
SUBMISSION TO IEEE TRANSACTIONS ON COMPUTERS 1

Pipelined Statistical Cipher Feedback:
A New Mode for High Speed Self-Synchronizing Stream Encryption

Howard M. Heys and Liang Zhang

Abstract — In this paper, we introduce a new block cipher mode of operation targeted to providing high speed hardware-based
self-synchronizing stream encryption. The proposed mode is a modification of statistical cipher feedback (SCFB) mode and is
designed to be implemented using pipeline architectures for the block cipher. We refer to the mode as pipelined SCFB mode or
PSCFB. In this paper, we consider the implementation characteristics and show that PSCFB is able to achieve speeds that are
very close to pipelined block cipher implementations configured for counter mode. Such speeds are achieved with modest
latency through the system and a small amount of memory required for the system queues with a provable guarantee of no
queue overflow. Further, we examine the characteristics of PSCFB mode in response to bit errors and synchronization losses in
the communication channel. Specifically, we show that the error propagation factor is modest and comparable to conventional
SCFB and that synchronization recovery delay is reasonable given the expectation that synchronization loss is infrequent.
Given the high efficiency and good communication characteristics of the mode, it is concluded that PSCFB is an excellent
choice for high speed network applications requiring stream-oriented encryption with self-synchronizing capabilities.

Index Terms—Cryptography, Advanced Encryption Standard (AES), block ciphers, mode of operation, stream ciphers,
synchronization, error propagation.

——————————  ——————————

1 INTRODUCTION

In recent years, many modes of operation of block ciphers
have been proposed. The motivations behind different
modes vary and the appropriateness of a mode must be
considered in the context of the targeted application re-
quirements. In this paper, we consider the configuration
of a block cipher, such as the Advanced Encryption Stan-
dard (AES) [1], intended to provide stream-oriented en-
cryption with the feature of self-synchronization. Self-
synchronization is required in applications where it is
possible to lose synchronization between the transmitter
and receiver (eg. through bit slips caused by timing er-
rors). The mode presented in this paper is an extension of
the concept of statistical self-synchronization introduced
in [2] and analyzed in [3]. A typical application for the
mode presented in this paper is stream-oriented physical
layer communication where high speeds are required and
where it is possible for timing errors or other network
faults to lead to synchronization losses.

2 BACKGROUND
Symmetric key cryptography is the field encompassing
encryption techniques where, in a secure communication
scenario, the same key is used for encryption at the trans-
mitter and decryption at the receiver. Symmetric key
cryptographic systems may be generally categorized as
based on either block or stream ciphers. The focus of this
paper is a mode of operation of a block cipher, resulting
in a stream cipher configuration.

2.1 Block Ciphers and Stream Ciphers
The most common method of encryption in communica-
tion networks involves the use of a block cipher, such as

AES, which encrypts a block of plaintext bits to produce a
block of ciphertext bits, based on operations parameter-
ized by a key. Since its adoption as a standard for the U.S.
government, AES has been widely examined and is con-
sidered to be secure and efficient for a variety of imple-
mentation environments. As a result, AES has become the
most applied block cipher today and is found in a variety
of applications ranging from high speed servers to smart-
cards. AES uses a key of 128, 192, or 256 bits to encrypt
plaintext blocks of 128 bits.

Stream ciphers encrypt one symbol, typically one bit,
at a time. This is generally done by XORing a stream of
plaintext data with a pseudo-random, unpredictable
stream of bits, referred to as a keystream, to produce the
ciphertext. At the receiver, decryption is performed by
XORing the received ciphertext with the exact same key-
stream to reproduce the plaintext stream. This requires
that the keystream at the receiver is exactly synchronized,
relative to the ciphertext data, to the keystream at the
transmitter, so that the plaintext is correctly reproduced
by the XOR operation at the receiver.

Resynchronization between the encryption and de-
cryption processes in a communications system using a
stream cipher may be derived through the physical layer
communication or be achieved by periodic resynchroniza-
tions through a secondary or higher level channel. How-
ever, using a secondary channel to resynchronize the two
ends of a communication channel requires significant
overhead and is difficult in high speed communication
systems.

Synchronization solutions which are targeted to the
physical layer use cipher modes which are referred to as
self-synchronizing. Despite the fact that the concept of a
self-synchronizing stream cipher has been a proposed
methodology for many years (see, for example, [4]), there
are surprisingly few specific proposals of self-
synchronizing stream cipher algorithms. A recent pro-

————————————————
 H.M. Heys is with Electrical and Computer Engineering, Faculty of Engi-

neering, Memorial University of Newfoundland, St. John’s, NL, Canada,
A1B 3X5. Email: hheys@mun.ca.

 L. Zhang is with Avalon Microelectronics, Mount Pearl, NL, Canada. E-
mail: liang.zhang@avalonmicro.ca.

2 SUBMISSION TO IEEE TRANSACTIONS ON COMPUTERS

posal [5], submitted to the eSTREAM project [6], suffered
from security flaws and was not selected for the final
eSTREAM portfolio of algorithms. The eSTREAM project
– a recent major research initiative in Europe undertaken
to develop stream ciphers suitable for use in a variety of
applications – noted in its final report [7] that the design
of self-synchronizing stream ciphers is difficult and is a
very significant open area of research.

2.2 Classical Block Cipher Modes of Operation
There are several well-known modes of operation that
may be applied to block ciphers to produce stream-
oriented encryption, similar to that of stream ciphers. For
example, output feedback (OFB) mode [8] produces a
keystream by feeding back the output of the block cipher
to the input to generate the next block of keystream bits.
The first keystream block is produced by executing a
block cipher operation on an initialization vector (IV).
Although OFB can be relatively efficient by utilizing the
complete block of bits as keystream bits and doing a bit-
wise XOR on the entire block at once, OFB mode provides
no inherent mechanism for resynchronization should the
receiver lose synchronization with the transmitter. As
well, since the next output block is only produced follow-
ing the complete processing of the current block, it is not
possible to implement a pipelined structure for the block
cipher. Hence, the speed achieved by the mode can only
reach the maximum speed available for an iterative im-
plementation of the block cipher. For example, using 0.18-
µm CMOS technology, AES iterative implementations,
based on a 128-bit block size, have achieved speeds of 1.6
Gbps [9].

Similar to OFB, counter mode can be used to produce
a block of keystream to be efficiently applied to encrypt a
block of bits simultaneously [8]. Counter mode uses a
counter, such as an LFSR, that increments or updates for
every block to produce an input for the block cipher. As
with OFB, an IV is used as the first counter value to pro-
duce a block of keystream. Since the next output does not
depend on the current output, but a predictable counter
value, counter mode can be used when the block cipher is
implemented with a pipeline architecture and, hence,
counter mode can be used for very high speed applica-
tions. For example, pipelined implementations of AES
have been able to achieve speeds of over 40 Gbps using
0.18-µm CMOS technology [10]. As with OFB mode,
counter mode has no inherent mechanism for resynchro-
nizing.

To provide automatic resynchronization, it is possible
to configure a block cipher as a self-synchronizing stream
cipher. This can be done straightforwardly using cipher
feedback (CFB) mode [8]. In CFB mode, the input to the
block cipher is derived by feeding back ciphertext bits. In
doing so, if synchronization is lost between the transmit-
ter and receiver, both will eventually produce keystream
based on ciphertext produced at the transmitter and, as a
result, resynchronization will occur. Although resynchro-
nization is automatic, in order for resynchronization to
occur for any number of lost bits in the stream, the feed-
back must be done using just one ciphertext bit for every

block cipher operation. As a result, the efficiency of CFB
mode is very low, making CFB not suitable for many ap-
plications. For example, for AES with a block size of 128,
single-bit feedback CFB can only achieve speeds of 1/128
of an iterative implementation of the cipher. Thus, since a
pipeline architecture of AES is typically an order of mag-
nitude faster than an iterative implementation, CFB mode
is 3 orders of magnitude slower than high speed, pipe-
lined AES implementations!

2.3 Conventional SCFB Mode
To overcome the speed limitations of CFB, SCFB mode has
been proposed [2] and analyzed [3]. Further analysis of a
slightly modified version of SCFB is presented in [11].

The original SCFB mode, which we shall refer to as con-
ventional SCFB, is essentially a hybrid of CFB and OFB: the
cipher operates in OFB mode, while scanning the ciphertext
for a special sync pattern of n bits in length (typically, n ~
8). Since the ciphertext is a pseudo-random sequence of bits,
the sync pattern will be observed at a statistically random
point in the ciphertext stream. For a block cipher using
blocks of size B bits, when the sync pattern is observed, the
following B bits of ciphertext are used as the initialization
vector and fed back to the input of the block cipher. Effec-
tively, this means that the block cipher temporarily operates
in CFB mode before returning to OFB mode, with the B bits
following the sync pattern used as an initialization vector for
OFB mode. Since both the transmitter and receiver will ob-
serve the same ciphertext, both will detect the sync pattern
and will resynchronize by using the same IV block follow-
ing the sync pattern.

counter

E

register

counter

E

register
plaintext

transmitted
ciphertext communications

channel

received
ciphertext

recovered
plaintext

sync
pattern
found?

sync
pattern
found?

