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Abstract—Voltage/Frequency Scaling (VFS) and Device Power Management (DPM) are two popular techniques commonly employed
to save energy in real-time embedded systems. VFS policies aim at reducing the CPU energy, while DPM-based solutions involve

putting the system components (e.g., memory or I/O devices) to low-power/sleep states at runtime, when sufficiently long idle intervals
can be predicted. Despite numerous research papers that tackled the energy minimization problem using VFS or DPM separately, the

interactions of these two popular techniques are not yet well understood. In this paper, we undertake an exact analysis of the problem
for a real-time embedded application running on a VFS-enabled CPU and using multiple devices. Specifically, by adopting a

generalized system-level energy model, we characterize the variations in different components of the system energy as a function of
the CPU processing frequency. Then, we propose a provably optimal and efficient algorithm to determine the optimal CPU frequency

as well as device state transition decisions to minimize the system-level energy. We also extend our solution to deal with workload
variability. The experimental evaluations confirm that substantial energy savings can be obtained through our solution that combines

VFS and DPM optimally under the given task and energy models.

Index Terms—Real-time systems, energy management, voltage/frequency scaling, device power management.

Ç

1 INTRODUCTION

MANYembeddeddevices are battery operated and hence,
have limited energy supply. Due to the growing

demand for smaller devices with longer battery life, energy
management has becomeone of themajor goals in embedded
systems research. Over the past decade, the research
community has made significant progress in the area of
low-power system design [13], [20]. On the industry side, the
Advanced Configuration and Power Interface (ACPI) stan-
dard hasmoved powermanagement to the operating system
level by providing system calls for predictive shutdown of
system components [37]. Many applications running on
power-limited systems (such as embedded controllers) are
subject to timing constraints. As a result, the real-time and
energy-aware operation is a highly desirable and sometimes
critical feature of an embedded system.

Voltage/Frequency Scaling (VFS) [31] is a popular and
widely used technique for power management in real-time
embedded systems. With VFS, the processor can operate at
different voltage and frequency levels. Since the CPU power
consumption increases in a convex fashion with the fre-
quency, VFS helps to significantly reduce the CPU dynamic
energy consumption. In real-time systems, preserving the

temporal correctness (the system feasibility) is of paramount
importance [17]. Hence, in VFS settings, utmost care must be
exercised to avoid deadline misses. The problem of minimiz-
ing the energy consumption while satisfying the timing
constraints has been extensively studied in recent past for
various task/system models [2], [21], [22], [24].

Device Power Management (DPM) is another commonly
used energy management technique, aiming at reducing
device energy consumption [4], [6], [7], [10]. Typical devices
have an active state in which they process requests and at
least one low-power sleep state. DPM involves transitioning
devices to low-power states when not in use so as to reduce
the device energy consumption. Memory modules and I/O
devices which consume significant energy have been the
primary targets of DPM. However, nontrivial time and
energy overheads are associated with each device state
transition. As a consequence, transitioning devices to low-
power states is energy efficient only when the device idle
interval is guaranteed to be greater than a certain threshold
(frequently called the device break-even time).

One of the primary difficulties associated with the use of
DPM is to decide when to switch a device to a low-power
state. DPM techniques can be classified as stochastic,
predictive, and timeout-based [4]. In real-time systems,
the predictive DPM techniques are commonly used. The
predictive techniques involve making accurate predictions
about the next usage time of idle devices. As such, predicting
the next device usage time is of critical importance in real-
time systems. Underestimations may lead to inefficient
energy management (as devices would not be put to low-
power states) and overpredictions may lead to potential
deadline misses (due to the nontrivial transition delays).
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Several offline and online solutions have been proposed for
real-time DPM under different application/device settings
[7], [10], [27], [28], [29].

While VFS and DPM are popular techniques targeting
energy minimization in CPU and external devices, respec-
tively, a comprehensive system-level energy management
policy is likely to use both VFS and DPM. However,
integrating VFS and DPM in a single framework poses
several challenges.With VFS, low processor frequencies lead
to low CPU dynamic energy consumption figures. However,
this also results in elongated task execution times and
shortened device idle intervals. This not only forces devices
to remain in active state for longer periods but also limits the
possibility of transitioning devices to sleep states (as
shortened idle intervals will tend to be smaller than the
device break-even times). On the other hand, running the
processor at higher frequencies reduces the device energy
and creates more opportunities for transitioning devices to
sleep states, at the cost of increased CPU energy and transition
energy. Thus, there is an intriguing trade-off spectrum
covering the benefit/cost spaces ofVFS andDPMtechniques.

Recently, a number of research efforts addressed system-
wide energy consumption issues for real-time embedded
systems. In [14], the concept of critical frequency (or, energy-
efficient frequency) was introduced. This stems from the
observation that lowering the processor frequency below a
certain threshold can have negative effects on the system-
wide energy consumption. The energy-efficient frequency is
calculated by considering both the device energy and CPU
energy consumed during task executions. Each task can
potentially have a unique energy-efficient frequency,
depending on the devices it uses during its execution. In
[14], the authors provide a single policy to manage both
processor leakage energy and device energy. In [36], the
authors propose a dynamic task scheduling algorithm using
the concept of critical frequency which minimizes the
system-wide energy consumption.

A number of research studies [1], [3], [8], [25] revisited and
extended VFS solutions after observing that task execution
times do not scale linearly with the CPU frequency. In fact,
off-chip access times (e.g., main memory and I/O device
access latencies) are mostly independent of the CPU
frequency. Hence, the task execution time has a frequency-
dependent (on-chip) component that scales linearly with
CPU frequency and a frequency-independent (off-chip)
component that does not depend on CPU frequency.

In [1], a generalized power model that takes into account
several factors such as on-chip/off-chip workload ratios,
effective switching capacitance, and frequency-dependent
and frequency-independent power components is consid-
ered. For this generalized power model, the authors show
how to derive the task-level energy-efficient frequencies
and propose an Oðn3Þ algorithm to optimally solve the
system-wide energy minimization problem for n periodic
hard real-time tasks. In [34], the authors address the energy
minimization problem assuming a VFS processor with
limited number of frequency values.

While the concept of critical frequency helps mitigate the
negative impacts of VFS on the system-wide energy, one
major drawback of most system-level real-time energy
management research efforts is that they either assume
negligible device transition overheads or provide no DPM
policies. In fact, most of these studies often make the

assumption that the device will be transitioned to the low-
power state whenever it is not in use. However, this is
typically not the case due to the nontrivial time/energy
device transition overheads. A recent research effort that
combines both VFS and DPM in the same framework is
given in [6], where the authors propose a practical system-
level energy management heuristic called SYS-EDF for
periodic real-time tasks and discrete model VFS capable
processor. SYS-EDF is a combination of a DPM policy
Conservative Energy-Efficient Device Scheduling (CEEDS)
and a VFS scheme based on energy-efficient scaling.

Despite all these efforts, an extremely important but
mostly unexplored issue is the analysis of exact interplay
of VFS and DPM in real-time embedded systems.
Obviously, a straightforward integration of a VFS scheme
using critical frequency and a DPM heuristic (such as SYS-
EDF) does not exploit this interplay fully. We contend that it
is imperative to formally characterize this interplay to
devise optimal energy management systems in the presence
of both VFS and DPM features.

Contributions of this research effort:

. We address the problem of exact characterization of
system-level energy consumption for a frame-based
real-time embedded application running in an
environment with both VFS and DPM features. This
characterization allows us to perform a formal
analysis of the interplay between VFS and DPM for
a real-time application that uses several devices. By
using the results from this analysis, we propose an
Oðm logmÞ-time algorithm (where m is the number
of devices used by the application) to determine the
optimal processor frequency and device transition-
ing decisions to minimize the system-wide energy
consumption. To the best of our knowledge, this is
the first research effort to not only investigate the
exact interplay between VFS and DPM, but to also
provide a provably optimal solution to the system-
level energy management problem by taking into
account VFS/DPM-related issues, device transition over-
heads, and on-chip/off-chip workload characteristics
under the given energy model.

