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Pipelined Statistical Cipher Feedback:  
A New Mode for High Speed Self-Synchronizing Stream Encryption 

Howard M. Heys and Liang Zhang 

Abstract — In this paper, we introduce a new block cipher mode of operation targeted to providing high speed hardware-based 
self-synchronizing stream encryption. The proposed mode is a modification of statistical cipher feedback (SCFB) mode and is 
designed to be implemented using pipeline architectures for the block cipher. We refer to the mode as pipelined SCFB mode or 
PSCFB. In this paper, we consider the implementation characteristics and show that PSCFB is able to achieve speeds that are 
very close to pipelined block cipher implementations configured for counter mode. Such speeds are achieved with modest 
latency through the system and a small amount of memory required for the system queues with a provable guarantee of no 
queue overflow. Further, we examine the characteristics of PSCFB mode in response to bit errors and synchronization losses in 
the communication channel. Specifically, we show that the error propagation factor is modest and comparable to conventional 
SCFB and that synchronization recovery delay is reasonable given the expectation that synchronization loss is infrequent. 
Given the high efficiency and good communication characteristics of the mode, it is concluded that PSCFB is an excellent 
choice for high speed network applications requiring stream-oriented encryption with self-synchronizing capabilities. 

Index Terms—Cryptography, Advanced Encryption Standard (AES), block ciphers, mode of operation, stream ciphers, 
synchronization, error propagation.  
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1 INTRODUCTION

In recent years, many modes of operation of block ciphers 
have been proposed. The motivations behind different 
modes vary and the appropriateness of a mode must be 
considered in the context of the targeted application re-
quirements. In this paper, we consider the configuration 
of a block cipher, such as the Advanced Encryption Stan-
dard (AES) [1], intended to provide stream-oriented en-
cryption with the feature of self-synchronization. Self-
synchronization is required in applications where it is 
possible to lose synchronization between the transmitter 
and receiver (eg. through bit slips caused by timing er-
rors). The mode presented in this paper is an extension of 
the concept of statistical self-synchronization introduced 
in [2] and analyzed in [3]. A typical application for the 
mode presented in this paper is stream-oriented physical 
layer communication where high speeds are required and 
where it is possible for timing errors or other network 
faults to lead to synchronization losses. 

2 BACKGROUND 
Symmetric key cryptography is the field encompassing 
encryption techniques where, in a secure communication 
scenario, the same key is used for encryption at the trans-
mitter and decryption at the receiver. Symmetric key 
cryptographic systems may be generally categorized as 
based on either block or stream ciphers. The focus of this 
paper is a mode of operation of a block cipher, resulting 
in a stream cipher configuration. 

2.1 Block Ciphers and Stream Ciphers 
The most common method of encryption in communica-
tion networks involves the use of a block cipher, such as 

AES, which encrypts a block of plaintext bits to produce a 
block of ciphertext bits, based on operations parameter-
ized by a key. Since its adoption as a standard for the U.S. 
government, AES has been widely examined and is con-
sidered to be secure and efficient for a variety of imple-
mentation environments. As a result, AES has become the 
most applied block cipher today and is found in a variety 
of applications ranging from high speed servers to smart-
cards. AES uses a key of 128, 192, or 256 bits to encrypt 
plaintext blocks of 128 bits. 

Stream ciphers encrypt one symbol, typically one bit, 
at a time. This is generally done by XORing a stream of 
plaintext data with a pseudo-random, unpredictable 
stream of bits, referred to as a keystream, to produce the 
ciphertext. At the receiver, decryption is performed by 
XORing the received ciphertext with the exact same key-
stream to reproduce the plaintext stream. This requires 
that the keystream at the receiver is exactly synchronized, 
relative to the ciphertext data, to the keystream at the 
transmitter, so that the plaintext is correctly reproduced 
by the XOR operation at the receiver.  

Resynchronization between the encryption and de-
cryption processes in a communications system using a 
stream cipher may be derived through the physical layer 
communication or be achieved by periodic resynchroniza-
tions through a secondary or higher level channel. How-
ever, using a secondary channel to resynchronize the two 
ends of a communication channel requires significant 
overhead and is difficult in high speed communication 
systems.  

Synchronization solutions which are targeted to the 
physical layer use cipher modes which are referred to as 
self-synchronizing. Despite the fact that the concept of a 
self-synchronizing stream cipher has been a proposed 
methodology for many years (see, for example, [4]), there 
are surprisingly few specific proposals of self-
synchronizing stream cipher algorithms. A recent pro-
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posal [5], submitted to the eSTREAM project [6], suffered 
from security flaws and was not selected for the final 
eSTREAM portfolio of algorithms. The eSTREAM project 
– a recent major research initiative in Europe undertaken 
to develop stream ciphers suitable for use in a variety of 
applications – noted in its final report [7] that the design 
of self-synchronizing stream ciphers is difficult and is a 
very significant open area of research. 

2.2 Classical Block Cipher Modes of Operation 
There are several well-known modes of operation that 
may be applied to block ciphers to produce stream-
oriented encryption, similar to that of stream ciphers. For 
example, output feedback (OFB) mode [8] produces a 
keystream by feeding back the output of the block cipher 
to the input to generate the next block of keystream bits. 
The first keystream block is produced by executing a 
block cipher operation on an initialization vector (IV). 
Although OFB can be relatively efficient by utilizing the 
complete block of bits as keystream bits and doing a bit-
wise XOR on the entire block at once, OFB mode provides 
no inherent mechanism for resynchronization should the 
receiver lose synchronization with the transmitter. As 
well, since the next output block is only produced follow-
ing the complete processing of the current block, it is not 
possible to implement a pipelined structure for the block 
cipher. Hence, the speed achieved by the mode can only 
reach the maximum speed available for an iterative im-
plementation of the block cipher. For example, using 0.18-
µm CMOS technology, AES iterative implementations, 
based on a 128-bit block size, have achieved speeds of 1.6 
Gbps [9]. 

Similar to OFB, counter mode can be used to produce 
a block of keystream to be efficiently applied to encrypt a 
block of bits simultaneously [8]. Counter mode uses a 
counter, such as an LFSR, that increments or updates for 
every block to produce an input for the block cipher. As 
with OFB, an IV is used as the first counter value to pro-
duce a block of keystream. Since the next output does not  
depend on the current output, but a predictable counter 
value, counter mode can be used when the block cipher is 
implemented with a pipeline architecture and, hence, 
counter mode can be used for very high speed applica-
tions. For example, pipelined implementations of AES 
have been able to achieve speeds of over 40 Gbps using 
0.18-µm CMOS technology [10]. As with OFB mode, 
counter mode has no inherent mechanism for resynchro-
nizing. 

To provide automatic resynchronization, it is possible 
to configure a block cipher as a self-synchronizing stream 
cipher. This can be done straightforwardly using cipher 
feedback (CFB) mode [8]. In CFB mode, the input to the 
block cipher is derived by feeding back ciphertext bits. In 
doing so, if synchronization is lost between the transmit-
ter and receiver, both will eventually produce keystream 
based on ciphertext produced at the transmitter and, as a 
result, resynchronization will occur. Although resynchro-
nization is automatic, in order for resynchronization to 
occur for any number of lost bits in the stream, the feed-
back must be done using just one ciphertext bit for every 

block cipher operation. As a result, the efficiency of CFB 
mode is very low, making CFB not suitable for many ap-
plications. For example, for AES with a block size of 128, 
single-bit feedback CFB can only achieve speeds of 1/128 
of an iterative implementation of the cipher. Thus, since a 
pipeline architecture of AES is typically an order of mag-
nitude faster than an iterative implementation, CFB mode 
is 3 orders of magnitude slower than high speed, pipe-
lined AES implementations! 

2.3 Conventional SCFB Mode 
To overcome the speed limitations of CFB, SCFB mode has 
been proposed [2] and analyzed [3]. Further analysis of a 
slightly modified version of SCFB is presented in [11]. 

