
ar
X

iv
:c

s/
06

09
12

1v
1

 [c
s.

IT
]

21
 S

ep
 2

00
6

1

Approximating Rate-Distortion Graphs of
Individual Data: Experiments in Lossy

Compression and Denoising
Steven de Rooij and Paul Vitányi

Abstract— Classical rate-distortion theory requires
knowledge of an elusive source distribution. Instead, we
analyze rate-distortion properties of individual objects
using the recently developed algorithmic rate-distortion
theory. The latter is based on the noncomputable notion
of Kolmogorov complexity. To apply the theory we
approximate the Kolmogorov complexity by standard
data compression techniques, and perform a number
of experiments with lossy compression and denoising
of objects from different domains. We also introduce
a natural generalization to lossy compression with side
information. To maintain full generality we need to
address a difficult searching problem. While our solutions
are therefore not time efficient, we do observe good
denoising and compression performance.

Index Terms— compression, denoising, rate-distortion,
structure function, Kolmogorov complexity

I. I NTRODUCTION

Rate-distortion theory analyzes communication over a
channel under a constraint on the number of transmitted
bits, the “rate”. It currently serves as the theoretical
underpinning for many important applications such as
lossy compression and denoising, or more generally,
applications that require a separation of structure and
noise in the input data.

Classical rate-distortion theory evolved from Shan-
non’s theory of communication[1]. It studies the trade-
off between the rate and the achievable fidelity of the
transmitted representation under some distortion func-
tion, where the analysis is carried outin expectation
under some source distribution. Therefore the theory can
only be meaningfully applied if we have some reasonable
idea as to the distribution on objects that we want to
compress lossily. While lossy compression is ubiquitous,
propositions with regard to the underlying distribution
tend to be ad-hoc, and necessarily so, because (1) it
is a questionable assumption that the objects that we
submit to lossy compression are all drawn from the same

CWI, INS4, Kruislaan 413, P.O. Box 94079, 1090 GB Amsterdam.
Corresponding author: Steven de Rooij,rooij@cwi.nl

probability distribution, or indeed that they are drawn
from a distribution at all, and (2) even if a true source
distribution is known to exist, in most applications the
sample space is so large that it is extremely hard to
determine what it is like: objects that occur in practice
very often exhibit more structure than predicted by the
used source model.

For large outcome spaces then, it becomes important
to consider structural properties ofindividual objects.
For example, if the rate is low, then we may still be
able to transmit objects that have a very regular structure
without introducing any distortion, but this becomes
impossible for objects with high information density.
This point of view underlies some recent research in
the lossy compression community[2]. At about the same
time, a rate-distortion theory which allows analysis of
individual objects has been developed within the frame-
work of Kolmogorov complexity[3]. It defines a rate-
distortion function not with respect to some elusive
source distribution, but with respect to an individual
source word. Every source word thus obtains its own
associated rate-distortion function.

We will first give a brief intoduction to algorithmic
rate-distortion theory in Section II. We also describe a
novel generalization of the theory to settings with side
information, and we describe two distinct applications
of the theory, namely lossy compression and denoising.

Algorithmic rate-distortion theory is based on Kol-
mogorov complexity, which is not computable. We nev-
ertheless cross the bridge between theory and practice
in Section III, by approximating Kolmogorov complexity
by the compressed size of the object by a general purpose
data compression algorithm. Even so, approximating the
rate-distortion function is a difficult search problem. We
motivate and outline the genetic algorithm we used to
approximate the rate-distortion function.

In Section IV we describe four experiments in lossy
compression and denoising. The results are presented
and discussed in Section V. Then, in Section VI we
take a step back and discuss to what extent our practical

http://arXiv.org/abs/cs/0609121v1

approach yields a faithful approximation of the theoret-
ical algorithmic rate-distortion function. We end with a
conclusion in Section VII.

II. A LGORITHMIC RATE-DISTORTION

Suppose we want to communicate objectsx from a
set of source wordsX using at mostr bits per object.
We callr the rate. We locate a goodrepresentationof x
within a finite setY, which may be different fromX in
general (but we usually haveX = Y in this text). The
lack of fidelity of a representationy is quantified by a
distortion functiond : X × Y → R.

The Kolmogorov complexity ofy, denotedK(y), is
the length of the shortest program that constructsy. More
precisely, it is the length of the shortest input to a fixed
universal binary prefix machine that will outputy and
then halt; also see the textbook[3]. We can transmit any
representationy that hasK(y) ≤ r, the receiver can
then run the program to obtainy and is thus able to
reconstructx up to distortiond(x, y). Define therate-
distortion profilePx of the source wordx as the set of
pairs〈r, a〉 such that there is a representationy ∈ Y with
d(x, y) ≤ a and K(y) ≤ r. The possible combinations
of r anda can also be characterised by therate-distortion
function of the source wordx, which is defined as
rx(a) = min{r : 〈r, a〉 ∈ Px}, or by the distortion-
rate function of the source wordx, which is defined as
dx(r) = min{a : 〈r, a〉 ∈ Px}. These two functions are
somewhat like inverses of each other; although strictly
speaking they are not since they are monotonic but not
strictly monotonic. A representationy is said towitness
the rate-distortion function ofx if rx(d(x, y)) = K(y).
These definitions are illustrated in Figure 1.

Algorithmic rate-distortion theory is developed and
treated in much more detail in [4]. It is a generalization
of Kolmogorov’s structure function theory, see [5].

