
High Throughput Disk Scheduling with Fair
Bandwidth Distribution

Paolo Valente, Fabio Checconi

Abstract— Mainstream applications–such as file copy/transfer,
Web, DBMS, or video streaming–typically issue synchronous disk
requests. As shown in this paper, this fact may cause work-
conserving schedulers to fail both to enforce guarantees and
to provide a high disk throughput. A high throughput can be
however recovered by just idling the disk for a short time interval
after the completion of each request. In contrast, guaranteesmay
still be violated by existing timestamp-based schedulers, because
of the rules they use to tag requests.

Budget Fair Queueing (BFQ), the new disk scheduler presented
in this paper, is an example of how disk idling, combined
with proper back-shifting of request timestamps, may allow a
timestamp-based disk scheduler to preserve both guarantees
and a high throughput. Under BFQ each application is always
guaranteed–over any time interval and independently of whether
it issues synchronous requests–a bounded lag with respect to its
reserved fraction of the total number of bytes transferred bythe
disk device.

We show the single-disk performance of our implementation
of BFQ in the Linux kernel through experiments with real and
emulated mainstream applications.

Index Terms— Scheduling, secondary storage, quality of ser-
vice.

I. I NTRODUCTION

M OST mainstream applications, such as file transfer, Web,
DBMS, Video on Demand or Internet TV, require moving

data to/from disk devices. Meeting the disk bandwidth and per-
request delay requirements of these applications and at thesame
time achieving a high throughput is not an easy task. The first
problem is that the time needed to serve a request once dispatched
to the disk device, hereafter calledservice time, is highly variable.
Causes are seek and rotational latencies, variation of the transfer
rate with the sector position, caching1. In addition, few if any of
the existing controllers export these physical parameters, which
makes it difficult to predict service times based on request posi-
tions on the disk. Finally, most mainstream applications usually
issue one request or batch of requests at a time. Especially,
they block until the only outstanding request/batch has been
completed. We denote this type of request or batch of requests
as synchronous, for it can be issued only after the outstanding
batch/request has been completed. The peculiar arrival pattern of
synchronous requests may cause guarantee and disk throughput
problems.

Guarantee violations may occur with timestamp-based sched-
ulers, i.e., schedulers that timestamp requests as a function of their
arrival time and in essence dispatch them to the disk in ascending
timestamp order. The root of the problem is that the arrival of a
synchronous request may be arbitrarily delayed by a scheduler

P. Valente is with the Dep. of Computer Engineering of Modena,Italy.
F. Checconi is with the Scuola Superiore Sant’Anna, Pisa, Italy.
1Other less influential sources of variability are sector sparing and dynamic

variation of the disk parameters due to thermal variations.

by just delaying the dispatching of the preceding request. Then
a delayed synchronous request may get a higher timestamp with
respect to the one it would have got if not delayed. This higher
timestamp may finally let the request wait for the service of
more requests before being dispatched to the disk. Unfortunately,
delaying the service and hence the completion of the requestwill
delay the arrival of the successive synchronous request of the
same application, and so on. In the end, by just delaying the
service of its requests, the scheduler may force the application to
issue requests at adeceptivelylower rate. If this anomaly occurs,
the scheduler just fails to guarantee the reserved bandwidth or the
assigned request completion times to the application (evento a
greedy one).

In addition, a minimum amount of time is needed for an
application to handle a completed request and to submit the next
synchronous one. On one hand, this fact may further contribute
to violating guarantees with timestamp-based schedulers.On the
other hand, it may also prevent a work-conserving scheduler
from achieving a high disk throughput. From the disk device
standpoint, an application isdeceptively idleuntil it issues the
next synchronous request [1]. During one such idle time, thedisk
head may be moved away from the current position by a work-
conserving scheduler, thus losing the chance of a close access
for applications performing mostly sequential IO. The problem
is mitigated by the fact that operating systems typically perform
read-aheadfor request patterns deemed sequential.

Over-provisioningwould be a way to easily guarantee a pre-
dictable and short request service time without dealing with the
above problems. Unfortunately it entails high purchase, powering
and cooling costs [2], and purposely wastes disk bandwidth.In
fact, the only option to improve the disk utilization and meet the
requirements of many competing applications is properly schedul-
ing disk requests. Several schedulers–such as SCAN (Elevator),
C-SCAN, LOOK or C-LOOK [3]–have been defined to achieve
the first goal. These algorithms are often implemented also inside
modern disk devices, which can internally queue requests and
service them in the best order to boost the throughput. Finally, to
achieve a high throughput also in presence of deceptive idleness,
most Linux standard disk schedulers extend these policies with
disk idling: they do not dispatch any other request to the disk
for a short time interval (in the order of the seek and rotational
latencies) after a synchronous request has been completed.By
doing so they give a chance to the (possible) next request of the
same application to arrive before the disk arm is moved away.
The Anticipatory (AS) disk scheduler [1], extends C-LOOK in
this sense.

However, to meet the requirements of most types of applica-
tions, guarantees must also be provided on bandwidth distribution
or request completion times. In this respect, the problem ofalgo-
rithms aimed only at maximising the disk throughput is that in the
worst case they may delay the service of a request until the whole

2

disk has been read or written (age-based policies, as in AS, can be
added to mitigate the problem). In contrast, many schedulers, as
e.g., SCAN-EDF [4], SATF-DAS [5], JIT [6], Hybrid [7], YFQ
[8], pClock [9], adaptive DRR [10], CFQ [11] and adaptations
of SFQ [12] have been proposed to provide control on request
completion time and/or on bandwidth distribution, while atthe
same time trying to keep the throughput high.

Apart from CFQ, all of these schedulers are work-conserving
and none of them takes the delayed arrival problem into account.
Hence, as previously discussed, they may provide a low disk
throughput and, if timestamp-based, may violate guarantees. For
similar reasons, guarantees for synchronous requests are violated
with any scheduler if the disk device performs internal queueing,
as discussed in more detail in Section IV. Our experimental
results with a single disk thoroughly confirm the expected loss
of guarantees for all the analyzed work-conserving timestamp-
based schedulers, as well as a loss of disk throughput in caseof
applications performing mostly sequential accesses. Of course, on
the opposite end, adopting a naı̈ve disk idling approach in a multi-
disk system, i.e., idling the entire array of disks on the completion
of each sequential synchronous request, may cause throughput
loss [13]2. Some more effective strategies are mentioned together
with our proposal in the next subsection.

In contrast, a non timestamp-based scheduler should not suffer
from either problems, provided that some mechanism is adopted
to handle deceptive idleness. This is the case for round robin
schedulers, as, e.g., CFQ, which does perform disk idling. Unfor-
tunately, as discussed in Section IV and experimentally shown in
Section V, they exhibit a higher delay/jitter in request completion
times than the timestamp-based scheduler we propose.

A. Proposed Solution

In this paper we propose aproportional share timestamp-
based disk scheduler, called Budget Fair Queueing (BFQ). As
in any proportional share scheduler, in BFQ each application is
guaranteed its reserved fraction (share) of the disk throughput,
irrespective of its behaviour. Hence neither the request arrival
pattern of the application needs to be known or the application
itself needs to be modified to provide such a guarantee.

BFQ serves applications as follows. First, when enqueued, an
application is assigned abudget, measured in number of sectors to
transfer. Once selected, the application gets exclusive access to the
disk. During the service of the application disk idling is performed
to wait for the arrival of synchronous requests (only if these
requests are deemed sequential, see Subsection II-B). Finally, if
the application runs out of either its backlog or its budget,it is
deselected and assigned a new budget. This service scheme allows
BFQ to achieve a high throughput if applications issue mostly
sequential requests. In contrast, for random workloads it is not
as optimal as a global policy, like, e.g., C-LOOK. It is however
worth noting that with random workloads even an optimal policy
can achieve only a small fraction of the disk rate. In fact, where
possible, caches are usually tuned so as to reduce disk access and
achieve feasible response times.

Applications are scheduled by the internal Budget-WF2Q+ (B-
WF2Q+) scheduler as a function of their budgets. The latter is

2In [13] an extensive comparative analysis of the performance of several
disk schedulers is reported, in terms of aggregate throughput, with different
workloads and also in presence of internal queueing and multiple disks.

a slightly extended version of WF2Q+ [14], a proportional share
(fair-queuing) packet scheduler. B-WF2Q+ basically differs from
the original packet scheduler in that, first, it handles the case
where an application becomes idle before consuming all of its
budget, and, second, it properlyshifts backwardstimestamps to
conceal delayed arrivals. Thanks to this characteristics and to the
fact that it works in the service and not in the time domain,
BFQ provides the following guarantee to each application, over
any time interval, with any workload and regardless of the disk
physical parameters: each application is guaranteed the minimum
possiblelag, achievable by serving applications budget-by-budget,
with respect to the minimum amount of service, measured in
number of sectors transferred, that the application shouldreceive
according to its reserved share of the disk throughput and tothe
total amount of service provided by the system. A loose upper
bound to this lag is3Bmax, whereBmax is the maximum budget
that can be assigned to any application. In general, BFQ can be
fine-tuned to achieve the desired trade-off between throughput
boosting and maximum per-application lag, by tuningBmax and
a few other configuration parameters. In addition, a simplified
interface is provided for users not concerned with low-level
details.

The abovesectorguarantees can be turned intotimeguarantees
as follows. First, the aggregate throughput achieved with the
desired values of the configuration parameters must be measured
for the expected worst-case request pattern (see Section III-D).
Then, worst-case time guarantees can be computed as a function
of the aggregate throughput with a simple closed-form expression.
Note that, on one side no other disk physical parameter needs
to be known or measured, whereas, on the other side, there
is no possibility with any scheduler to provide practical time
guarantees without knowing at some degree at least the locality
of the expected request pattern.

With regard to computational cost and implementation issues,
BFQ is defined without using disk physical parameters, and has
O(logN) worst-case cost, in the number of competing appli-
cations, per request insertion or dispatch (this cost boilsdown
to O(1) if approximate implementations [15] of B-WF2Q+ are
adopted). We have implemented BFQ in the Linux kernel (cur-
rently for 2.6.21-29 kernels [16]) and experimentally evaluated
its single-disk performance with file transfer, Web server,DBMS
and video streaming applications (Section V). In general, the
main contribution of this paper is showing through BFQ a way
to combine disk idling and timestamp back-shifting to preserve
both guarantees and a high throughput in presence of synchronous
requests. This technique may be applied also to other timestamp-
based schedulers. Finally, to preserve a high throughput ina
multiple-disk system, the disk idling scheme described so far
should be extended to allow, e.g., one outstanding request per
disk. Or alternatively a hierarchical approach might be adopted,
leaving the disk idling task only to the local per-disk schedulers.
Carefully investigating these solutions is out of the scopeof this
paper.

B. Organization of the Paper

In Section II we describe BFQ and report its computational
cost, whereas in Section III we show its service properties in
the sector and time domains. In Section IV we provide a brief
survey of related work. Finally, in Section V we compare the

3

Appl. 2
requests

Appl. 1
requests

requests
Appl. N

Storage system

dispatch()

Device
DiskScheduler

BFQadd_request(i, R)

Fig. 1. System model.

TABLE I

DEFINITIONS.

Symbol Meaning

R
j
i j-th request issued by thei-th application

L
j
i Size ofRj

i

Lmax maxi,j L
j
i

a
j
i , s

j
i , c

j
i Arrival, start and completion time ofRj

i

Wi(t) Amount of service received by thei-th application
W (t) Total amount of service delivered by the system
Twait Time waited before deeming an application as idle
Bi,max Maximum budget assigned to thei-th application
Bmax maxi Bi,max

f(t1, t2) f(t2) − f(t1)

φi Weight of thei-th application
TFIFO Queueing time after which (queued) requests must be served

in FIFO order

performance of BFQ against several research and production
schedulers.

II. BFQ

After defining the system model in the next subsection, we
introduce the logical scheme and the main algorithm in the
successive two subsections, where B-WF2Q+ is used as a black
box providing application enqueue/dequeue operations. Wethen
describe B-WF2Q+ in detail in Subsections II-D and II-E.

A. System model

We consider astorage systemcomposed of a disk device and
the BFQ scheduler, as in Fig. 1. The former contains a disk,
which we model as a sequence of contiguous fixed size sectors,
each identified by itsposition in the sequence. The disk device
services two types ofdisk requests, respectively the reading and
the writing of a set of contiguous sectors. After receiving the
start commandor completing a request, the disk device asks for
the next request to serve by invoking the functiondispatch
exported by the BFQ scheduler.