The original SCFB mode, which we shall refer to as con-
ventional SCFB, is essentially a hybrid of CFB and OFB: the 
cipher operates in OFB mode, while scanning the ciphertext 
for a special sync pattern of n bits in length (typically, n ~ 
8). Since the ciphertext is a pseudo-random sequence of bits, 
the sync pattern will be observed at a statistically random 
point in the ciphertext stream. For a block cipher using 
blocks of size B bits, when the sync pattern is observed, the 
following B bits of ciphertext are used as the initialization 
vector and fed back to the input of the block cipher. Effec-
tively, this means that the block cipher temporarily operates 
in CFB mode before returning to OFB mode, with the B bits 
following the sync pattern used as an initialization vector for 
OFB mode. Since both the transmitter and receiver will ob-
serve the same ciphertext, both will detect the sync pattern 
and will resynchronize by using the same IV block follow-
ing the sync pattern.  
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Fig. 1. Conventional SCFB (using counter mode). 

Figure 1 illustrates the basic method of conventional 
SCFB with E representing the block cipher operation. How-
ever, the system illustrated in Figure 1 replaces OFB mode 
with counter mode (as indicated by the input to the block 
cipher being a counter and there being no feedback from the 
block cipher output to the input). Upon resynchronization, 
the system obtains an IV block from the ciphertext to reload 
the counter value; otherwise the input to the block cipher is 
taken directly to be the counter value, which is incremented 
for every block cipher operation. Such a construction has the 
same basic characteristics of OFB-based SCFB discussed in 
[3]. As we shall see, using counter mode in the SCFB con-
figuration is consistent with the new mode described in this 
paper. Other modes based on statistical self-synchronizing 
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concepts and having properties similar to conventional 
SCFB have also been proposed in [12] and [13].  

Figure 2 illustrates the sequence of ciphertext bits cre-
ated at the transmitter and received at the receiver (as-
suming no errors in the channel). In the figure, time is 
increasing moving to the right. We refer to the scanning 
period as the period following the initialization of the 
counter with the IV from the ciphertext and prior to the 
sync pattern appearance in the ciphertext. The duration in 
bits of the scanning period is represented by random vari-
able k, as it is dependent on the occurrence of the sync 
pattern in the pseudo-random ciphertext. During the 
scanning period, the transmitter (or receiver) scans the 
ciphertext stream for the n bit sync pattern. When the n 
bit sync pattern is observed in the ciphertext, the follow-
ing B bits are used as the IV for the resynchronization of 
the counter mode. During the collection of the IV from 
the ciphertext stream, further scanning for the sync pat-
tern is disabled. Once the IV is collected, counter mode 
restarts with the new IV generating the keystream for the 
block of bits immediately following the IV block and 
scanning for the sync pattern is enabled. Subsequently, 
when the sync pattern is next observed, the process re-
peats. The full duration from one sync pattern to the next 
is referred to as a synchronization cycle. As discussed in 
[3], a typical sync pattern would be n = 8 bits in length 
and be of the form “10000000”. If AES is used as the block 
cipher, the block size would be B = 128. 

 
 
 
 
 
 
 
 
 

 

Fig. 2. Synchronization cycle for conventional SCFB  
using counter mode. 

SCFB mode is analyzed thoroughly in [3]. It is shown 
that the mode has good characteristics such as modest 
error propagation factor (EPF) of about (B+n)/2 for n 5 
and a synchronization recovery delay (SRD) of about 2n 
for large n. Most significantly, it is shown that SCFB can 
be implemented efficiently, approaching throughputs 
close to the throughput of the block cipher implemented 
in a non-pipelined, iterative style. It is shown that to 
achieve the highest throughput, requires buffers of in-
creasing size (and the resulting increased system latency) 
to avoid data loss within the SCFB system. However, it is 
noted that with a buffer size of 2B bits and resulting la-
tency of 2B bit times, SCFB implemented at an efficiency 
of 50% or less (that is, less than half the throughput of the 
block cipher) is guaranteed to have no overflow within 
the system queues. Hence, it is recommended that an im-
plementation of conventional SCFB be constrained to 50% 
of the throughput of the block cipher implemented using 
an iterative architecture in order to ensure that the queue 
sizes in the implementation remain modest and that no 

bits are lost due to queue overflow. 
For many network communication applications, very 

high speeds are required. As a result, if cryptography is to 
be applied at the physical layer in communication net-
works, implementing block ciphers using pipelining 
methods is often preferred, in order to achieve the desired 
speeds. Employing conventional SCFB using OFB mode 
with a pipelined implementation of a block cipher such as 
AES will not allow the mode to reach the potential 
throughput of a pipelined implementation for two rea-
sons: (1) since OFB uses feedback, pipelining is not effec-
tive and (2) when the sync pattern is recognized in the 
ciphertext, the pipeline data would have to be discarded, 
resulting in a delay while the IV block works its way 
through the pipeline stages to become keystream and 
resynchronize the OFB mode. The first issue can be re-
solved by replacing OFB with counter mode (as shown in 
Figure 1), which can be implemented using a pipeline 
architecture. The second issue can not be fixed by simply 
using counter mode and will require an adjustment of the 
definition of SCFB to ensure that a long processing delay 
does not occur at every resynchronization. This is critical 
because resynchronization occurs frequently in SCFB – 
for example, every few hundred bits for n = 8 [3]. 

For these reasons, in this paper, we present a modified 
version of SCFB mode, designed to be compatible with 
pipelined block cipher implementations. We refer to this 
new mode as pipelined SCFB or PSCFB. 

3 PROPOSED NEW MODE: PSCFB  
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Pipelined SCFB mode has been created to allow for effi-
cient utilization of a block cipher implemented using a 
pipeline architecture. PSCFB makes use of counter mode 
configuration of the block cipher and extends the dura-
tion of time during which scanning for a new sync pattern 
in the ciphertext is disabled. 

3.1 Pipelined Block Ciphers 
Block ciphers, in an appropriate mode such as counter 
mode, lend themselves to a pipeline architecture. A ci-
pher round typically consists of nonlinear substitutions 
(in AES, these are called S-boxes), linear transformations 
(in AES, this involves the XOR of subsets of bits and is 
performed through the use of the ShiftRow and MixCol-
umn operations), and key mixing (typically, as in AES, 
the XOR of key bits with the data bits). As part of the 
process, round keys must be derived from the original 
cipher key and applied at the appropriate round. It is 
straightforward to place registers between rounds and 
subsequently create a pipeline structure with each stage 
of the pipeline corresponding to a round1. The resulting 
L-stage pipeline structure for a general block cipher is 
illustrated in Figure 3, where L is the number of rounds in 
the cipher. For example, for AES, L = 10 for a basic pipe-
lined implementation2 with a 128-bit block size and a 128-
 

1 Equating pipeline stages to cipher rounds is sometimes referred to as 
outer round pipelining. Inner round pipelining is also possible [10], 
which places pipeline registers also within the round of a cipher, thereby 
increasing the number of stages and increasing the cipher throughput. 

2 Note that some implementations of AES, such as [10], may also use a 
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bit key size. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Pipeline architecture of a block cipher. 

It is well known that a structure such as that of Figure 
3 could be used to implement a block cipher configured 
for counter mode, since the input to counter mode is not 
dependent on the previous output block. Hence, consecu-
tive pipeline stages can be used to operate on consecutive 
blocks. The throughput of the system is given by 

    Tmax = B/tclk bps         (1) 

where tclk represents the period of the clock used to drive 
the pipeline and tclk can be as small as the critical path 
delay through the pipeline stages. 