. We evaluate our optimal scheme, over a wide
spectrum of system/application parameters and
show that it yields significant energy gains when
compared to the existing suboptimal approaches.
Our experimental results are obtained using real
device and CPU specifications.

. We also show how our optimal solution can be
extended to address theworkload variability. Assum-
ing the knowledge of average-case execution time, we
show how to derive CPU frequency and device
transitioning decisions that minimize the average-case
system energy under the constraint that the applica-
tion’s deadline must be still met. Through extensive
simulations, we show how this helps achieve sig-
nificant energy savings in the presence of variability
in dynamic execution behavior of the application.

The remaining of this paper is organized as follows: In
Section 2, we give the system model and assumptions. In
Section 3, we illustrate the nontrivial challenges in the
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analysis of the interplay between VFS and DPM, by
focusing on the simple case where the real-time application
uses only one device. In Section 4, we solve the general case
of the problem for multiple devices. In Section 5, we extend
our solution to show how the knowledge about average-
case execution time can be exploited to reduce the average-
case system energy. We conclude in Section 6.

2 SYSTEM MODEL AND ASSUMPTIONS

2.1 Application Model

We consider a real-time embedded application that is
invoked periodically with a period of d, at time instants
k # d, where k is a nonnegative integer. At each invocation,
the application must complete its execution within the time
interval ½k # d; ðkþ 1Þ # d&, which is referred to as a frame. This
embedded application model is also known as a frame-based
system in the literature [23], [32].

The system is equipped with a VFS-enabled CPU where
the processing frequency f can be adjusted up to a
maximum frequency fmax. We normalize the frequency
values with respect to fmax. In line with studies in [1], [3],
[8], and [25], the worst-case execution time (WCET) of the
application under maximum frequency fmax is denoted by
c ¼ xþ y, where x denotes the frequency-dependent on-
chip workload which scales linearly with CPU frequency
and y denotes the frequency-independent off-chip work-
load which does not scale with CPU frequency. Thus, at
frequency f , the WCET of the application is WCET ðfÞ ¼
x
f þ y [1], [3], [8], [25].

We assume c ( d (i.e., the application meets its deadline
when executed at fmax). The slack refers to the unused CPU
time between the completion time of the application and the
beginning of the next frame, at each invocation. Formally,
the slack of the application at frequency f is given by
!ðfÞ ¼ d) ðxf þ yÞ.

2.2 Device Model

The real-time embedded application is assumed to use a set
of m devices denoted by D ¼ fD1 . . .Dmg during its
execution. Each device is assumed to have (at least) two
states: an active state and a sleep (low-power) state.
Following [7], [10], [27], [28], and [29] we assume intertask
device scheduling. Under intertask device scheduling approach,
all devices needed by the real-time application must be in
active state at the beginning of each frame and they should
remain in active state until the application completes its
execution in that frame. A device can be put to sleep state
when the application completes its execution (i.e., during
the slack period). These assumptions are realistic given that
the device state transitions typically involve nontrivial costs
and it is fairly difficult to predict when a running
application will rerequest a specific device during execution
[7], [10], [28].

The following parameters are associated with each
device Di:

. Pi
a. The device power consumption in active state.

. Pi
s . The device power consumption in sleep state.

. T i
sd and T i

wu. The device state transition times (from
active to sleep, and from sleep to active, respectively).

. Ei
sd and Ei

wu. The device transition energy overheads
(from active to sleep, and from sleep to active,
respectively).

Given that devices are associated with nonzero transition
costs, the device break-even time Bi denotes the minimum
length of idle period which justifies a device transition from
active to sleep state. Let T i

sw ¼ T i
sd þ T i

wu. We denote by
Bi

actual the minimum idle interval length during which
keeping Di in active state consumes the same amount of
energy as transitioning Di from active to sleep and back
from sleep to active. Thus, Bi

actual ¼
Ei

sdþEi
wu)Ti

sw:P
i
s

P i
a)Pi

s
. In other

words, Bi
actual characterizes the minimum idle interval

length for energy-efficient device state transitions. Further,
the device idle interval should be long enough to allow the
device transitions from active to sleep, and from sleep to
active states, implying that device break-even times cannot
be shorter than T i

sw. Hence, the device break-even time Bi is
given as Bi ¼ maxðBi

actual; T
i
swÞ, [6], [7]. In other words,

Bi ¼ max
Ei

sd þEi
wu ) T i

sw # Pi
s

P i
a ) Pi

s

; T i
sd þ T i

wu

! "
:

We assume that due to periodic nature of real-time
execution, devices cannot be completely turned off at
runtime; but they can be put to low-power (sleep) states
whenever possible. As a result, a device Di will always
consume power at the rate of at least Pi

s . Thus, for
simplicity, all power consumption rates for a device Di

are given in excess of Pi
s in the rest of the paper. In other

words, the following transformations are applied:
Pi
a ¼ Pi

a ) Pi
s ; E

i
sd ¼ Ei

sd ) ðPi
s # T i

sdÞ; Ei
wu ¼ Ei

wu ) ðPi
s # T i

wuÞ,
and Pi

s ¼ 0. Notice that such a transformation does not
change the original value of Bi.

Observe that the devices become idle at the end of task
execution and remain so until the beginning of the next
frame. In each frame, a device Di can be transitioned to
sleep state at the end of task execution, only if the slack
!ðfÞ * Bi, where f is the processor frequency at which the
application is executed. Further, if the slack at the
maximum frequency !ðfmaxÞ is smaller than Bi, then Di

will be forced to remain in active state throughout the frame
(since lower frequencies can only reduce its slack time).
Since this work explores the combined effects of DPM and
VFS, we will assume that !ðfmaxÞ * Bi, for all devices. Note
that if this condition is not satisfied for a given device Di,
thenDi cannot be managed and its energy consumption can
be considered as part of the static energy. The framework of
the paper is still applicable to the remaining devices.

2.3 Energy Model

Since the embedded application is invoked in periodic
fashion, we concentrate on the energy consumption over a
single frame. The system energy E can be divided into static
energy (Es) and dynamic energy (EðfÞ):

E ¼ Es þ EðfÞ:

The static energy Es is due to the static power which is
required for purposes such as keeping the system clock
running, maintaining the basic circuits, and keeping the
devices in sleep states. Since the static power can only be
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eliminated by completely turning off the entire system, we
assume that the static energy is not manageable [6], [35].
Hence, we focus on minimizing the dynamic energy
consumption EðfÞ which is a function of the processor
frequency and includes the system components such as
CPU, the main memory, and I/O devices.

At the end of task execution in each frame, depending
on the system slack, the devices can either be transitioned
to sleep state or kept in active state. Let DA denote the set
of devices kept in active state throughout the frame.
Devices in DS ¼ D)DA are transitioned to sleep state at
the end of task execution. It is assumed that each device
Dj 2 DS is reactivated Tj

wu time units before the start of the
next frame, to allow timely execution. Also, let Pind denote
the total active power of the application’s devices. We
denote by Pon the total active power of devices in DA and
Etr denotes the total transition energy of devices in DS .
Formally, Pind ¼

P
ijDi2D Pi

a, Pon ¼
P

ijDi2DA
P i
a, and Etr ¼P

ijDi2DS
ðEi

sd þ Ei
wuÞ.

