphcatio
schedulers in distributing the disk bandwidth in case ofnasy and, in general, in presence of a mix of both sequential €larg
metric allocations, under BFQ and YFQ we assigned differefifes) and a random (small files) requests. Especially, fohean,
weights to the applications. We run two sets of experimenigsting for about one hour, we measured the completion tifne o
using, respectively, the weights and 2, and the weightsl, 2 each small file (latency), the (average) bandwidth at whichd
and 10 (there is no constraint on the values of the weights in offles were read and the average aggregate throughput (ne€asur
implementations of BFQ and YFQ). Moreover, assuming thet thvery second). In this respect, small and large file read® wer
j-th application is the one with maximum weight, and denotggkrformed in separated parts of the disk to generate an astrinm
as S; the size of the file read by thgth application, the file workload, which is more prone to higher latencies and/orelow
read by thei-th application had a Iengt@f_sj. To try to allocate pandwidths.
the same bandwidth as with BFQ and YFQ, under SCAN-EDF As can be seen from Table V-excluding for a moment SCAN-
we assigned to each request of an application a relativelideadEDF and YFQ-BFQ, CFQ and AS stand, respectively at the
inversely proportional to the weight assigned to the apfib® beginning, (about) the middle and the end of the low latency
with the other two schedulers. Finally, this type of exp&ms versus high aggregate throughput scale. Also C-LOOK aekiev
was not run for CFQ, C-LOOK and AS, which do not provideimilar performance as AS, because a high number of conpetin
differentiated bandwidth allocations. requests scattered over all the entire disk are present tines.

To show the worst-case, yet not distorted by external factotn contrast YFQ has very low latencies and throughput bexaus
performance of the schedulers, for the scenarios where ge mas the probability of a small file read $stimes higher than the
imum weight was, respectivel, and 10 we report the results one of a large file read, each batch is likely to contain a high
of only the experiments where the maximum file sizes werpercentage of requests pertaining to small files. Finaltigoagh
respectively256 MB and 1 GB. Finally, since the above definedachieving a lower aggregate throughput than BFQ, SCAN-EDF

TABLE Ill
SIMULTANEOUS SEQUENTIAL READS

13

Scheduler || Compl. time Bandw Mean aggr. Num. of | Completion | Mean aggr.
small files large files throughput Scheduler || outstand. time throughput

[sec] [sec] [MB/s] requests [sec] [MB/s]
BFQ 1.74+0.11 2.26 £2.34 17.13 £0.65 BFQ 1 0.92+0.12 | 0.44+£0.00
SCAN-EDF 7.68 £0.20 3.29 +£3.10 8.71 4+ 0.09 10 7.93+0.29 | 0.49 +0.00
YFQ 0.40 £0.01 1.36 £1.71 6.87 +0.09 SCAN-EDF 1 0.934+0.00 | 0.44 +0.00
CFQ 3.86 £0.17 297 £ 247 18.20 £0.79 10 6.49 £0.85 | 0.60+£ 0.00
C-LOOK 7.78 £0.27 9.65 £ 3.93 19.47 £ 0.66 YFQ 1 0.69 £0.01 | 0.59 +0.00
AS 7.69 £0.27 16.61 £4.00 | 20.60 + 1.22 10 6.59 £ 0.06 | 0.59 +0.00
CFQ 1 0.914+0.09 | 0.45+0.00
TABLE V 10 8.01+£0.30 | 0.49+0.00
WEB SERVER(RANDOM/SEQUENTIAL READS). C-LOOK/ 1 0.6740.01 | 0.62+0.00
AS 10 5.524+0.12 | 0.71+0.00

TABLE VI

guarantees higher bandwidths to the large files, by saagfitie DBMS (RANDOM READS).

latency of the small ones. It is worth noting that the obseérve
mean latency of BFQ i8.22 times lower than CFQ and at least