3.2 Applying Pipelining to Conventional SCFB 
Consider the behaviour of a conventional SCFB system 
using counter mode as shown in Figure 1 based on the 
pipeline architecture of Figure 3. Upon the recognition of 
a sync pattern in the ciphertext, the next B bits of cipher-
text will be used as the IV which is used to set a new 
counter starting value for the next scanning period. Dur-
ing the IV collection, sync pattern scanning is disabled. In 
conventional SCFB using a pipeline architecture, in order 
for the IV to produce a new block of ciphertext to follow 
the IV block, the system would have to load the IV and 
wait for all L stages to complete for the next B bits of key-
stream and resulting ciphertext to be produced. The data 
residing in the pipeline registers of Figure 3, would be 
discarded and the system would need to absorb the delay 
of Ltclk required to produce the first block following the 
IV block. The remaining blocks produced during the 
scanning period could be produced at a rate of one every 
tclk since the pipeline is primed. The long delay during 
resynchronization will require large queues to absorb the 
large variations in the production of a keystream block 

and will result in it being necessary to run the mode at a 
rate significantly less than the full pipeline rate, resulting 
in a throughput much less than Tmax in (1).  
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Assume that B = 128 bits and consider that, for n = 8 
and sync pattern “10000000”, the average length of the 
scanning period is 2n–n = 248 bits [3]. Since the scanning 
period is followed by 8 bits of the sync pattern, assuming, 
for simplicity, that the scanning period length is exactly 
the average, a full sync cycle would consist of 248 + 8 = 
256 bits followed by 128 bits of IV and it would take Ltclk 
+ 2tclk to produce the 3 blocks (384 bits) of the full sync 
cycle (that is, 2 blocks for the scanning period plus the 
sync pattern, followed by one block for the IV). As a re-
sult, the throughput achieved will be  

                  
clk

SCFB tL

B
T  bps.              (2) 

)2(

3




For an AES pipelined implementation, with L = 10, TSCFB = 
32/tclk. This means that, given the specific assumptions of 
(2), conventional SCFB using counter mode with a pipe-
lined implementation has a throughput which is 
TSCFB/Tmax = 25% of the throughput of a basic pipelined 
counter mode (assuming that the critical path of each 
pipeline implementation is similar and therefore the 
value of tclk can be considered to be the same in (1) and 
(2)). The assumptions of (2) represent an idealized, de-
terministic view and, in practice, the duration of the 
scanning period will vary: some scanning periods will be 
longer than 248, which will improve the throughput be-
yond (2); some periods will be shorter, which will dimin-
ish the throughput below (2). Hence, the expression in (2) 
is simply a rough guideline for the expected throughput 
and is only useful to gain perspective on the drawbacks of 
conventional SCFB using a pipelined implementation of 
counter mode. 

3.3 Pipelined SCFB Mode 
In order to mitigate the effect of the discarded pipeline 
data and the resulting limitations on the SCFB through-
put, we propose a new block cipher mode: pipelined 
SCFB  or PSCFB mode. PSCFB adds to the synchroniza-
tion cycle, a number of blocks following the IV block dur-
ing which the counter mode continues to operate without 
resynchronization and with the sync pattern scanning still 
disabled. The entire period during which sync pattern 
scanning is disabled is referred to as the blackout period. 
The resulting synchronization cycle is illustrated in Fig-
ure 4. As shown in the diagram, there are L blocks (total-
ing LB bits) during which sync scanning is disabled with 
the first B bits of the blackout period corresponding to the 
IV collection phase. 

The value of L is selected to correspond to the number 
of pipeline stages in the counter mode implementation of 
the block cipher. Thus the blackout period allows the 
pipeline of a block cipher to produce L1 blocks, one 
block every tclk, until the IV block works its way through 
all stages of the pipeline. Hence, it is not necessary to dis-
card the blocks in the process of being produced in 
counter mode (i.e., held within the pipeline stages) be-
cause a resynchronization occurs. This enables an imple-
mentation of the mode to operate very efficiently. Con-

                                                                                                       
pipeline stage for the first key mixing operation, resulting in L = 11. 
However, in this paper, we assume that the first key mixing operation 
can be incorporated into the first pipeline stage, resulting in L = 10, with 
the penalty of a slightly higher critical path delay in the first pipeline 
stage. 
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sider, for example, n = 8 and a scanning period of exactly 
248 bits, followed by 8 bits of the sync pattern. Since the 
blackout period length in blocks corresponds to the num-
ber of pipeline stages, one block of keystream and, hence, 
B bits of ciphertext is produced every tclk as is desired to 
achieve the full capability of a pipelined block cipher. 
That is, if all scanning periods were exactly the average 
length, PSCFB mode theoretically achieves the full pipe-
lined throughput Tmax as defined in (1). 
  
 

 
 
 
 
 
 
 
 

Fig. 4. Synchronization cycle for PSCFB. 

In practice, it is not possible to achieve Tmax. Since not 
all blocks produced by the block cipher produce B bits of 
keystream (that is, partial blocks can result when resyn-
chronization occurs), the practical maximum throughput 
is less than Tmax. Generally, partial blocks from the output 
of the block cipher are used when the last bit of the black-
out period does not align with the last bit of a block gen-
erated by the block cipher. In such cases, the last block 
cipher operation during the blackout period will be used 
to produce fewer than B keystream bits. Subsequently, 
the first B bits in the scanning period use keystream based 
on the new counter value, determined from the IV block 
in the ciphertext stream. 

Consider, for example, the inefficient scenario that oc-
curs when the first n bits following a blackout period are 
the sync pattern (that is, the scanning period length is k = 
0) and, hence, a sync cycle consists of L full blocks (one IV 
and L1 remaining blackout blocks) and one partial block 
consisting of n bits. As a result, in L+1 time periods of tclk, 
LB + n bits of keystream are produced. If this was true for 
every sync cycle, the resulting throughput of this ineffi-
cient scenario would be  

clk
PSCFB tL

nBL
T





)1(*  bps                (3) 

resulting in a encryption efficiency, , of 

              
1

/
/* 




L

BnL
TT maxPSCFB .               (4) 

The encryption efficency  represents the number of ci-
phertext bits that can be produced in PSCFB mode rela-
tive to the number of output bits produced by the block 
cipher (which is equivalent to the number of bits pro-
duced in a pipelined implementation of basic counter 
mode). For n = 8, L = 10, and B = 128,  = 91.477%. Note 
that, in deriving (4), we have assumed that the critical 
path timing of PSCFB and a pipelined counter mode im-
plementation are similar and, hence, tclk is the same value 
in both (1) and (3). 

It can be shown that, for the normal operation of 
PSCFB (i.e., not just the special case leading to (4)),  can 

be lower bounded by L/(L+1). This implies that for R bits 
produced at the block cipher output, at least RL/(L+1) 
ciphertext bits of PSCFB mode are produced. In practice, 
this is lower bound on encryption efficiency because 
many sync cycles will lead to more efficient production of 
keystream than the inefficient scenario described above – 
as high as 100% encryption efficiency when the blackout 
period ends on block cipher boundary and no partial 
block is used as keystream. As we shall discuss in Section 
4, when considering the implementation of PSCFB, 
L/(L+1) will also represent a maximum on the relative 
throughput of an actual implementation of PSCFB, in the 
sense that [L/(L+1)]Tmax is the maximum rate at which 
data may be encrypted using PSCFB to ensure that no 
queue overflow occurs in the system queues.  
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Note that the special case of a purely iterative imple-
mentation of the block cipher used in conventional SCFB 
mode corresponds to the scenario of L = 1 and the result-
ing encryption efficiency from (4) for n = 8 and B = 128 is 
 = 53.125%. This is consistent with the requirement dis-
cussed in [3] to run the SCFB system at 50% or less of the 
block cipher throughput so that the queues associated 
with the implementation will not overflow. 

The operation of PSCFB is described in detail using 
pseudo-code in Appendix A.  

4 PSCFB IMPLEMENTATION 
When assessing the value of PSCFB mode, it is critical to 
consider implementation issues such as queuing require-
ments, system latency, and practically achievable 
throughput. A block diagram of PSCFB for encryption is 
given in Figure 5. The diagram illustrates the pipelined 
nature of the block cipher and shows that queues are re-
quired on both the input (plaintext) and output (cipher-
text) sides of the system. Each element in a queue stores 
one bit of data. We refer to these queues as the plaintext 
queue and the ciphertext queue. These queues are needed 
to ensure that, during periods of resynchronization, data 
can be buffered temporarily prior to XORing with key-
stream to manage scenarios which require partial block 
cipher outputs (that is, cases where fewer than the full B 
bits of a block cipher output are required for the key-
stream due to the resynchronization boundary). Since a 
large proportion of a sync cycle consists of the blackout 
period (see Figure 4), when the sync scanning is disabled, 
with an appropriate processing rate and large enough 
queue, buffer overflow can be avoided. Note that a 
PSCFB decryption implementation is similar except that 
bits enter the system at the ciphertext queue and leave 
from the plaintext queue and sync scanning is performed 
on the arriving ciphertext bits. 