B B n n

key key

Fig. 1. Conventional SCFB (using counter mode).

Figure 1 illustrates the basic method of conventional
SCFB with E representing the block cipher operation. How-
ever, the system illustrated in Figure 1 replaces OFB mode
with counter mode (as indicated by the input to the block
cipher being a counter and there being no feedback from the
block cipher output to the input). Upon resynchronization,
the system obtains an IV block from the ciphertext to reload
the counter value; otherwise the input to the block cipher is
taken directly to be the counter value, which is incremented
for every block cipher operation. Such a construction has the
same basic characteristics of OFB-based SCFB discussed in
[3]. As we shall see, using counter mode in the SCFB con-
figuration is consistent with the new mode described in this
paper. Other modes based on statistical self-synchronizing

HEYS ET AL.: PIPELINED STATISTICAL CIPHER FEEDBACK: A NEW MODE FOR HIGH SPEED SELF-SYNCHRONIZING STREAM CIPHERS 3

concepts and having properties similar to conventional
SCFB have also been proposed in [12] and [13].

Figure 2 illustrates the sequence of ciphertext bits cre-
ated at the transmitter and received at the receiver (as-
suming no errors in the channel). In the figure, time is
increasing moving to the right. We refer to the scanning
period as the period following the initialization of the
counter with the IV from the ciphertext and prior to the
sync pattern appearance in the ciphertext. The duration in
bits of the scanning period is represented by random vari-
able k, as it is dependent on the occurrence of the sync
pattern in the pseudo-random ciphertext. During the
scanning period, the transmitter (or receiver) scans the
ciphertext stream for the n bit sync pattern. When the n
bit sync pattern is observed in the ciphertext, the follow-
ing B bits are used as the IV for the resynchronization of
the counter mode. During the collection of the IV from
the ciphertext stream, further scanning for the sync pat-
tern is disabled. Once the IV is collected, counter mode
restarts with the new IV generating the keystream for the
block of bits immediately following the IV block and
scanning for the sync pattern is enabled. Subsequently,
when the sync pattern is next observed, the process re-
peats. The full duration from one sync pattern to the next
is referred to as a synchronization cycle. As discussed in
[3], a typical sync pattern would be n = 8 bits in length
and be of the form “10000000”. If AES is used as the block
cipher, the block size would be B = 128.

Fig. 2. Synchronization cycle for conventional SCFB
using counter mode.

SCFB mode is analyzed thoroughly in [3]. It is shown
that the mode has good characteristics such as modest
error propagation factor (EPF) of about (B+n)/2 for n 5
and a synchronization recovery delay (SRD) of about 2n
for large n. Most significantly, it is shown that SCFB can
be implemented efficiently, approaching throughputs
close to the throughput of the block cipher implemented
in a non-pipelined, iterative style. It is shown that to
achieve the highest throughput, requires buffers of in-
creasing size (and the resulting increased system latency)
to avoid data loss within the SCFB system. However, it is
noted that with a buffer size of 2B bits and resulting la-
tency of 2B bit times, SCFB implemented at an efficiency
of 50% or less (that is, less than half the throughput of the
block cipher) is guaranteed to have no overflow within
the system queues. Hence, it is recommended that an im-
plementation of conventional SCFB be constrained to 50%
of the throughput of the block cipher implemented using
an iterative architecture in order to ensure that the queue
sizes in the implementation remain modest and that no

bits are lost due to queue overflow.
For many network communication applications, very

high speeds are required. As a result, if cryptography is to
be applied at the physical layer in communication net-
works, implementing block ciphers using pipelining
methods is often preferred, in order to achieve the desired
speeds. Employing conventional SCFB using OFB mode
with a pipelined implementation of a block cipher such as
AES will not allow the mode to reach the potential
throughput of a pipelined implementation for two rea-
sons: (1) since OFB uses feedback, pipelining is not effec-
tive and (2) when the sync pattern is recognized in the
ciphertext, the pipeline data would have to be discarded,
resulting in a delay while the IV block works its way
through the pipeline stages to become keystream and
resynchronize the OFB mode. The first issue can be re-
solved by replacing OFB with counter mode (as shown in
Figure 1), which can be implemented using a pipeline
architecture. The second issue can not be fixed by simply
using counter mode and will require an adjustment of the
definition of SCFB to ensure that a long processing delay
does not occur at every resynchronization. This is critical
because resynchronization occurs frequently in SCFB –
for example, every few hundred bits for n = 8 [3].

For these reasons, in this paper, we present a modified
version of SCFB mode, designed to be compatible with
pipelined block cipher implementations. We refer to this
new mode as pipelined SCFB or PSCFB.

3 PROPOSED NEW MODE: PSCFB

sync sync IV scanning period

n
bits

B
bits

k
bits

n
bits

sync scanning
disabled

sync cycle

Pipelined SCFB mode has been created to allow for effi-
cient utilization of a block cipher implemented using a
pipeline architecture. PSCFB makes use of counter mode
configuration of the block cipher and extends the dura-
tion of time during which scanning for a new sync pattern
in the ciphertext is disabled.

3.1 Pipelined Block Ciphers
Block ciphers, in an appropriate mode such as counter
mode, lend themselves to a pipeline architecture. A ci-
pher round typically consists of nonlinear substitutions
(in AES, these are called S-boxes), linear transformations
(in AES, this involves the XOR of subsets of bits and is
performed through the use of the ShiftRow and MixCol-
umn operations), and key mixing (typically, as in AES,
the XOR of key bits with the data bits). As part of the
process, round keys must be derived from the original
cipher key and applied at the appropriate round. It is
straightforward to place registers between rounds and
subsequently create a pipeline structure with each stage
of the pipeline corresponding to a round1. The resulting
L-stage pipeline structure for a general block cipher is
illustrated in Figure 3, where L is the number of rounds in
the cipher. For example, for AES, L = 10 for a basic pipe-
lined implementation2 with a 128-bit block size and a 128-

1 Equating pipeline stages to cipher rounds is sometimes referred to as
outer round pipelining. Inner round pipelining is also possible [10],
which places pipeline registers also within the round of a cipher, thereby
increasing the number of stages and increasing the cipher throughput.

2 Note that some implementations of AES, such as [10], may also use a

4 SUBMISSION TO IEEE TRANSACTIONS ON COMPUTERS

bit key size.

Fig. 3. Pipeline architecture of a block cipher.

It is well known that a structure such as that of Figure
3 could be used to implement a block cipher configured
for counter mode, since the input to counter mode is not
dependent on the previous output block. Hence, consecu-
tive pipeline stages can be used to operate on consecutive
blocks. The throughput of the system is given by

 Tmax = B/tclk bps (1)

where tclk represents the period of the clock used to drive
the pipeline and tclk can be as small as the critical path
delay through the pipeline stages.

3.2 Applying Pipelining to Conventional SCFB
Consider the behaviour of a conventional SCFB system
using counter mode as shown in Figure 1 based on the
pipeline architecture of Figure 3. Upon the recognition of
a sync pattern in the ciphertext, the next B bits of cipher-
text will be used as the IV which is used to set a new
counter starting value for the next scanning period. Dur-
ing the IV collection, sync pattern scanning is disabled. In
conventional SCFB using a pipeline architecture, in order
for the IV to produce a new block of ciphertext to follow
the IV block, the system would have to load the IV and
wait for all L stages to complete for the next B bits of key-
stream and resulting ciphertext to be produced. The data
residing in the pipeline registers of Figure 3, would be
discarded and the system would need to absorb the delay
of Ltclk required to produce the first block following the
IV block. The remaining blocks produced during the
scanning period could be produced at a rate of one every
tclk since the pipeline is primed. The long delay during
resynchronization will require large queues to absorb the
large variations in the production of a keystream block

and will result in it being necessary to run the mode at a
rate significantly less than the full pipeline rate, resulting
in a throughput much less than Tmax in (1).

Key
Schedule

Register

Cipher Round 1

Plaintext
B

Key

Register

Cipher Round L

...

B

Ciphertext

Assume that B = 128 bits and consider that, for n = 8
and sync pattern “10000000”, the average length of the
scanning period is 2n–n = 248 bits [3]. Since the scanning
period is followed by 8 bits of the sync pattern, assuming,
for simplicity, that the scanning period length is exactly
the average, a full sync cycle would consist of 248 + 8 =
256 bits followed by 128 bits of IV and it would take Ltclk
+ 2tclk to produce the 3 blocks (384 bits) of the full sync
cycle (that is, 2 blocks for the scanning period plus the
sync pattern, followed by one block for the IV). As a re-
sult, the throughput achieved will be

clk

SCFB tL

B
T bps. (2)

)2(

3




For an AES pipelined implementation, with L = 10, TSCFB =
32/tclk. This means that, given the specific assumptions of
(2), conventional SCFB using counter mode with a pipe-
lined implementation has a throughput which is
TSCFB/Tmax = 25% of the throughput of a basic pipelined
counter mode (assuming that the critical path of each
pipeline implementation is similar and therefore the
value of tclk can be considered to be the same in (1) and
(2)). The assumptions of (2) represent an idealized, de-
terministic view and, in practice, the duration of the
scanning period will vary: some scanning periods will be
longer than 248, which will improve the throughput be-
yond (2); some periods will be shorter, which will dimin-
ish the throughput below (2). Hence, the expression in (2)
is simply a rough guideline for the expected throughput
and is only useful to gain perspective on the drawbacks of
conventional SCFB using a pipelined implementation of
counter mode.