4.41 times lower than all the other schedulers. On the contraR | 0oOK/AS than the one of BFQ, SCAN-EDF and CFQ, YFQ
with any scheduler, the high width of the confidence intefal - 1herforms the latter in case of synchronous requestsast h
thg mean bandwidth of the large files is a consequence of tiei.-q the same performance as SCAN-EDF witoutstanding
quite random nature of the workload. o requests. Finally, because of their slice-by-slice/bitiyebudget
To c_heck whether_the guarantee (2) comphe_s W|tt_1 the obdernvig,rice scheme both CFQ and BFQ exhibita.4 times higher
Igtenues for small f|Ies,_we can $Qt to the arrival tlm‘e_of the request completion time/lower throughput than C-LOOK/ASs
first request of a generic small file, and assume m?“? the " however worth noting that only. 2% of the disk rate is achieved
last request for that file, which implieQi(t,) + A(t1,4;) = py the latter, which is typically unbearable in a realistiBNS.
16k B (as explained in Subsection Ill-Br;ro 1can be neglected Thjs result complies with the fact that, if the disk requestipy
with synchronous requests). Moreovey, = 155, Lmaz = 256 some locality, caches are usually tuned so as to reduce cligies

sectors in the Linux kernel (by default), and in the expentse 5ng achieve feasible response times (of course multiples dige
we found that if thei-th application is one of the processegypically used as well).

reading small files, therl; ,,;, = min; Lj =16 sectors and
a budget oscillating fron8 to 256 sectors is assigned to the
application. Hence, settind3; ... = 256 sectors and using

the mean throughpuf,,, = 17.13, the resulting guaranteed The last set of experiments was aimed at measuring theyabilit

latency is 100*(16+(128;$>1§1?§)21(2048+2*128) = 1.64 seconds. Of the schedulers to support a very time-sensitive apjdicailo

This value is~ 6% lower than the observed mean latency, whicH'iS purpose, we set up a VLC streaming server [26], provided
is most certainly due to the fact that when small files are thad With 30 movies to stream to remote clients. Each movie was

throughput falls down to a lower value than the mean usedein thtored in a distinct disk slice, and the streaming threadhef t
formula. server that read it was considered as a distinct applicdiion

the disk schedulers (all the threads were assigned the same
weight/priority). To evaluate the performance of the schex, a
F. DBMS packet sent by the streaming thread was considered loseiyeld

This set of experiments was aimed at estimating the requéstmore than one second with respect to its due transmissien t
completion time and the aggregate throughput achieved by flie., we assumed & second playback buffer on the client side).
schedulers against a DBMS-like workloatld0 processes (all Every 15 seconds the streaming of a new movie was started.
with the same weight/priority) concurrently issue direabrf Each experiment ended eitherlif seconds elapsed from the start
cacheable)}KB read requests at random positions in a commanf the streaming of the last available movie, or if the pad&ss
5GB file. We have used this setup to evaluate also the perfoate reached th&% threshold (this value, as well as thesecond
mance of the schedulers with asynchronous requests, andthi@shold for the delay, has been experimentally choserat®et
this purposes, we have rur variants of the experiment, with off between achieving a very high video quality, and allogvthe
each variant characterized by a different number of pecgs® system to stream a high enough number of simultaneous films
outstanding requests, ranging from(synchronous requests) toto clearly show the different performance of the six schedy)l
10. According to our results, for each scheduler both the rejudo mimic the mixed workload of a general purpose storage
completion time and the aggregate throughput monotogicalystem and to increase to workload so that the disk was the onl
grew with the number of outstanding requests. Hence, farityre bottleneck, during each experiment we also BU®N/OFF file
we report in Table VI the mean request completion time arr@aders, each reading a portion of random lengtft4n512] MB
aggregate throughput only farand 10 outstanding requests. of a file, and then sleeping for a random time interva[1iy200]

With random requests, AS does not perform disk idling at alins before starting to read a new portion of the same file (each
hence it achieves the same results as pure C-LOOK. Especidile was stored in a different disk slice, BTs;.. and Tg;ce
thanks to their global position-based request orderingQOK for SCAN-EDF, YFQ and CFQ were set t) ms, 4 requests
and AS achieve the lowest request completion time and heraed 20 ms, as these are the maximum values for which these
the highest disk throughput. Being its service scheme cltse schedulers achieve the highest number of simultaneousnsste