In order to maximize the throughput of the PSCFB 
system, input and output are handled in blocks of D bits 
as shown in Figure 5. It is assumed the data arrives at the 
plaintext queue and leaves the ciphertext queue at a rate 
of D/tclk bps, where tclk represents the system clock period. 
Similarly, data is transferred out of the plaintext queue to 
the ciphertext queue at a rate of typically B/tclk bps during 
the scanning period. However, when the system is resyn-
chronizing, typically the transition from the blackout pe-
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riod to the reinitialized counter mode for the scanning 
period does not fall on a block boundary and, in this case, 
d bits, where d < B, are transferred from the plaintext to 
the ciphertext queue during one period of the clock. The 
system clock is used to drive the pipeline architecture as 
well: one period of the clock, tclk, represents the time re-
quired per pipeline stage. The value of tclk must be larger 
than the critical path delay in the queuing circuitry and 
the pipeline stages of the block cipher. Assuming that the 
critical path delay of a pipeline stage is substantial (which 
is expected when a pipeline stage is equivalent to a full 
round of a cipher such as AES), then it is reasonable to 
assume that tclk is determined from the critical path delay 
of the pipeline stages. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. PSCFB encryption system implementation. 

When a partial block is transferred, usually the 
amount of data in the plaintext queue will increase. The 
value of D must be small enough to ensure that the num-
ber of bits in the queue does not exceed some finite value. 
However, from the perspective of the system throughput, 
it is desirable for D to be as large as possible since the 
system throughput is given by 

     bps.        (5) clkPSCFB tDT /

The ciphertext queue acts in a complementary manner 
to the plaintext queue. The system is initialized with the 
plaintext queue empty and the ciphertext queue full of 
arbitrary data. At the start of a clock period, D bits are 
enqueued in the plaintext queue, while D bits are de-
queued from the ciphertext queue. Subsequently, an ap-
propriate number of bits are transferred from the plain-
text queue to the ciphertext queue. In any one clock pe-
riod, there are 3 cases representing the transfer of bits 
from the plaintext queue to the ciphertext queue: (i) B bits 
(as is the case for normal counter mode operation), (ii) 
zero bits (because there are not sufficient bits in the plain-
text queue to transfer), and (iii) d bits, 1  d < B (as is the 
case at the end of the blackout period and only a partial 
block is used for keystream). For case (ii), it is necessary 
to stall the pipeline of the block cipher for the clock pe-
riod, since no keystream bits are used. 

Assuming that the size of each queue is M bits, then if 
there are h bits in the plaintext queue, the number of bits 
in the ciphertext queue is given by Mh. If there is a delay 
in moving data from the plaintext queue to the ciphertext 
queue, while the plaintext queue fills up, the ciphertext 
queue empties; if M is too small, it is possible for an over-

flow to occur in the plaintext queue and this would si-
multaneously result in an underflow in the ciphertext 
queue. It is desirable to have M large enough that the 
plaintext queue does not overflow. Since there is a total of 
M bits in the queuing system at one time and every clock 
period, D bits arrive and D bits leave, assuming that M is 
large enough so that there is no queue overflow, the total 
delay experienced by a bit from when it enters the plain-
text queue to when it leaves the ciphertext queue is upper 
bounded by M/Dtclk.  

The block cipher operation is capable of producing a 
throughput of B/tclk bps, while the system throughput is 
given by D/tclk. We define implementation efficiency, , to 
represent the ratio of throughput of an implementation of 
a PSCFB system to the throughput that could be achieved 
by a block cipher configured in counter mode and im-
plemented using a pipeline architecture. Hence, the im-
plementation efficiency is given by 

 

Counter 

Stage 2 

Stage 1 

Stage L 

… 

D bits D bits 

B bits B bits 

B bits 

Pipelined Block Cipher 
in Counter Mode 

ciphertext bit queue plaintext bit queue 

B bits 

sync  
pattern 
found 

n bits 

           BD / .          (6) 
In order to deal with the block realignment as the result 
of a resynchronized counter mode,  must be suitably 
small enough to ensure that the queues, of selected size M 
bits, do not overflow. Of course, having  to be too small, 
would be equivalent to a diminished PSCFB system 
throughput.  
 

 enqueue D bits from input 
if (# bits in plaintext queue  B) then 
      dequeue d  bits, 1  d  B 
         and XOR with keystream bits 
else 
       stall pipeline 
 

 
 
 
 
 
 

Fig. 6. Plaintext queue process during each clock period. 

Consider the operation of the plaintext queuing sys-
tem during each clock period, as specified in Figure 6. 
The number of bits dequeued from the plaintext queue is 
represented by d and d = B except in the case that the 
boundary between the blackout period and the new scan-
ning period results in the use of a partial block produced 
by the block cipher, thereby resulting in d < B. Although 
not illustrated, the process for the ciphertext queue would 
involve dequeuing D bits, followed by the enqueuing of 
the bits transferred from the plaintext queue.  

Given the specification of Figure 6, the following theo-
rem can be considered to ensure that the queue size M is 
large enough and the implementation throughput does 
not exceed an acceptable value to ensure that overflow 
does not occur in the plaintext queue. 

 
Theorem. Assume the operation of the plaintext queuing 
process as defined in Figure 6. If the implementation effi-
ciency, ,  satisfies   L/(L+1), then there will be no 
overflow in a PSCFB system implemented using a plain-
text queue of size M bits, when M  B + 2D  2. 
 
Proof: Consider the number of bits in the queue at the 
start of the process illustrated in Figure 6 (i.e., just prior to 
the “enqueue” step). Given the behaviour of PSCFB 
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mode, there are 3 general cases in terms of the change in 
the number of bits in the queue. These are illustrated in 
the following table, where  = B  D and  is the number 
of bits in the queue at the start of the process. We will 
briefly discuss each case. 

 
 Case 1 Case 2 Case 3 
# bits enqueued D D D 
# bits dequeued B 0 d < B 
Change in    + D + D  d 
Required  for 
case to occur  

  <    

Tab. 1. Cases Used in Proof 

Case 1: This case represents the circumstance where 
all B output bits of the block cipher are to be used as key-
stream and there are at least B bits in the queue when the 
dequeue operation is to take place, thereby ensuring that 
B bits will be dequeued. As D bits must have been en-
queued at the start of the process, there is a decrease in 
the number of bits in the queue by  = B  D. 

Case 2: In this case, there are not B bits in the queue at 
the time of dequeuing and, hence, the pipeline is stalled 
and no bits are dequeued. As a result, there is an increase 
of D bits in the queue during a clock cycle.  

Case 3: In this case, due to the behaviour of PSCFB 
during a resynchronization, at the end of the blackout 
period, only a partial block of d bits, 1  d < B, from the 
block cipher is used as keystream and it is only necessary 
to dequeue d bits. As a result, there is an increase in  of D 
 d for D > d, a decrease of  of d  D for D < d, and no 
change in  if D = d. Due to the behaviour of PSCFB, there 
must be at least LB bits dequeued from case 1 before the 
next partial block is used, since there are LB bits during 
the blackout period before the next resynchronization 
boundary. Hence, instances of case 3 must be separated 
by at least L occurrences of case 1. 

Consider now the combination of all 3 cases. Assum-
ing that the queue starts at empty (that is,  = 0), the first 
clock cycle will correspond to case 2 and then proceed 
with a variable sequence of cases 1, 2, and 3, dependent 
on the operation of PSCFB mode based on the ciphertext 
data. Since for most of the operation of PSCFB, the system 
operates in counter mode, case 1 will tend to drive the 
number of bits in the queue towards 0, with the pipeline 
stalls of case 2 momentarily increasing the number of bits 
in the queue.  