Given this notation, the dynamic system energy con-
sumption at frequency f over the duration of a frame is
given as

EðfÞ ¼ ðaf3 þ PindÞ #
x

f
þ y

! "
þ Pon # !ðfÞ þ Etr:

The processor power consumption is modeled as a
convex function af3, where “a” is the switching capacitance.
At frequency f , the application executes for ðxf þ yÞ units,
during which the processor consumes af3 # ðxf þ yÞ units of
energy. Pind # ðxf þ yÞ represents the total device energy
consumption during the execution of the application. Pon #
!ðfÞ represents the total energy consumed over the slack
period by devices remaining in active states. Etr represents
the transition energy overhead for devices that are transi-
tioned to sleep state during the slack period. We note that
this component of the system energy representing device
transition overheads was not considered in previous
system-level energy management papers [1], [14], [36].

3 SINGLE-DEVICE MODEL

In this section, we consider a simplified model where the
real-time application uses a single device. Using this simple
model, we illustrate several nontrivial observations that
lead to the characterization of the exact interplay between
VFS and DPM. We also provide an Oð1Þ algorithm to
calculate the frequency that optimizes system-wide energy
while taking into account the VFS/DPM interplay and
device transition overheads. In Section 4, we will extend
these results to the general case with multiple devices.

The exact characterization of the trade-offs between
VFS and DPM is critical for system-wide energy mini-
mization. Consider a real-time application with WCET of
c ¼ xþ y units and frame length of d units, using a device
D0 with break-even time B0. By adjusting the processor
frequency, the completion time of the task can be
anywhere from c to d (Fig. 1). This frequency assignment
has obviously serious consequences for the applicability of
DPM, and hence for overall system energy. Let fa denote
the minimum frequency at which the task can still meet its

deadline, fa ¼ x
d)y [3]. Further, let us denote the frequency

which produces a slack of exactly B0 units by f+ ¼ x
d)B0)y .

Note that to transition D0, the processor has to run the
real-time frame-based application at a frequency no less
than f+.

Fig. 2a shows the variations in device energy consump-
tion (Edevice) and CPU energy consumption (Ecpu) as a
function of the processor frequency.1 Note that Edevice also
includes device transition costs, when applicable. To start
with, Ecpu increases with increasing frequency in a quad-
ratic manner. However, Edevice follows different patterns in
two different regions. In Region A where fa ( f < f+, the
device D0 cannot be transitioned (because the slack is
smaller than B0) and it is forced to remain in active state
throughout the frame. As such, Edevice ¼ Pa # d is constant in
Region A. In Region B where f+ ( f ( fmax, the device can
be transitioned to sleep state. Further, as the frequency
increases beyond f+ in Region B, the slack and hence, the
length of the device sleep interval, increases. Thus, in
Region B, the total device energy consumption during the
execution of the application (Edevice) decreases with increas-
ing frequency.

Fig. 2b shows the variation of the system energy
consumption, Esystem ¼ Edevice þ Ecpu, as a function of the
frequency. We can see that Esystem exhibits varying trends in
Regions A and B. While Esystem increases in Region A with
increasing frequency, the local minimal of Esystem in
Region B can lie anywhere in the range ½f+; fmax ¼ 1&. Also,
as additional plots with dashed lines in Region B illustrate,
the minimum value of Esystem in that region can have quite
different values.

It is worthwhile to compare these trends to the results of
prior energy management studies. Region A is the spectrum
whereonly thedynamicCPUpower canbe controlled. In fact,
this was precisely the assumption of the early real-time VFS
papers [2], [21], which effectively ignored Region B. Conse-
quently, in Region A, the minimum frequency that guaran-
tees system feasibility (f ¼ fa) is optimal. Region B is
somewhat similar to the spectrum assumed by the recent
system-level energymanagement papers [1], [14], [36],which
considered the CPU and device energy figures at the same
time. But, these papers neither accounted for energy transi-
tionoverheadsnor addressed thequestionofwhetherDPMis
justifiable at runtime, given the length of actual idle intervals.
As a result, these approaches ignored Region A. We can see
that one really needs to consider both regions to analyze (and
get full benefits of) VFS and DPM, simultaneously.
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Fig. 1. The break-even time and the impact of VFS.

1. For the purpose of presentation, Fig. 2 is drawn assuming device
break-even time B ¼ Bactual. The formal analysis does not make such an
assumption.



The local optimal frequencies that minimize Esystem in
Regions A and B are well defined. However, there is no a
priori reason why global optimal frequency that minimizes
Esystem should lie in Region A or Region B. Depending on
the relative power consumption rates of the device and
CPU, the execution time of the application, and the relative
positions of fa and f+, the global optimal may be in either
Region A or Region B. In fact, fopt2, which optimizes Ecpu þ
Edevice and transitions the device to sleep state (by incurring
the transition energy) may possibly consume more system-
wide energy compared to the frequency fopt1, which
minimizes Ecpu and avoids device transition costs, without
paying special attention to Edevice. Consequently, exact
evaluation and comparison of the local optimal values in
Regions A and B are necessary in order to determine the
global optimal.

3.1 System Energy Minimization in Region B

While the local optimal in Region A is straightforward to
find, the one in Region B requires some elaboration. In
Region B, all frequency values support energy-efficient
device transitions and the device will be transitioned at the
end of task execution. Thus, in Region B, the system energy
consumption can be expressed as

!EðfÞ ¼
#
af3 þ P 0

a

$
# x

f
þ y

! "
þ
#
E0

sd þ E0
wu

$
:

Observe that !EðfÞ is a strictly convex function. ðE0
sd þ

E0
wuÞ appears as a constant in !EðfÞ and hence, the frequency

fee that minimizes !EðfÞ can be found by setting its
derivative to zero. This gives the following quartic equation
that can be solved analytically and in constant time [30]:

3a
y

x
f4 þ 2af3 ) P 0

a ¼ 0: ð1Þ

Further, through the Descartes’ Rule of Signs [30], one can
verify that the above equation has exactly one positive real
root, which corresponds to the energy-efficient frequency
value fee. This is, as expected, numerically equal to the
energy-efficient frequency value given in [1], which solely

focused on Region B, but without considering device
transition energy and DPM-related issues.

Remark 1. An energy-efficient device state transition as
assumed by the operation in Region B may not be
possible by using the frequency fee, if fee lies outside the
range ½f+; fmax&.

Remark 2. Even when fee is in the range ½f+; fmax&, in order
to find the global optimal frequency, one still needs to
compare the minimum energy consumption in Region B
which incurs a device transition overhead against the
minimum energy consumption in Region A which does
not incur a transition overhead. This will be fully
analyzed in Section 3.2.

Recall that a strictly convex function with one variable
has a single global optimal and its second derivative is
always positive. Hence, the convex nature of !EðfÞ justifies
the following two basic properties for any " > 0:

Property 1. 8f; f > fee; !EðfeeÞ < !EðfÞ < !Eðf þ "Þ.
Property 2. 8f; f < fee; !EðfeeÞ < !EðfÞ < !Eðf ) "Þ.

Let fb denote the frequency that minimizes system
energy in Region B. We determine fb by considering three
possible cases.

. Case 1. f+ ( fee ( fmax.
In this case, D0 can be transitioned to sleep state

at f ¼ fee as !ðfeeÞ * B0. Also, there is no other
frequency which can transition D0 and yield better
system energy consumption in Region B. Thus,
fb ¼ fee.

. Case 2. fee > fmax.
From Property 2, the system energy in Region B is

minimized when f ¼ fmax. Thus, fb ¼ fmax.
. Case 3. fee < f+.

This implies !ðfeeÞ < B0 and D0 cannot be
transitioned in energy-efficient fashion at f ¼ fee.
Thus, in an effort to transition the device, we have to
increase frequency beyond fee and toward f+, which
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represents the first instance when the device can be
transitioned. From Property 1, we can find that the
system energy in Region B is minimized when
f ¼ f+. Hence, fb ¼ f+.