At the opposite end, requests are issued by theN applications
served by the storage system (applications here stand for the
possible entities that can compete for disk access in a real system,
as, e.g.,threads or processes). The meaning of the notations
hereafter introduced is also summarized in Table I. Thei-th
application issues itsj-th requestRj

i by invoking the function
add request exported by the scheduler, and passing the index
i and the requestRj

i . We define assizeLj
i of Rj

i the number of
sectors to read or write, and asposition/endof Rj

i the position
of the first/last of these sectors. We say that two requests are
sequentialif the position of the second request is just after the
end of the first one. We define asarrival, start and completion

application
Next active

selection

request(i, R)
add_

BFQ Scheduler

dispatch()

application
deselection

Active

scheduler
B−WF2Q+

Request Queue

Request Queue

Request Queue
C−LOOK
scheduler

computation
Next budget

C−LOOK
scheduler

computation
Next budget

C−LOOK
scheduler

computation
Next budget

Check of exhaustion
of remaining budget

budget

budget

budget

or of appl. backlog

Appl. N
requests

Appl. 2
requests

Appl. 1
requests

Fig. 2. BFQ Logical Scheme.

time of a request the time instantsaj
i , sj

i and cj
i at which the

requestRj
i is issued by thei-th application, starts to be served

and is completely served by the disk device, respectively. We say
that a request issynchronousif it can be issued by an application
only after the completion of its previous request. Otherwise the
request is denoted asasynchronous.

We say that an application isreceiving servicefrom the storage
system if one of its requests is currently being served. Both
the amount of serviceWi(t) received by an application and the
total amount of serviceW (t) delivered by the storage system are
measured in number of sectors transferred during[0, t]. For each
applicationi, we letBi,max denote the dynamically configurable
maximum budget, in number of sectors, that BFQ can assign to
it. We defineBmax ≡ maxi Bi,max.

We say that an application isbackloggedif it has pending
requests. In addition, to deal with the delayed arrival and the
deceptive idleness problems an application is denoted asquasi-
backloggedat time t if either it is backlogged, or it is not
backlogged but its backlog emptied not before timet − Twait,
where Twait is a system-wide dynamically configurable time
interval. Otherwise the application is deemed asidle. Moreover
we say that an applicationi enjoys theshort-or-independent
arrival property (SI property for short) if, for each request
Rj

i , either Rj
i is asynchronous, oraj

i − cj−1
i ≤ Twait. The

actual adherence of real-world applications to the SI property
is discussed in Section III, whereas hereafter we assume that
applications do enjoy this property.

Each application has a fixed weightφi assigned to it. Without
losing generality, we assume that

PN
q=1 φq ≤ 1. Given a generic

function of time f(t), we definef(t−1) ≡ lim
t→t

−

1

f(t) and
f(t1, t2) ≡ f(t2) − f(t1). Finally, given any time interval
[t1, t2] during which thei-th application is continuously quasi-
backlogged, we define itsreserved serviceduring [t1, t2] as
φi ·W (t1, t2). Suppose thatRj+1

i is a synchronous request, and let
cj
i be the time instant at which the requestRj

i would be completed
if the i-th application received exactly its reserved service during
[aj

i , c
j
i]. We say that the arrival ofRj+1

i is (deceptively)delayed
if cj

i > cj
i .

B. Logical scheme

The logical scheme of BFQ is depicted in Fig. 2. Differently
from Fig. 1, here solid arrows represent the paths followed by
requests until they reach the disk device. On the contrary, dashed

4

arrows represent flows of information or internal commands.
Finally, circles represent algorithms or operations. There is a
request queuefor each application. Requests are inserted into the
right queue by theadd request function.

At any time each application has abudget assigned to it,
measured in number of sectors. LetBl

i be thel-th budget assigned
to the i-th application. At system start-up, all applications are
assigned the samedefault budget B0

i . Disk access is granted
to one application at a time, denoted as theactive application.
When the new active application is selected, its current budget
is assigned to a specialremaining budgetcounter. Each time
a request of the active application is dispatched, the remaining
budget counter is decreased by the size of the request. Moreover,
if the request queue gets empty at timet, a timer is set tot+Twait

to wait for the possible arrival of the next request. This mayleave
the disk idle, but prevents BFQ from switching to a different
application if the active application is deceptively idle and enjoys
the SI property. In addition to not breaking a possible sequence of
close or sequential accesses, this waiting is also instrumental in
concealing delayed arrivals, as shown in Subsection II-E. How-
ever, waiting for the arrival of non-sequential requests provides
no benefit. Hence, as CFQ, BFQ automatically reducesTwait to a
very low (configurable) value for applications performing random
IO (currently 2 ms, see the code for details [16]). If the active
application issues no new request before the timer expiration, it
is deemed idle. The active application is exclusively served until
either there is not enough remaining budget to serve the next
request, or the application becomes idle. At this point the next
budgetBl+1

i of the application is computed. Basically,Bl+1
i is

obtained by increasing or decreasingBl
i, depending on whether

the application consumed all of its budget or ran out of its backlog
before consuming it. The next active application is then chosen by
B-WF2Q+, which schedules enqueued applications as a function
of their budgets (see Subsection II-E).

To guarantee a controllable per-application maximum queueing
time, the order in which the requests are extracted from the queue
of the active application depends on a user-configurableTFIFO

parameter. When the next request of thei-th application is to be
dispatched at timet, if aj

i + TFIFO > t holds for all the queued
requestsRj

i , then the next request is chosen in C-LOOK order
[3], otherwise the oldest request is picked.

C. Main algorithm

The main BFQ algorithm is shown in Fig. 3 using pseudo-
code. The functionadd request first inserts the new request
R in the application queue, then, if there are more than one
request, nothing is to be done. Otherwise, if the application is
not the active one, the application is enqueued in the B-WF2Q+
scheduler. If the (active) application is waiting for the arrival of
the next request, the timer is unset.

The functiondispatch returns ano requestindication if all
applications are idle or if the active application is waiting for
the arrival of the next request (disk idling). On the contrary, if
the active application has not enough remaining budget for its
next request, the application is deselected (lines24-38). Moreover,
through the call to the functionb-wf2q+ update vfintime
(described in the next subsection) at lines27-28, the application
timestamps are updated to account only for the service received.
The fact that the application did not empty all of its backlogis
assumed as an indication that it issues batches of requests with

a larger cumulative size than the last assigned budget. Hence,
the application budget is increased by a configurable quantity,
provided that the resulting value is not higher thanBi,max (lines
30-34). Finally, the application is enqueued into B-WF2Q+ with
its new budget (line36). Then, if no application is active (lines
39-43), the next active application is picked (and removed) from
the B-WF2Q+ scheduler. The next requestR to serve is extracted
from the queue of the active application and the remaining budget
counter is decremented (lines44-49).

Finally, if the queue of the active application becomes empty,
the timer is set to the current time plusTwait (lines50-51). If no
new request is issued by the application before timer expiration,
the function timer expiration (lines 59-66) gets called:
the application is declared idle, and a new budget equal to the
previously consumed one is assigned to it. Finally, the timestamps
of the application are properly updated to account only for the
actual amount of service it received (see the next subsection).

The adopted simple linear increase/instantaneous decrease of
budgets is of course only one of the possible options. It showed
good performance in terms of both aggregate throughput and
short term guarantees in our experiments. For simplicity, many
low-level details have been omitted here, as the fact that disk
idling is obviously performed only for synchronous requests.
The interested reader is referred to [16]. Before leaving this
subsection, it is worth noting that BFQ actually provides a flexible
framework, in that both the B-WF2Q+ and C-LOOK schedulers
can be replaced with different schedulers (Fig. 2). Hence, different
trade-offs among type of guarantees, computational cost and
throughput boosting degree can be achieved.

D. Disk Weighted Fair Queueing

In this subsection we provide a brief survey of the main
concepts behind the original WF2Q+ algorithm (see [14] and [17]
for details), (re)formulated in the disk scheduling domain. These
concepts are the basis for B-WF2Q+, which is then described in
detail in the next subsection.

Hereafter we use the termbatchto denote the set of the requests
served using a given budget. We define a batch as pending at
time t if it has not yet been completely served at timet (each
application has at most one pending batch at a time). We define
two systems ascorrespondingif they serve the same applications
and, at any time instant, they provide the same total amount of
service per time unit.

WF2Q+ approximates on a packet-by-packet basis the ideal
service provided by a work-conserving packet-basedfluid system.
In B-WF2Q+ we map the concept of packet into the concept
of batch: B-WF2Q+ approximates on a batch-by-batch basis the
service provided by a corresponding fluid system that may serve
more than one application at a time. Hereafter this system iscalled
just the ideal system, as opposed to the real system, i.e., tothe
storage system in Fig. 1. The ideal system is used as a reference
because it distributes the total service among applications so as
to guarantee to each application a bounded lag, over any time
interval, with respect to its reserved service (see the appendix for
details). Moreover, in the ideal system, each request is completed
no later than the time instant at which it has to be completed
according to the reserved service of the issuing application. On
the contrary, as shown in the Section III, this does not hold in the
real system. Hence a synchronous request in the real system may

5

1 a c t i v e a p p l = none ; / / reference to the currently active application
2 r e m a i n i n g b u d g e t = 0 ; / / remaining budget of the active appl.
3

4 / / input: application index, request issued by the application
5 a d d r e q u e s t (i n t i , r e q u e s t R) {
6 app l = a p p l i c a t i o n s [i] ; / / reference to the i-th application
7

8 / / insert R in the application queue
9 enqueue (R , app l . queue) ;

10

11 i f (app l . queue . s i z e == 1){ / / the queue was empty
12 i f (app l != a c t i v e a p p l)
13 b−wf2q+ i n s e r t (app l) ; / / Sec.II-E
14 e l s e / / appl is the active application
15 i f (w a i t i n g f o r n e x t r e q ()) / / deceptive idleness
16 u n s e t t i m e r () ; / / next req arrived: stop waiting
17 }
18 }
19

20 r e q u e s t d i s p a t c h (){ / / output: request to serve
21 i f (a l l a p p l i c a r e i d l e () OR w a i t i n g f o r n e x t r e q ())
22 re turn n o r e q u e s t ;
23

24 i f (a c t i v e a p p l != none AND
25 r e m a i n i n g b u d g e t <
26 C−LOOK next req (a c t i v e a p p l . queue) . s i z e){
27 b−wf2q+ u p d a t e v f i n t i m e (a c t i v e a p p l ,
28 a c t i v e a p p l . budge t− r e m a i n i n g b u d g e t) ;
29

30 i f (a c t i v e a p p l . budge t + BUDGINC STEP <=
31 a c t i v e a p p l . max budget)
32 a c t i v e a p p l . budge t += BUDGINC STEP ;
33 e l s e
34 a c t i v e a p p l . budge t = a c t i v ea p p l . max budget ;
35

36 b−wf2q+ i n s e r t (a c t i v e a p p l) ;
37 a c t i v e a p p l = none ;
38 }
39 i f (a c t i v e a p p l == none) {
40 / / get and extract the next active appl. from b-wf2q+ (Sec. II-E)
41 a c t i v e a p p l = b−wf2q+ g e t n e x t a p p l i c a t i o n () ;
42 r e m a i n i n g b u d g e t = a c t i v ea p p l . budge t ;
43 }
44 / / get and remove the next request from the queue of the active application
45 n e x t r e q u e s t = d e q u e u en e x t r e q (a c t i v e a p p l . queue) ;
46

47 / / for simplicity at this point we assume that nextrequest.size≤
48 / / remainingbudget, see the code [16] for details
49 r e m a i n i n g b u d g e t −= n e x t r e q u e s t . s i z e ;
50 i f (i s e m p t y (a c t i v e a p p l . queue))
51 s e t t i m e r (T wa i t) ; / / start waiting for the next request
52

53 / / account for this service in b-wf2q+
54 b−wf2q+ i n c t o t s e r v i c e (n e x t r e q u e s t . s i z e) ;
55

56 re turn n e x t r e q u e s t ;
57 }
58

59 t i m e r e x p i r a t i o n () { / / called on timer expiration
60 a c t i v e a p p l . budge t =
61 a c t i v e a p p l . budge t− r e m a i n i n g b u d g e t ;
62 b−wf2q+ u p d a t e v f i n t i m e (a c t i v e a p p l ,
63 a c t i v e a p p l . budge t) ; / / Sec. II-E
64 a c t i v e a p p l = none ; / / no more the active application
65 / / dispatch() will take care of selecting the next active application
66 }

Fig. 3. BFQ Main Algorithm

arrive later than in the ideal system. This fact may cause request
arrivals to be deceptively delayed in the real system.

An application iseligible at time t if its pending batch would
have already started to be served in the ideal system at timet.
B-WF2Q+ tries to complete the service of application batches in
the same order as the ideal system. Moreover, it chooses the next
application to serve only among the eligible ones.