3.3 Pipelined SCFB Mode
In order to mitigate the effect of the discarded pipeline
data and the resulting limitations on the SCFB through-
put, we propose a new block cipher mode: pipelined
SCFB or PSCFB mode. PSCFB adds to the synchroniza-
tion cycle, a number of blocks following the IV block dur-
ing which the counter mode continues to operate without
resynchronization and with the sync pattern scanning still
disabled. The entire period during which sync pattern
scanning is disabled is referred to as the blackout period.
The resulting synchronization cycle is illustrated in Fig-
ure 4. As shown in the diagram, there are L blocks (total-
ing LB bits) during which sync scanning is disabled with
the first B bits of the blackout period corresponding to the
IV collection phase.

The value of L is selected to correspond to the number
of pipeline stages in the counter mode implementation of
the block cipher. Thus the blackout period allows the
pipeline of a block cipher to produce L1 blocks, one
block every tclk, until the IV block works its way through
all stages of the pipeline. Hence, it is not necessary to dis-
card the blocks in the process of being produced in
counter mode (i.e., held within the pipeline stages) be-
cause a resynchronization occurs. This enables an imple-
mentation of the mode to operate very efficiently. Con-

pipeline stage for the first key mixing operation, resulting in L = 11.
However, in this paper, we assume that the first key mixing operation
can be incorporated into the first pipeline stage, resulting in L = 10, with
the penalty of a slightly higher critical path delay in the first pipeline
stage.

HEYS ET AL.: PIPELINED STATISTICAL CIPHER FEEDBACK: A NEW MODE FOR HIGH SPEED SELF-SYNCHRONIZING STREAM CIPHERS 5

sider, for example, n = 8 and a scanning period of exactly
248 bits, followed by 8 bits of the sync pattern. Since the
blackout period length in blocks corresponds to the num-
ber of pipeline stages, one block of keystream and, hence,
B bits of ciphertext is produced every tclk as is desired to
achieve the full capability of a pipelined block cipher.
That is, if all scanning periods were exactly the average
length, PSCFB mode theoretically achieves the full pipe-
lined throughput Tmax as defined in (1).

Fig. 4. Synchronization cycle for PSCFB.

In practice, it is not possible to achieve Tmax. Since not
all blocks produced by the block cipher produce B bits of
keystream (that is, partial blocks can result when resyn-
chronization occurs), the practical maximum throughput
is less than Tmax. Generally, partial blocks from the output
of the block cipher are used when the last bit of the black-
out period does not align with the last bit of a block gen-
erated by the block cipher. In such cases, the last block
cipher operation during the blackout period will be used
to produce fewer than B keystream bits. Subsequently,
the first B bits in the scanning period use keystream based
on the new counter value, determined from the IV block
in the ciphertext stream.

Consider, for example, the inefficient scenario that oc-
curs when the first n bits following a blackout period are
the sync pattern (that is, the scanning period length is k =
0) and, hence, a sync cycle consists of L full blocks (one IV
and L1 remaining blackout blocks) and one partial block
consisting of n bits. As a result, in L+1 time periods of tclk,
LB + n bits of keystream are produced. If this was true for
every sync cycle, the resulting throughput of this ineffi-
cient scenario would be

clk
PSCFB tL

nBL
T





)1(* bps (3)

resulting in a encryption efficiency, , of

1

/
/* 




L

BnL
TT maxPSCFB . (4)

The encryption efficency  represents the number of ci-
phertext bits that can be produced in PSCFB mode rela-
tive to the number of output bits produced by the block
cipher (which is equivalent to the number of bits pro-
duced in a pipelined implementation of basic counter
mode). For n = 8, L = 10, and B = 128,  = 91.477%. Note
that, in deriving (4), we have assumed that the critical
path timing of PSCFB and a pipelined counter mode im-
plementation are similar and, hence, tclk is the same value
in both (1) and (3).

It can be shown that, for the normal operation of
PSCFB (i.e., not just the special case leading to (4)),  can

be lower bounded by L/(L+1). This implies that for R bits
produced at the block cipher output, at least RL/(L+1)
ciphertext bits of PSCFB mode are produced. In practice,
this is lower bound on encryption efficiency because
many sync cycles will lead to more efficient production of
keystream than the inefficient scenario described above –
as high as 100% encryption efficiency when the blackout
period ends on block cipher boundary and no partial
block is used as keystream. As we shall discuss in Section
4, when considering the implementation of PSCFB,
L/(L+1) will also represent a maximum on the relative
throughput of an actual implementation of PSCFB, in the
sense that [L/(L+1)]Tmax is the maximum rate at which
data may be encrypted using PSCFB to ensure that no
queue overflow occurs in the system queues.

sync sync IV scanning period

n
bits

B
bits

B
bits

B
bits

k

bits
n

bits

L  B
bits

sync scanning disabled

sync cycle

blackout period

Note that the special case of a purely iterative imple-
mentation of the block cipher used in conventional SCFB
mode corresponds to the scenario of L = 1 and the result-
ing encryption efficiency from (4) for n = 8 and B = 128 is
 = 53.125%. This is consistent with the requirement dis-
cussed in [3] to run the SCFB system at 50% or less of the
block cipher throughput so that the queues associated
with the implementation will not overflow.

The operation of PSCFB is described in detail using
pseudo-code in Appendix A.

4 PSCFB IMPLEMENTATION
When assessing the value of PSCFB mode, it is critical to
consider implementation issues such as queuing require-
ments, system latency, and practically achievable
throughput. A block diagram of PSCFB for encryption is
given in Figure 5. The diagram illustrates the pipelined
nature of the block cipher and shows that queues are re-
quired on both the input (plaintext) and output (cipher-
text) sides of the system. Each element in a queue stores
one bit of data. We refer to these queues as the plaintext
queue and the ciphertext queue. These queues are needed
to ensure that, during periods of resynchronization, data
can be buffered temporarily prior to XORing with key-
stream to manage scenarios which require partial block
cipher outputs (that is, cases where fewer than the full B
bits of a block cipher output are required for the key-
stream due to the resynchronization boundary). Since a
large proportion of a sync cycle consists of the blackout
period (see Figure 4), when the sync scanning is disabled,
with an appropriate processing rate and large enough
queue, buffer overflow can be avoided. Note that a
PSCFB decryption implementation is similar except that
bits enter the system at the ciphertext queue and leave
from the plaintext queue and sync scanning is performed
on the arriving ciphertext bits.

In order to maximize the throughput of the PSCFB
system, input and output are handled in blocks of D bits
as shown in Figure 5. It is assumed the data arrives at the
plaintext queue and leaves the ciphertext queue at a rate
of D/tclk bps, where tclk represents the system clock period.
Similarly, data is transferred out of the plaintext queue to
the ciphertext queue at a rate of typically B/tclk bps during
the scanning period. However, when the system is resyn-
chronizing, typically the transition from the blackout pe-

6 SUBMISSION TO IEEE TRANSACTIONS ON COMPUTERS

riod to the reinitialized counter mode for the scanning
period does not fall on a block boundary and, in this case,
d bits, where d < B, are transferred from the plaintext to
the ciphertext queue during one period of the clock. The
system clock is used to drive the pipeline architecture as
well: one period of the clock, tclk, represents the time re-
quired per pipeline stage. The value of tclk must be larger
than the critical path delay in the queuing circuitry and
the pipeline stages of the block cipher. Assuming that the
critical path delay of a pipeline stage is substantial (which
is expected when a pipeline stage is equivalent to a full
round of a cipher such as AES), then it is reasonable to
assume that tclk is determined from the critical path delay
of the pipeline stages.

Fig. 5. PSCFB encryption system implementation.

When a partial block is transferred, usually the
amount of data in the plaintext queue will increase. The
value of D must be small enough to ensure that the num-
ber of bits in the queue does not exceed some finite value.
However, from the perspective of the system throughput,
it is desirable for D to be as large as possible since the
system throughput is given by

 bps. (5) clkPSCFB tDT /

The ciphertext queue acts in a complementary manner
to the plaintext queue. The system is initialized with the
plaintext queue empty and the ciphertext queue full of
arbitrary data. At the start of a clock period, D bits are
enqueued in the plaintext queue, while D bits are de-
queued from the ciphertext queue. Subsequently, an ap-
propriate number of bits are transferred from the plain-
text queue to the ciphertext queue. In any one clock pe-
riod, there are 3 cases representing the transfer of bits
from the plaintext queue to the ciphertext queue: (i) B bits
(as is the case for normal counter mode operation), (ii)
zero bits (because there are not sufficient bits in the plain-
text queue to transfer), and (iii) d bits, 1  d < B (as is the
case at the end of the blackout period and only a partial
block is used for keystream). For case (ii), it is necessary
to stall the pipeline of the block cipher for the clock pe-
riod, since no keystream bits are used.