Based on the analysis above, we can write

fb ¼ maxðf+;minðfee; fmaxÞÞ:

Note that this formulation covers the three cases examined
for energy minimization in Region B and also restricts fb to
the range ½f+; fmax&. Since 0 ( B0 < d, we have f+ * fa and it
follows that fb * fa. Thus, fb preserves the system feasibility
as well.

3.2 Finding the Global Optimal

In the preceding analysis, we showed that fa and fb are the
local optimal values in Regions A and B, respectively.
However, there is no a priori reason for global optimal
frequency that minimizes system energy across Regions A
and B to lie in one region as opposed to the other. The
example below illustrates this fact.

Illustrative Example 1. Consider a real-time application
with c ¼ 10 and d ¼ 42. For simplicity of illustration, we
assume that the entire workload scales linearly with
frequency (i.e., x ¼ c and y ¼ 0). LetD0 have the parameters
P 0
a ¼ 0:5, E0

sd ¼ E0
wu ¼ 5, and T 0

sd ¼ T 0
wu ¼ 10. Assume

switching capacitance a ¼ 1. From the data, we can find
thatB0 ¼ 20 and fee ¼ 0:63. Observe that !ðfeeÞ > B0. Hence,
it turns out that the device can be effectively put to sleep
state and run at f ¼ fee. However, we obtain Eðfa ¼ 10

42Þ ¼
21:57 and Eðfb ¼ feeÞ ¼ 21:91. This shows that, for the given
settings, despite the fact that the device can be transitioned at fee,
from the system energy point of view it is better to keep D0 in
active state throughout the frame and run the application at
f ¼ fa. This is shown through Case 1 in Fig. 3. In the same
example, by changing E0

sd ¼ E0
wu ¼ 1:25 and T 0

sd ¼ T 0
wu ¼ 5,

we get B0 ¼ 10. With these new parameters, one can verify
that EðfeeÞ < EðfaÞ as shown in Case 2 of Fig. 3.

Thus, to determine the global optimal, it is essential to
consider the local optimal values in both Regions A and B
and compare them. Determining EðfaÞ and EðfbÞ and
comparing them are all constant time operations. Hence,
the overall complexity of the algorithm to determine the

global optimal (the frequency that minimizes the total
system energy) is Oð1Þ.

A final observation is in order about the relative ordering
of B0

actual and T 0
sw, whose maximum was defined as the

break-even time B0. If B0 ¼ B0
actual, since !ðf+Þ ¼ B0 ¼

B0
actual, the following inequality holds:

EðfaÞ ( Eðf+Þ ( Eðf+ þ "Þ:

This implies that, if fb ¼ f+, we know for sure f ¼ fa is the
global optimal and a comparison between EðfaÞ and Eðfb ¼
f+Þ is not required. However, the above inequality may not
hold when B0 ¼ T 0

sw > B0
actual. In this case, nothing can be

said about the relative ordering of EðfaÞ and Eðf+Þ, as
illustrated by the following example:

Illustrative Example 2. Let c ¼ x ¼ 5, y ¼ 0; d ¼ 19, P 0
a ¼

0:25, T 0
sd ¼ T 0

wu ¼ 5, and E0
sd ¼ E0

wu ¼ 0:625. For the given
data, B0 ¼ T 0

sw ¼ 10 and f+ ¼ 5
9 . Assume a ¼ 1. We can

verify that Eðf+Þ ¼ 5:04 < EðfaÞ ¼ 5:096. By setting E0
sd ¼

E0
wu ¼ 1, we can verify that B0 and f+ still remain the same.

However, in these new settings, Eðf+Þ > EðfaÞ.

3.3 Experimental Evaluation
In this section, we perform an experimental evaluation
using the actual device specifications taken from [7]. The
CPU power consumption rate at the maximum processing
frequency is modeled after Intel XScale [33]. We consider a
real-time application with a frame length of 44 ms. The
application is assumed to use the device IBM Microdrive
during its execution. Based on the device characteristics of
IBM Microdrive [7], its break-even time can be computed as
24 ms. Observe that if the worst-case execution time c of the
real-time application at the maximum frequency is greater
than 20 ms, then the device can never be transitioned to
sleep state as there is not enough slack to justify it. Thus,
when c > 20, the problem of system-wide energy mini-
mization reduces to minimizing CPU energy only and
running the CPU at f ¼ fa is optimal. Hence, we only vary c
from 2 to 20 ms in steps of 2 ms. For each distinct c value, we
compare three schemes:

. OPT. Optimal scheme from Section 3.2.

. Aggressive slow-down (AG-SD). This scheme runs the
processor at the lowest frequency fa ¼ x

d)y that can
still meet the deadline [1], [3]. With AG-SD, the
devices are never transitioned to sleep state. The
frequency fa minimizes the CPU dynamic energy
consumption only [2], [21].

. Device-aware slow-down (DA-SD). This scheme is
based on the concept of energy-efficient frequency
[1], [14], [36] and is adopted from [1], where an
optimal solution to the system-wide energy mini-
mization problem is developed, but by ignoring the
DPM dimension. The energy-efficient frequency
(denoted by fee) is computed as the frequency that
minimizes the system energy, by considering only
CPU energy and device active energy consumption.
Since fee can be less than the system utilization, to
preserve the feasibility, we execute the task at
f ¼ maxðfa; feeÞ. If the device can be transitioned at
f ¼ fee we do so; else, the device remains in active
state throughout the frame.
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Fig. 3. Example illustrating the position of global optimal.



First, we consider the effect of varying worst-case
execution time (Fig. 4). The off-chip workload ratio (yc ) is
set to 0.2. The values are normalized with respect to AG-SD
when c ¼ 20. For c ( 18, the system energy benefits from
running the processor at frequencies higher than fa since
the gain in device energy consumption overshadows the
loss in CPU energy. Hence, f ¼ fb is optimal in this region.
On the other hand, for c > 18, at high frequencies the loss
in CPU energy starts to overshadow the gain in device
energy. Consequently, running at frequencies higher than
fa starts to hurt system energy and f ¼ fa is the optimal in
this spectrum.

It can be seen that in the interval where c ( 12, OPT
follows DA-SD while for c * 18, OPT follows AG-SD.
However, for 12 < c < 18, it can be seen that OPT follows
neither AG-SD nor DA-SD. During this period, fb ¼ f+ and
OPT represents Eðf+Þ which is optimal in this spectrum.
Notice that for this example, the optimal frequency that
minimizes the system-wide energy, changes from fopt ¼ fee
to fopt ¼ f+ and finally to fopt ¼ fa with increasing utiliza-
tion values. As fopt transitions from fee to f+, the device can
no longer be put to sleep state at f ¼ fee. Thus, running at
f ¼ fee consumes more system energy compared to f ¼ fa,
explaining the sharp increase in DA-SD at c ¼ 14. The
energy optimal scheme OPT avoids the suboptimal perfor-
mances of AG-SD and DA-SD at low and high utilization
values, respectively.

We emphasize that there is an interval ½12; 18& where fopt
is neither fa nor fee, but f+, in the above results. Thus, the
optimal scheme (OPT) is more than just determining at
every point the better performing frequency in the set
ffa; feeg. In other words, there are regions where both of
these well-known frequencies fail to minimize the system-
wide energy consumption as in these regions, the optimal
frequency f+ differs from both fa and fee.