This policy is efficiently implemented by timestamping each
application with the values assumed by a specialapplication
virtual time function at the start and completion times of its

pending batch in the ideal system. These two values are called
virtual start andfinish time, Si(t) andFi(t), of the application or,
equivalently, of its pending batch at timet. They are computed as
a function of a commonsystem virtual timefunction V (t) when
an application is (re)inserted into the scheduler (see [14]or [17]).
Although it seems a contradiction in terms, the unit of measure
of the virtual time is the service (see the appendix for details).
Especially the virtual time of each backlogged applicationgrows
as the amount of service received by the application, divided by
its weight.

E. B-WF2Q+ and timestamp back-shifting

1 V = 0 ; / / system virtual time
2

3 / / input: the application to insert
4 b−wf2q+ i n s e r t (app l) {
5 i f (app l != a c t i v e a p p l) / / then an asynchronous req arrived
6 app l . S = max (V, app l . F) ; / / use actual arrival time
7 e l s e / / in this case the active appl. is being deactivated
8 / / to preserve guarantees in case of delayed arrival, timestamp
9 / / the application as if the next request to serve arrived at the same

10 / / time as the last request of the just terminated batch
11 app l . S = app l . F ;
12 app l . F = app l . S + app l . budge t / app l . we igh t ;
13 / / add the application to the internal data structure
14 s e t o f e n q u e u e da p p l . i n s e r t (app l) ;
15 }
16

17 / / extract and return the next application to serve
18 b−wf2q+ g e t n e x t a p p l i c a t i o n () {
19 i f (t h e r e i s n o e l i g i b l e a p p l ())
20 / / certainly there are enqueued applications, otherwise this
21 / / function does not get called (see function dispatch)
22 V = s e t o f e n q u e u e da p p l . minS () ;
23 n e x t a p p l = e l i g i b l e a p p l w i t h m i n F () ;
24 s e t o f e n q u e u e da p p l . remove (n e x ta p p l) ;
25 re turn n e x t a p p l ;
26 }
27

28 / / called upon each request dispatch
29 b−wf2q+ i n c t o t s e r v i c e (s e r v i c e){
30 V = V + s e r v i c e ;
31 }
32

33 / / update application virtual finish time
34 b−wf2q+ u p d a t e v f i n t i m e (appl , r e c e i v e ds e r v i c e) {
35 app l . F = app l . S + r e c e i v e ds e r v i c e / app l . we igh t ;
36 }

Fig. 4. B-WF2Q+.

The B-WF2Q+ algorithm is shown in Fig. 4 using pseudo-
code. An application is inserted into the scheduler by calling the
function b-wf2q+ insert. If the application is not the active
one, then, sinceTwait is waited for before deactivating an appli-
cation and applications enjoy the SI property,b-wf2q+ insert
is called as a consequence of the arrival of an asynchronous
request. In this case the virtual start and finish times of the
application are computed as a function of the actual time at which
b-wf2q+ insert is called, i.e., the actual request arrival time,
using the same formulas as in WF2Q+ [14].

On the other hand, if the application to insert is the active one,
then according to Fig. 3 line36, the application is necessarily
being enqueued into B-WF2Q+ after a deactivation and not
because of the arrival of a request. LetRj

i be the next request to
serve of the application (there is certainly one). As explained
below in detail, after a deactivationFi is assigned the value
assumed by the application virtual time upon the completionof
the last served request, in this caseRj−1

i , in the ideal system

6

(Fig.3 lines27-28). Let Fi be this value. According to [14], the
exact value of the application virtual time upon the arrivalof Rj

i

should have been equal tomax(Fi, V (aj
i)). On the contrary, in B-

WF2Q+ Fi is unconditionally assigned toSi, as ifRj
i had arrived

at a time instant between the arrival timeaj−1
i and the completion

time in the ideal system of the previous requestRj−1
i . This

fictitious backward shift conceals the possibly delayed arrival of
Rj

i and of the successive requests served using the same budget as
Rj

i . Moreover, the worst-case guarantees of the other applications
are not endangered, as the guarantees provided to each application
are independent of the arrival time of the requests of the other
applications.

The function b-wf2q+ get next application returns
the eligible application with the minimum virtual finish time
and removes it from the internal data structure (lines23-25).
In case there are quasi-backlogged applications, but no oneis
eligible (lines19-22), V (t) is pushed-upto the minimum virtual
start time amongall the quasi-backlogged applications (the latter
coincide with the applications enqueued in B-WF2Q+ when
b-wf2q+ get next application is invoked). Since an ap-
plication is eligible if and only if its virtual start time isnot higher
than the system virtual time, this jump guarantees B-WF2Q+ to
be work-conserving [14]. However, as shown in Subsection II-B
the overall BFQ algorithm is not work-conserving, as it waits for
the arrival of a new request before serving the next one.

Pushing up the system virtual time is a delicate operation with
respect to the fictitious backward shift of arrival times. Let the
i-th application be one of the applications that are idle in the real
system at timet when a jump is performed. Suppose for a moment
that a delayed synchronous requestRj

i arrives after timet. Since
the i-th application is not taken into account in computingV (t),
the jump would be conceptually incompatible with a fictitious
backward shift of the arrival ofRj

i to (or before) timet. Hence it is
easy to show that it would not be possible to conceal this delayed
arrival without violating the guarantees of thei-th application.
Fortunately, if thei-th application enjoys the SI property, it is not
possible thataj

i > t, becauseTwait seconds are waited for before
invoking b-wf2q+ get next application.

V (t) is also incremented by the size of the just
dispatched request upon each request dispatch (function
b-wf2q+ inc tot service at lines 29-31). For a perfect
tracking of the ideal system,V (t) should be continuously
increased by the amount of service provided by the disk device.
Of course, this is impossible in a real system, because the disk
device does not export continuous information on the amountof
service provided. Suppose that an idle application issues anew
requestR while a requestR̄ is under service, and let̄c be the
completion time ofR̄. Due to the step-wise increment ofV (t),
the application may be timestamped as ifR actually arrived at
time c̄. Of course, since the application is enqueued before time
t̄, the worst-case effect of this wrong time-stamping is delaying
the service ofR as if it arrived at timēt. The consequences of
this fact on the service guarantees are shown in Section III.

The last important difference between B-WF2Q+ and WF2Q+
is that the latter also handles the fact that an application may
not use all of its budget. This possibility affects only time
guarantees, as shown in Subsection III-B. Here we highlightjust
that, before an application that did not use all of its budgetmay
be enqueued again, its virtual finish time is properly updated by
calling b-wf2q+ update vfintime (lines 34-36) to account

only for the actual service received.
Finally, B-WF2Q+ can be implemented atO(log N) or O(1)

cost per application insertion/extraction [15], depending on
whether exact or approximate timestamps are used. Since all
the other operations in Fig. 3 haveO(1) cost, the overall BFQ
scheduler can be implemented atO(log N) or O(1) cost per
request insertion/extraction.

The basic algorithm reported in this subsection does not contain
many of the details of the complete version. The latter, e.g.,
autonomously adapts to a dynamic application set and, to allow
the users to choose the weights in a simpler and more flexible
way, it poses no constraint on the values of the weights [18].Of
course in this case it may happen thatΦTOT ≡

PN
i=1 φi > 1, but

the service properties of BFQ still hold after replacingφi with
φi

ΦT OT
in the following inequalities.

III. SERVICE PROPERTIES

In this section we report the service properties of BFQ, in both
sector (bandwidth distribution) and time domains. We also show
how to perform admission control and to provide time guarantees.
Finally we show how to achieve the desired trade-off between
fairness granularity and throughput boosting.

Before proceeding, it is important to identify the set of
applications for which the service properties of BFQ actually
hold also in presence of delayed arrivals. From Section II we
know that BFQ conceals the delayed arrivals of the requests
issued by the applications that meet the SI property. Hence BFQ
guarantees to these applications the same amount of serviceand
the same per-request completion time as if the arrival of each of
their synchronous requests would not have been delayed. As a
consequence, one would setTwait as high as possible to include
as many applications as possible. However, the value ofTwait

has an important impact on the disk throughput. It may provide
significant boosting in presence of deceptive idleness, butonly if
its value is in the order of the seek and rotational latencies[1],
namely a few milliseconds. In contrast, higher values may cause
progressive performance degradation, as the disk may be left idle
for too long.

Applications commonly alternate phases during which they
make intense use of the disk device and phases during which
they rarely access it. Fortunately, even for the above mentioned
beneficial low value ofTwait, during the former phases the SI
property holds for the majority of mainstream applications. On
the other hand, should an application not meet the SI property in
the other phases, the possible degradation of the guarantees on
bandwidth distribution and request completion times wouldhave
a negligible impact on the overall application performance.

A. Sector-domain properties

To show BFQ sector guarantees, we refer to a sector-variant
of the Bit-Worst-case Fair Index (Bit-WFI), originally defined in
packet systems [14]. This index, which we denote as Sector-WFI,
allows us to predict the minimum amount of service guaranteed
by a system to an application over any time interval during which
the application is continuously quasi-backlogged (Section II). The
following theorem holds.

Theorem 1:For any time interval[t1, t2] during which thei-
th application is continuously quasi-backlogged, BFQ guarantees
that:

φi ·W (t1, t2)−Wi(t1, t2) ≤ Bmax + Bi,max + Lmax. (1)

7

The right hand side in (1) is the Sector-WFI of BFQ. Note that,
if an application enjoys the SI property, then the time intervals
during which it needs to access the disk safely coincide with
the time intervals during which it is quasi-backlogged. Given
the strong similarities between WF2Q+ and BFQ, the proof of
Theorem 1 is basically an extension of the proof of the Bit-WFI of
WF2Q+ [14]. Whereas the full proof is reported in the appendix,
an intuitive justification of each component of the bound follows.

The componentBmax measures the deviation from the ideal
service due to not respecting the batch completion order of the
ideal system. More precisely, if thei-th applications has a lower
virtual finish time than the active one, but becomes backlogged
too late, it may unjustly wait for the service of at mostBmax

sectors before accessing the disk.
The second component,Bi,max, stems from the fact that,

if there is no constraint on the request arrival pattern, BFQ
guarantees the real system to be in advance in serving thei-
th application for at mostBi,max sectors with respect to the
minimum guaranteed service at timet1. The application may pay
back for this extra service during[t1, t2]. However, it is worth
noting that this may happen only if a requestRj

i may arrive before
the maximum completion time guaranteed in the ideal system to
the previous requestRj−1

i . Hence, on the opposite end, if this
never occurs, i.e., the application neverasks for more than its
reserved service, the componentBi,max is not present at all.

The last term follows from the stepwise approximation of
V (t). Basically, due to wrong time-stamping, requests may be
erroneously treated as if arrived, with respect to the actual arrival
time, after a time interval during which the ideal system mayhave
served at mostLmax sectors.

It is important to note that the rightmost term in (1) does not
grow with the time or the (total) amount of service, hence the
long term bandwidth distribution isunconditionallyguaranteed.
Furthermore, (1) provides a simple relationship between the short-
term bandwidth distribution and the value of the parametersthat
influence the aggregate disk throughput, as detailed in Subsection
III-D. Finally, it is easy to prove that no scheduler that exclu-
sively serves applications batch-by-batch may guarantee alower
Sector-WFI than BFQ. Hence BFQ provides optimal worst-case
bandwidth distribution guarantees among this class of schedulers.

B. Time-domain properties

The following theorem is the starting point for computing the
time guarantees of BFQ. Lett1 ≤ aj

i be a generic time instant
such that thei-th application is continuously quasi-backlogged
during [t1, cj

i]. To compute a worst-case upper bound tocj
i , we

assume that all the applications, except for thei-th one, ideally
start to issue asynchronous requests back-to-back from time t1
(i.e., without waiting for the completion of their outstanding
requests). Moreover, to prevent BFQ from increasing budgets
and hence boosting the throughput more than it would happen
in the actual scenario, we assume that the maximum value of the
budget of each application, except for thei-th application, is set
to its average value in the real scenario. Finally, thanks tothe
fact that BFQ conceals delayed arrivals for applications enjoying
the SI property, ifRj

i is a delayed synchronous request but the
application does enjoy the SI property, in the following theorem
aj

i can be safely assumed to be equal to the time instant at which
Rj

i would have arrived if it had not been delayed.

Theorem 2:Given a requestRj
i , let t1 ≤ aj

i be a generic
time instant such that thei-th application is continuously quasi-
backlogged during[t1, cj

i]. Let Tagg be the minimum aggregate
disk throughput during an interval[t1, cj

i] under the above worst-
case assumptions. Finally, letLj

i be the size ofRj
i andAi(t1, aj

i +

TFIFO) be the sum of the sizes of the requests issued by thei-
th application during[t1, aj

i + TFIFO) plus Lj
i . The following

inequality holds:

cj
i − t1 ≤

Qi(t
−

1
)+Ai(t1,a

j
i+TF IF O)+(Bl

i−L
j
i)+Bi,max

φiTagg
+

+
Bmax+Bi,max+Lmax

Tagg
,

(2)

whereQi(t
−
1) is the sum of the sizes of the requests of thei-th

application not yet completed immediately before timet1, and
Bl

i is (the size of) the budget assigned to thei-th application to
serve the batch thatRj

i belongs to.
As before, the proof of this theorem, which can be found in the

appendix, is just an extension of the proof of the Time-WFI of
WF2Q+. We discuss here the terms in (2), and in Subsec. III-C
how to use (2) to perform admission control and to provide actual
time guarantees.