Assuming that the size of each queue is M bits, then if
there are h bits in the plaintext queue, the number of bits
in the ciphertext queue is given by Mh. If there is a delay
in moving data from the plaintext queue to the ciphertext
queue, while the plaintext queue fills up, the ciphertext
queue empties; if M is too small, it is possible for an over-

flow to occur in the plaintext queue and this would si-
multaneously result in an underflow in the ciphertext
queue. It is desirable to have M large enough that the
plaintext queue does not overflow. Since there is a total of
M bits in the queuing system at one time and every clock
period, D bits arrive and D bits leave, assuming that M is
large enough so that there is no queue overflow, the total
delay experienced by a bit from when it enters the plain-
text queue to when it leaves the ciphertext queue is upper
bounded by M/Dtclk.

The block cipher operation is capable of producing a
throughput of B/tclk bps, while the system throughput is
given by D/tclk. We define implementation efficiency, , to
represent the ratio of throughput of an implementation of
a PSCFB system to the throughput that could be achieved
by a block cipher configured in counter mode and im-
plemented using a pipeline architecture. Hence, the im-
plementation efficiency is given by

Counter

Stage 2

Stage 1

Stage L

…

D bits D bits

B bits B bits

B bits

Pipelined Block Cipher
in Counter Mode

ciphertext bit queue plaintext bit queue

B bits

sync
pattern
found

n bits

 BD / . (6)
In order to deal with the block realignment as the result
of a resynchronized counter mode,  must be suitably
small enough to ensure that the queues, of selected size M
bits, do not overflow. Of course, having  to be too small,
would be equivalent to a diminished PSCFB system
throughput.

 enqueue D bits from input
if (# bits in plaintext queue  B) then
 dequeue d bits, 1  d  B
 and XOR with keystream bits
else
 stall pipeline

Fig. 6. Plaintext queue process during each clock period.

Consider the operation of the plaintext queuing sys-
tem during each clock period, as specified in Figure 6.
The number of bits dequeued from the plaintext queue is
represented by d and d = B except in the case that the
boundary between the blackout period and the new scan-
ning period results in the use of a partial block produced
by the block cipher, thereby resulting in d < B. Although
not illustrated, the process for the ciphertext queue would
involve dequeuing D bits, followed by the enqueuing of
the bits transferred from the plaintext queue.

Given the specification of Figure 6, the following theo-
rem can be considered to ensure that the queue size M is
large enough and the implementation throughput does
not exceed an acceptable value to ensure that overflow
does not occur in the plaintext queue.

Theorem. Assume the operation of the plaintext queuing
process as defined in Figure 6. If the implementation effi-
ciency, , satisfies   L/(L+1), then there will be no
overflow in a PSCFB system implemented using a plain-
text queue of size M bits, when M  B + 2D  2.

Proof: Consider the number of bits in the queue at the
start of the process illustrated in Figure 6 (i.e., just prior to
the “enqueue” step). Given the behaviour of PSCFB

HEYS ET AL.: PIPELINED STATISTICAL CIPHER FEEDBACK: A NEW MODE FOR HIGH SPEED SELF-SYNCHRONIZING STREAM CIPHERS 7

mode, there are 3 general cases in terms of the change in
the number of bits in the queue. These are illustrated in
the following table, where  = B  D and  is the number
of bits in the queue at the start of the process. We will
briefly discuss each case.

 Case 1 Case 2 Case 3
bits enqueued D D D
bits dequeued B 0 d < B
Change in    + D + D  d
Required  for
case to occur

  <   

Tab. 1. Cases Used in Proof

Case 1: This case represents the circumstance where
all B output bits of the block cipher are to be used as key-
stream and there are at least B bits in the queue when the
dequeue operation is to take place, thereby ensuring that
B bits will be dequeued. As D bits must have been en-
queued at the start of the process, there is a decrease in
the number of bits in the queue by  = B  D.

Case 2: In this case, there are not B bits in the queue at
the time of dequeuing and, hence, the pipeline is stalled
and no bits are dequeued. As a result, there is an increase
of D bits in the queue during a clock cycle.

Case 3: In this case, due to the behaviour of PSCFB
during a resynchronization, at the end of the blackout
period, only a partial block of d bits, 1  d < B, from the
block cipher is used as keystream and it is only necessary
to dequeue d bits. As a result, there is an increase in  of D
 d for D > d, a decrease of  of d  D for D < d, and no
change in  if D = d. Due to the behaviour of PSCFB, there
must be at least LB bits dequeued from case 1 before the
next partial block is used, since there are LB bits during
the blackout period before the next resynchronization
boundary. Hence, instances of case 3 must be separated
by at least L occurrences of case 1.

Consider now the combination of all 3 cases. Assum-
ing that the queue starts at empty (that is,  = 0), the first
clock cycle will correspond to case 2 and then proceed
with a variable sequence of cases 1, 2, and 3, dependent
on the operation of PSCFB mode based on the ciphertext
data. Since for most of the operation of PSCFB, the system
operates in counter mode, case 1 will tend to drive the
number of bits in the queue towards 0, with the pipeline
stalls of case 2 momentarily increasing the number of bits
in the queue.

The scenario resulting in the most bits in the queue
would be a sequence of clock cycles which starts with  =
  1. This has to be followed by case 2, which increases
the number of bits to  =   1 + D. Subsequently, if the
next clock cycle corresponds to a partial block dequeue
(case 3) with d = 1, then this removes only 1 bit from the
queue, while adding another D bits, resulting in

 211  DBDD . (7)

Since in (7),    for all D  1, case 2 will not occur until
more bits are removed from the queue and  < . Hence,
the number of bits in the queue will not be increased be-
yond the value of  in (7) as the result of case 2. Also, we

must encounter case 1 at least L times, before executing
case 3 again. This means that L bits must be dequeued
before case 3 adds more bits to the queue. Since  
L/(L+1),

 D
L

L
B

1
 (8)

and

 DDD
L

L
LDBLL 






 




1
)( . (9)

Hence, at least D bits must be removed before D  d bits
are added back into the queue. So case 3 can not increase
the queue size beyond the value of  in (7).

Consequently, equation (7) represents the maximum
number of bits in the queue at the start of the process de-
fined in Figure 6. However, since D bits are always en-
queued prior to the dequeuing considerations, the maxi-
mum number of bits in the queue will be the value indi-
cated by (7) plus the D bits that are added when the input
bits are enqueued. Hence, there are at most 22  DB
bits in the queue and the theorem is proven. �

The significance of the theorem is that it is possible to
construct PSCFB systems with high implementation effi-
ciency (i.e.,   1), when L is large, such that a modest
queue size is guaranteed to have no overflow. Also, as a
consequence of modest queue sizes, system latency is
modest. Although the theorem is expressed with respect
to the plaintext queue, the implication is that the cipher-
text queue with the same size would not underflow. Us-
ing a pipelined implementation of AES with B = 128 and
L = 10, allows us to set D = 116, thereby achieving an im-
plementation efficiency of  = 90.625% and, with a queue
size of M = 358 bits, ensuring that the plaintext queue will
not overflow. The resulting delay from when a bit enters
the plaintext queue to when it leaves the ciphertext queue
is no more than 358/116tclk = 4tclk.

5 RESYNCHRONIZATION DELAY AND ERROR

PROPAGATION
In this section, we investigate how the sizes of the black-
out period and sync pattern affect the resynchronization
properties and error characteristics of PSCFB mode. We
shall do this by considering two metrics – the synchroni-
zation recovery delay (SRD) and the error propagation
factor (EPF) – and by undertaking simulations of a PSCFB
system, modeled as an encryption system (transmitter),
communication channel, and decryption system (re-
ceiver). Each simulation result produced in this section is
based on the encryption, and subsequent decryption, of
1010 bits, with the individual bit slips or bit errors, which-
ever is appropriate, generated in the channel at a fixed
rate of one event every 105 bits. In all cases, AES is used
for the block cipher and the format of the sync pattern
used is “10…00”. For all scenarios, the 95% confidence
interval is calculated for all simulation points and plotted
in each figure. For most points, the confidence interval is
too small to be visible on the graphs.

5.1 Synchronization Recovery Delay
The synchronization recovery delay is the expected num-

8 SUBMISSION TO IEEE TRANSACTIONS ON COMPUTERS

ber of bits following a sync loss due to a slip before syn-
chronization is regained [3]. SRD does not include the bits
that are lost directly due to the slip.