G. Video streaming

14

Scheduler | Param. | Mean Num. | Mean Agg. [4] A. L. N. Reddy and J. Wyllie, “Disk scheduling in a multimedi
of Movies Thr. [MB/s] I/O system,” in MULTIMEDIA '93: Proceedings of the first ACM
4096 sect || 24.00 £0.00 | 7.56 +0.87 international conference on MultimediaNew York, NY, USA: ACM,
BFQ 8192 sect || 23.95 £ 0.42 8.15+ 1.08 1993, pp. 225-233.
16384 sect|| 18.70 +9.45 | 12.78 + 5.64 [5] L. Reuther anpl M. Pohlacl_<, “Ro_tational-position-awaaal-time disk
SCAN-EDF| 20ms | 12.00£0.00 | 893022 endings of the 34th 1L Intarmationsl Real Tima SyStgmpssium,
YFQ aregs || 19.00+£0.00 | 585+ 0.55 Washington, DC, USA: IEEE Computer Society, 2003, p. 374.
CFQ 20ims 14.35+1.40 | 12.59 + 2.12 [6] A. Molano, K. Juvva, and R. Rajkumar, “Real-time filesystergaar-
C-LOOK 1.8+1.16 | 22.664+0.96 anteeing timing constraints for disk accesses in rt-magteal-Time
AS 1.1+1.04 | 28.39+5.36 Systems Symposium, 1997. Proceedings., The 18th, |BEE55-165,
2-5 Dec 1997.
TABLE VII [7] L. Rizzo and P. Valente, “Hybrid: achieving deterministairness and

high throughput in disk scheduling,” iRroceedings of CCCT’'Q4004.

J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and A. $8bkatz,

“Disk scheduling with quality of service guarantees,” @MCS '99:

Proceedings of the IEEE International Conference on Mudtiia Com-
puting and Sys_tems Volume II-Volume Vashington, DC, USA: IEEE
Table VII shows the mean number of movies and the meap Somputer Society, 1999, p. 400. _

h h hi d by th hedul durintash [})] A. Gulati, A. Merchant, and P. J. Varman, “pclock: an aatigurve based
a_lggregate throughput achieved by the sc e ulers durin¢age approach for gos guarantees in shared storage syst&i@&GVETRICS
five seconds before the end of each experiment. Perform. Eval. Rey.vol. 35, no. 1, pp. 13-24, 2007.

As can be seen, witlBmq, = 4096 sectors BFQ guaranteesl10] A. Gulati, A. Merchant, M. Uysal, and P. J. Varman,

a stable and higher number of simultaneous streams thaheall t ,Ciicient and —adaptive proportional ~share /o scheduling,

VIDEO STREAMING DISTURBED BY SEQUENTIAL READS [8

—_

Hewlett-Packard, Tech. Rep., November 2007. [Online]. lade:

other five schedulers. Interestingly, with BFQ also the aggte http://www.hpl.hp.com/techreports/2007/HPL-2007-18i6.
throughput is comparable/higher than SCAN-EDF/YFQ. Mogt1] [Online]. Available: http://mirror.linux.org.au/fdlinux.conf.au/
- e i aAwwi _ 2007/video/talks/123.pdf
Cert.amly this is a consequence of the | ith SCAN-EDF. [12] W. Jin, J. S. Chase, and J. Kaur, “Interposed propoaticsharing
Finally, to check Whgth&;r the worst-case de@yn.ax guaran- for a storage service utility,” iIrSIGMETRICS '04/Performance '04:
teed by BFQ to the periodic soft real-time application repreed Proceedings of the joint international conference on Measient and

by any of the concurrent VLC streams complies with the olery 3m70d4eéing of computer systemsNew York, NY, USA: ACM, 2004, pp.
maximum delay, from Table VII we can consider that, just befo 13] e