The right hand side of (2) can be rewritten as 1
φiTagg

·
“

Qi(t
−
1) + Ai(t1, aj

i + TFIFO)
”

+ dj
i . It is easy to see that the

first component represents the worst-case completion time of Rj
i

in an ideal system guaranteeing no lagging behind the reserved
service over any time interval. In contrastdj

i represents theworst-
case delaywith respect to the ideal worst-case completion time.
With regard to the first component, note that, if thei-th application
issues only synchronous requests, the latter are always served in
FIFO order. This is equivalent to assumingTFIFO = 0.

The first component of the worst-case delay,Bl
i − Lj

i , stems
from that the batch thatRj

i belongs to is not timestamped (and
scheduled) as a function ofLj

i , but as a function ofBl
i. Hence, in

the worst-case the service ofRj
i may be delayed proportionally to

the differenceBl
i−Lj

i . Finally, theBmax, Bi,max (which appears
twice in dj

i) and Lmax terms can be explained using the same
arguments as for the same terms in (1).

C. Admission control and time guarantees

We now discuss how to use (2) for performing admission
control and providing actual bandwidth and completion time
guarantees. First of all, the aggregate throughputTagg must be
known at some extent. The tricky aspect is thatTagg is in
its turn a function of the many user-configurable parameters
Bi,max, Bmax, TFIFO, Tmax and Twait. However, as shown
in detail in Subsection III-D, basing upon (2), the desired trade-
off between completion times andTagg can be achieved by
iteratively tuning the values either of each of these parameters
or of just the throughput boosting level parameter. The accuracy
of the computed guarantees then depends on how accurately
Tagg itself is known (worst-case or average value, variance,
confidence interval, ...). In this respect recall that referring to
the expected throughput/service time, albeit unavoidablyaffected
by approximations, is the only option to provide practical time
guarantees with any disk scheduling algorithm.

Once known the worst-case throughput, the requirements of an
application requesting a long term throughputTi and no other
type of guarantee can be fulfilled by assigning to it a weight

8

φi = Ti

Tagg
. The application is then admitted only if the resulting

sum of the weights
PN

q=1 φq is still no higher than1.
In contrast, to provide guarantees on single request completion

times to an application, the request arrival pattern of the appli-
cation needs to be modeled too. A general request arrival model
is the periodic or sporadic pattern: the application issuesrequests
with a size of at mostQi sectors, and with a period or minimum
inter-arrival time ofPi seconds. This pattern models soft real-
time applications, as, e.g., audio or video streaming ones.Since
Tagg · Pi sectors are transferred duringPi, it follows that, to meet
the throughput requirements of the application, it is enough to set
φi = Qi

Tagg·Pi
. As before, for the application to be admitted the

resulting sum of the weights must still be no higher than1.
With regard to the guarantees on request completion times

provided to such a type of applications, it is worth noting that
Pi coincides with the maximum time needed by the ideal system
to complete the last issued request. Hence, at timeaj

i , Rj
i has been

certainly completed in the ideal system, and, for what is said in
the previous two subsections, theBi,max component is absent
from (2). In the end, the application must tolerate a worst-case
delay (jitter)

di,max ≡ maxj dj
i ≤

Bi,max−Li,min

φiTagg
+ Bmax+Lmax

Tagg
, (3)

where Li,min ≡ minj Lj
i . Stated in other terms, it is possible

to meet the requirements of periodic/sporadic soft real-time
applications with relative deadlines equal toPi + di,max. These
requirements do match, e.g., (buffered) video and audio streaming
applications.

To show possible values of the bounds (2) and (3) in a real
system, and to demonstrate the feasibility of interactive and soft
real-time applications with BFQ, a Web, DBMS and Video-on-
Demand service are considered in Section V.

D. Throughput Boosting

Larger budgets increase the probability of serving larger bursts
of close or even sequential requests, and hence of achievinga
higher throughput. Besides, a large value ofTFIFO may boost
the throughput in presence of asynchronous requests. In this
respect, also recall that most mainstream applications issue only
synchronous requests. Hence, in a system serving this kind of
applicationsTFIFO has no impact either on the throughput or
on the time guarantees (Subsection III-B). In contrastTwait may
be just set to the most effective value for the target disk device,
equal to the device-dependent average cost of seek and rotational
latencies, usually between4 and8 ms (and set by default to4 ms
in the current release of BFQ).

BFQ exports a last low-level configuration parameter related to
disk throughput, namely the system-wide maximumtime budget
Tmax (possibly automatically computed, see Subsection V-A).
Once got access to the disk, each active application must consume
all of its time budget or backlog within no more thanTmax

time units, otherwise it is unconditionally (over)chargedfor a
Bi,max service and the next active application is selected. This
additional mechanism prevents applications performing random
IO from substantially decreasing the disk throughput. Hence it
guarantees practical bandwidths and delays, which are inversely
proportional to the aggregate throughput (Subsec. III-B),to appli-
cations performing mostly sequential IO. In contrast, applications
performing random IO virtually receive no service guarantees.

According to (1) and (2), in addition to influencing the disk
throughput, all these parameters directly or indirectly influence
also guarantees. Hence, to set the desired trade-off between
guarantee granularity and throughput boosting, the valuesof these
parameters must be (iteratively) tuned by (iteratively) measuring
the resulting throughput. BFQ also provides a simplified interface,
which allows a user not interested in full control over all the
parameters to avoid the resulting tuning complexity. This interface
has been used in the experiments reported in Section V, and is
described in detail in Subsection V-A.

Whatever interface is used, to evaluate both the (worst-case)
throughput and the (worst-case) guarantees as a function ofthe
parameters, and to tune the latter, it is necessary to measure
the aggregate throughput against some (worst-case) benchmark
request pattern. Such a pattern may be defined as a function ofthe
expected one. For example, the following conservative worst-case
pattern may be used to evaluate the expected minimum aggregate
throughput for simultaneous sequential reads. After placing two
files with sizeSmin, equal to the (portions of the) files that will
be interested by sequential accesses, at the maximum possible
distance in [Pfirst, Plast], wherePlast−Pfirst is the maximum
span of the positions of the requests issued by the applications, a
simultaneous sequential read of the two files may be performed.
As confirmed also by our experiments, the resulting aggregate
throughput provides a lower bound to the aggregate throughput for
parallel file reads as well as Web server workloads. For random
workloads, a request arrival pattern with the same localityas the
expected one can be used to estimate the expected aggregate
throughput. An example of the aggregate throughput achieved
with a random workload is reported in Subsection V-F.

IV. RELATED WORK

Existing algorithms for providing a predictable disk service can
be broadly divided into three groups: 1)real-timedisk schedulers
[19], ; 2) proportional shareor bandwidth reservationtimestamp-
based disk schedulers (also known asfair-queueingschedulers);
and 3)proportional shareround robin disk schedulers. In addi-
tion, examples of frameworks for providing QoS guarantees are
Cello [20], APEX [21], PRISM [22] and Argon [23]. It is worth
mentioning also real-time operating systems such as the Dresden
Real-Time Operating System (DROPS) [5] and RT-Mach [6], and
Real-Time Database Systems (RTDBS), which are architectures
for performing database operations with real-time constraints [24].

There is no relation between any of the scheduling problems
highlighted in this paper, namely loss of throughput and/orguar-
antees due to deceptive idleness and/or delayed arrivals, and any
characteristic of the above mentioned frameworks for QoS provi-
sioning and RTDBSes (apart from which underlying scheduling
algorithm(s) they rely on). Accordingly, after the following note
about disk internal queueing, in the next subsections we focus
only on each of the above listed classes of scheduling algorithms.

Disk internal queueing can be used only if disk idling is
disabled, which ultimately causes loss of guarantees with any
scheduler/framework for applications issuing synchronous re-
quests. Consider, e.g., a proportional share scheduler, and suppose
that the i-th application has an arbitrarily high weight. After
each requestRj

i of the application is completed, the disk starts
serving its next internally queued request, or immediatelyasks for
a new request, without waiting forRj+1

i to arrive. Hence another
application is served, independently of whetherRj+1

i would then

9

happen to be the next request to serve. In the end, the guarantees
assigned to the application may be easily violated.

A. Real-time Schedulers

Real-time schedulers [4], [19] are timestamp-based schedulers
that associate a deadline to each request. They usually start
from an Earliest Deadline First (EDF) [25] schedule, and reorder
requests to reduce seek and rotational latency without violating
deadlines.

Each time the next request to serve must be picked, Rotational-
Position-Aware disk scheduling based on a Dynamic Active
Subset (SATF-DAS) [5] iteratively constructs and serves a subset
of the outstanding requests, called Dynamic Active Subset (DAS)
and such that any throughput boosting algorithm can be used to
order the requests in the DAS without violating service guaran-
tees. Defined asslack of a request the difference between the
deadline of the request and the earliest time by which the request
can be served, Just-In-Time Slack Stealing (JIT) [6] is based on
serving requests closer to the disk head instead of requestswith
lower deadlines but with large enough positive slack. SCAN-EDF
[4] serves requests in EDF order, but if several requests have
the same deadline, they are scheduled using a seek optimization
algorithm (e.g., SCAN or C-LOOK). Finally, other proposalsare
Priority SCAN (PSCAN), Earliest Deadline SCAN and Feasible
Deadline SCAN (FD-SCAN) [24], which are quite similar in
principle to the above described ones.

With regard to throughput boosting, in both SATF-DAS and
JIT there is no control either on the size of the DAS, or on
the amount of available slack. In contrast, the authors of SCAN-
EDF propose enlarging the request size and extending relative
deadlines beyond the period to effectively trade response time
and buffer requirements for throughput boosting.

Problems arise if applications issuing synchronous requests are
scheduled with real-time bandwidth servers built on top of the
above real-time schedulers. First, as all of these schedulers are
work-conserving, throughput is likely to be very low. However,
this problem can be easily solved by extending these schedulers,
where possible, to perform disk idling as in BFQ, CFQ or AS.
The second problem follows from the fact that deadlines may be
missed, mainly because of the non-preemptability of the service
of a request. The consequent delayed arrivals, plus the factthat
in bandwidth servers the absolute deadlines of the requestsare
usually computed by summing their relative deadlines to their
arrival times, may cause delayed requests to be unjustly assigned
higher deadlines. As discussed in the introduction, this may
cause the desired bandwidth distribution to be violated. Both
problems clearly manifest themselves in our experimental results
(Section V).

B. Proportional Share Timestamp-based Schedulers

YFQ [8] dispatches requests to the disk device inbatches.
In particular, before the next batch is served, all the requests
in the current batch are dispatched. The requests to insert in
each batch are chosen using WFQ [14], and may be ordered with
the desired throughput boosting algorithm within the batch. The
fact that the limited room in a batch is in general filled with
requests issued by all the backlogged applications reducesthe
probability of inserting a high number of requests of the same
application. This may reduce the number of close or sequential

accesses with mainstream applications performing sequential IO.
Moreover, guarantees may be violated for an application issuing
synchronous requests: even if the application has a (much) higher
weight than the others, no more than one request of the application
will be served for each batch.

SFQ(D) and FSFQ(D) [12] allow a configurable number of
outstanding requestsD to be dispatched, where, each time one of
the outstanding requests completes, the next one is immediately
dispatched. SFQ(D) selects requests according to a variantof
SFQ that does not suffer from loss of fairness in presence of
applications not consuming their fair share of the disk through-
put. FSFQ(D) is a further refinement of SFQ(D) that tries to
compensate the possible loss of service of an application due
to the late arrival of its requests. Similarly to SFQ(D) and
FSFQ(D), Hybrid [7] allows a configurable amount of outstanding
requests to be chosen by an internal WF2Q+ scheduler, and to be
reordered by the desired throughput boosting algorithm. Toavoid
starvation Hybrid periodically flushes all the outstandingrequests.
As in BFQ the internal scheduler works in the service domain.
Finally, pClock [9] is based on a more general scheme: through
arrival curves, application requirements are expressed interms
of throughput, latency and maximum burst size. Applications
following their arrival curve are proven to never miss their
deadlines.