5.1.1. Bounds on SRD

In [3], lower and upper bounds are developed for SRD of
conventional SCFB, parameterized by n and B. In Appen-
dix B, we have extended this analysis to PSCFB with the
additional parameter of L.

The resulting lower bound on SRD is given by:

 }{
2

1
}{)(

2

1
)(

2

3 2kEkEBLnBLnSRD


 (10)

where k is the size of the scanning period, E{k} is the aver-
age size of the scanning period, E{k2} is the second mo-
ment of k and the average sync cycle size is given by  = n
+ LB + E{k}. As discussed in [3], the distribution of k can
be approximated as the geometric distribution for many
sync patterns including sync patterns of the format
“10…00”. As a result, we may approximate E{k} and E{k2}
to be E{k} = 2n  1 and E{k2} = 22n+1  32n + 1.

The upper bound, as shown in Appendix B, can be de-
rived to be:

.)(

2
}{

2

1

}{)(
2

1
)(

2

3

2 




BLn
n

kE

kEBLnBLnSRD

n



 (11)

where  is an upper bound on the expected number of
sync cycles until resynchronization is achieved after a
false synchronization (that is, a bit sequence, created by a
slip or insertion, is falsely interpreted to be the sync pat-
tern) and  = (1  1/2n)(n+LB).

5.1.2. SRD vs. Blackout Period Duration

In order to investigate SRD versus the blackout duration,
simulations were undertaken, as discussed in the begin-
ning of this section, with B = 128, n = 8, and varying L.
During the simulations, bit slips were generated in the
communications channel and the average number of bits
prior to resynchronization was computed, giving an em-
pirical estimate of SRD. The resulting relationship is pre-
sented in Figure 7. The bounds of (10) and (11) are also
plotted on the graph. Note that the upper bound grows
very rapidly with L and values for L  9 are not shown, as
they substantially exceed the range of the graph.

It is clear from the figure that the simulation results
for SRD follow very closely the lower bound of (10) and,
as predicted by (10), SRD increases with the size of the
blackout period. This is the expected consequence of a
larger L resulting in a larger sync cycle size. Larger SRD
due to larger L is a tradeoff that must be made to accom-
modate fast pipeline designs requiring large L. The upper
bound on SRD is reasonable for small L with moderate
value of n = 8. However, as L increases, the upper bound
becomes very poor as it is derived by accounting for the
possibility of false synchronizations, which in the extreme
cases considered by the bound become more difficult to
recover from as L increases.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12

L

S
R

D

Lower Bound Simulation Upper Bound

Fig. 7. SRD vs. size of blackout period for B = 128, n = 8.

5.1.3. SRD vs. Sync Pattern Sizes

We have also run simulations to investigate SRD versus
different values of the size of sync pattern, n. Figures 8
and 9 show the results with B = 128, for conventional
SCFB (i.e., L = 1) and for PSCFB with L = 10. It can be seen
that as n increases, SRD is influenced by both the size of
the blackout period, LB, and the size of the scanning pe-
riod, which is approximately 2n for a geometrically dis-
tributed value of k. For smaller values of n, the effect of
false synchronizations causes legitimate synchronizations
to be often lost (for example, a legitimate sync pattern
might be ignored during the blackout period associated
with a false synchronization), thereby causing longer de-
lays to resynchronize for the mode with the longer black-
out period. Hence, SRD is much larger for PSCFB with L
= 10 than conventional SCFB with L = 1 for small n.

Since the approximate lower bound of (10) does not
account for the occurrence of false synchronizations, for
small n, when false synchronizations cause significant
delays in resynchronization, the lower bound is very
loose for PSCFB with L = 10, with the empirical SRD be-
ing significantly larger.

The upper bound of (11) generally provides a tight
bound for L = 1 for modest to large sized values of n, such
as n  6. (Only values for n  5 are plotted.) However, for
L = 10, the upper bound is very loose until n increases so
that n  9. (Only values for n  8 are plotted.) This results
from the effects of false synchronizations considered in
the upper bound: since systems with small n have small
sync cycle sizes, many sync cycles occur before a resyn-
chronization that recovers the system from a false syn-
chronization. In practice, this effect is not as significant as
predicted by the upper bound and the simulation results
are better predicted by the lower bound.

Note that in some cases, such as for L = 1 and n = 10 in
Figure 8, the lower bound is marginally higher than the
simulation result. This can be explained by considering
that the lower bound is derived based on the assumption
that the size of the scanning period, k, follows the geo-
metric distribution. As discussed in [3], although this is a
good approximation, in fact, k is not exactly geometrically
distributed and the average size of the scanning period is
actually slightly smaller, which becomes evident in the
comparison of the lower bound and simulation results

HEYS ET AL.: PIPELINED STATISTICAL CIPHER FEEDBACK: A NEW MODE FOR HIGH SPEED SELF-SYNCHRONIZING STREAM CIPHERS 9

when they are very close in value.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

4 5 6 7 8 9 10 11 12

n

S
R

D

Lower Bound Simulation Upper Bound

Fig. 8. SRD vs. sync pattern size for B = 128, L = 1.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

4 5 6 7 8 9 10 11 12

n

S
R

D

Lower Bound Simulation Upper Bound

Fig. 9. SRD vs. sync pattern size for B = 128, L = 10.

5.2 Error Propagation Factor
The error propagation factor is defined as the bit error
rate at the output of the decryption divided by the prob-
ability of a random bit error in the communication chan-
nel [3].

5.2.1. Bounds on EPF

In Appendix B, we have extended lower and upper
bounds developed for conventional SCFB mode to PSCFB
mode, parameterized by n, B, and L.

The resulting lower bound on EPF is simply given by:

 BnEPF 
2

1
1 . (12)

Clearly, this lower bound is not dependent on the value
of L, which is proportional to the duration of the blackout
period, and is implying the possibility that L will have
little impact on EPF.

Also, from the analysis in Appendix B, the upper
bound is given as:








 














2

)(
)(

4

3
}{

4

1

}{)(
4

3

)12(2
1

22 BLn
BLnkE

kEBLn
nBnBn

EPF
n

 (13)

where E{k}, E{k2}, , and  can be estimated using the
geometric distribution as indicated for (10) and (11).

5.2.2. EPF vs. Blackout Duration

In order to investigate EPF versus the blackout duration,
simulations were undertaken with B = 128, n = 8 and
varying L. The duration of the blackout period in bits is
given by LB. During the simulations, bit errors were gen-
erated in the communications channel: the resulting er-
rors generated at the receiver output were counted and an
average was determined over all bit error events in order
to determine the EPF. The resulting relationship is pre-
sented in Figure 10.

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12

L

E
P

F

Lower Bound Simulation Upper Bound

Fig. 10. EPF vs. size of blackout period for B = 128, n = 8.

The simulation results from Figure 10 illustrate that
the EPF trends upward slowly when the size of the black-
out period increases. There is a small difference between
the simulated results and the lower bound on EPF and
this difference can be explained as the result of the effects
of false synchronizations, which can occur when bit errors
erroneously result in a sync pattern appearing at the re-
ceiver. During a false synchronization event, much of a
sync cycle will be unsynchronized between the transmit-
ter and receiver. Since the size of a sync cycle is depend-
ent on L, larger L implies greater EPF when a false syn-
chronization occurs at the receiver. Hence, as L increases
in the graph, the effects of false synchronizations become
more evident and EPF increases. False synchronizations
are not incorporated into the lower bound on EPF given
in (12) and, hence, the lower bound is not dependent on
L. The effect of false synchronizations is, however, incor-
porated into the upper bound of (13). Because the effect
caused by false synchronizations is very difficult to
bound tightly, as L increases the upper bound becomes
very poor. For this reason, it is not plotted for L  7.

5.2.3. EPF vs. Sync Pattern Sizes

We have also run simulations to investigate EPF versus
different values of sync pattern size, n. For values of B =
128, the results of EPF versus n for conventional SCFB (L
= 1) are shown in Figure 11 and for PSCFB with L = 10,
the results are shown in Figure 12.

The simulation results illustrate that, for L = 10, the
EPF increases significantly when the size of the sync pat-
tern decreases. For L = 1, this increase is much less pro-

10 SUBMISSION TO IEEE TRANSACTIONS ON COMPUTERS

nounced. For small n, since the scanning period is much
smaller, a false sync pattern may take several sync cycles
to clear up as the effects of a loss of sync may spill over
from the scanning period into the next sync pattern and
blackout period. Hence, EPF is expected to be higher for
smaller n. Conventional SCFB mode, where L = 1, has a
shorter blackout period than PSCFB with L = 10. As a re-
sult, for small n, resynchronization is quicker for smaller
L and EPF for conventional SCFB is not as high as for
PSCFB mode with large L. As n increases, for values of n
 8, EPF for conventional SCFB and PSCFB are compara-
ble and close to the lower bound. For small values of n,
the upper bound, which considers the effect of false syn-
chronizations, is very loose (and not plotted for small n),
while as n increases, the upper bound becomes tighter for
both L = 1 and L = 10.