. . [Online]. Available: http://google-opensource.gépot.com/
the end of most experiments, in case Bf... = 4096 sectors, 2008/08/linux-disk-scheduler-benchmarking.html
24 + 5 applications with equal weights are competing for th§l4] J. C. R. Bennett and H. Zhang, “Hierarchical packet faireueing
disk, and the mean throughput 756 MB/s. As in the Web algorithms,”IEEE/ACM Transactions on Networkingol. 5, no. 5, pp.
' . : 675-689, 1997.
server experiments we have thaf,.. = 256 Sectors,L; in = [15] D. Stephens, J. Bennett, and H. Zhang, “Implementing cisliey

min; Lf =16 sectors and a budget never higher tl2a6 sectors algorithms in high-speed networksSelected Areas in Communications,

is assigned to the genericth streaming thread of the video[le] I[cE)EF J?U/Ta!loglvohnl7}/nlf>- 6, pp. @145_;/11?‘% Ju? /1dQ9£- o

H ' 29*(12878)+(2048+128) nlinej. Avallable: p://algo.ing.unimo.it/peapaolo/disksche
server. Hence, acc‘?rd'”g N (‘rﬂ)"vm?z < . 7.56x1024 . CPJ] D. Stiliadis and A. Varma, “A general methodology for dgsing
= 0.73 seconds. This value complies with the above mentione efficient traffic scheduling and shaping algorithmélFOCOM ’97.
second threshold for considering a packet as late, assuimng Sixteenth Annual Joint Conference of the IEEE Computer aath-C
reasonable additional worst-case delay-f.27 seconds is added . Munications Societies. Proceedings IEBI. 1, pp. 326-335, 1997.

_[18] P. Valente, “Extending WHQ+ to support a dynamic traffic mix,”
by the rest of the system (probably mostly due to the exemm[) Advanced Architectures and Algorithms for Internet Delvand Ap-

of the 29 threads on the CPU). plications, 2005. AAA-IDEA 2005. First International WeHop on pp.
26-33, 15-15 June 2005.
[19] S. Daigle and J. Strosnider, “Disk scheduling for multifize data
VI. CONCLUSIONS streams,” 1994.
. . o . [20] P. J. Shenoy and H. M. Vin, “Cello: a disk scheduling fravek for
In this paper we dealt with the problem of providing service ~ next generation operating systemSIGMETRICS Perform. Eval. Rev.
guarantees while simultaneously achieving a high diskuinput vol. 26, no. 1, pp. 44-55, 1998.
in presence of synchronous requests. This type of requesys ¢ll T. P. K. Lund, V. Goebel, “APEX: adaptive disk schedgliframework

. . - . with QoS support,Multimedia Systemsol. 11, no. 1, pp. 45-59, 2005.
cause work-conserving scheduler to fail to provide a higbugh- [22] A. L. N. Reddy, J. Wyllie, and K. B. R. Wijayaratne, “Disicheduling in

put, and timestamp-based schedulers to fail to enforceagtees. a multimedia 1/0O system,ACM Trans. Multimedia Comput. Commun.
In this respect, we proposed BFQ, a new disk scheduler that Appl, vol. 1, no. 1, pp. 37-59, 2005.

; iale idl ; _chifti ; [23] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R. Gang&rgon:
combines disk idling and timestamp back-shifting to achiev Performance insulation for shared storage serverdfi Rroceedings of

high throughput and preserve guarantees also in presence of the 5th USENIX Conference on File and Storage TechnologiSENIX
synchronous requests. Association 2007.
[24] B. Kao and H. Garcia-Molina, “An overview of real-time tdhase
systems,” 1995.

REFERENCES [25] C. L. Liu and J. W. Layland, “Scheduling algorithms for ripfogram-
ming in a hard-real-time environmeng’ ACM vol. 20, no. 1, pp. 46-61,
[1] S. lyer and P. Druschel, “Anticipatory scheduling: A klischeduling 1973.

framework to overcome deceptive idleness in synchronou$ iiGL8th [26] [Online]. Available: http://www.videolan.org/vic/
ACM Symposium on Operating Systems Principlast. 2001.
[2] G. Lawton, “Powering down the computing infrastructtir€omputer
vol. 40, no. 2, pp. 16-19, 2007. APPENDIX
[3] B.L.Worthington, G. R. Ganger, and Y. N. Patt, “Schedglialgorithms PROOFs
for modern disk drives,” inSIGMETRICS '94: Proceedings of the . . .
1994 ACM SIGMETRICS conference on Measurement and modsfling !N this Appendix we provide the proofs of Theorems 1 and 2.
computer systems New York, NY, USA: ACM, 1994, pp. 241-251. Before proceeding, we introduce some additional notatems