The scenario resulting in the most bits in the queue 
would be a sequence of clock cycles which starts with  = 
  1. This has to be followed by case 2, which increases 
the number of bits to  =   1 + D. Subsequently, if the 
next clock cycle corresponds to a partial block dequeue 
(case 3) with d = 1, then this removes only 1 bit from the 
queue, while adding another D bits, resulting in 

           211  DBDD .        (7)      

Since in (7),    for all D  1, case 2 will not occur until 
more bits are removed from the queue and  < . Hence, 
the number of bits in the queue will not be increased be-
yond the value of  in (7) as the result of case 2. Also, we 

must encounter case 1 at least L times, before executing 
case 3 again. This means that L bits must be dequeued 
before case 3 adds more bits to the queue. Since    
L/(L+1),  

        D
L

L
B

1
          (8) 

and  

       DDD
L

L
LDBLL 






 




1
)( .       (9) 

Hence, at least D bits must be removed before D  d bits 
are added back into the queue. So case 3 can not increase 
the queue size beyond the value of  in (7).  

Consequently, equation (7) represents the maximum 
number of bits in the queue at the start of the process de-
fined in Figure 6. However, since D bits are always en-
queued prior to the dequeuing considerations, the maxi-
mum number of bits in the queue will be the value indi-
cated by (7) plus the D bits that are added when the input 
bits are enqueued. Hence, there are at most 22  DB  
bits in the queue and the theorem is proven.           � 

The significance of the theorem is that it is possible to 
construct PSCFB systems with high implementation effi-
ciency (i.e.,   1), when L is large, such that a modest 
queue size is guaranteed to have no overflow. Also, as a 
consequence of modest queue sizes, system latency is 
modest. Although the theorem is expressed with respect 
to the plaintext queue, the implication is that the cipher-
text queue with the same size would not underflow. Us-
ing a pipelined implementation of AES with B = 128 and 
L = 10, allows us to set D = 116, thereby achieving an im-
plementation efficiency of  = 90.625% and, with a queue 
size of M = 358 bits, ensuring that the plaintext queue will 
not overflow. The resulting delay from when a bit enters 
the plaintext queue to when it leaves the ciphertext queue 
is no more than 358/116tclk = 4tclk. 

5 RESYNCHRONIZATION DELAY AND ERROR 

PROPAGATION 
In this section, we investigate how the sizes of the black-
out period and sync pattern affect the resynchronization 
properties and error characteristics of PSCFB mode. We 
shall do this by considering two metrics – the synchroni-
zation recovery delay (SRD) and the error propagation 
factor (EPF) – and by undertaking simulations of a PSCFB 
system, modeled as an encryption system (transmitter), 
communication channel, and decryption system (re-
ceiver). Each simulation result produced in this section is 
based on the encryption, and subsequent decryption, of 
1010 bits, with the individual bit slips or bit errors, which-
ever is appropriate, generated in the channel at a fixed 
rate of one event every 105 bits. In all cases, AES is used 
for the block cipher and the format of the sync pattern 
used is “10…00”. For all scenarios, the 95% confidence 
interval is calculated for all simulation points and plotted 
in each figure. For most points, the confidence interval is 
too small to be visible on the graphs. 

5.1 Synchronization Recovery Delay 
The synchronization recovery delay is the expected num-
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ber of bits following a sync loss due to a slip before syn-
chronization is regained [3]. SRD does not include the bits 
that are lost directly due to the slip.  

 
5.1.1. Bounds on SRD 
 
In [3], lower and upper bounds are developed for SRD of 
conventional SCFB, parameterized by n and B. In Appen-
dix B, we have extended this analysis to PSCFB with the 
additional parameter of L. 

The resulting lower bound on SRD is given by: 

          }{
2

1
}{)(

2

1
)(

2

3 2kEkEBLnBLnSRD


     (10) 

where k is the size of the scanning period, E{k} is the aver-
age size of the scanning period, E{k2} is the second mo-
ment of k and the average sync cycle size is given by  = n 
+ LB + E{k}. As discussed in [3], the distribution of k can 
be approximated as the geometric distribution for many 
sync patterns including sync patterns of the format 
“10…00”. As a result, we may approximate E{k} and E{k2} 
to be E{k} = 2n  1 and E{k2} = 22n+1  32n + 1. 

The upper bound, as shown in Appendix B, can be de-
rived to be: 
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      (11)    

where  is an upper bound on the expected number of 
sync cycles until resynchronization is achieved after a 
false synchronization (that is, a bit sequence, created by a 
slip or insertion, is falsely interpreted to be the sync pat-
tern) and  = (1  1/2n)(n+LB).  

 
5.1.2. SRD vs. Blackout Period Duration 
 
In order to investigate SRD versus the blackout duration, 
simulations were undertaken, as discussed in the begin-
ning of this section, with B = 128, n = 8, and varying L. 
During the simulations, bit slips were generated in the 
communications channel and the average number of bits 
prior to resynchronization was computed, giving an em-
pirical estimate of SRD. The resulting relationship is pre-
sented in Figure 7. The bounds of (10) and (11) are also 
plotted on the graph. Note that the upper bound grows 
very rapidly with L and values for L  9 are not shown, as 
they substantially exceed the range of the graph.   

It is clear from the figure that the simulation results 
for SRD follow very closely the lower bound of (10) and, 
as predicted by (10), SRD increases with the size of the 
blackout period. This is the expected consequence of a 
larger L resulting in a larger sync cycle size. Larger SRD 
due to larger L is a tradeoff that must be made to accom-
modate fast pipeline designs requiring large L. The upper 
bound on SRD is reasonable for small L with moderate 
value of n = 8. However, as L increases, the upper bound 
becomes very poor as it is derived by accounting for the 
possibility of false synchronizations, which in the extreme 
cases considered by the bound become more difficult to 
recover from as L increases.  
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Fig. 7. SRD vs. size of blackout period for B = 128, n = 8. 

5.1.3. SRD vs. Sync Pattern Sizes 
 

We have also run simulations to investigate SRD versus 
different values of the size of sync pattern, n. Figures 8 
and 9 show the results with B = 128, for conventional 
SCFB (i.e., L = 1) and for PSCFB with L = 10. It can be seen 
that as n increases, SRD is influenced by both the size of 
the blackout period, LB, and the size of the scanning pe-
riod, which is approximately 2n for a geometrically dis-
tributed value of k. For smaller values of n, the effect of 
false synchronizations causes legitimate synchronizations 
to be often lost (for example, a legitimate sync pattern 
might be ignored during the blackout period associated 
with a false synchronization), thereby causing longer de-
lays to resynchronize for the mode with the longer black-
out period. Hence, SRD is much larger for PSCFB with L 
= 10 than conventional SCFB with L = 1 for small n.  

Since the approximate lower bound of (10) does not 
account for the occurrence of false synchronizations, for 
small n, when false synchronizations cause significant 
delays in resynchronization, the lower bound is very 
loose for PSCFB with L = 10, with the empirical SRD be-
ing significantly larger.  

The upper bound of (11) generally provides a tight 
bound for L = 1 for modest to large sized values of n, such 
as n  6. (Only values for n  5 are plotted.) However, for 
L = 10, the upper bound is very loose until n increases so 
that n  9. (Only values for n  8 are plotted.) This results 
from the effects of false synchronizations considered in 
the upper bound: since systems with small n have small 
sync cycle sizes, many sync cycles occur before a resyn-
chronization that recovers the system from a false syn-
chronization. In practice, this effect is not as significant as 
predicted by the upper bound and the simulation results 
are better predicted by the lower bound. 

Note that in some cases, such as for L = 1 and n = 10 in 
Figure 8, the lower bound is marginally higher than the 
simulation result. This can be explained by considering 
that the lower bound is derived based on the assumption 
that the size of the scanning period, k, follows the geo-
metric distribution. As discussed in [3], although this is a 
good approximation, in fact, k is not exactly geometrically 
distributed and the average size of the scanning period is 
actually slightly smaller, which becomes evident in the 
comparison of the lower bound and simulation results 
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when they are very close in value. 
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Fig. 8. SRD vs. sync pattern size for B = 128, L = 1. 
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Fig. 9. SRD vs. sync pattern size for B = 128, L = 10. 

5.2 Error Propagation Factor 
The error propagation factor is defined as the bit error 
rate at the output of the decryption divided by the prob-
ability of a random bit error in the communication chan-
nel [3].  

 
5.2.1. Bounds on EPF 

 
In Appendix B, we have extended lower and upper 
bounds developed for conventional SCFB mode to PSCFB 
mode, parameterized by n, B, and L.  