Fig. 5 shows the impact of varying off-chip workload
ratio (yc ). In this experiment, the worst-case execution time
of the application is set to 16 ms (i.e., c ¼ 16 ms). The
relative performance of the schemes is not heavily impacted
by variations in off-chip workload ratio and OPT outper-
forms both AG-SD and DA-SD throughout the spectrum.
With increasing off-chip workload ratio, both fee and fa
decrease [1], [3], since there are additional opportunities for
VFS to further reduce the energy consumption. Thus, the
normalized energy consumption values of schemes de-
crease with increasing off-chip workload ratio.

4 MULTIPLE-DEVICE MODEL

In this section, we generalize our solution to the case of
multiple devices. The real-time application is assumed to use
m different devices fD1 . . .Dmg during the span of its
execution. Each device Di has its own parameters (Pi

a, P
i
s ,

Ei
sd, E

i
wu, T

i
sd, and T i

wu) and is associated with a break-even
time denoted by Bi. First, we formally define the problem.

Problem statement. Given a frame-based real-time applica-
tion using m different devices, determine the CPU frequency and
device transitioning decisions so as to minimize the system-wide
energy consumption.

Since each device can be put to sleep state at the end of
the execution, or remain in active state until the end of the
frame, at first, it seems that there are 2m possibilities that
need to be examined. If true, this would imply an
exponential-time algorithm. By careful analysis, we estab-
lish some important properties of the optimal solution,
which enables us to develop an Oðm logmÞ-time algorithm.

Let Ropt denote the response time of the real-time
application in the optimal solution. We know that
Ropt 2 ½c; d&. Without loss of generality, the break-even times
are arranged in nondecreasing order, i.e., 0 < B1 < # # # <
Bm < d) c. With this ordering, we can divide ½c; d& into mþ
1 intervals f½c; ðd)BmÞ& . . . ½ðd)Biþ1Þ; ðd)BiÞ& . . . ½ðd)
B1Þ; d&g denoted by fIm . . . I0g, respectively (Fig. 6). If two
devices have the same break-even time, Bm ¼ d) c, or
B1 ¼ 0, then we will have less than mþ 1 intervals. The
same analysis can then be performed on this reduced
interval set.

For convenience, we divide our analysis into two steps
that eventually will lead to an Oðm logmÞ-time algorithm.
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Fig. 4. Impact of the worst-case execution time c. Fig. 5. Impact of the off-chip workload ratio y
c .

Fig. 6. The ordering of the break-even times.



. Step1. For each of these intervals, assuming that Ropt

lies in that interval, we determine the set of devices that
will be transitioned at the end of task executionwhich
helps to evaluate the exact system-wide energy
consumption function. Once we have the exact form
of system-wide energy in an interval, we show how it
can be minimized.

. Step2. Based on the analysis in Step1, we narrow
down our analysis to at most mþ 2 cases that have
to be examined. By comparing the energy consump-
tion figures of these mþ 2 cases, we determine the
optimal solution.

We now elaborate on these two steps and present our full
analysis. By ordering the devices in nondecreasing order of
break-even times, Step1 can be addressed as follows: if Ropt

belongs to interval Ii, then devices fDiþ1 . . .Dmg cannot be
transitioned as the idle time is smaller than their break-even
times. However, all devices fD1 . . .Dig can and should be
transitioned. This is because if any device in the set
fD1 . . .Dig is not transitioned to sleep state at the end of
task execution, then by transitioning that device, we would
effectively reduce device energy consumption and hence
obtain a schedule with reduced system energy consump-
tion. Based on this, one can infer that if Ropt 2 Im, all
m devices will be transitioned. Similarly, if Ropt 2 I0, then
none of the devices will be transitioned.

Based on the interval to which Ropt belongs, we can
characterize the devices that should be transitioned to sleep
states at the end of task execution. With this information,
we can characterize the system energy consumption
function when Ropt 2 Ii. The number of devices transitioned
to sleep states and hence the exact form of the system energy
consumption remains the same as Ropt varies within a given
interval and changes only when Ropt transitions between
intervals. Let EiðfÞ represent the system energy consump-
tion when Ropt 2 Ii. Specifically,

EiðfÞ ¼ af3 þ
Xi

j¼1

Pj
a

 !
x

f
þ y

! "
þ
Xm

j¼iþ1

Pj
ad

þ
Xi

j¼1

#
Ej

sd þ Ej
wu

$
:

Notice that in the formulation of EiðfÞ, devices
fD1 . . .Dig are transitioned while devices fDiþ1 . . .Dmg
are kept in active state throughout the frame. For uni-
formity, let us denote the lower and upper limits of interval
Ii by LLi and ULi, respectively. That is, LL0 ¼ d)B1,
UL0 ¼ d, LLm ¼ c, ULm ¼ d)Bm, and LLi ¼ d)Biþ1;
ULi ¼ d)Bi, ði ¼ 1 . . .m) 1Þ. We can formalize the pro-
blem of minimization of Ei by enforcing that the response
time of the task falls in interval Ii. This leads to the
following constrained convex optimization problem for Ii,
denoted by OPTi:

minimize EiðfÞ ð2Þ

subject to ) x

f
) yþ LLi ( 0 ð3Þ

x

f
þ y) ULi ( 0: ð4Þ

Constraints (3) and (4) make sure that the response time of
the application does not fall outside the range of interval Ii
to which Ropt is assumed to belong.

Proposition 1. If the frequency f is the solution to the
optimization problem OPTi, then fa ( f ( fmax.

Proof. If f > fmax, from both (3) and (4) it follows that the
response time at f > fmax is in the range [LLi; ULi]. Since
c ¼ LLm, this implies x

fmaxþ" þ y * c ¼ x
fmax

þ y, which is a
contradiction.

Similarly, if f < fa, from both (3) and (4) it follows
that the response time at f < fa is in the range [LLi; ULi].
Now, since UL0 ¼ d, this implies x

fa)" þ y ( d ¼ x
fa
þ y,

which is again a contradiction. tu

Let fi be the value that sets the derivative of EiðfÞ to
zero. Thus, fi is the unique positive real root of the
following quartic equation:

3a
y

x
f4 þ 2af3 )

Xi

j¼1

Pj
a ¼ 0:

Lemma 1. If fi satisfies conditions (3) and (4), then it is the
solution to OPTi. Else, in the solution to OPTi either f ¼

x
LLi)y or f ¼ x

ULi)y .

Proof. By definition, the response time of the application in
OPTi must be in interval Ii (i.e., in the interval
½LLi; ULi&). As a consequence, it follows that the
frequency at which the application is executed is in the
range ½ x

LLi)y ;
x

ULi)y&. In other words, if f 2 ½ x
LLi)y ;

x
ULi)y&,

then conditions (3) and (4) will be satisfied.
Since EiðfÞ is strictly convex, it is minimized at fi.

Thus, if fi 2 ½ x
LLi)y ;

x
ULi)y&, then it is the solution to OPTi.

On the other hand, if fi 62 ½ x
LLi)y ;

x
ULi)y&, then due to

convexity of EiðfÞ either f ¼ x
LLi)y or f ¼ x

ULi)y is the
solution to OPTi [19]. tu

Observe that when Ii ¼ Im; fm is the unique positive root
of the equation 3a y

x f
4 þ 2af3 )

Pm
i¼1 P

i
a ¼ 0. Thus, fm ¼ fee,

the traditional energy-efficient frequency for a task using
m devices derived by ignoring DPM issues [1]. Assuming that
fee satisfies the response time constraints for interval Im, an
interesting observation at this point is that fee is only the
local optimal solution for the interval Im.

While Lemma 1 solves Step1 of the analysis, the
following corollary connects Step1 and Step2.

Corollary 1. If the response time under frequency fi lies outside
the interval Ii (8i ¼ 0 . . .m), then in the optimal solution,
Ropt 2 fc; ðd)BmÞ; . . . ; ðd)B1Þ; dg.