15

prove a lemma used in both proofs. Lemma 1:Let R(BY), R(B?),..., R(B*) be k batches (pos-

Since it is often used, for brevity we catital service property sibly of different applications) consecutively served he treal
the fact that, at any time, the total amount of servic&/(t) system during a time intervdts,] (R(B') starts at timets,
provided by the real and the ideal system duridgt] is the while R(B") is completed at timey). Suppose that: 1) the related
same. Moreover, since we focus only on what happens insitléudgets are fully utilized, 2) the batches are completed in the
B-WF2Q+, for simplicity from now on we neglect the issuegeal system in the same order as in the ideal system, 3) there i
related to deceptive idleness. Especially, since the sifitB- a time instant, < ¢s such that at timeg, the ideal system has
WF2Q+ changes only in consequence of request arrivals andt yet served any sector of any of thebatches. Then, denoted
service, without losing generality, we assume that idliegiqs as tfc the time instant at which all thé batches are completed
have zero duration, and we say that an application is bagklbg in the ideal system\V (t;) — W(t}) < W(to,ts). Especially, if
iff its request queue inside B-WR+ is not empty. ts = 0, we have thatV () — W(t}) <0, and hence; < t}.

Given a budgei3 = B} assigned to an application, we denote Proof: Since the batches are completed in the same order
as R(B) the batch served using. If an application becomes in both systems, to finisi(B*), the ideal system must complete
idle before consuming all of its budgét, or if it is deactivated all the k batches. In addition, the ideal system might serve other
because the remaining budget is lower than the size of the nbatches duringto,tfc]. Hence, considering also the total service
request to serve, then the size of the baftB) is lower than property, W(to,tjlr) > Zle Bk — W(ts,t;) = Wito,ts) —

B. In this case we say that the budgetuisderutilized W (to,ts). This inequality allows the thesis to be proven as

Suppose that only a portioB’ < B of an underutilized budget follows:
is used by an application. According to the code in Fig. 4e¢hr
points can be highlighted. First, the virtual finish time loé¢ atch I I
is higher than it would have been if computed as a functioB’of Wity) = Wity) = Wlto,t7) = Wlto,ty) <
Hence the start of the service &(B) may bedelayed Second, Wito,ty) = W(to,tr) + W(to,ts) = W(to, ts)
this possibly delayed start, plus the fact that the disk lisased]
in advance are only beneficial for the completion time of the Before the second lemma, we need to define a last function.
requests of the other applications. Third, when the apiidicds We define as lag of theéth application at time, the quantity
done usingB, its virtual finish time is properly decreased, so as I
to account only for the actual service received. Hence the ne lag; (1) = Wi (t) — Wi(t) 6)
virtual start time will be correctly computed. In the ende tirst Lemma 2: Let R{ be the j-th request issued by theth

issue is the only one to be addressed in computing worst-Caggjication, and let’ and ¢/ be its start and completion time.
guarantees. In this respect, in the proof of Lemma 2, we stg{k have that
from a fictitious scenario where a longer batBiiB) is served

instead ofR(B).

Given any quantityA defined for the real system, we use théloreover, ifvt € [tl,c{ dvgt(t) = Tauyg and all the applications
superscript notationA’ to denote its counterpart in the idealare continuously backlogged in the ideal system, then, elfin
system. For example, we denote & (¢) the amount of service RY" as the last requests served in the real system among the ones
received by the-th application in the ideal system duririg ¢]. arrived during[al, a! + Tr;ro) (POSsiblyR{" = RY),

By definition, V'(¢) is equal to thenormalizedamount of service

that would be guaranteed by the fluid system to a continuously
backlogged application durinf®,t] with respect to its weight,
ie., Wi’(t) > ¢; - V(t) holds for any applicatiori continuously
backlogged duringp, t]. Moreover, we denote ds (¢) the virtual
time of thei-th appj)lication. While the application is backlogged
W = L. O e, the growth ofVi(t) measures the
normalized amount of service received by the applicatiotha
ideal system. On the contrary, while the application is,idgt)

©)

lagi (53) < Bmaz + Lmaz (7)

Bg B Lg + Bmaz + Limaz (8)
¢iTagg Ta!]!]
where B! is the budget used to senve/.