The resulting lower bound on EPF is simply given by: 

 BnEPF 
2

1
1 .        (12) 

Clearly, this lower bound is not dependent on the value 
of L, which is proportional to the duration of the blackout 
period, and is implying the possibility that L will have 
little impact on EPF.  

Also, from the analysis in Appendix B, the upper 
bound is given as: 
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where E{k}, E{k2}, , and  can be estimated using the 
geometric distribution as indicated for (10) and (11). 

 
5.2.2. EPF vs. Blackout Duration 
 
In order to investigate EPF versus the blackout duration, 
simulations were undertaken with B = 128, n = 8 and 
varying L. The duration of the blackout period in bits is 
given by LB. During the simulations, bit errors were gen-
erated in the communications channel: the resulting er-
rors generated at the receiver output were counted and an 
average was determined over all bit error events in order 
to determine the EPF. The resulting relationship is pre-
sented in Figure 10.  
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Fig. 10. EPF vs. size of blackout period for B = 128, n = 8. 

The simulation results from Figure 10 illustrate that 
the EPF trends upward slowly when the size of the black-
out period increases. There is a small difference between 
the simulated results and the lower bound on EPF and 
this difference can be explained as the result of the effects 
of false synchronizations, which can occur when bit errors 
erroneously result in a sync pattern appearing at the re-
ceiver. During a false synchronization event, much of a 
sync cycle will be unsynchronized between the transmit-
ter and receiver. Since the size of a sync cycle is depend-
ent on L, larger L implies greater EPF when a false syn-
chronization occurs at the receiver. Hence, as L increases 
in the graph, the effects of false synchronizations become 
more evident and EPF increases. False synchronizations 
are not incorporated into the lower bound on EPF given 
in (12) and, hence, the lower bound is not dependent on 
L. The effect of false synchronizations is, however, incor-
porated into the upper bound of (13). Because the effect 
caused by false synchronizations is very difficult to 
bound tightly, as L increases the upper bound becomes 
very poor. For this reason, it is not plotted for L  7. 

 
5.2.3. EPF vs. Sync Pattern Sizes 

 
We have also run simulations to investigate EPF versus 
different values of sync pattern size, n. For values of B = 
128, the results of EPF versus n for conventional SCFB (L 
= 1) are shown in Figure 11 and for PSCFB with L = 10, 
the results are shown in Figure 12.  

The simulation results illustrate that, for L = 10, the 
EPF increases significantly when the size of the sync pat-
tern decreases. For L = 1, this increase is much less pro-

 



10 SUBMISSION TO IEEE TRANSACTIONS ON COMPUTERS 

nounced. For small n, since the scanning period is much 
smaller, a false sync pattern may take several sync cycles 
to clear up as the effects of a loss of sync may spill over 
from the scanning period into the next sync pattern and 
blackout period. Hence, EPF is expected to be higher for 
smaller n. Conventional SCFB mode, where L = 1, has a 
shorter blackout period than PSCFB with L = 10. As a re-
sult, for small n, resynchronization is quicker for smaller 
L and EPF for conventional SCFB is not as high as for 
PSCFB mode with large L. As n increases, for values of n 
 8, EPF for conventional SCFB and PSCFB are compara-
ble and close to the lower bound. For small values of n, 
the upper bound, which considers the effect of false syn-
chronizations, is very loose (and not plotted for small n), 
while as n increases, the upper bound becomes tighter for 
both L = 1 and L = 10. 
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Fig. 11. EPF vs. sync pattern size for B = 128, L = 1. 
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Fig. 12. EPF vs. sync pattern size for B = 128, L = 10. 

6 SECURITY OF PSCFB 
PSCFB mode is a hybrid mode constructed from the com-
bination of two block cipher modes accepted as secure 
methods of encryption: counter mode and CFB mode. 
Formal security proofs exist for both counter mode [14] 
and CFB mode [12]. However, to date, no formal security 
proof has been given for SCFB mode. 

Various attempts at designing efficient dedicated self-
synchronizing stream ciphers (rather than applying CFB 
mode to block ciphers) have been shown to be susceptible 
to chosen ciphertext attacks which exploit weaknesses in 

the cipher structures [15][16]. For CFB, SCFB, and PSCFB 
block cipher modes, a chosen ciphertext attack is similar 
to a chosen plaintext attack on the block cipher in elec-
tronic codebook mode. Since immunity to chosen plain-
text attack is a security requirement for block ciphers, 
attacks similar to those in [15][16] will not be applicable to 
well-designed block ciphers used in PSCFB mode. 

In [3], it is argued that conventional SCFB based on 
OFB, has a very low probability of significant repeated 
keystream for a block size of B = 128 bits. The security of a 
PSCFB application will be compromised if a counter 
value occurs that is identical to a counter value used dur-
ing a previous sync cycle, thereby resulting in a repitition 
of a significant number of keystream bits. In this circum-
stance, the keystream bits, in fact, will repeat until the 
next sync pattern is detected and a new counter IV is 
loaded. Since such periods of significant repeated key-
stream compromise the security of the system, we will 
investigate the probability that a portion of a sync cycle 
contains repeated keystream as the result of reused 
counter values.  

Consider first the probability that the size of a sync 
cycle exceeds  bits. Assuming that the size of the scan-
ning period, k, is approximated by the geometric distribu-
tion, the probability that the sync cycle size C is greater 
than  is given by 





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Nk

kPNkP )()(        (14) 

where P(k) represents the probability of a scanning period 
of size k and N =   (n + LB) since C = n + LB+ k. For the 
geometric distribution, P(k) = (1  1/2n)k/2n, resulting in 
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Hence, for P(k  N) < ~e40, N > 402n and C > n + LB + 
402n. For n = 8, L = 10, and B = 128, the probability that 
sync cycle size C > 11528 is less than 4.251018. 

Counter values used in two sync cycles will overlap 
when the IV used to initialize counter mode of one cycle 
is equal to one of the counter values of the other cycle. 
Assuming that the counter increments its value for every 
execution of the block cipher, two cases can result in over-
lapping keystreams for different sync cycles: (1) the 
counter starts with an IV for the current sync cycle which 
increments up to the value of a previous sync cycle's IV 
and (2) the IV of the current sync cycle is equal to a 
counter value from a previous sync cycle. Hence, an over-
lap of keystream will not occur if a sync cycle starts with 
an IV that is not within about Cmax/B values of the start of 
a previous sync cycle, where Cmax is the size of the largest 
possible sync cycle (i.e., sync cycles larger than Cmax have 
negligible probability of occuring). As discussed above, 
we can assume that Cmax = 11528 for n = 8, L = 10, and B = 
128 since the probability of a sync cycle size greater than 
this is very small. 

We can now determine a lower bound, , on the prob-
ability that t sync cycles do not have any overlap of key-
streams (caused by repeated counter values) as 
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which is derived by considering the selection from 1 up to 
t random sync cycle IVs which are not within a window 
of 2Cmax/B values centred around previous selections of 
IVs. For large t, the lower bound can be further simpli-
fied, using (1  x)  ex for x << 1 and letting exp{z}  repre-
sent ez, as follows: 
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Let  represent an upper bound on the probability 
that, given t sync cycles, there is an overlap between 2 or 
more keystream sequences. Hence,  = 1   and  

             (18)     )2/(2
max

BBtC 

where, again, we have used (1  x)  ex for x << 1, which 
is validly applied since Cmaxt2 <<B2B.  

Consider now having M bits of ciphertext data avail-
able. This data will have about t = M/(n + LB+ E{k}) = 
M/(n + LB+ 2n  1)  sync cycles based on the assumption 
that k follows the geometric distribution. Hence, for M = 1 
terabit, n = 8, L = 10, and B = 128, t = 6.48108 and an up-
per bound on the probability of overlapping keystreams 
can be computed to be  = 1.111019 based on the as-
sumption that no sync cycle size exceeds Cmax = 11528, 
which is expected to be the case with a probability of 
about 1  (1  4.251018)t  2.75109. It should be noted 
that the analysis undertaken to derive  is very conserva-
tive and is not necessarily a tight upper bound. 