0

20

40

60

80

100

120

140

4 5 6 7 8 9 10 11 12

n

E
P

F

Lower Bound Simulation Upper Bound

Fig. 11. EPF vs. sync pattern size for B = 128, L = 1.

0

50

100

150

200

250

300

4 5 6 7 8 9 10 11 12

n

E
P

F

Lower Bound Simulation Upper Bound

Fig. 12. EPF vs. sync pattern size for B = 128, L = 10.

6 SECURITY OF PSCFB
PSCFB mode is a hybrid mode constructed from the com-
bination of two block cipher modes accepted as secure
methods of encryption: counter mode and CFB mode.
Formal security proofs exist for both counter mode [14]
and CFB mode [12]. However, to date, no formal security
proof has been given for SCFB mode.

Various attempts at designing efficient dedicated self-
synchronizing stream ciphers (rather than applying CFB
mode to block ciphers) have been shown to be susceptible
to chosen ciphertext attacks which exploit weaknesses in

the cipher structures [15][16]. For CFB, SCFB, and PSCFB
block cipher modes, a chosen ciphertext attack is similar
to a chosen plaintext attack on the block cipher in elec-
tronic codebook mode. Since immunity to chosen plain-
text attack is a security requirement for block ciphers,
attacks similar to those in [15][16] will not be applicable to
well-designed block ciphers used in PSCFB mode.

In [3], it is argued that conventional SCFB based on
OFB, has a very low probability of significant repeated
keystream for a block size of B = 128 bits. The security of a
PSCFB application will be compromised if a counter
value occurs that is identical to a counter value used dur-
ing a previous sync cycle, thereby resulting in a repitition
of a significant number of keystream bits. In this circum-
stance, the keystream bits, in fact, will repeat until the
next sync pattern is detected and a new counter IV is
loaded. Since such periods of significant repeated key-
stream compromise the security of the system, we will
investigate the probability that a portion of a sync cycle
contains repeated keystream as the result of reused
counter values.

Consider first the probability that the size of a sync
cycle exceeds  bits. Assuming that the size of the scan-
ning period, k, is approximated by the geometric distribu-
tion, the probability that the sync cycle size C is greater
than  is given by







Nk

kPNkP)()((14)

where P(k) represents the probability of a scanning period
of size k and N =   (n + LB) since C = n + LB+ k. For the
geometric distribution, P(k) = (1  1/2n)k/2n, resulting in

nN
N

n
eNkP 2/

2

1
1)(







  . (15)

Hence, for P(k  N) < ~e40, N > 402n and C > n + LB +
402n. For n = 8, L = 10, and B = 128, the probability that
sync cycle size C > 11528 is less than 4.251018.

Counter values used in two sync cycles will overlap
when the IV used to initialize counter mode of one cycle
is equal to one of the counter values of the other cycle.
Assuming that the counter increments its value for every
execution of the block cipher, two cases can result in over-
lapping keystreams for different sync cycles: (1) the
counter starts with an IV for the current sync cycle which
increments up to the value of a previous sync cycle's IV
and (2) the IV of the current sync cycle is equal to a
counter value from a previous sync cycle. Hence, an over-
lap of keystream will not occur if a sync cycle starts with
an IV that is not within about Cmax/B values of the start of
a previous sync cycle, where Cmax is the size of the largest
possible sync cycle (i.e., sync cycles larger than Cmax have
negligible probability of occuring). As discussed above,
we can assume that Cmax = 11528 for n = 8, L = 10, and B =
128 since the probability of a sync cycle size greater than
this is very small.

We can now determine a lower bound, , on the prob-
ability that t sync cycles do not have any overlap of key-
streams (caused by repeated counter values) as

HEYS ET AL.: PIPELINED STATISTICAL CIPHER FEEDBACK: A NEW MODE FOR HIGH SPEED SELF-SYNCHRONIZING STREAM CIPHERS 11






 





B

t

i

BCi

2

)/2(
1 max

1

0
 (16)

which is derived by considering the selection from 1 up to
t random sync cycle IVs which are not within a window
of 2Cmax/B values centred around previous selections of
IVs. For large t, the lower bound can be further simpli-
fied, using (1  x)  ex for x << 1 and letting exp{z} repre-
sent ez, as follows:

 (17)  
 .)2/(exp

)2/()2(exp

2
max

max

1

0

B

B
t

i

BtC

BCi









Let  represent an upper bound on the probability
that, given t sync cycles, there is an overlap between 2 or
more keystream sequences. Hence,  = 1   and

 (18))2/(2
max

BBtC 

where, again, we have used (1  x)  ex for x << 1, which
is validly applied since Cmaxt2 <<B2B.

Consider now having M bits of ciphertext data avail-
able. This data will have about t = M/(n + LB+ E{k}) =
M/(n + LB+ 2n  1) sync cycles based on the assumption
that k follows the geometric distribution. Hence, for M = 1
terabit, n = 8, L = 10, and B = 128, t = 6.48108 and an up-
per bound on the probability of overlapping keystreams
can be computed to be  = 1.111019 based on the as-
sumption that no sync cycle size exceeds Cmax = 11528,
which is expected to be the case with a probability of
about 1  (1  4.251018)t  2.75109. It should be noted
that the analysis undertaken to derive  is very conserva-
tive and is not necessarily a tight upper bound.

In conclusion, for a large amount of data, we can ex-
pect there to be very small probability of any significant
amount of repeated keystream due to the resynchroniza-
tion process of PSCFB mode with reasonable size parame-
ters (eg. using the AES block size of 128 bits). Although
PSCFB is a mode built from counter mode and cipher
feedback mode for which formal security proofs exist, a
formal proof of PSCFB security using methods such as
those in [14] is not the focus of this work and we leave
this as an open problem.

7 COMPARISON TO OTHER CIPHER MODES
The relative merits of PSCFB when compared to other
conventional block cipher modes are illustrated in Table
2. The variable Tmax represents the potential throughput of
the block cipher achieved by a pipelined implementation
of L = 10 stages. It is assumed that the stages of each pipe-
line architecture have similar critical path delay, resulting
in the same clock period, tclk, for any mode based on a
pipelined implementation. Hence, in the table, for a mode
(such as counter or PSCFB) that can be implemented us-
ing a pipeline architecture, the maximum throughput
achievable is given by Tmax in (1) and for a mode (such as
OFB, CFB, or SCFB) that can only be implemented using
an iterative architecture, the maximum throughput is
given as Tmax/L = 0.1 Tmax.

In the table, the encryption efficiency  represents the
fraction of ciphertext bits produced by the mode, relative

to the output bits produced by the block cipher operation.
For OFB, CFB, and SCFB modes, the efficiency also repre-
sents the maximum throughput at which the cipher mode
can be implemented relative to an iterative implementa-
tion of the block cipher. For CFB, the efficiency is deter-
mined based on the assumption that full synchronization
is possible (that is, 1 ciphertext bit is fed back for every
block cipher operation), resulting in an efficiency of 1/B,
relative to an iterative implementation. For SCFB, the effi-
ciency is determined such that the queue sizes can be M =
2B bits with no queue overflow. For counter and PSCFB
modes, the efficiency represents the maximum through-
put relative to a pipelined implementation.

For OFB and counter modes, EPF = 1 but these modes
cannot recover from a synchronization loss. For CFB,
SCFB, and PSCFB, the EPF and SRD are influenced by the
block size. For CFB, EPF = B/2 + 1 and SRD = B, while for
SCFB and PSCFB, these values are determined by simula-
tion using the parameter values of B = 128, n = 8 (with
sync pattern “10000000”), and, for PSCFB, L = 10.

Mode Encryption

Efficiency
()

Pipe-
line?

Throughput
(relative to

Tmax)

EPF SRD

OFB 100% No 10% 1 

Counter 100% Yes 100% 1 

CFB 0.78% No 0.078% 65 128

SCFB 50% No 5% 73 409
PSCFB 91% Yes 91% 85 2106

Tab. 2. Comparision of modes (B = 128,
L = 10 for pipelined modes).

From the table, many conclusions can be drawn. For
example, while counter mode is capable of the highest
throughput (marginally more than PSCFB), equivalent to
the speeds achieved by a pipelined implementation, it is
not self-synchronizing. Further, while CFB is able to re-
synchonize very quickly (in 128 bits), only one ciphertext
bit is produced for every block cipher operation, resulting
in an efficiency of only .78% and an extremely low
throughput. Conventional SCFB can have its encryption
efficiency increased by allowing for larger queue sizes
and increasing n. However, because it cannot be effec-
tively pipelined, its throughput cannot exceed 10% of
Tmax.

It is evident from the table that PSCFB provides an ex-
cellent tradeoff of properties: it has modest error propaga-
tion, is capable of resynchronizing, and can achieve very
high throughputs.