Differently from BFQ and Hybrid, YFQ, SFQ(D), FSFQ(D)
and pClock directly target proportional time allocation instead
of sector allocation, and the accuracy of their disk throughput
distribution depends on the accuracy in estimating requestservice
times. The main problem is however that, as real-time schedulers,
all the schedulers mentioned in this section timestamp requests as
a function of their actual arrival times. Hence, independently of
whether disk idling is performed, they may fail to distribute the
bandwidth as desired in presence of synchronous requests. Our
experimental results confirm this problem.

C. Round Robin Schedulers

CFQ is a proportional share disk scheduler that grants disk
access to each application for a fixed time slice. Slices are
scheduled according to a round robin policy. This time-based
allocation, equal to the one adopted in the Argon framework,has
the advantage of implicitly charging each application for the seek
and rotational latencies it incurs. Unfortunately this scheme may
suffer from unfairness problems also towards applicationsmaking
the best possible use of the disk bandwidth. Even if the same time
slice is assigned to two applications, they may get a different
throughput each, as a function of the positions on the disk of
their requests. BFQ owes to CFQ the idea of exclusively serving
each application for a while, but provides strong guarantees on
bandwidth distribution because the assigned budgets are measured
in number of sectors.

Strong service distribution guarantees on a per-request basis
are provided also by the adaptive Deficit Round Robin proposed
in [10], as it measures the amount of service received by any
application in terms of number of requests served. To achieve
the desired trade-off between fairness and I/O efficiency the
scheduler is also configurable in terms of maximum numberD

of outstanding requests and maximum per-application number Gi

of requests dispatched in each round. Unfortunately, as anyround
robin scheduler, both this scheduler and CFQ are characterized
by an O(N) worst-case jitter in request completion time, where

10

N is the number of competing applications. In contrast, thanks
to the accurate service distribution of the internal B-WF2Q+
scheduler, BFQ exhibitsO(1) jitter according to (2) with respect
to the number of applications. A quantitative evaluation ofthe
consequences of this different short term guarantees and ofthe
above mentioned unfairness of CFQ is reported in Section V.

V. EXPERIMENTAL RESULTS

In this section we report the results of our single-disk exper-
iments with BFQ, SCAN-EDF, YFQ, CFQ, C-LOOK, and AS,
on a system running the Linux 2.6.21 kernel. We first provide
implementation and configuration details in the next subsection.
Then we describe the experimental setup and report the results of
each set of experiments in the successive ones.

A. Scheduler implementation and configuration

If the simplified interface of BFQ is used,TFIFO is set to
the default value used by the other schedulers in the system
(typically 100 ms),Tmax is dynamically set/updated to1.3 times
the average time needed to consumeBmax sectors,∀i Bi,max

is set toBmax, and either athroughput boosting levelranging
from 0 to 1, or justBmax are exported as the only configuration
parameter. In the first case, the back-end of the interface will take
care of settingBmax accordingly, from the minimum possible
request size, to the number of sectors served in200 ms. The latter
value is automatically computed/updated [16] and guarantees
a high throughput, as shown in Subsection V-C. We used the
simplified interface and set only the maximum budgetBmax in
our experiments.

As no code of SCAN-EDF and YFQ was available for the
Linux kernel, we implemented a slightly extended version ofeach
of them in the 2.6.21 Linux kernel [16]. In our implementation
of SCAN-EDF, each application is associated with a dynamically
configurable relative deadline, equal e.g., to the application’s
period. This relative deadline is assigned to each request issued by
the application. The resulting algorithm can be seen as a simple
real-time bandwidth server. Suppose that thei-th application
issues requests of the same sizeLi back-to-back, and that a
relative deadline equal toPi is assigned to all of its requests. The
computed absolute deadlines of the requests will be the sameas
if the application was periodic with periodPi. Hence, in a full-
loaded system, the application should be guaranteed a fraction of
the bandwidth equal toLi/Pi. Finally, to deal with the deceptive
idleness, after the completion of the last request of an application,
both implementations keep the disk idle until either a new request
of the just served application arrives, or a configurableTwait time
interval elapses.

To trade response time for throughput boosting the authors
of SCAN-EDF suggest both to change the request size and
the coarsen deadline granularity. Unfortunately, the firststrategy
cannot be used in the Linux kernel, as the request size is not
controlled by the disk schedulers. In contrast, our implementation
of SCAN-EDF allows a system-widegranularity parameter∆ to
be set. Given a request with absolute deadlined, and the smallest
n such thatn·∆ ≥ d, the request is scheduled as if its deadline was
n ·∆. With regard to YFQ, the batch size, measured in number
of requests, is configured through theBTsize parameter. Batch
overlapping, one of the enhancements proposed by the authors of
YFQ to increase disk throughput, is performed as well (see the

code [16]). All the requests with the same deadline and all the
requests in a batch are served in C-LOOK order.

B. Experiments

The experiments were aimed at measuring the aggregate
throughput, long-term bandwidth distribution and (short-term)
per-request completion time guaranteed by the six schedulers
with the following applications/workloads: simultaneoussequen-
tial reads, Web server (emulated), DBMS (emulated) and mixed
video-streaming/file reads. All these applications only issue syn-
chronous requests on a Linux system. In addition, as discussed at
the end of Subsection V-C the same results in terms of aggregate
throughput would be achieved with all these applications, apart
from DBMS, in case they would issue asynchronous requests.
Hence, only in the DBMS case we also showed the different
performance of the schedulers with an asynchronous workload.
Due to space limitations, only a synthesis of the results is reported
here. The complete results and all the programs used to generate
them can be found in [16].

We ran the experiments on a PC equipped with a 1 GHz AMD
Athlon processor,768 MB RAM, and a 30 GB IBM-DTLA-
307030 ATA IDE hard drive (roughly36 MB/sec peak bandwidth
in the outer zones,∼ 35% lower throughput in the inner zones),
accessed in UDMA mode. Using this low performance disk device
helped us guarantee that the disk was the only bottleneck. Sectors
were512 bytes long (ext2file-system). The disk was partitioned
into 30 consecutive slices of equal size, the first slice covering
the outer part of the disk, the last one covering the inner part.
All the programs were run from an auxiliary disk. For each type
of experiment and set of values of the parameters, the same
experiment was repeated20 times (the buffer cache was flushed
before each experiment). The minimum, maximum, and mean
value, together with its associated95% confidence interval were
computed for each output quantity. In what follows any mean
valuev is reported in the formv ± s, wheres is the semi-width
of the 95% confidence interval forv.

C. Aggregate throughput

The first set of experiments was aimed at estimating the worst-
case aggregate throughput guaranteed by each scheduler in case
of simultaneous sequential reads. As can be seen in the next
subsections, according to our experiments these results hold also
for a Web server workload. Under BFQ and YFQ, all applications
were assigned the same weight, whereas they were assigned
the same priority under CFQ (which allows applications to be
assigned different priorities). Under SCAN-EDF all the requests
were assigned the same deadline, equal to20 ms. The whole set
of different experiments was given by the combinations of the
following 5 values: scheduler in{BFQ, SCAN-EDF, YFQ, CFQ,
C-LOOK, AS}; cardinality of the set of distinct files to read in
{2, 3, 4, 5} (for each set, the files were placed in slices at the
maximum possible distance from each other, with each file in
a distinct slice); value of the schedulerconfiguration parameter:
maximum budgetBmax in {512, 1024, 2048, 4096, 8192, 16384}

sectors for BFQ, batch sizeBTsize in {4, 8, 16} requests for YFQ,
deadline granularity∆ in {20, 40, 80, 160, 320} ms for SCAN-
EDF, and time sliceTslice equal to100 ms (the default value)
for CFQ; Twait in {0, 4} ms for SCAN-EDF and YFQ, and
Twait = 4 ms for BFQ (CFQ automatically sets/changesTwait);

11

Scheduler Mean Agg. Thr Value of Bmax

[MB/s] Tslice, ∆, BTsize

BFQ 22.46 ± 0.81 16384 sect
SCAN-EDF

Twait = 0 ms 21.18 ± 0.47 640 ms
Twait = 4 ms 23.39 ± 0.51

YFQ
Twait = 0 ms 10.64 ± 0.25 16 reqs
Twait = 4 ms 10.80 ± 0.20

CFQ 16.91 ± 1.30 100 ms
C-LOOK 20.59 ± 0.76

AS 32.97 ± 1.89

TABLE II

AGGREGATE THROUGHPUT FOR TWO SIMULTANEOUS READS.

size of every file in{128, 256, 512, 1024} MB. Of course,Twait

is implicitly 0 ms in C-LOOK, whereas it was set to4 ms in AS
with any additional fairness policy deactivated. The minimum file
size was (experimentally) chosen so as to let the results be due
only to the disk schedulers, without significant distortions due to
unrelated short-term factors such as CPU scheduling.

With any scheduler, the lowest throughputs were achieved in
case of two,128 MB long, files, most certainly because in this
case the disk head covers the longest distance and (spends more
time moving) between the files (the influence of the length of the
files was in the order of a few tenths of a MB/s). For this scenario,
Table II reports both the maximum value of the mean aggregate
throughput achieved by the six schedulers, and the value of the
configuration parameter for which this value was achieved:

Whereas the highest throughput is achieved by AS, the bad
performance of C-LOOK is due to the fact that it frequently
switches from one file to the other, for it does not perform
disk idling. It is easy to see that, forBmax = 16384 sectors,
a maximum length budget is served in about200 ms under BFQ,
which confirms that a high throughput is achieved if a throughput
boosting level of1 is set with the simplified interface. Moreover,
the higher throughput achieved by BFQ and SCAN-EDF with
respect to CFQ results from the higher number of (sequential)
sectors of a file that can be read before switching to the other
file. More precisely, considering the disk peak rate, it is easy to
see that less than16384 sectors can be read in100 ms (which is
the value ofTslice for CFQ), whereas more than16384 sectors
can be read in640 ms (which is the value of∆ for SCAN-EDF).
Notably,Twait does not influence much the aggregate throughput
with SCAN-EDF. In fact, as the system performs read-ahead for
sequential accesses, it tends to asynchronously issue the next
request before the completion of the current one (this also helps
C-LOOK). Finally, the poor performance of YFQ and the fact that
it is independent of bothTwait and the batch size (not shown),
confirm the arguments in Subsection IV-B.

According to the observations in Subsection III-D, to eval-
uate the possible trade offs between guarantee granularityand
aggregate throughput with BFQ, it is necessary to know how
the throughput varies as a function ofBmax in the worst-case
scenario. This piece of information is shown in Fig. 5 in case
the simultaneous sequential reads of two,128 MB long, files
are used as worst-case pattern. The aggregate throughput of
CFQ, C-LOOK and AS are reported as a reference too. For
Bmax = 4096 sectors BFQ guarantees a higher throughput than

 0

 5

 10

 15

 20

 25

 30

 35

 512 1024 2048 4096 8192 16384

M
ea

n
A

gg
re

ga
te

 th
ro

ug
hp

ut
 [M

B
/s

]

Maximum budget [sectors]

CFQ agg. thr
C-LOOK agg. thr

AS agg. thr
BFQ agg. thr

Fig. 5. Mean aggregate throughput, and associated 95% conf.interval,
achieved by BFQ (as a function ofBmax), CFQ, C-LOOK and AS in case
of simultaneous reads of two,128 MB long, files.

CFQ. Finally, it can be seen that the aggregate throughput with
AS is close to the disk peak rate, which means that exclusively
serving each application for a certain amount of time–as AS,CFQ
and BFQ do–leads in practice to the highest possible throughput
if applications issue sequential requests. This also implies that
SCAN-EDF and YFQ certainly would not achieve a higher
throughput if these applications issued asynchronous requests.

D. Simultaneous sequential reads

The second feature we evaluated is the accuracy of the sched-
ulers in providing the desired bandwidth fraction to applications
performing sequential reads. For brevity, for BFQ we only report
the results forBmax = 4096 sectors. Similarly, for SCAN-EDF,
we consider only∆ = 80 ms because for this value SCAN-EDF
achieves an aggregate throughput close to BFQ. Finally, in our
experiments the batch size had no influence on the guarantees
provided by YFQ. We report the results forBTsize = 4 requests.