In conclusion, for a large amount of data, we can ex-
pect there to be very small probability of any significant 
amount of repeated keystream due to the resynchroniza-
tion process of PSCFB mode with reasonable size parame-
ters (eg. using the AES block size of 128 bits). Although 
PSCFB is a mode built from counter mode and cipher 
feedback mode for which formal security proofs exist, a 
formal proof of PSCFB security using methods such as 
those in [14] is not the focus of this work and we leave 
this as an open problem.  

7 COMPARISON TO OTHER CIPHER MODES 
The relative merits of PSCFB when compared to other 
conventional block cipher modes are illustrated in Table 
2. The variable Tmax represents the potential throughput of 
the block cipher achieved by a pipelined implementation 
of L = 10 stages. It is assumed that the stages of each pipe-
line architecture have similar critical path delay, resulting 
in the same clock period, tclk, for any mode based on a 
pipelined implementation. Hence, in the table, for a mode 
(such as counter or PSCFB) that can be implemented us-
ing a pipeline architecture, the maximum throughput 
achievable is given by Tmax in (1) and for a mode (such as 
OFB, CFB, or SCFB) that can only be implemented using 
an iterative architecture, the maximum throughput is 
given as Tmax/L = 0.1 Tmax. 

In the table, the encryption efficiency  represents the 
fraction of ciphertext bits produced by the mode, relative 

to the output bits produced by the block cipher operation. 
For OFB, CFB, and SCFB modes, the efficiency also repre-
sents the maximum throughput at which the cipher mode 
can be implemented relative to an iterative implementa-
tion of the block cipher. For CFB, the efficiency is deter-
mined based on the assumption that full synchronization 
is possible (that is, 1 ciphertext bit is fed back for every 
block cipher operation), resulting in an efficiency of 1/B, 
relative to an iterative implementation. For SCFB, the effi-
ciency is determined such that the queue sizes can be M = 
2B bits with no queue overflow. For counter and PSCFB 
modes, the efficiency represents the maximum through-
put relative to a pipelined implementation. 

For OFB and counter modes, EPF = 1 but these modes 
cannot recover from a synchronization loss. For CFB, 
SCFB, and PSCFB, the EPF and SRD are influenced by the 
block size. For CFB, EPF = B/2 + 1 and SRD = B, while for 
SCFB and PSCFB, these values are determined by simula-
tion using the parameter values of B = 128, n = 8 (with 
sync pattern “10000000”), and, for PSCFB,  L = 10. 

 
Mode Encryption 

Efficiency 
() 

Pipe-
line? 

Throughput 
(relative to 

Tmax) 

EPF SRD 

OFB 100% No 10% 1  

Counter 100% Yes 100% 1  

CFB 0.78% No 0.078% 65 128 

SCFB 50% No 5% 73 409 
PSCFB 91% Yes 91% 85 2106 

Tab. 2. Comparision of modes (B = 128,  
L = 10 for pipelined modes). 

From the table, many conclusions can be drawn. For 
example, while counter mode is capable of the highest 
throughput (marginally more than PSCFB), equivalent to 
the speeds achieved by a pipelined implementation, it is 
not self-synchronizing. Further, while CFB is able to re-
synchonize very quickly (in 128 bits), only one ciphertext 
bit is produced for every block cipher operation, resulting 
in an efficiency of only .78% and an extremely low 
throughput. Conventional SCFB can have its encryption 
efficiency increased by allowing for larger queue sizes 
and increasing n. However, because it cannot be effec-
tively pipelined, its throughput cannot exceed 10% of 
Tmax.  

It is evident from the table that PSCFB provides an ex-
cellent tradeoff of properties: it has modest error propaga-
tion, is capable of resynchronizing, and can achieve very 
high throughputs. 

8 CONCLUSION 
In this paper, we have proposed a novel, highly efficient, 
self-synchronizing block cipher mode, targeted to high 
speed physical layer data streaming. The mode, referred 
to as pipelined statistical cipher feedback or PSCFB, com-
bines cipher feedback and counter mode in a manner that 
enables an effective pipelined implementation of the 
block cipher. Implementations of the mode are able to 
achieve very high speeds, approaching pipelined imple-
mentations of counter mode, while allowing self synchro-
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nization, a highly desirable feature of stream ciphers tar-
geted to channels susceptible to synchronization losses 
due to causes such as timing errors. Implementations of 
PSCFB mode can be achieved with small queuing struc-
tures and low delay from plaintext reception to ciphertext 
transmission. Further, it is shown that the effect of errors, 
as measured by the error propagation factor, is modest 
and, although synchronization recovery delay is in-
creased with more pipeline stages, this can be considered 
an acceptable trade-off to achieve the significantly higher 
throughput implied by more pipeline stages. 

APPENDIX A 
The pseudocode representation of PSCFB encryption for a 
B-bit block cipher with L pipeline stages is given in Fig-
ures A1 to A4, where Pi and Ci represent the i-th plaintext 
and ciphertext bits, respectively. Variable X0…XB1 repre-
sents the input to the block cipher (i.e., the counter value) 
and is initialized to a value known to the encryption and 
decryption systems; variable Y0…YB1 represents the out-
put of the block cipher, that is, the generated keystream. 
The variable W0…Wn1 represents the window of n bits 
that is currently being compared to the sync pattern, 
which is set to “10…00”.  
 

 

 

 

 

 

 

 

 

 
Fig. A1. Main line of PSCFB encryption pseudo-code. 

 
 
 
 
 
 
 

 
 
 

 

 
Fig. A2. Pseudo-code to process a keystream bit. 

 
The variable pipeline_in represents the input to the first 

stage of the block cipher pipeline. Initially, after the value 
of X0…XB1 is set to the pipeline input, the pipeline is 
primed with the execution of L1 steps. The execution of 
a pipeline step moves the data from one stage to the next 
stage in the pipeline. One pass of the outer “do” loop is 
used to execute one step of the pipeline and retrieve the 
block cipher output from the variable pipeline_out.  

Function “increment” represents an incrementing of 
the counter value. Variable Z0…ZB1 is used to collect the 
IV bits and flags collecting_IV, blackout_on, and 
new_scanning_period are used to control the collecting of 
the IV, the disabling of sync pattern scanning, and the 
reinitialization of the counter mode, respectively. The flag 
insert_IV is used to indicate that a new IV is available for 
the pipeline input. Variables i, j, and m are used as indices 
to keep track of the absolute bit number of the plain-
text/ciphertext, the number of the bit within the block 
produced by the block cipher, and the number of the bit 
within the blackout period, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. A3.Pseudo-code to process the blackout period. 

process_blackout: 
     m  m + 1 
     if collecting_IV then 
          Zm-1  Ci  
          if m = B then 
               collecting_IV  false  
               insert_IV  true               
     if m = LB then 
          blackout_on  false 
          new_scanning_period  true 
          W0…Wn-1  0…0 

collecting_IV  false 
blackout_on  false 
W0…Wn-1  0…0 
X0…XB-1  initial value 
pipeline_in  X0…XB-1 
do L1 times 
     execute 1 step of pipeline 
     X0…XB-1  increment(X0…XB-1) 
     pipeline_in  X0…XB-1 
i  0 
do 
     execute 1 step of pipeline 
     Y0…YB-1  pipeline_out 
      j  0 
     new_scanning_period  false 
     insert_IV  false 
     do 
          execute process_keystream_bit 
     while j < B and not new_scanning_period  
     execute update_counter 
while true 

 
 

update_counter: 
     if insert_IV then 
          X0…XB-1  Z0…ZB-1    
     else 
          X0…XB-1  increment(X0…XB-1) 
     pipeline_in  X0…XB-1 

 
 
 
 
 
 
Fig. A4.Pseudo-code to update counter input to block cipher. 
 