8 CONCLUSION
In this paper, we have proposed a novel, highly efficient,
self-synchronizing block cipher mode, targeted to high
speed physical layer data streaming. The mode, referred
to as pipelined statistical cipher feedback or PSCFB, com-
bines cipher feedback and counter mode in a manner that
enables an effective pipelined implementation of the
block cipher. Implementations of the mode are able to
achieve very high speeds, approaching pipelined imple-
mentations of counter mode, while allowing self synchro-

12 SUBMISSION TO IEEE TRANSACTIONS ON COMPUTERS

nization, a highly desirable feature of stream ciphers tar-
geted to channels susceptible to synchronization losses
due to causes such as timing errors. Implementations of
PSCFB mode can be achieved with small queuing struc-
tures and low delay from plaintext reception to ciphertext
transmission. Further, it is shown that the effect of errors,
as measured by the error propagation factor, is modest
and, although synchronization recovery delay is in-
creased with more pipeline stages, this can be considered
an acceptable trade-off to achieve the significantly higher
throughput implied by more pipeline stages.

APPENDIX A
The pseudocode representation of PSCFB encryption for a
B-bit block cipher with L pipeline stages is given in Fig-
ures A1 to A4, where Pi and Ci represent the i-th plaintext
and ciphertext bits, respectively. Variable X0…XB1 repre-
sents the input to the block cipher (i.e., the counter value)
and is initialized to a value known to the encryption and
decryption systems; variable Y0…YB1 represents the out-
put of the block cipher, that is, the generated keystream.
The variable W0…Wn1 represents the window of n bits
that is currently being compared to the sync pattern,
which is set to “10…00”.

Fig. A1. Main line of PSCFB encryption pseudo-code.

Fig. A2. Pseudo-code to process a keystream bit.

The variable pipeline_in represents the input to the first

stage of the block cipher pipeline. Initially, after the value
of X0…XB1 is set to the pipeline input, the pipeline is
primed with the execution of L1 steps. The execution of
a pipeline step moves the data from one stage to the next
stage in the pipeline. One pass of the outer “do” loop is
used to execute one step of the pipeline and retrieve the
block cipher output from the variable pipeline_out.

Function “increment” represents an incrementing of
the counter value. Variable Z0…ZB1 is used to collect the
IV bits and flags collecting_IV, blackout_on, and
new_scanning_period are used to control the collecting of
the IV, the disabling of sync pattern scanning, and the
reinitialization of the counter mode, respectively. The flag
insert_IV is used to indicate that a new IV is available for
the pipeline input. Variables i, j, and m are used as indices
to keep track of the absolute bit number of the plain-
text/ciphertext, the number of the bit within the block
produced by the block cipher, and the number of the bit
within the blackout period, respectively.

Fig. A3.Pseudo-code to process the blackout period.

process_blackout:
 m  m + 1
 if collecting_IV then
 Zm-1  Ci
 if m = B then
 collecting_IV  false
 insert_IV  true
 if m = LB then
 blackout_on  false
 new_scanning_period  true
 W0…Wn-1  0…0

collecting_IV  false
blackout_on  false
W0…Wn-1  0…0
X0…XB-1  initial value
pipeline_in  X0…XB-1
do L1 times
 execute 1 step of pipeline
 X0…XB-1  increment(X0…XB-1)
 pipeline_in  X0…XB-1
i  0
do
 execute 1 step of pipeline
 Y0…YB-1  pipeline_out
 j  0
 new_scanning_period  false
 insert_IV  false
 do
 execute process_keystream_bit
 while j < B and not new_scanning_period
 execute update_counter
while true

update_counter:
 if insert_IV then
 X0…XB-1  Z0…ZB-1
 else
 X0…XB-1  increment(X0…XB-1)
 pipeline_in  X0…XB-1

Fig. A4.Pseudo-code to update counter input to block cipher.

The pseudo-code does not reflect some of the imple-

mentation considerations discussed in Section 4. Notably,
the queuing processes are not illustrated. Rather, it is as-
sumed that plaintext data is always available during each
pass of the outer “do” loop so that the generated key-
stream can be immediately used to create ciphertext. In
practice, as discussed in Section 4, when the number of
bits in the plaintext queue is below a threshold, the pipe-
line system must be stalled until enough plaintext bits are
available to be XORed with the keystream bits.

process_keystream_bit:
 Ci  Pi  Yj
 if blackout_on then
 execute process_blackout
 else
 W0…Wn-2Wn-1  W1… Wn-1Ci
 if W0…Wn-1 = 10…00 then
 collecting_IV  true
 blackout_on  true
 m  0
 i  i + 1
 j  j + 1

APPENDIX B – BOUNDS ON SRD AND EPF
In this appendix, we develop lower and upper bounds on
SRD and EPF based on the format of "10…00" for the sync
pattern and the geometric distribution for the size of the
scanning period.

HEYS ET AL.: PIPELINED STATISTICAL CIPHER FEEDBACK: A NEW MODE FOR HIGH SPEED SELF-SYNCHRONIZING STREAM CIPHERS 13

B.1 Lower Bound on SRD
For PSCFB mode, when a bit slip occurs in a sync cycle of
size n + LB + k, the lower bound on the synchronization
recovery delay at the receiver is given by

 



 


 BLn

kBLn
kSRD

2
)(. (19)

This is derived by considering that, for a given value of k,
on average, a slip occurs halfway through a synchroniza-
tion cycle and following the end of the synchronization
cycle, it will take at least another sync pattern and black-
out period before synchronization is recovered. The ex-
pression of (19) is a lower bound, as it is possible that a bit
slip will cause a false synchronization at the receiver that
results in a longer period to resynchronize.

To determine the overall SRD, we must average over
all possible sync cycle sizes, as in

 (20) 





0

*)()(
k

kSRDkPSRD

where P*(k) represents the probability that a bit slip oc-
curs in a sync cycle of size n + LB + k. As discussed in [3],
probability P*(k) can be determined from

)(
}{

)(* kP
kEBLn

kBLn
kP




 (21)

where P(k) represents the probability that a selected sync
cycle is of size n + LB + k.

Combining (19) to (21) results in an expression for a
lower bound on SRD as given in (10). As can be seen in
the figures presented in Section 5, the lower bound gives
results that are very close to the simulation results.

B.2 Upper Bound on SRD
Consider now an upper bound on SRD similar to the
analysis in [3]. We consider two regions in which a slip
may occur within a cycle of size n + LB + k. If a slip oc-
curs such that the first bit following the slip is not within
n + LB bits of the sync pattern for the next cycle, then
synchronization is lost until the valid sync pattern is de-
tected for the next cycle and the subsequent blackout pe-
riod completes. The probabililty that a slip occurs in this
region is k/(n + LB + k). When a slip occurs in the last n +
LB bits of the sync cycle, one must consider the possibil-
ity that the resulting bit sequence at the receiver could
result in a false synchronization. The probability of a slip
occuring in this region is given by (n + LB)/(n + LB + k)
and the likelihood that the slip results in a false sync is
upper bounded by n/2n. Subsequently, false synchroniza-
tions may occur at the receiver if the receiver misinterpre-
tes a sync pattern appearing within the blackout period to
be a proper sync pattern. This may result in loss of sync
for several sync cycles. However, we can say with cer-
tainty that synchronization must be regained when a sync
cycle is encountered for which k  n + LB. (In reality, sync
is likely to be regained much more quickly than this.)

As a result of these considerations, we can derive an
upper bound on SRD to be

)(
2

)(
2

3

2
)(2

*

0

kP
kBLn

BLnn
BLn

kBLn

kk
BLnSRD

n

k














 













 







(22)

which can be simplified to (11). Note that  = (1 
1/2n)(n+LB) is an upper bound on the expected number of
cycles until resync is achieved, determined by conserva-
tively ensuring k  n + LB for resynchronization. Com-
paring the upper bound of SRD to simulation results from
Section 5, it is obvious that the upper bound improves
(i.e., gets tighter) for decreasing L and increasing n.

B.3 Lower Bound on EPF
In general, for PSCFB mode, errors at the receiver can be
considered straighforwardly for two cases as follows. In
the first case, consider the occurrence of an error in the
sync pattern or IV block. For a subsequent scanning pe-
riod of k bits in size, the resulting EPF satisfies

  BLnkkEPF IVsync 
2

1
1)(/  . (23)

This is derived by considering that one bit in error in the
channel in the sync pattern or IV block portion of the sync
cycle will result directly in one bit in error after decryp-
tion, followed by a loss of synchronization (during which
half the bits are in error) from the start of the scanning
period, until the end of the following blackout period for
a total of k + n + LB bits. However, (23) is in fact a lower
bound because it is possible that, when a receiver loses
synchronization, a false resynchronization occurs (eg. a
legitimate sync pattern is lost due to a bit error and a se-
quence during the legitimate blackout period is misinter-
preted to be a sync pattern) and, as a result, it takes
longer than implied above to resynchronize.

In the second case, consider the occurrence of a bit er-
ror in the channel during the blackout (excluding the IV)
or scanning periods. The resulting EPF satisfies

 EPFBO/CTR  1.
 (24)

The equality of this expression corresponds to a bit error
which occurs in the blackout period (but not in the IV) or
the scanning period and causes one bit error at the re-
ceiver, such that it does not cause a false sync pattern to
occur in the ciphertext. The equality does not account for
the circumstance that a bit error causes a false sync pat-
tern resulting in the receiver improperly assuming a re-
synchronization, which would result in EPF above the
lower bound in (24).