Corollary 1 states that if for all the ðmþ 1Þ intervals, Ii, fi
do not satisfy the conditions (3) and (4) of the optimization
problem OPTi, then in the optimal solution, the response
time of the application is limited to the set fc; ðd)BmÞ; . . . ;
ðd)B1Þ; dg. That is, if the given conditions hold, in the optimal
solution, the slack of the application should be exactly equal to 0,
d) c, or one of the break-even times fBig.
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If Ropt ¼ d)Bi, technically it falls in two intervals and
one may tend to think that there is a need for evaluating two
cases: one in which Di is not transitioned (as part of interval
Ii)1) and another in which Di is transitioned (as part of
interval Ii). However, as the following observation states,
one of these possibilities is never worse than the other.

Observation 1. If Ropt ¼ d)Bi, then the device Di can be
transitioned without increasing overall energy consumption.

Observation 1 follows from the fact that Bi is defined as
maxfBi

actual; T
i
swg. If Bi ¼ Bi

actual > T i
sw, then by definition

of Bi
actual, transitioning or not transitioning the device

results in the same energy consumption when the
application completes at t ¼ d)Bi ¼ d)Bi

actual. On the
other hand, if Bi ¼ T i

sw > Bi
actual, and the application

completes at t ¼ d)Bi, it leaves a slack strictly larger
than Bi

actual and transitioning the device reduces the
energy consumption. Hence, in either case, the device Di

can be transitioned without increasing the energy con-
sumption when Ropt ¼ d)Bi.

Observation 1 implies that there are at most mþ 2
cases that need to be examined to determine the optimal
solution. Let ECopt denote the set of energy consumption
values obtained by evaluating the final mþ 2 cases. An
interesting question is whether there exists a pattern
among these final mþ 2 cases that can be further
exploited by convex optimization techniques. Unfortu-
nately, the answer is negative.

Observation 2. The relative ordering of the ðmþ 2Þ values in
the set ECopt does not exhibit a special pattern.

We give an example to justify the above observation.
Illustrative Example 3. Consider a real-time application

with c ¼ x ¼ 10, y ¼ 0, and d ¼ 30. The application uses
four devices D1ðP 1

a ¼ 0:2; B1 ¼ 5Þ, D2ðP 2
a ¼ 0:15; B2 ¼ 10Þ,

D3ðP 3
a ¼ 0:5; B3 ¼ 15Þ, and D4ðP 4

a ¼ 0:4; B4 ¼ 17Þ. Let us
assume a ¼ 1 and Tsw ( Bi

actual for all devices. Bi
actual ¼

Ei
sdþEi

wu

P i
a

; i ¼ 1 . . . 4. In these settings, we can verify that
f4 ¼ 0:855; f3 ¼ 0:752; f2 ¼ 0:559, and f1 ¼ 0:464. Notice
that 8i; c

fi
2 Ii. In interval I0; f ¼ fa is the best as no devices

are transitioned to sleep states. With the above data, we can
verify Eðf ¼ faÞ ¼ 38:611, Eðf ¼ f1Þ ¼ 38:963, Eðf ¼ f2Þ ¼
38:886, Eðf ¼ f3Þ ¼ 38:958, and Eðf ¼ f4Þ ¼ 38:730.

Notice how the interval-optimal energy consumption
EiðfÞ first increases, next decreases, then increases before
decreasing once again, as we move from the first candidate
frequency f1 to f2, f3, and f4. This shows that the optimal
energy consumption values of the final mþ 2 cases, need
not to have a well-defined relationship (such as convexity)
which can be exploited by optimization techniques. As an
implication, it turns out that it is indeed necessary to
evaluate and compare the mþ 2 candidate cases for the
optimal solution.

4.1 Computing the Optimal Frequency Efficiently

Based on the above characterizations, we formulate an
Oðm logmÞ algorithm, given in Fig. 7, to find the optimal
frequency for the multiple-device model. As an implication
of Observation 2, it is necessary to compare the best energy

consumptions obtained by assuming Ropt 2 Ii, i ¼ 0 . . .m to
obtain the global optimal. From Lemma 1 and Observa-
tion 1, in every interval Ii; i 6¼ m, if f ¼ fi does not satisfy
the response time constraints, then it is sufficient to evaluate
and compare energy consumption at f ¼ x

ULi)y . We start out
with the assumption that the optimal solution is in I0 and
f ¼ fa minimizes system energy (lines 4-6). The Ebest

variable holds the minimum system energy consumption
value encountered so far and the fbest holds the correspond-
ing frequency. In lines 7-19, we consider cases where the
optimal response time of the application is assumed to
belong to each of the remaining m intervals I1 . . . Im. For
each such interval, we compute fi. Based on whether or not
fi satisfies the response time constraints, we compare
energy consumption at either f ¼ fi or f ¼ x

ULi)y with
Ebest. For interval Im, if fm does not satisfy the response time
constraints, then it is necessary to evaluate and compare
energy consumption at LLm ¼ c, as c does not act as an
upper limit to any interval. In lines 20-24, we perform this
final comparison. At the end, fbest holds the optimal value of
f that minimizes system energy consumption.

Time complexity. Sorting the devices based on break-
even times requires Oðm logmÞ time. The algorithm per-
forms a constant time comparison in every interval and
there are at most mþ 1 intervals. Thus, the time complexity
of the algorithm is Oðm logmÞ. Since the number of devices
in a system is typically small, this offline algorithm can be
considered efficient.
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Fig. 7. Algorithm to compute the optimal frequency (multiple-device
case).



4.2 Experimental Evaluation

The experimental methodology we follow in this section is
an extension of the one described in Section 3.3. Again, the
real-time application has a frame length of 44 ms. It uses
three devices during its execution: IBM Microdrive
(B ¼ 24 ms), Realtek Ethernet Chip (B ¼ 20 ms), and
Simple Tech Flash Card (B ¼ 4 ms). The specifications of
these devices are from [7].

We consider the effect of worst-case execution time on
both optimal system slack and optimal system energy
consumption (Figs. 8a and 8b). The off-chip workload ratio
(yc ) is set to 0.2. Fig. 8a shows the optimal slack (d)Ropt)
which minimizes system-wide energy as a function of c.
Fig. 8b shows the relative performance of the three schemes.
The energy values are normalized with respect to AG-SD
when c ¼ 20 ms. The optimal slack decreases uniformly
with increasing utilization in the range 2 ( c ( 14. In this
interval, f ¼ fee is optimal, and the OPT scheme follows
DA-SD. For values in the range 14 < c < 20, OPT is
significantly different from both DA-SD and AG-SD. During
this period, one or more devices cannot be transitioned at
f ¼ fee, which explains the sharp increase in DA-SD at
c ¼ 16. The step-like behavior of the optimal slack is also a
consequence of the optimal frequency shifting from f ¼ fee
to an intermediate value between fa and fee. Note that
depending on the power characteristics of devices and
frame length, the sharp increase in DA-SD scheme may also
occur at an earlier stage than the one shown in figure. In
such cases, the advantages of our optimal scheme are even
more pronounced.

In models minimizing the system-wide energy while
ignoring device transition overheads and DPM-related issues,
DA-SD scheme was shown to be optimal assuming it
satisfies feasibility constraints [1]. Observe that AG-SD
outperforms DA-SD in the spectrum c * 16 in Fig. 8b. Due
to device transition overheads, as mentioned before,
transitioning devices at f ¼ fee is not always possible.
When c ¼ 16, IBM Microdrive cannot be transitioned at fee
and remains active throughout the frame significantly
increasing device energy consumption. The CPU power
consumption rate is significantly high compared to that of
Flash Card and Ethernet Chip. Thus, with IBM Microdrive
in active state throughout the frame, the CPU energy
savings in scheme AG-SD dominate the device energy
saving obtained by transitioning Flash Card and Ethernet
Chip in DA-SD. This explains the reason why AG-SD
outperforms DA-SD.