The pseudo-code does not reflect some of the imple-

mentation considerations discussed in Section 4. Notably, 
the queuing processes are not illustrated. Rather, it is as-
sumed that plaintext data is always available during each 
pass of the outer “do” loop so that the generated key-
stream can be immediately used to create ciphertext. In 
practice, as discussed in Section 4, when the number of 
bits in the plaintext queue is below a threshold, the pipe-
line system must be stalled until enough plaintext bits are 
available to be XORed with the keystream bits. 

process_keystream_bit: 
     Ci  Pi  Yj 
     if blackout_on then 
          execute process_blackout 
     else 
          W0…Wn-2Wn-1  W1… Wn-1Ci 
          if W0…Wn-1 = 10…00 then 
               collecting_IV  true 
               blackout_on  true 
               m  0 
     i  i + 1 
     j  j + 1 

APPENDIX B – BOUNDS ON SRD AND EPF 
In this appendix, we develop lower and upper bounds on 
SRD and EPF based on the format of "10…00" for the sync 
pattern and the geometric distribution for the size of the 
scanning period. 
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B.1 Lower Bound on SRD 
For PSCFB mode, when a bit slip occurs in a sync cycle of 
size n + LB + k, the lower bound on the synchronization 
recovery delay at the receiver is given by 

   



 


 BLn

kBLn
kSRD

2
)( .                     (19) 

This is derived by considering that, for a given value of k, 
on average, a slip occurs halfway through a synchroniza-
tion cycle and following the end of the synchronization 
cycle, it will take at least another sync pattern and black-
out period before synchronization is recovered. The ex-
pression of (19) is a lower bound, as it is possible that a bit 
slip will cause a false synchronization at the receiver that 
results in a longer period to resynchronize.  

To determine the overall SRD, we must average over 
all possible sync cycle sizes, as in 

                           (20) 





0

* )()(
k

kSRDkPSRD

where P*(k) represents the probability that a bit slip oc-
curs in a sync cycle of size n + LB + k. As discussed in [3], 
probability P*(k) can be determined from 

          )(
}{

)(* kP
kEBLn

kBLn
kP


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         (21) 

where P(k) represents the probability that a selected sync 
cycle is of size n + LB + k.  

Combining (19) to (21) results in an expression for a 
lower bound on SRD as given in (10). As can be seen in 
the figures presented in Section 5, the lower bound gives 
results that are very close to the simulation results. 

B.2 Upper Bound on SRD 
Consider now an upper bound on SRD similar to the 
analysis in [3]. We consider two regions in which a slip 
may occur within a cycle of size n + LB + k. If a slip oc-
curs such that the first bit following the slip is not within 
n + LB bits of the sync pattern for the next cycle, then 
synchronization is lost until the valid sync pattern is de-
tected for the next cycle and the subsequent blackout pe-
riod completes. The probabililty that a slip occurs in this 
region is k/(n + LB + k). When a slip occurs in the last n + 
LB bits of the sync cycle, one must consider the possibil-
ity that the resulting bit sequence at the receiver could 
result in a false synchronization. The probability of a slip 
occuring in this region is given by (n + LB)/(n + LB + k) 
and the likelihood that the slip results in a false sync is 
upper bounded by n/2n. Subsequently, false synchroniza-
tions may occur at the receiver if the receiver misinterpre-
tes a sync pattern appearing within the blackout period to 
be a proper sync pattern. This may result in loss of sync 
for several sync cycles. However, we can say with cer-
tainty that synchronization must be regained when a sync 
cycle is encountered for which k  n + LB. (In reality, sync 
is likely to be regained much more quickly than this.) 

As a result of these considerations, we can derive an 
upper bound on SRD to be 
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which can be simplified to (11). Note that  = (1  
1/2n)(n+LB) is an upper bound on the expected number of 
cycles until resync is achieved, determined by conserva-
tively ensuring k  n + LB for resynchronization. Com-
paring the upper bound of SRD to simulation results from 
Section 5, it is obvious that the upper bound improves 
(i.e., gets tighter) for decreasing L and increasing n. 

B.3 Lower Bound on EPF 
In general, for PSCFB mode, errors at the receiver can be 
considered straighforwardly for two cases as follows. In 
the first case, consider the occurrence of an error in the 
sync pattern or IV block. For a subsequent scanning pe-
riod of k bits in size, the resulting EPF satisfies 

           BLnkkEPF IVsync 
2

1
1)(/  .       (23) 

This is derived by considering that one bit in error in the 
channel in the sync pattern or IV block portion of the sync 
cycle will result directly in one bit in error after decryp-
tion, followed by a loss of synchronization (during which 
half the bits are in error) from the start of the scanning 
period, until the end of the following blackout period for 
a total of k + n + LB bits. However, (23) is in fact a lower 
bound because it is possible that, when a receiver loses 
synchronization, a false resynchronization occurs (eg. a 
legitimate sync pattern is lost due to a bit error and a se-
quence during the legitimate blackout period is misinter-
preted to be a sync pattern) and, as a result, it takes 
longer than implied above to resynchronize.    

In the second case, consider the occurrence of a bit er-
ror in the channel during the blackout (excluding the IV) 
or scanning periods. The resulting EPF satisfies  

        EPFBO/CTR  1.  
      (24) 

The equality of this expression corresponds to a bit error 
which occurs in the blackout period (but not in the IV) or 
the scanning period and causes one bit error at the re-
ceiver, such that it does not cause a false sync pattern to 
occur in the ciphertext. The equality does not account for 
the circumstance that a bit error causes a false sync pat-
tern resulting in the receiver improperly assuming a re-
synchronization, which would result in EPF above the 
lower bound in (24).  

Overall, weighting each case by its probability of oc-
currence, the lower bound on EPF is given by 
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where P*(k) represents the probability that a bit error oc-
curs in a sync cycle of size k. Substituting (23) and (24) 
into (25) results in the lower bound on EPF being easily 
calculated as given in (12).  
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As can be seen from the figures in Section 5, for large 
n, the lower bound is strongly similar to EPF as deter-
mined through simulations. 

B.4 Upper Bound on EPF 
Following the analysis in [3], the upper bound on EPF is 
developed considering the effects of errors for 4 different 
scenarios, identified in Table B.1. 

The probability that a bit error belongs to case 1 is 

kBLn

BLn
kP




)(1        (26) 

and the resulting expected number of bit errors is  

2
1)(1

kBLn
k


 .       (27) 

Case Scenario Effect 
1 Error in n+B bits of sync + IV. Sync lost for entire cycle. 
2 Error in blackout period (mi-

nus IV) or scanning period 
such that no sync pattern is 
falsely generated. 

One bit error in recovered 
plaintext. 

3 Error in scanning period such 
that false sync generated in 
first k  (n + LB) bits of scan-
ning period. 

i/2 bit errors generated, 
where i is number of bits 
between end of false black-
out period and end of next 
legitimate blackout period. 

4 Error in scanning period such 
that false sync generated in 
last n + LB bits of scanning 
period. 

Next sync pattern will be 
missed because it is part of 
false blackout causing ½ 
bits in error until next de-
tected sync + blackout. 

Tab. B.1. Effects of different error scenarios 

For case 2, the expected number of bit errors is 2(k) = 
1. Since the probabilty of this case is quite high, for sim-
plicity we assume that the probability that case 2 occurs is 
bounded by P2 (k) < 1. 

In order to determine the probabilities for cases 3 and 
4, we make use of the upper bound on the probability 
that a bit error results in a sequence of bits identical to the 
sync pattern, given by n/(2n  1). Hence, case 3 occurs 
with a probability upper bounded by 
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The expected number of bit errors caused in case 3 is up-
per bounded as in 

4
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where the bound arises from the bits in the remainder of 
the synchronization cycle and the bits in the sync pattern 
and blackout period associated with the next sync cycle. 

The upper bound on the probability of case 4 occurs is  

kBLn

BLnn
kP

n 






12

)(4 .       (30) 

For this scenario, we assume that at least the next sync 
pattern is missed and it could be several sync cycles to 
recover synchronization. Hence, the expected number of 
errors for case 4 can be large and is upper bounded by 

24
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where   and  are defined as for the bounds on SRD. The 
first term is an upper bound on the expected number of 

bit errors between the end of the false blackout period 
and the end of the blackout period of the next sync cycle. 

An estimate of the upper bound on the error propaga-
tion factor can be determined by noting that 

          (32) )()()(
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1 0
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resulting in (13). The upper bound on EPF is found to be 
best for small L and for large n. This can be observed in 
the results presented in Section 5. 
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