Proof: For the moment, we assume tHatt) is smoothly
tracked, and we postpone to the end of the proof the evatuafio
the consequences of the stepwise approximatidri(of (outlined
in Subsection II-E). We proceed as follows. First we consale
- fictitious batchﬁ(Bf) in which a fake requesR;,. is added

s fictitiously increased as followsi:i(t) — max(Vi(t™), V(1)). afier the last request of the actual bateh!). We suppose that
The ideal system serves applications in such a way to guegan fake is long enough to let the whole budgst be consumed

that Vi, ¢ V;(t) > V(t). Finally, differently from the real system, _ _ j :

it serves the requests of each application in FIFO order. (Lfake = 1? Z_R?_G_R(B) Li);W? consider what would hav_e
We denote ag;(¢) the virtual finish time of the last batch, of happened if lthe f'Ct't'Ol,JS bat_CR(Bi) W_OU|d ha_lvg .been serveq n

the i-th application, already completed in the real system ae tinplace of R(B;). We define this scenario as tfietitious scenario,

t. Recall that the real system starts serving a new batch énly3s OPPosed toj thectual;cenario_ Then we compute an upper
it is eligible. Hence, from the time-stamping rules in Fig.i Pound to lag(s;) and toc; as a function of quantities computed
follows that for the fictitious scenario.

With regards toCZ, due to the C-LOOK/FIFO service order of
Bi max the real system, in addition to the requests queued at difne
Ei(t) < V() + & @) the requesr? may also wait for the service of the other requests
_ _ ~arrived during[a!,a] + Trprro). In contrast, the ideal system
The second of the following lemmas will be used as a buildingsrves the requests of each application in FIFO order. Hance
block in proving both theorems. the real systeni/ is served as it 7 = ¢/,

j I,m
c <™+

16

Given the value of a quantity for the actual scenario, we useProof of Theorem 1

the over-line notatiory to refer to the co[rgfponding value for 4, prove the theorem, we first compute the maximum per-

the fictitious scenario. Henceﬁ > s ande;” > ¢;” are e, application deviation (lead/lag) of the real system withpect to
the finish time of R(B!) in the real and in the ideal system fory,q igeal system.

the fictitious scenario. Note that < ¢] W (t) = W(t). Finally, Lemma 3: The following inequalities hold:
let D! be the sum of the sizes of the requestsRifB!) served
after RY, plus the sizel! of R/ itself. Vie{1,2,..,N}t

min (¢;(Vi(t) — F5(?)),0) <lag;(t) < Bmaz + Lmaz (9)

Since we are computing worst-case guarantees, withoutgosi Proof: Once granted access to the disk, and until budget

generality, we assume that all the batches served bélareare . - - .
exhaustion, an application receives an amount of servicaleq

fully utilized. We consider two cases. First, all the batkkerved to the total amount of service provided by the system. Hence,

during [0,¢}] in the real system for the fictitious scenario ar anks to the total service property, Jag cannot decrease while
completed in the same order in which they are completed in t&e property,

ideal system. In this case, from Lemma 1, and considering tha ?_th ap?hcatlon Is being servled. This h?s. two consequences.
15 °Ij o . First, 3s; : V¢ lag;(¢t) < lag;(s;), wheres; is the start time
¢;” =@ and all the applications are continuously backIQggegf a batchR(B!). Hence the rightmost inequality in (9) follows

N it ol Ij, B-LI i) e rng quatity N
during [¢; ', ¢; "], we have that; < ¢ <" < ¢” + Zr . from Lemma 2. Secondic! : Vi lag,(t) > lag;(c}), wherec! is
Hence (8) holds. Moreover, considering thgt < El.” it also the completion time of a batck(B;). If Fi(ch) < vi(dh), then
follows that, for the actual scenariwf(sg) < Wi(s!)+ D] < Iagi(cﬁ) > 0 and the leftmost inequality in (9) holds.
W;(s)) + Bmaz. Hence, (7) holds too. To prove the thesis in casg(c}) > Vi(cl), let st and s/