Finally, at c ¼ 20, OPT follows AG-SD. Observe that for
the devices considered T i

sw > Bi
actual. As a result, the device

break-even time, defined as maxðT i
sw; B

i
actualÞ, is dominated

by the device transition times. Thus, even at c ¼ 20, the
system has enough slack to potentially transition all three
devices energy efficiently. However, when c ¼ 20, there is no
device transitioning decision, involving transitioning at least
one device to sleep state, which can reduce device energy
consumption to an extent that it overshadows the increase in
CPU energy by running the processor at frequencies higher
than f ¼ fa. Thus, AG-SD is optimal at c ¼ 20.

Fig. 8c shows the impact of off-chip workload ratio with
c set to 16 ms. The findings are similar to those for single
device. Also, the relative gains of OPT seem to get better
only marginally with increasing off-chip workload ratio
showing that variability in off-chip workload ratio has
minimal impact on relative performance of the schemes.

While the above experiments were based on device/
processor parameters taken from [7] and [33], in the
following experiments, we will analyze the sensitivity of
the results with respect to power characteristics of the
system components by scaling up and scaling down the
device/processor parameter values given in [7] and [33].
Fig. 9 shows the impact of varying device, processor, and
application characteristics. In these experiments, c ¼ 16 ms
and off-chip workload ratio is set to 0.2.

Figs. 9a and 9b show the impact of varying device and
processor power characteristics, respectively. In Fig. 9a, we
multiply the active power of all devices by a certain scaling
factor and recompute device break-even times while
keeping processor characteristics the same. On the contrary,
in Fig. 9b, we multiply processor power consumption at the
maximum frequency by a certain scaling factor while
keeping device characteristics the same. At each scaling
point, we evaluate the system energy consumption of all
three schemes. All energy values in Figs. 9a and 9b are
normalized with respect to scaling factor of one (i.e., the
original device/processor parameters).

In Figs. 9a and 9b, it is worth observing that there is awell-
defined regionwhereOPT’s energy savings differ from those
ofAG-SD andDA-SD. At lower Pa scaling factors and higher
Pcpu scaling factors, the processor energy consumption
overshadows device energy consumption and dominates
systemenergy.As such, in these regions,AG-SD outperforms
DA-SD. On the contrary, at higher Pa scaling factors and
lower Pcpu scaling factors device energy consumption is
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Fig. 8. Experimental evaluation for multiple-device model. (a) Optimal slack as a function of c. (b) Relative performance of schemes as a function of c.
(c) Relative performance of schemes as a function of y
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dominant resulting in DA-SD outperforming AG-SD. Thus,
DA-SD suffers from performance degradation in settings
whereCPUenergydominates,while in settingswhere device
energy dominates the performance of AG-SD significantly
degrades. As is evident in Figs. 9a and 9b, OPT maintains a
robust performance at all scaling factors and is not susceptible to
performance degradation due to changes in power character-
istics of system components.

Fig. 9c shows the impact of varying the frame length (d).
d is varied between 30 and 50 ms in steps of 2 ms. The
energy values are normalized with respect to that of AG-SD
at d ¼ 50. With increasing values of d, the energy consump-
tion of AG-SD increases as devices are forced to remain in
active state for prolonged periods of time. For the same
reason in the range 30 ( d < 46, the energy consumption of
DA-SD increases with increasing values of d. In this range,
there is not enough slack to create an effective and energy-
efficient device transition with which DA-SD can outper-
form AG-SD. However, when d ¼ 46, such a transition does
occur and hence DA-SD outperforms AG-SD in the range
46 ( d ( 50. Notice that in the region 40 < d < 46, OPT
differs from both AG-SD and DA-SD. Finally, the sudden
decrease in energy consumption of OPT at d ¼ 42 is due to
the fact that the frame length becomes large enough to
allow for transitioning additional devices energy efficiently.

Before concluding this section, we note that additional
experimental results exploring a larger parameter space are
presented in our technical report [9].

5 WORKLOAD VARIABILITY

While Section 4 has developed a provably optimal solution
to minimize the system energy consumption for a
deterministic workload by assuming worst-case execution
behavior, frequently, the actual workload in real-time
applications exhibits significant variability [11]. In fact,
exploiting workload variability to minimize CPU energy
through reclaiming is a heavily explored problem in VFS
research [2], [21], [24]. In the presence of such variability in
runtime execution behavior, the optimal solution derived
in Section 4 becomes suboptimal and pessimistic. In
variable workload settings, even though the application’s
actual workload may not be known precisely in advance,
some stochastic information about the runtime execution
behavior of the application can be determined [2], [5], [16],
[12], [18], [33]. In this section, following [2] and [16], we

show how information about the average-case execution
behavior of the application, if known, can be used to
extend our framework to minimize the average-case system
energy consumption, while still providing deterministic
guarantees to meet the deadline.

First, we give a motivational example to illustrate the fact
that the knowledge about average-case execution time can
provide important opportunities for system energy man-
agement. Consider a real-time application with c ¼ 10, d ¼
15 and using device D1 with the following parameters:
Tsd ¼ Twu ¼ 4, Esd ¼ Ewu ¼ 1, and Pa ¼ 2. From the data, we
can derive B1 ¼ 8. Assume switching capacitance a ¼ 1.
Assuming the worst-case workload c;D1 cannot be transi-
tioned and hence the optimal frequency is fwc ¼ c

d ¼
2
3 . Now

assume we have information that the average-case execu-
tion time of the application is six. Using this, one can verify
that the average-case energy consumption is minimized at
fexp ¼ 1. If the actual execution time of the application is 7,
then it can be verified that EðfexpÞ ¼ 23 which is less than
EðfwcÞ ¼ 33:14 by a margin of 30 percent.

Before proceeding, we underline that the hard deadline
constraint will impose an absolute lower bound on CPU
frequency, occasionally limiting the efficacy of energy
optimization with average-case execution time. We now
give the details of our approach.

Let c0 ¼ x0 þ y0 denote the average-case execution time of
the real-time application (under maximum frequency),
where x0 and y0 are the on-chip and off-chip components
of the workload, respectively. Let Rexp represent the
response time of the application in the solution that
minimizes the average-case energy. Thus, by definition,
we have Rexp 2 ½c0; d&. As in Section 4, the interval ½c0; d& can
be divided into mþ 1 intervals I0 . . . Im. All interval values
are the same as in Section 4 except for the lower limit of Im
which is c0 as opposed to c (the worst-case execution time).
Thus, Rexp belongs to one of the mþ 1 intervals I0 . . . Im.

Further, following the same reasoning as in Section 4, we
can see that if Rexp 2 Ii, in the solution that minimizes the
average-case energy, all devices fD1 . . .Dig can and must be
transitioned to sleep state. On the other hand, devices
fDiþ1 . . .Dmg cannot be transitioned in energy-efficient
fashion and will remain in active state over the interval
½0; d&. As such, if Rexp 2 Ii, then the average-case system-
wide energy consumption E0

iðfÞ is given by
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Fig. 9. Impact of variations in device, processor, and application characteristics. (a) Impact of device power scaling. (b) Impact of processor power
scaling. (c) Impact of frame length.
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Now, we can again construct ðmþ 1Þ constrained optimi-
zation problems by enforcing Rexp 2 Ii i ¼ 0 . . .m. Formally,
we define the constrained optimization problem OPT +

i as

minimize E0
iðfÞ ð5Þ

subject to) x0

f
) y0 þ LL0

i ( 0 ð6Þ

x0

f
þ y0 ) UL0

i ( 0 ð7Þ

fa ( f ( fmax: ð8Þ

LL0
i and UL0

i are the lower and upper limits of interval Ii,
respectively. Recall from Section 3 that fa ¼ x

d)y represents
the minimum frequency which guarantees feasibility under
worst-case execution workload. Though we are minimizing
the average-case system energy, it is still important to meet
the application deadline under worst-case execution beha-
vior. The constraint (8) in OPT +

i helps to meet that objective.
Let Fi denote the solution to OPT +

i . Further, let F
0
i denote

the solution to the same optimization problem, but without
the constraint (8). By repeating the analysis in Section 4, one
can verify Propositions 2 and 4, below. Proposition 3 is a
consequence of convexity.