Overall, weighting each case by its probability of oc-
currence, the lower bound on EPF is given by





















CTRBO

IVsync

EPF
BLnk

kBL

k
k

EPF
BLnk

Bn
kPEPF

/

/
*

)1(

)(
0

)(

 (25)

where P*(k) represents the probability that a bit error oc-
curs in a sync cycle of size k. Substituting (23) and (24)
into (25) results in the lower bound on EPF being easily
calculated as given in (12).

14 SUBMISSION TO IEEE TRANSACTIONS ON COMPUTERS

As can be seen from the figures in Section 5, for large
n, the lower bound is strongly similar to EPF as deter-
mined through simulations.

B.4 Upper Bound on EPF
Following the analysis in [3], the upper bound on EPF is
developed considering the effects of errors for 4 different
scenarios, identified in Table B.1.

The probability that a bit error belongs to case 1 is

kBLn

BLn
kP




)(1 (26)

and the resulting expected number of bit errors is

2
1)(1

kBLn
k


 . (27)

Case Scenario Effect
1 Error in n+B bits of sync + IV. Sync lost for entire cycle.
2 Error in blackout period (mi-

nus IV) or scanning period
such that no sync pattern is
falsely generated.

One bit error in recovered
plaintext.

3 Error in scanning period such
that false sync generated in
first k  (n + LB) bits of scan-
ning period.

i/2 bit errors generated,
where i is number of bits
between end of false black-
out period and end of next
legitimate blackout period.

4 Error in scanning period such
that false sync generated in
last n + LB bits of scanning
period.

Next sync pattern will be
missed because it is part of
false blackout causing ½
bits in error until next de-
tected sync + blackout.

Tab. B.1. Effects of different error scenarios

For case 2, the expected number of bit errors is 2(k) =
1. Since the probabilty of this case is quite high, for sim-
plicity we assume that the probability that case 2 occurs is
bounded by P2 (k) < 1.

In order to determine the probabilities for cases 3 and
4, we make use of the upper bound on the probability
that a bit error results in a sequence of bits identical to the
sync pattern, given by n/(2n  1). Hence, case 3 occurs
with a probability upper bounded by

kBLn

kn
kP

n 





12
)(3 . (28)

The expected number of bit errors caused in case 3 is up-
per bounded as in

4
)(

4

3
)(3

k
BLnk  (29)

where the bound arises from the bits in the remainder of
the synchronization cycle and the bits in the sync pattern
and blackout period associated with the next sync cycle.

The upper bound on the probability of case 4 occurs is

kBLn

BLnn
kP

n 






12

)(4 . (30)

For this scenario, we assume that at least the next sync
pattern is missed and it could be several sync cycles to
recover synchronization. Hence, the expected number of
errors for case 4 can be large and is upper bounded by

24

)(3
)(4

 





BLn
k (31)

where  and  are defined as for the bounds on SRD. The
first term is an upper bound on the expected number of

bit errors between the end of the false blackout period
and the end of the blackout period of the next sync cycle.

An estimate of the upper bound on the error propaga-
tion factor can be determined by noting that

 (32))()()(
4

1 0

* kkPkPEPF ii

i k








resulting in (13). The upper bound on EPF is found to be
best for small L and for large n. This can be observed in
the results presented in Section 5.

ACKNOWLEDGMENT

This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada.

REFERENCES

[1] National Institute of Standards and Technology, Advanced En-
cryption Standard, Federal Information Processing Standards
(FIPS) Publication 197, Nov. 2001.

[2] O. Jung and C. Ruland, “Encryption with statistical self-synchronization
in synchronous broadband networks”, Proceedings of Cryptographic
Hardware and Embedded Systems - CHES '99, Lecture Notes in Computer
Science, vol. 1717, Springer, pp. 340-352, 1999.

[3] H.M. Heys, “Analysis of the Statistical Cipher Feedback Mode
of Block Ciphers”, IEEE Tranactions on Computer Engineering,
vol. 52, no. 1, Jan. 2003.

[4] U.M. Maurer, “New Approaches to the Design of Self-
Synchronizing Strean Ciphers”, Advances in Cryptology - Pro-
ceedings of Eurocrypt ’91, Lecture Notes in Computer Science,
vol. 547, Springer, pp. 458-471, 1991.

[5] J. Daemen and P. Kitsos, “The Self-Synchronizing Stream Ci-
pher MOUSTIQUE”, New Stream Cipher Designs, Lecture Notes
in Computer Science, vol. 4986, Springer, pp. 210-223, 2008.

[6] eSTREAM project website: www.ecrypt.eu.org/stream
[7] S. Babbage, C. De Canniere, A. Canteaut, C. Cid, H. Gilbert, T.

Johansson, M. Parker, B. Preneel, V. Rijmen, and M. Robshaw,
“The eSTREAM Portfolio”, available at the eSTREAM project
website: www.ecrypt.eu.org/stream, Apr. 15, 2008.

[8] W. Stallings, Cryptography and Network Security, Pearson Pren-
tice Hall, 4th ed., 2006.

[9] I. Verbauwhede, P. Schaumont, and H. Kuo, “Design and Per-
formance Testing of a 2.29 GB/s Rijndael Processor”, IEEE Jour-
nal of Solid-State Circuits, vol. 38, no. 3, pp. 569-572, Mar. 2003.

[10] A. Hodjat and I. Verbauwhede, “Area-Throughput Trade-offs
for Fully Pipelined 30 to 70 Gbits/s AES Processors”, IEEE
Transactions on Computers, vol. 55, no. 4, pp. 366-372, Apr. 2006.

[11] K. Burda, “Resynchronization Interval of Self-Synchronizing
Modes of Block Ciphers”, International Journal of Computer Sci-
ence and Network Security, vol. 7, no. 10, pp. 8-13, Oct. 2007.

[12] A. Alkassar, A. Geraldy, B. Pfitzmann, and A.-R. Sadeghi, “Op-
timized Self-Synchronizing Mode of Operation”, Fast Software
Encryption (FSE 2001), Lecture Notes in Computer Science, vol.
2355, Springer, pp. 78-91, Apr. 2001.

[13] K. Burda, “Modification of OCFB Mode for Fast Data Links”,
International Journal of Computer Science and Network Security,
vol. 7, no. 12, pp. 228-232, Dec. 2007.

[14] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, “A Concrete
Security Treatment of Symmetric Encryption: Analysis of DES
Modes of Operation”, Proceedings of 38th Annual Symposium on

http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream

HEYS ET AL.: PIPELINED STATISTICAL CIPHER FEEDBACK: A NEW MODE FOR HIGH SPEED SELF-SYNCHRONIZING STREAM CIPHERS 15

Foundations of Computer Science, IEEE, pp. 394-403, 1997.
[15] J. Daemen, J. Lano, and B. Preneel, “Chosen Ciphertext Attack

on SSS”, available at eSTREAM project website:
www.ecrypt.eu.org/stream, 2005.

[16] A. Joux and F. Muller, “Chosen-Ciphertext Attacks Against
MOSQUITO”, Fast Software Encryption - FSE 2006, Lecture
Notes in Computer Science, vol. 4047, Springer, pp. 390-404,
2006.

Howard M. Heys obtained a BESc degree in electrical
engineering in 1984 from the University of Western On-
tario in London, Ontario, Canada, and a PhD degree in
computer engineering in 1994 from Queen’s University,
Kingston, Ontario, Canada. He worked for several years
as a software designer in Ottawa and Toronto. Dr. Heys is
now a professor of electrical and computer engineering at
Memorial University of Newfoundland. His current re-
search interests include cryptography, digital hardware
design, and communication networks.

Liang Zhang obtained a BEng in 2002 from Tianjin Uni-
versity, Tianjin, China. Subsequently, he obtained MASc
and MEng degrees in computer engineering from Memo-
rial University, Newfoundland, Canada. He is currently
working as a hardware design engineer in Avalon Mi-
croelectronics.

http://www.ecrypt.eu.org/stream

	1 Introduction
	2 Background
	2.1 Block Ciphers and Stream Ciphers
	2.2 Classical Block Cipher Modes of Operation
	2.3 Conventional SCFB Mode
	3.1 Pipelined Block Ciphers
	3.2 Applying Pipelining to Conventional SCFB
	3.3 Pipelined SCFB Mode

	4 PSCFB Implementation
	5 Resynchronization Delay and Error Propagation
	5.1 Synchronization Recovery Delay
	5.2 Error Propagation Factor

	6 Security of PSCFB
	7 Comparison to Other Cipher Modes
	8 Conclusion
	Appendix A
	Appendix B – Bounds on SRD and EPF
	B.1 Lower Bound on SRD
	B.2 Upper Bound on SRD
	B.3 Lower Bound on EPF
	B.4 Upper Bound on EPF