. be, respectively, the time instants at which the budgetsstar

Second, some of the batches served befe{8;) in the real pe served in the real and in the ideal system. We have that
system for the fictitious scenario are completed afteB!) in the wi(shh) = W;(sh). It follows that
. 2 /"
ideal system. LeRR(B™) be the last of these batches, and suppose
- s m+1 .
it sta;tJS;Qto be serveﬂcj+a]€t tintg in trl\e real system. LeR_(B), Wi () — wi(d) = WZJ(S? L) = Wish, . (10)
R(B), .., R(B) = R(B;), be the successive batches
served in the real system. Since the ordering among virtishfi ~ Since F;(c!) > Vi(c)), the ideal system is still serving
times is the same as among the completion times in the id¢iaé budgetR(Bf-) at time cﬁ, which implies Wil(sf’l,cé) -
system of the corresponding batches [14], the virtual fitiiste . (Vi(cﬁ) _ Sf) where S! is the virtual start time of the batch
of thesek batches is lower than the virtual finish time B{B™).

! Lol ! !
Hence, for B-WEQ+ to chooseR(B™) instead of one them, all 1(5i)- On the other hand;(s;, ¢;) < i (Fi(ci) - S’{)' Sub-
thesek batches have to be not yet eligible or not yet arrived %'t“t'”lg }h's meqtljahty and thle pre;nous € ualltly n Elme
time ¢o. In both cases, the ideal system has not provided afipt Wi (i) — Wile;) > ¢ (Vi(ci) - Si) — ¢i (Filc;) — Si) =
service to any of them at time. We also assume thaf >z ', 4 (Vi(cé) _ Fi(cé)), which proves the thesis. =
since, if the thesis holds in this (sub)case, it triviallyidealso

) Pt) IS We can now prove Theorem 1.
in cases; < ¢;”. Hence, thanks to Lemma 1, in the fictitious prgof: et a] be the arrival time of the request that is waiting

SCGnaFiO,WiI(?{’Ja s1) = W Gi7,eh) + Wi (@', s]) = D/ + to be completed at tima . From the timestamping rule in Fig. 4,
Wi s)) <Dl + Wt ey — D! <D/ + B™ — D} =B™ < line 8, and from the fact that thieth application is continuously
Bmaz. Besides, sincgg = gg W{(sf) < W{(s{) (because backloggeq, it foIIovx_/s that the virtugl start time of its Uaaas_
also the additional fake requesi;,.. may have been servedServed duringts,] is the same as if all these batches arrived
in the fictitious scenario)Wf(Ei 9) = Wi(s!), and Wf(sg) _ back-t'o-back..Mo.reover, the service provided by the reatesy
Wf(gf’j) +W{(§f’j, s{), then Wil(sf) SWi(sg) + Byas in the to thei-th appllc(;atl?tn dor(]es not d(;per.]d on tt(}e arrlva! pat.ter“ of the
actual scenario. This proves (7). requestg served after the one that is pending at tim&inally,

for the i-th application to receive at least the minimum amount

To prove (8), suppose for a moment that the real system is aBfeservice that the real system is claimed to guarantee glurin

to immediately preempR(B™) as any of the batcheB(B™*1), [t1,t2], it mustask for such service, i.e., the sum of the sizes
R(B™2), ..., R(B!) becomes eligible. Thanks to the hypothesi§f the requests issued durifig , 2], plus Qi(a] ~), must be no
of the applications being continuously backlogged, thiditab lower than this amount of service. Thanks to these condides
would not affect the request arrival pattern, and hence thero to simplify the proofs, and without losing generality, wesasie
in which thesek batches would be served in the ideal systenihat, starting from times}, the i-th application is continuously

Hencec!” would not change. Moreover, thanks to Lemma 1 arggcklogged and issues all its next requests asynchronausly

. . l Jj -t{O-
to the arguments used for the previous cages ¢/ + Bi_L; back-to-back.