Proposition 2. F 0
i ¼ fi if x0

fi
þ y0 2 Ii where fi is the unique

positive root of 3a y0

x0 f
4 þ 2af3 )

Pi
j¼1 P

j
a ¼ 0. Otherwise,

either F 0
i ¼ x0

UL0
i)y0 or F

0
i ¼ x0

LL0
i)y0 .

Proposition 3. If fa ( F 0
i ( fmax, then Fi ¼ F 0

i . Otherwise, if
F 0
i < fa, then Fi ¼ fa else Fi ¼ fmax.

Proposition 4. A solution to the problem of minimizing the
average-case energy can be obtained in Oðm logmÞ time by
comparing the OPT +

i solutions (Fi), i ¼ 0 . . .m.

5.1 Experimental Evaluation
To evaluate the performance of the new scheme under
workload variability, we conducted a series of experiments.
As in Section 4.2, we consider a real-time application with a

frame length of 44 ms, using three devices: IBM Microdrive,
RealTek Ethernet Chip, and Simple Tech Flash Card. We
determine the actual execution time of the application using
normal distribution with mean BCETþWCET

2 and standard
deviation #0 ¼ WCET)BCET

6 , where BCET and WCET are the
best-case and worst-case execution times of the application
under maximum frequency, respectively. The specific mean
and standard deviation values coincide with those used in
[2], [12], [15], [16], [26], and guarantee that 99.7 percent of
the execution times fall in the range ½BCET;WCET &.2 The
results presented are the average from 1,000,000 experi-
ments. We compare three schemes:

. OPT . It is the optimal solution from Section 4
assuming worst-case execution behavior. However,
when the application completes in a given frame, the
amount of actual slack until the next invocation is
computed and all devices that can be transitioned in
energy-efficient fashion are put to low-power states.

. OPT +. It minimizes the average-case system energy by
assuming average-case execution time (BCETþWCET

2 ).
. CLR. It is the clairvoyant scheme that knows the

actual execution times in advance and uses this
information to derive optimal CPU operation fre-
quency and device transitioning decisions. While
CLR is not a practical scheme, it is used as a yardstick
algorithm yielding the lower bound on system
energy consumption.

Fig. 10a shows the comparison of the schemes as a
function of the worst-case execution time of the application
(c). Both the off-chip workload ratio and the best-case to
worst-case execution time ratio are fixed at 0.2. Results are
normalized with respect to OPT at c ¼ 44. When c is in the
range ½18; 30&, the benefits of OPT + over OPT are evident. In
this range, the frequency determined by OPT + is more
energy-efficient toward dynamic workload variability com-
pared to that of OPT . At low c values ½0; 18&, there is more
slack in the system and hence more DPM opportunities;
thereby, all schemes perform the same. For c values in the
range ½30; 44&, the high worst-case and average-case execu-
tion times severely limit device transitions while calculating
the CPU frequency. As a consequence, both OPT and OPT +

perform the same. However, CLR which uses actual
workload information performs significantly better.
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Fig. 10. Experimental evaluation under dynamic workload variability. (a) Relative performance of schemes as a function of c. (b) Relative
performance of schemes as a function of BCET

WCET . (c) Relative performance of schemes as a function of y
c .

2. If the randomly generated execution time exceeds WCET , which
happens with the probability 0.3 percent, that value is not considered in the
experiments.



Figs. 10b and 10c show the impact of varying BCET
WCET

ratio and y
c ratio, respectively, at c ¼ 24. In Fig. 10b, y

c ¼ 0:2
and results are normalized with respect to OPT at
BCET
WCET ¼ 1. In Fig. 10c, BCET

WCET ¼ 0:2 and the results are
normalized with respect to OPT at y

c ¼ 0. One can see that
as BCET

WCET ratio decreases, OPT + performs better compared
to OPT (Fig. 10b). This is because with more variations in
runtime behavior of the application, the accuracy of OPT +

in estimating actual workload increases compared to OPT
and thus the frequency determined by OPT + yields lower
system energy consumption. Fig. 10c indicates that varying
the y

c does not cause much difference in the relative
ordering of the schemes.

Fig. 11 shows the impact of power and application
characteristics. In these experiments, c ¼ 24 and BCET

WCET ¼
y
c ¼ 0:2. The experiment methodology is the same as
described for Fig. 9 in Section 4.2. While OPT deviates
significantly from CLR at high Pa and low Pcpu scaling
factors, OPT + remains close to the CLR, a fact showing its
robustness for various device and processor power char-
acteristics (Figs. 11a and 11b). Similar trends can also be
seen in Fig. 11c where OPT deviates significantly from CLR
at high d values, while the performance of OPT + gets closer
to CLR as d increases. This is because at large frame
lengths, the importance of being able to accurately estimate
actual workload information (and use it to determine CPU
frequency while accounting for DPM issues) translates to
significant system-wide energy savings.

Finally, Fig. 12 shows the impact of the standard
deviation on the performance of the schemes. Again,
c ¼ 24, BCET

WCET ¼ y
c ¼ 0:2, and the results are normalized with

respect to OPT at standard deviation #0. The x-axis shows
the varying standard deviation. Specifically, a value v on
the x-axis corresponds to a standard deviation of (v # #0). At
low standard deviation values, the performance of OPT + is
close to CLR and significantly better than OPT . This is
because with less variance in actual execution times, OPT +

can better estimate and exploit the variability in dynamic
workload while determining the CPU frequency and device
transitioning decisions that minimize the average-case
system energy consumption. In fact, at zero standard
deviation, the actual execution time is exactly the mean
(BCETþWCET

2 ), which is the estimate used by OPT + for
energy management decisions. Thus, at this point, the
performance of CLR and OPT + is the same. With increasing

standard deviation values, the distribution tends toward
uniform distribution and the performance of OPT + gets
closer to OPT due to the large variance in execution times.
Additional experimental analysis can be found in our
technical report [9].

6 CONCLUSIONS

In this work, we addressed the problem of system-wide
energy minimization through a novel approach. Unlike
prior studies, our system-level energy model considered
both VFS- and DPM-related issues and accounted for device
transition overheads. In addition, our model also consid-
ered variations in on-chip/off-chip workload characteris-
tics. With this general model, we were able to characterize
the exact interplay between VFS and DPM formally. By
deriving useful properties from this characterization, we
formulated an Oðm logmÞ-time algorithm (where m is the
number of devices) to determine the CPU frequency and
device transitioning decisions to minimize the system-wide
energy. Our extensive experimental evaluations using real
device parameters demonstrated the potential benefits of
our optimal scheme. We also extended our solution to deal
with workload variability and showed how to minimize
average-case energy assuming the knowledge about aver-
age-case execution time. To the best of our knowledge, this
is the first work formally investigating the interplay
between two well-known energy management techniques
for real-time embedded systems, VFS and DPM.
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Fig. 11. Impact of variations in device, processor, and application characteristics. (a) Impact of device power scaling. (b) Impact of processor power
scaling. (c) Impact of frame length.

Fig. 12. Impact of the standard deviation.
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