We first considered the case where all the applications are
allocated the same fraction of the disk bandwidth. In particular,
during the same experiments used to evaluate the aggregate
throughput, we measured the throughput of each (file read)
application. For each scheduler, the highest deviation from the
ideal distribution occurred for128 MB long files. Moreover, we
observed that the95% confidence interval for the mean throughput
of the i-th application in case of3 and4 files was always smaller
(or greater) than that obtained in case in case of5 (or 2) files.
This inclusion propertyheld also in case of asymmetric allocation
(see below). Hence, for brevity, we report only the results for two
and five,128 MB long, files. Finally, we consider onlyTwait = 4

ms for SCAN-EDF and YFQ in Table III.
BFQ, YFQ and C-LOOK exhibit the most accurate bandwidth

distribution (C-LOOK basically performs a round robin among
the batch of requests issued by the read-ahead mechanism). Unfor-
tunately, as previously seen, YFQ has a low throughput. SCAN-
EDF is less accurate for2 files, but it provides a higher throughput
than YFQ. Consistently with the arguments in Subsection IV-
B, CFQ fails to fairly distribute the throughput because of the
varying sector transfer speed. Finally, as expected AS has the
most asymmetric bandwidth distribution. Moreover the highwidth
of the confidence interval for AS is a consequence of the fact
that sometimes the waiting timer may expire before the next

12

Throughput 9.95 9.81
(2 files) ±0.43 ±0.47

Throughput 4.29 4.30 4.30 4.29 4.31
(5 files) ±0.10 ±0.09 ±0.07 ±0.10 ±0.09

BFQ (Bmax = 4096 sectors)

Throughput 10.72 9.62
(2 files) ±0.22 ±0.19

Throughput 2.17 2.17 2.17 2.17 2.19
(5 files) ±0.02 ±0.02 ±0.02 ±0.02 ±0.03

SCAN-EDF (∆ = 80 ms, Twait = 4 ms)

Throughput 5.44 5.44
(2 files) ±0.10 ±0.10

Throughput 1.39 1.39 1.39 1.39 1.39
(5 files) ±0.02 ±0.02 ±0.02 ±0.02 ±0.03

YFQ (BTsize = 4 requests,Twait = 4ms)

Throughput 11.92 8.61
(2 files) ±0.44 ±0.67

Throughput 5.24 4.91 4.66 4.37 4.01
(5 files) ±0.14 ±0.15 ±0.11 ±0.10 ±0.17

CFQ (Tslice = 100ms)

Throughput 11.52 10.57
(2 files) ±1.78 ±0.55

Throughput 5.56 5.14 5.05 4.95 4.83
(5 files) ±0.67 ±0.41 ±0.50 ±0.35 ±0.09

C-LOOK

Throughput 32.41 17.78
(2 files) ±13.39 ±1.10

Throughput 32.83 31.72 29.80 12.56 18.29
(5 files) ±11.95 ±1.37 ±0.50 ±10.46 ±0.43

AS

TABLE III

SIMULTANEOUS SEQUENTIAL READS.

synchronous request arrives. In that case also AS switches to the
service of another application.

It is important to observe that the accurate throughput distribu-
tion of YFQ and SCAN-EDF is mostly related to the symmetry
of the bandwidth allocation. To measure the accuracy of the
schedulers in distributing the disk bandwidth in case of asym-
metric allocations, under BFQ and YFQ we assigned different
weights to the applications. We run two sets of experiments,
using, respectively, the weights1 and 2, and the weights1, 2

and10 (there is no constraint on the values of the weights in our
implementations of BFQ and YFQ). Moreover, assuming that the
j-th application is the one with maximum weight, and denoted
as Sj the size of the file read by thej-th application, the file
read by thei-th application had a lengthφi

φj
Sj . To try to allocate

the same bandwidth as with BFQ and YFQ, under SCAN-EDF
we assigned to each request of an application a relative deadline
inversely proportional to the weight assigned to the application
with the other two schedulers. Finally, this type of experiments
was not run for CFQ, C-LOOK and AS, which do not provide
differentiated bandwidth allocations.

To show the worst-case, yet not distorted by external factors,
performance of the schedulers, for the scenarios where the max-
imum weight was, respectively,2 and 10 we report the results
of only the experiments where the maximum file sizes were,
respectively,256 MB and 1 GB. Finally, since the above defined

Weight 2 2 2 1 1

Throughput 14.62 7.31
(2 files) ±0.60 ±0.32

Throughput 5.60 5.60 5.60 2.81 2.81
(5 files) ±0.08 ±0.08 ±0.08 ±0.04 ±0.04

Weight 10 2 2 1 1

Throughput 26.81 2.77
(2 files) ±0.60 ±0.16

Throughput 16.06 3.25 3.25 1.64 1.65
(5 files) ±0.28 ±0.07 ±0.07 ±0.04 ±0.04

TABLE IV

BFQ WITH ASYMMETRIC WEIGHTS.

inclusion property holds also in case of asymmetric allocation,
for brevity we report the results with BFQ only for the2 and 5

files scenarios in Table IV.
With regard to SCAN-EDF and YFQ, in accordance with what

is said in Subsections IV-A and IV-B, both failed to guarantee
the desired bandwidth distribution in all the experiments.For
example, in case of2 applications with weights10 and 1, the
throughputs were{26.58 ± 0.50, 6.92 ± 0.20} MB/s for SCAN-
EDF, and{22.70±0.12, 5.41±0.12} MB/s for YFQ (the skewness
is even attenuated by the fact that the application with a higher
weight has to read a longer file, and hence it gets exclusive access
to the disk after the other one finished).

E. Web server

In this set of experiments we estimated the per-request com-
pletion time guaranteed by the schedulers against the following
Web server-like workload:100 processes (all with the same
weight/priority) continuously read files one after the other. Each
of the files to read may have been, with probability0.9, a small
16kB (html) file at a random position in the first half of the disk,
or, with probability0.1, a large file with random size in[1, 30] MB
at a random position in the second half of the disk. Every10 files,
each process appended a random amount of bytes, from1 to 16

kB, to a common log file. Such a scenario allows the performance
of the schedulers to be measured for a mainstream application
and, in general, in presence of a mix of both sequential (large
files) and a random (small files) requests. Especially, for each run,
lasting for about one hour, we measured the completion time of
each small file (latency), the (average) bandwidth at which large
files were read and the average aggregate throughput (measured
every second). In this respect, small and large file reads were
performed in separated parts of the disk to generate an asymmetric
workload, which is more prone to higher latencies and/or lower
bandwidths.

As can be seen from Table V–excluding for a moment SCAN-
EDF and YFQ–BFQ, CFQ and AS stand, respectively at the
beginning, (about) the middle and the end of the low latency
versus high aggregate throughput scale. Also C-LOOK achieves
similar performance as AS, because a high number of competing
requests scattered over all the entire disk are present at all times.
In contrast YFQ has very low latencies and throughput because,
as the probability of a small file read is9 times higher than the
one of a large file read, each batch is likely to contain a high
percentage of requests pertaining to small files. Finally, although
achieving a lower aggregate throughput than BFQ, SCAN-EDF

13

Scheduler Compl. time Bandw Mean aggr.
small files large files throughput

[sec] [sec] [MB/s]

BFQ 1.74 ± 0.11 2.26 ± 2.34 17.13 ± 0.65

SCAN-EDF 7.68 ± 0.20 3.29 ± 3.10 8.71 ± 0.09

YFQ 0.40 ± 0.01 1.36 ± 1.71 6.87 ± 0.09

CFQ 3.86 ± 0.17 2.97 ± 2.47 18.20 ± 0.79

C-LOOK 7.78 ± 0.27 9.65 ± 3.93 19.47 ± 0.66

AS 7.69 ± 0.27 16.61 ± 4.00 20.60 ± 1.22

TABLE V

WEB SERVER(RANDOM/SEQUENTIAL READS).

guarantees higher bandwidths to the large files, by sacrificing the
latency of the small ones. It is worth noting that the observed
mean latency of BFQ is2.22 times lower than CFQ and at least
4.41 times lower than all the other schedulers. On the contrary,
with any scheduler, the high width of the confidence intervalfor
the mean bandwidth of the large files is a consequence of the
quite random nature of the workload.

To check whether the guarantee (2) complies with the observed
latencies for small files, we can sett1 to the arrival time of the
first request of a generic small file, and assume thatRj

i is the
last request for that file, which impliesQi(t

−
1) + A(t1, aj

i) =

16kB (as explained in Subsection III-BTFIFO can be neglected
with synchronous requests). Moreover,φi = 1

100 , Lmax = 256

sectors in the Linux kernel (by default), and in the experiments
we found that if thei-th application is one of the processes
reading small files, thenLi,min ≡ minj Lj

i =16 sectors and
a budget oscillating from8 to 256 sectors is assigned to the
application. Hence, settingBi,max = 256 sectors and using
the mean throughputTagg = 17.13, the resulting guaranteed
latency is 100∗(16+(128−8)+128)+(2048+2∗128)

17.13∗1024 = 1.64 seconds.
This value is∼ 6% lower than the observed mean latency, which
is most certainly due to the fact that when small files are readthe
throughput falls down to a lower value than the mean used in the
formula.

F. DBMS

This set of experiments was aimed at estimating the request
completion time and the aggregate throughput achieved by the
schedulers against a DBMS-like workload:100 processes (all
with the same weight/priority) concurrently issue direct (non
cacheable)4KB read requests at random positions in a common
5GB file. We have used this setup to evaluate also the perfor-
mance of the schedulers with asynchronous requests, and, to
this purposes, we have run10 variants of the experiment, with
each variant characterized by a different number of per-process
outstanding requests, ranging from1 (synchronous requests) to
10. According to our results, for each scheduler both the request
completion time and the aggregate throughput monotonically
grew with the number of outstanding requests. Hence, for brevity
we report in Table VI the mean request completion time and
aggregate throughput only for1 and10 outstanding requests.

With random requests, AS does not perform disk idling at all,
hence it achieves the same results as pure C-LOOK. Especially,
thanks to their global position-based request ordering, C-LOOK
and AS achieve the lowest request completion time and hence
the highest disk throughput. Being its service scheme closer to

Num. of Completion Mean aggr.
Scheduler outstand. time throughput

requests [sec] [MB/s]

BFQ 1 0.92 ± 0.12 0.44 ± 0.00
10 7.93 ± 0.29 0.49 ± 0.00

SCAN-EDF 1 0.93 ± 0.00 0.44 ± 0.00
10 6.49 ± 0.85 0.60 ± 0.00

YFQ 1 0.69 ± 0.01 0.59 ± 0.00
10 6.59 ± 0.06 0.59 ± 0.00

CFQ 1 0.91 ± 0.09 0.45 ± 0.00
10 8.01 ± 0.30 0.49 ± 0.00

C-LOOK/ 1 0.67 ± 0.01 0.62 ± 0.00
AS 10 5.52 ± 0.12 0.71 ± 0.00

TABLE VI

DBMS (RANDOM READS).

C-LOOK/AS than the one of BFQ, SCAN-EDF and CFQ, YFQ
outperforms the latter in case of synchronous requests. It has
instead the same performance as SCAN-EDF with10 outstanding
requests. Finally, because of their slice-by-slice/budget-by-budget
service scheme both CFQ and BFQ exhibit a∼ 1.4 times higher
request completion time/lower throughput than C-LOOK/AS.It is
however worth noting that only∼ 2% of the disk rate is achieved
by the latter, which is typically unbearable in a realistic DBMS.
This result complies with the fact that, if the disk requestsenjoy
some locality, caches are usually tuned so as to reduce disk access
and achieve feasible response times (of course multiple disks are
typically used as well).

G. Video streaming

The last set of experiments was aimed at measuring the ability
of the schedulers to support a very time-sensitive application. To
this purpose, we set up a VLC streaming server [26], provided
with 30 movies to stream to remote clients. Each movie was
stored in a distinct disk slice, and the streaming thread of the
server that read it was considered as a distinct applicationby
the disk schedulers (all the threads were assigned the same
weight/priority). To evaluate the performance of the schedulers, a
packet sent by the streaming thread was considered lost if delayed
by more than one second with respect to its due transmission time
(i.e., we assumed a1 second playback buffer on the client side).

Every 15 seconds the streaming of a new movie was started.
Each experiment ended either if15 seconds elapsed from the start
of the streaming of the last available movie, or if the packetloss
rate reached the1% threshold (this value, as well as the1 second
threshold for the delay, has been experimentally chosen to trade
off between achieving a very high video quality, and allowing the
system to stream a high enough number of simultaneous films
to clearly show the different performance of the six schedulers).
To mimic the mixed workload of a general purpose storage
system and to increase to workload so that the disk was the only
bottleneck, during each experiment we also run5 ON/OFF file
readers, each reading a portion of random length in[64, 512] MB
of a file, and then sleeping for a random time interval in[1, 200]

ms before starting to read a new portion of the same file (each
file was stored in a different disk slice).∆, BTsize and Tslice

for SCAN-EDF, YFQ and CFQ were set to20 ms, 4 requests
and 20 ms, as these are the maximum values for which these
schedulers achieve the highest number of simultaneous streams.

14

Scheduler Param. Mean Num. Mean Agg.
of Movies Thr. [MB/s]

4096 sect 24.00 ± 0.00 7.56 ± 0.87
BFQ 8192 sect 23.95 ± 0.42 8.15 ± 1.08

16384 sect 18.70 ± 9.45 12.78 ± 5.64

SCAN-EDF 20 ms 12.00 ± 0.00 8.93 ± 0.22

YFQ 4 reqs 19.00 ± 0.00 5.85 ± 0.55

CFQ 20 ms 14.35 ± 1.40 12.59 ± 2.12

C-LOOK 1.8 ± 1.16 22.66 ± 0.96

AS 1.1 ± 1.04 28.39 ± 5.36

TABLE VII

V IDEO STREAMING DISTURBED BY SEQUENTIAL READS.