¢iTq i i
would hold. Unfortunately, due to the impossibility of pmiﬁgg Using Lemma 3, we can write
R(B™), the real system starts serying th@atcr)es ;Nith a delay Wi(t1,t2) =
of at moste= time units, hence;] < eIy fT;fq + Dpas W/ (tz) — lag;(ta) — (Wi (t1) — lag(t1)) >
Tag: o FoR N ol
Finally, for the reasons explained in Subsection Ill-A, the Wi (t2)+B.WZ; (VL(’:“; }ZZ (;)1);; -
min(¢;(Vi(t1) — Fi(t1)), >

stepwise approximation of (¢t) causes the additional worst-case]
agg

_Bmaw - Lma;v

n (11)

where the last inequality follows from the fact that, sinbe -

th application is necessarily continuously backloggeo aisthe
ideal system, themV/ (t1,t2) > ¢; (V (t2) — Vi(t1)). For any set
of values of the other quantities, the rightmost term is hovie
F;(t1) > V;(t1). Hence, thanks to (4)

Wi(ti,t2) >
i (V(t2)—V(t1)+V(t1) Fi(t1)) = Bmaz — Lmaz =
¢i (V(t2) — Fi(t1)) — Bmaz — Lmaz >
éi (V(tQ) - V(tl) - %) — Bmaz — Lmaz >
‘;biW(tly t2) - Bi,maz — Bimazr — Lmax
12)

17

is higher if F;(¢1) > V;(t1). Hence, thanks to (4),

I.m

¢’ —t1 <

$i (Vi (81) =V (#1)+Q(t7) — s (Vi (¢1) = F; (¢1)) +A; (t1,a] +Tr1r0)

¢iTa

Bu(Fi (1) =V (1) +Q(1)+ As(tr.al +Triro)
¢iTa =

Bimaz+Q(t q)quA (t1,a+Tr1F0)

iTagg

(16)

The thesis follows from considering that, thanks to Lemma

i J
2, — M < 5 Loy Bmwtjm“ Regarding theB; ;naq
component the same considerations about the arrival rpatte

reported at the end of the proof of Theorem 1 apply.]

Before concluding the proof, it is important to note that, as

anticipated in Subsection 1lI-B, thé; ,,,, component in the

rightmost term is a consequence of the real system being in

advance with respect to the ideal system in serving ittie

application at timez!. On the contrary, this component is equal

to O if Rg may arrive only after the minimum completion time

guaranteed by the ideal system to the previous reqggst. m

Proof of Theorem 2

Proof: Let ¢/ andc"™ be the completion time ok’ in the

real system and of}" in the ideal system, respectively. We have

that:
Wt e;™) < Vit e ™) = Viltr) = Vilh) + V(i ¢)™) =
Viltr) = Vi(tr) + V(e ™) = V(1)
(Vi(t) = V() + (Ve ™) = Vi(t)) - <
(Vitt) = V) + (Vile] ™ = Vit)) - <
(Vi) — V(1)) + Welte™)

where the last inequality follows from the fact that tleh

application is continuously backlogged (in the ideal sygte

I,m]

during [t1,c;
Let QI(ag_) be the backlog of the-th application in the ideal
system at timea! . We have thatW/ (t1,c/™) < Q(t7) +

A;(ty, ag +Trrro). Hence, since the ideal system has a constant

throughput equal td@,44, we have that

V(1) + QL) + Ai(t1,al + Triro)
()biTagg

#i (Vi(t1) —

Mt <
(14)

As a first step to derive the thesis from the above inequality,

we can consider that, thanks to Lemma@’,(t;) = Q) —
lag;(t1) <Q(t7) — min (¢;(Vi(t1) — Fi(t1)),0). Substituting this
inequality in (14), we get

lI —ty < & (Vi(t) =V (0)+Q(t)) |

iTagg
— min(¢; (Vi (t1)—Fi(t1)),0)+A;(t1,a] '+ Tr1ro)

+ biTagg

(15)

For any set of values of the other quantities, the rightmersht