Table VII shows the mean number of movies and the mean
aggregate throughput achieved by the schedulers during thelast
five seconds before the end of each experiment.

As can be seen, withBmax = 4096 sectors BFQ guarantees
a stable and higher number of simultaneous streams than all the
other five schedulers. Interestingly, with BFQ also the aggregate
throughput is comparable/higher than SCAN-EDF/YFQ. Most
certainly this is a consequence of the low∆ with SCAN-EDF.

Finally, to check whether the worst-case delaydi,max guaran-
teed by BFQ to the periodic soft real-time application represented
by any of the concurrent VLC streams complies with the observed
maximum delay, from Table VII we can consider that, just before
the end of most experiments, in case ofBmax = 4096 sectors,
24 + 5 applications with equal weights are competing for the
disk, and the mean throughput is7.56 MB/s. As in the Web
server experiments we have thatLmax = 256 sectors,Li,min ≡

minj Lj
i =16 sectors and a budget never higher than256 sectors

is assigned to the generici-th streaming thread of the video
server. Hence, according to (3),di,max ≤

29∗(128−8)+(2048+128)
7.56∗1024

= 0.73 seconds. This value complies with the above mentioned1

second threshold for considering a packet as late, assumingthat a
reasonable additional worst-case delay of∼ 0.27 seconds is added
by the rest of the system (probably mostly due to the execution
of the 29 threads on the CPU).

VI. CONCLUSIONS

In this paper we dealt with the problem of providing service
guarantees while simultaneously achieving a high disk throughput
in presence of synchronous requests. This type of requests may
cause work-conserving scheduler to fail to provide a high through-
put, and timestamp-based schedulers to fail to enforce guarantees.

In this respect, we proposed BFQ, a new disk scheduler that
combines disk idling and timestamp back-shifting to achieve a
high throughput and preserve guarantees also in presence of
synchronous requests.

REFERENCES

[1] S. Iyer and P. Druschel, “Anticipatory scheduling: A disk scheduling
framework to overcome deceptive idleness in synchronous I/O,” in 18th
ACM Symposium on Operating Systems Principles, Oct. 2001.

[2] G. Lawton, “Powering down the computing infrastructure,” Computer,
vol. 40, no. 2, pp. 16–19, 2007.

[3] B. L. Worthington, G. R. Ganger, and Y. N. Patt, “Scheduling algorithms
for modern disk drives,” inSIGMETRICS ’94: Proceedings of the
1994 ACM SIGMETRICS conference on Measurement and modelingof
computer systems. New York, NY, USA: ACM, 1994, pp. 241–251.

[4] A. L. N. Reddy and J. Wyllie, “Disk scheduling in a multimedia
I/O system,” in MULTIMEDIA ’93: Proceedings of the first ACM
international conference on Multimedia. New York, NY, USA: ACM,
1993, pp. 225–233.

[5] L. Reuther and M. Pohlack, “Rotational-position-awarereal-time disk
scheduling using a dynamic active subset (DAS),” inRTSS ’03: Pro-
ceedings of the 24th IEEE International Real-Time Systems Symposium.
Washington, DC, USA: IEEE Computer Society, 2003, p. 374.

[6] A. Molano, K. Juvva, and R. Rajkumar, “Real-time filesystems. guar-
anteeing timing constraints for disk accesses in rt-mach,”Real-Time
Systems Symposium, 1997. Proceedings., The 18th IEEE, pp. 155–165,
2-5 Dec 1997.

[7] L. Rizzo and P. Valente, “Hybrid: achieving deterministic fairness and
high throughput in disk scheduling,” inProceedings of CCCT’04, 2004.

[8] J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and A. Silberschatz,
“Disk scheduling with quality of service guarantees,” inICMCS ’99:
Proceedings of the IEEE International Conference on Multimedia Com-
puting and Systems Volume II-Volume 2. Washington, DC, USA: IEEE
Computer Society, 1999, p. 400.

[9] A. Gulati, A. Merchant, and P. J. Varman, “pclock: an arrival curve based
approach for qos guarantees in shared storage systems,”SIGMETRICS
Perform. Eval. Rev., vol. 35, no. 1, pp. 13–24, 2007.

[10] A. Gulati, A. Merchant, M. Uysal, and P. J. Varman,
“Efficient and adaptive proportional share i/o scheduling,”
Hewlett-Packard, Tech. Rep., November 2007. [Online]. Available:
http://www.hpl.hp.com/techreports/2007/HPL-2007-186.pdf

[11] [Online]. Available: http://mirror.linux.org.au/pub/linux.conf.au/
2007/video/talks/123.pdf

[12] W. Jin, J. S. Chase, and J. Kaur, “Interposed proportional sharing
for a storage service utility,” inSIGMETRICS ’04/Performance ’04:
Proceedings of the joint international conference on Measurement and
modeling of computer systems. New York, NY, USA: ACM, 2004, pp.
37–48.

[13] [Online]. Available: http://google-opensource.blogspot.com/
2008/08/linux-disk-scheduler-benchmarking.html

[14] J. C. R. Bennett and H. Zhang, “Hierarchical packet fairqueueing
algorithms,” IEEE/ACM Transactions on Networking, vol. 5, no. 5, pp.
675–689, 1997.

[15] D. Stephens, J. Bennett, and H. Zhang, “Implementing scheduling
algorithms in high-speed networks,”Selected Areas in Communications,
IEEE Journal on, vol. 17, no. 6, pp. 1145–1158, Jun 1999.

[16] [Online]. Available: http://algo.ing.unimo.it/people/paolo/disksched
[17] D. Stiliadis and A. Varma, “A general methodology for designing

efficient traffic scheduling and shaping algorithms,”INFOCOM ’97.
Sixteenth Annual Joint Conference of the IEEE Computer and Com-
munications Societies. Proceedings IEEE, vol. 1, pp. 326–335, 1997.

[18] P. Valente, “Extending WF2Q+ to support a dynamic traffic mix,”
Advanced Architectures and Algorithms for Internet Delivery and Ap-
plications, 2005. AAA-IDEA 2005. First International Workshop on, pp.
26–33, 15-15 June 2005.

[19] S. Daigle and J. Strosnider, “Disk scheduling for multimedia data
streams,” 1994.

[20] P. J. Shenoy and H. M. Vin, “Cello: a disk scheduling framework for
next generation operating systems,”SIGMETRICS Perform. Eval. Rev.,
vol. 26, no. 1, pp. 44–55, 1998.

[21] T. P. K. Lund, V. Goebel, “APEX: adaptive disk scheduling framework
with QoS support,”Multimedia Systems, vol. 11, no. 1, pp. 45–59, 2005.

[22] A. L. N. Reddy, J. Wyllie, and K. B. R. Wijayaratne, “Diskscheduling in
a multimedia I/O system,”ACM Trans. Multimedia Comput. Commun.
Appl., vol. 1, no. 1, pp. 37–59, 2005.

[23] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R. Ganger, “Argon:
Performance insulation for shared storage servers,” inIn Proceedings of
the 5th USENIX Conference on File and Storage Technologies.USENIX
Association, 2007.

[24] B. Kao and H. Garcia-Molina, “An overview of real-time database
systems,” 1995.

[25] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,”J. ACM, vol. 20, no. 1, pp. 46–61,
1973.

[26] [Online]. Available: http://www.videolan.org/vlc/

APPENDIX

PROOFS

In this Appendix we provide the proofs of Theorems 1 and 2.
Before proceeding, we introduce some additional notationsand

15

prove a lemma used in both proofs.
Since it is often used, for brevity we calltotal service property

the fact that, at any timet, the total amount of serviceW (t)

provided by the real and the ideal system during[0, t] is the
same. Moreover, since we focus only on what happens inside
B-WF2Q+, for simplicity from now on we neglect the issues
related to deceptive idleness. Especially, since the stateof B-
WF2Q+ changes only in consequence of request arrivals and
service, without losing generality, we assume that idling periods
have zero duration, and we say that an application is backlogged
iff its request queue inside B-WF2Q+ is not empty.

Given a budgetB = Bj
i assigned to an application, we denote

as R(B) the batch served usingB. If an application becomes
idle before consuming all of its budgetB, or if it is deactivated
because the remaining budget is lower than the size of the next
request to serve, then the size of the batchR(B) is lower than
B. In this case we say that the budget isunderutilized.

Suppose that only a portionB′ < B of an underutilized budget
is used by an application. According to the code in Fig. 4, three
points can be highlighted. First, the virtual finish time of the batch
is higher than it would have been if computed as a function ofB′.
Hence the start of the service ofR(B) may bedelayed. Second,
this possibly delayed start, plus the fact that the disk is released
in advance, are only beneficial for the completion time of the
requests of the other applications. Third, when the application is
done usingB, its virtual finish time is properly decreased, so as
to account only for the actual service received. Hence the next
virtual start time will be correctly computed. In the end, the first
issue is the only one to be addressed in computing worst-case
guarantees. In this respect, in the proof of Lemma 2, we start
from a fictitious scenario where a longer batchR(B) is served
instead ofR(B).

Given any quantityA defined for the real system, we use the
superscript notationAI to denote its counterpart in the ideal
system. For example, we denote asW I

i (t) the amount of service
received by thei-th application in the ideal system during[0, t].
By definition,V (t) is equal to thenormalizedamount of service
that would be guaranteed by the fluid system to a continuously
backlogged application during[0, t] with respect to its weight,
i.e., W I

i (t) ≥ φi · V (t) holds for any applicationi continuously
backlogged during[0, t]. Moreover, we denote asVi(t) the virtual
time of thei-th application. While the application is backlogged,
dVi(t)

dt = 1
φi
·

dW I
i (t)
dt , i.e., the growth ofVi(t) measures the

normalized amount of service received by the application inthe
ideal system. On the contrary, while the application is idle, Vi(t)

is fictitiously increased as follows:Vi(t) ← max(Vi(t
−), V (t)).

The ideal system serves applications in such a way to guarantee
that ∀i, t Vi(t) ≥ V (t). Finally, differently from the real system,
it serves the requests of each application in FIFO order.

We denote asFi(t) the virtual finish time of the last batch, of
the i-th application, already completed in the real system at time
t. Recall that the real system starts serving a new batch only if
it is eligible. Hence, from the time-stamping rules in Fig. 4, it
follows that

Fi(t) ≤ V (t) +
Bi,max

φi
(4)

The second of the following lemmas will be used as a building
block in proving both theorems.

Lemma 1:Let R(B1), R(B2),. . . , R(Bk) be k batches (pos-
sibly of different applications) consecutively served in the real
system during a time interval[ts, tf] (R(B1) starts at timets,
while R(Bk) is completed at timetf). Suppose that: 1) the related
k budgets are fully utilized, 2) thek batches are completed in the
real system in the same order as in the ideal system, 3) there is
a time instantt0 ≤ ts such that at timet0 the ideal system has
not yet served any sector of any of thek batches. Then, denoted
as tIf the time instant at which all thek batches are completed
in the ideal system,W (tf) −W (tIf) ≤ W (t0, ts). Especially, if
ts = 0, we have thatW (tf)−W (tIf) ≤ 0, and hencetf ≤ tIf .

Proof: Since the batches are completed in the same order
in both systems, to finishR(Bk), the ideal system must complete
all the k batches. In addition, the ideal system might serve other
batches during[t0, tIf]. Hence, considering also the total service
property, W (t0, tIf) ≥

Pk
i=1 Bk = W (ts, tf) = W (t0, tf) −

W (t0, ts). This inequality allows the thesis to be proven as
follows:

W (tf)−W (tIf) = W (t0, tf)−W (t0, tIf) ≤

W (t0, tf)−W (t0, tf) + W (t0, ts) = W (t0, ts)
(5)

Before the second lemma, we need to define a last function.
We define as lag of thei-th application at timet, the quantity

lagi(t) ≡W I
i (t)−Wi(t) (6)

Lemma 2:Let Rj
i be the j-th request issued by thei-th

application, and letsj
i and cj

i be its start and completion time.
We have that

lagi(s
j
i) ≤ Bmax + Lmax (7)

Moreover, if ∀t ∈ [t1, cj
i]

dW (t)
dt = Tagg and all the applications

are continuously backlogged in the ideal system, then, defined
Rm

i as the last requests served in the real system among the ones
arrived during[aj

i , a
j
i + TFIFO) (possiblyRm

i = Rj
i),

cj
i ≤ cI,m

i +
Bl

i − Lj
i

φiTagg
+

Bmax + Lmax

Tagg
(8)

whereBl
i is the budget used to serveRj

i .
Proof: For the moment, we assume thatV (t) is smoothly

tracked, and we postpone to the end of the proof the evaluation of
the consequences of the stepwise approximation ofV (t) (outlined
in Subsection II-E). We proceed as follows. First we consider a
fictitious batchR(Bl

i) in which a fake requestRfake is added
after the last request of the actual batchR(Bl

i). We suppose that
Rfake is long enough to let the whole budgetBl

i be consumed
(Lfake = B −

P

R
j
i∈R(B)

Lj
i). We consider what would have

happened if the fictitious batchR(Bl
i) would have been served in

place ofR(Bl
i). We define this scenario as thefictitious scenario,

as opposed to theactual scenario. Then we compute an upper
bound to lagi(s

j
i) and tocj

i as a function of quantities computed
for the fictitious scenario.

With regards tocj
i , due to the C-LOOK/FIFO service order of

the real system, in addition to the requests queued at timeaj−
i ,

the requestRj
i may also wait for the service of the other requests

arrived during[aj
i , a

j
i + TFIFO). In contrast, the ideal system

serves the requests of each application in FIFO order. Hencein
the real systemRj

i is served as ifcI,j
i = cI,m

i .

16

Given the value of a quantityq for the actual scenario, we use
the over-line notationq to refer to the corresponding value for
the fictitious scenario. Hence,cl

i ≥ sj
i and cI,l

i ≥ cI,j
i are e.g.,

the finish time ofR(Bl
i) in the real and in the ideal system for

the fictitious scenario. Note that∀t ≤ cj
i W (t) = W (t). Finally,

let Dj
i be the sum of the sizes of the requests inR(Bl

i) served
after Rj

i , plus the sizeLj
i of Rj

i itself.

Since we are computing worst-case guarantees, without losing
generality, we assume that all the batches served beforeRBl

i are
fully utilized. We consider two cases. First, all the batches served
during [0, cl

i] in the real system for the fictitious scenario are
completed in the same order in which they are completed in the
ideal system. In this case, from Lemma 1, and considering that
cI,j
i = cI,j

i and all the applications are continuously backlogged

during [cI,j
i , cI,l

i], we have thatcj
i ≤ cl

i ≤ cI,l
i ≤ cI,j

i +
Bl

i−L
j
i

φiTagg
.

Hence (8) holds. Moreover, considering thatsj
i ≤ cI,l

i it also
follows that, for the actual scenario,W I

i (sj
i) ≤ Wi(s

j
i) + Dj

i ≤

Wi(s
j
i) + Bmax. Hence, (7) holds too.

Second, some of the batches served beforeR(Bl
i) in the real

system for the fictitious scenario are completed afterR(Bl
i) in the

ideal system. LetR(Bm) be the last of these batches, and suppose
it starts to be served at timet0 in the real system. LetR(Bm+1),
R(Bm+2), ..., R(Bm+k) = R(Bl

i), be the successive batches
served in the real system. Since the ordering among virtual finish
times is the same as among the completion times in the ideal
system of the corresponding batches [14], the virtual finishtime
of thesek batches is lower than the virtual finish time ofR(Bm).
Hence, for B-WF2Q+ to chooseR(Bm) instead of one them, all
thesek batches have to be not yet eligible or not yet arrived at
time t0. In both cases, the ideal system has not provided any
service to any of them at timet0. We also assume thatsj

i ≥ cI,l
i ,

since, if the thesis holds in this (sub)case, it trivially holds also
in casesj

i < cI,l
i . Hence, thanks to Lemma 1, in the fictitious

scenario,W
I
i (sI,j

i , sj
i) = W

I
i (sI,j

i , cI,l
i) + W

I
i (cI,l

i , sj
i) = Dj

i +

W
I
i (cI,l

i , sj
i) ≤Dj

i + W (cI,l
i , cl

i)−Dj
i ≤Dj

i + Bm −Dj
i =Bm ≤

Bmax. Besides, sincesj
i = sj

i , W I
i (sj

i) ≤ W
I
i (sj

i) (because
also the additional fake requestRfake may have been served

in the fictitious scenario),W
I
i (sI,j

i) = W i(s
j
i), and W

I
i (sj

i) =

W
I
i (sI,j

i) + W
I
i (sI,j

i , sj
i), thenW I

i (sj
i) ≤Wi(s

j
i) + Bmax in the

actual scenario. This proves (7).

To prove (8), suppose for a moment that the real system is able
to immediately preemptR(Bm) as any of the batchesR(Bm+1),
R(Bm+2), ..., R(Bl

i) becomes eligible. Thanks to the hypothesis
of the applications being continuously backlogged, this ability
would not affect the request arrival pattern, and hence the order
in which thesek batches would be served in the ideal system.
HencecI,j

i would not change. Moreover, thanks to Lemma 1 and

to the arguments used for the previous case,cj
i ≤ cI,j

i +
Bl

i−L
j
i

φiTagg

would hold. Unfortunately, due to the impossibility of preempting
R(Bm), the real system starts serving thej batches with a delay

of at most Bmax

Tagg
time units, hencecj

i ≤ cI,j
i +

Bl
i−L

j
i

φiTagg
+ Bmax

Tagg
.

Finally, for the reasons explained in Subsection III-A, the
stepwise approximation ofV (t) causes the additional worst-case
Lmax and Lmax

Tagg
components, respectively.

Proof of Theorem 1

To prove the theorem, we first compute the maximum per-
application deviation (lead/lag) of the real system with respect to
the ideal system.

Lemma 3:The following inequalities hold:

∀i ∈ {1, 2, ..., N}, t

min (φi(Vi(t)− Fi(t)), 0) ≤ lagi(t) ≤ Bmax + Lmax (9)
Proof: Once granted access to the disk, and until budget

exhaustion, an application receives an amount of service equal
to the total amount of service provided by the system. Hence,
thanks to the total service property, lagi(t) cannot decrease while
the i-th application is being served. This has two consequences.

First, ∃sl
i : ∀t lagi(t) ≤ lagi(s

l
i), where sl

i is the start time
of a batchR(Bl

i). Hence the rightmost inequality in (9) follows
from Lemma 2. Second,∃cl

i : ∀t lagi(t) ≥ lagi(c
l
i), wherecl

i is
the completion time of a batchR(Bl

i). If Fi(c
l
i) ≤ Vi(c

l
i), then

lagi(c
l
i) ≥ 0 and the leftmost inequality in (9) holds.

To prove the thesis in caseFi(c
l
i) > Vi(c

l
i), let sl

i and sI,l
i

be, respectively, the time instants at which the budget starts to
be served in the real and in the ideal system. We have that
W I

i (sI,l
i) = Wi(s

l
i). It follows that

W I
i (cl

i)−Wi(c
l
i) = W I

i (sI,l
i , cl

i)−Wi(s
l
i, c

l
i). (10)

Since Fi(c
l
i) > Vi(c

l
i), the ideal system is still serving

the budgetR(Bl
i) at time cl

i, which implies W I
i (sI,l

i , cl
i) =

φi

“

Vi(c
l
i)− Sl

i

”

, whereSl
i is the virtual start time of the batch

R(Bl
i). On the other hand,Wi(s

l
i, c

l
i) ≤ φi

“

Fi(c
l
i)− Sl

i

”

. Sub-
stituting this inequality and the previous equality in (10), we
get W I

i (cl
i) −Wi(c

l
i) ≥ φi

“

Vi(c
l
i)− Sl

i

”

− φi

“

Fi(c
l
i)− Sl

i

”

=

φi

“

Vi(c
l
i)− Fi(c

l
i)

”

, which proves the thesis.
We can now prove Theorem 1.

Proof: Let aj
i be the arrival time of the request that is waiting

to be completed at timet1. From the timestamping rule in Fig. 4,
line 8, and from the fact that thei-th application is continuously
backlogged, it follows that the virtual start time of its batches
served during[t1, t2] is the same as if all these batches arrived
back-to-back. Moreover, the service provided by the real system
to thei-th application does not depend on the arrival pattern of the
requests served after the one that is pending at timet2. Finally,
for the i-th application to receive at least the minimum amount
of service that the real system is claimed to guarantee during
[t1, t2], it must ask for such service, i.e., the sum of the sizes
of the requests issued during[t1, t2], plus Qi(a

j −
i), must be no

lower than this amount of service. Thanks to these considerations,
to simplify the proofs, and without losing generality, we assume
that, starting from timeaj

i , the i-th application is continuously
backlogged and issues all its next requests asynchronouslyand
back-to-back.

Using Lemma 3, we can write

Wi(t1, t2) =

W I
i (t2)− lagi(t2)− (W I

i (t1)− lagi(t1)) ≥

W I
i (t2)−Bmax − Lmax −W I

i (t1)+

+ min(φi(Vi(t1)− Fi(t1)), 0) ≥

φi (V (t2)− Vi(t1)) + min(φi(Vi(t1)− Fi(t1)), 0)+

−Bmax − Lmax

(11)

17

where the last inequality follows from the fact that, since the i-
th application is necessarily continuously backlogged also in the
ideal system, thenW I

i (t1, t2) ≥ φi (V (t2)− Vi(t1)). For any set
of values of the other quantities, the rightmost term is lower if
Fi(t1) > Vi(t1). Hence, thanks to (4)

Wi(t1, t2) ≥

φi (V (t2)− Vi(t1) + Vi(t1)− Fi(t1))−Bmax − Lmax =

φi (V (t2)− Fi(t1))−Bmax − Lmax ≥

φi

“

V (t2)− V (t1)−
Bi,max

φi

”

−Bmax − Lmax ≥

φiW (t1, t2)−Bi,max −Bmax − Lmax

(12)

Before concluding the proof, it is important to note that, as
anticipated in Subsection III-B, theBi,max component in the
rightmost term is a consequence of the real system being in
advance with respect to the ideal system in serving thei-th
application at timeaj

i . On the contrary, this component is equal
to 0 if Rj

i may arrive only after the minimum completion time
guaranteed by the ideal system to the previous requestRj−1

i .

Proof of Theorem 2

Proof: Let cj
i andcI,m

i be the completion time ofRj
i in the

real system and ofRm
i in the ideal system, respectively. We have

that:

W (t1, cI,m
i) ≤ V (t1, cI,m

i) = Vi(t1)− Vi(t1) + V (t1, cI,m
i) =

Vi(t1)− Vi(t1) + V (cI,m
i)− V (t1) =

(Vi(t1)− V (t1)) +
“

V (cI,m
i)− Vi(t1)

”

≤

(Vi(t1)− V (t1)) +
“

Vi(c
I,m
i)− Vi(t1)

”

≤

(Vi(t1)− V (t1)) +
Wi(t1,c

I,m
i)

φi

(13)
where the last inequality follows from the fact that thei-th
application is continuously backlogged (in the ideal system)
during [t1, cI,m

i].

Let QI(aj−
i) be the backlog of thei-th application in the ideal

system at timeaj−
i . We have thatW I

i (t1, cI,m
i) ≤ QI(t−1) +

Ai(t1, aj
i +TFIFO). Hence, since the ideal system has a constant

throughput equal toTagg, we have that

cI,m
i −t1 ≤

φi (Vi(t1)− V (t1)) + QI(t−1) + Ai(t1, aj
i + TFIFO)

φiTagg
(14)

As a first step to derive the thesis from the above inequality,
we can consider that, thanks to Lemma 3,QI(t−1) = Q(t−1) −

lagi(t1) ≤Q(t−1)−min (φi(Vi(t1)− Fi(t1)), 0). Substituting this
inequality in (14), we get

cI,m
i − t1 ≤

φi(Vi(t1)−V (t1))+Q(t−
1

)
φiTagg

+

+
−min(φi(Vi(t1)−Fi(t1)),0)+Ai(t1,a

j
i+TF IF O)

φiTagg

(15)

For any set of values of the other quantities, the rightmost term

is higher if Fi(t1) ≥ Vi(t1). Hence, thanks to (4),

cI,m
i − t1 ≤

φi(Vi(t1)−V (t1))+Q(t−
1

)−φi(Vi(t1)−Fi(t1))+Ai(t1,a
j
i+TF IF O)

φiTagg
=

φi(Fi(t1)−V (t1))+Q(t−
1

)+Ai(t1,a
j
i+TF IF O)

φiTagg
≤

Bi,max+Q(t−
1

)+Ai(t1,a
j
i+TF IF O)

φiTagg

(16)
The thesis follows from considering that, thanks to Lemma

2, cj
i − cI,m

i ≤
Bl

i−L
j
i

φiTagg
+ Bmax+Lmax

Tagg
. Regarding theBi,max

component, the same considerations about the arrival pattern
reported at the end of the proof of Theorem 1 apply.