A. Side Information

We generalize the algorithmic rate-distortion frame-
work, so that it can accommodate side information.
Suppose that we want to transmit a source wordx ∈
X and we have chosen a representationy ∈ Y as
before. The encoder and decoder often share a lot of
information: both might know that grass is green and the
sky is blue, they might share a common language, and so
on. They would not need to transmit such information. If
encoder and decoder share some informationz, then the
programs they transmit to compute the representationy
may use this side informationz. Such programs might
be shorter than they could be otherwise. This can be
formalised by switching to theconditionalKolmogorov

����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������

����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������

0
0

K(x)Rate (bits)

D
is

to
rt

io
n

Representations that witness the rate−distortion function

S
om

e
ar

bi
tr

ar
y

re
pr

es
en

ta
tio

ns

���
���
���
���

���
���
���
���

Representation
Rate−distortion profile

Distortion−rate function

Fig. 1. Rate-distortion profile and distortion-rate function

complexityK(y|z), which is the length of the shortest
Turing machine program that constructsy on inputz. We
redefineK(y) = K(y|ǫ), whereǫ is the empty sequence,
so thatK(y|z) ≤ K(y)+O(1): the length of the shortest
program fory can never significantly increase when side
information is provided, but it might certainly decrease
wheny andz share a lot of information[3]. We change
the definitions as follows: Therate-distortion profile of
the source wordx with side informationz is the set of
pairs 〈r, a〉 such that there is a representationy ∈ Y
with d(x, y) ≤ a andK(y|z) ≤ r. The definitions of the
rate-distortion function and the distortion-rate function
are similarly changed. Henceforth we will omit mention
of the side informationz unless it is relevant to the
discussion.

While this generalization seems very natural the au-
thors are not aware of earlier proposals along these
lines. In Section V we will demonstrate one use for this
generalized rate-distortion theory: removal of spelling
errors in written text, an example where denoising is
not practical without use of side information.

B. Distortion Spheres and the Minimal Sufficient Statis-
tic

A representationy that witnesses the rate-distortion
function is the best possible rendering of the source
object x at the given rate because it minimizes the
distortion, but if the rate is lower thanK(x), then some
information is necessarily lost. Since one of our goals is
to find the best possible separation between structure and
noise in the data, it is important to determine to what
extent the discarded information is noise.

2

Given a representationy and the distortiona =
d(x, y), we can find the source objectx somewhere on
the list of all x′ ∈ X that satisfyd(x′, y) = a. The
information conveyed aboutx by y and a is precisely,
that x can be found on this list. We call such a list a
distortion sphere. A distortion sphere of radiusa, centred
aroundy is defined as follows:

Sy(a) := {x′ ∈ X : d(x′, y) = a}. (1)

If the discarded information is pure white noise, then
this means thatx must be a completely random element
of this list. Conversely, all random elements in the list
share all “simply described” (in the sense of having
low Kolmogorov complexity) properties thatx satisfies.
Hence, with respect to the “simply described” properties,
every such random element is as good asx, see [4] for
more details. In such cases a literal specification of the
index of x (or any other random element) in the list is
the most efficient code forx, given only that it is in
Sy(a). A fixed-length, literal code requireslog |Sy(a)|
bits. (Here and in the following, all logarithms are
taken to base2 unless otherwise indicated.) On the
other hand, if the discarded information is structured,
then the Kolmogorov complexity of the index ofx in
Sy(a) will be significantly lower than the logarithm of
the size of the sphere. The difference between these
two codelengths can be used as an indicator of the
amount of structural information that is discarded by the
representationy. Vereshchagin and Vitányi[4] call this
quantity therandomness deficiencyof the source object
x in the setSy(a), and they show that ify witnesses the
rate-distortion function ofx, then it minimizesthe ran-
domness deficiency at rateK(y); thus the rate-distortion
function identifies those representations that account for
as much structure as possible at the given rate.

To assess how much structure is being discarded at
a given rate, consider a code for the source objectx
in which we first transmit the shortest possible program
that constructs both a representationy and the distortion
d(x, y), followed by a literal, fixed-length index ofx
in the distortion sphereSy(a). Such a code has the
following length function:

Ly(x) := K(〈y, d(x, y)〉) + log |Sy(d(x, y))|. (2)

If the rate is very low then the representationy models
only very basic structure and the randomness deficiency
in the distortion sphere aroundy is high. Borrowing
terminology from statistics, we may say thaty is a
representation that “underfits” the data. In such cases we
should find thatLy(x) > K(x), because the fixed-length
code for the index ofx within the distortion sphere is

suboptimal in this case. But suppose thaty is complex
enough that it satisfiesLy(x) ≈ K(x). In [4], such rep-
resentations are called(algorithmic) sufficient statistics
for the datax. A sufficient statistic has close to zero
randomness deficiency, which means that it represents
all structure that can be detected in the data. However,
sufficient statistics might contain not only structure, but
noise as well. Such a representation would be overly
complex, an example of overfitting. Aminimalsufficient
statistic balances between underfitting and overfitting. It
is defined as the lowest complexity sufficient statistic,
which is the same as the lowest complexity represen-
tation y that minimizes the codelengthLy(x). As such
it can also be regarded as the “model” that should be
selected on the basis of the Minimum Description Length
(MDL) principle[6]. To be able to relate the distortion-
rate function to this codelength we define thecodelength
function λx(r) = Ly(x) wherey is the representation
that minimizes the distortion at rater.1

C. Applications: Denoising and Lossy Compression

Representations that witness the rate-distortion func-
tion provide optimal separation between structure that
can be expressed at the given rate and residual in-
formation that is perceived as noise Therefore, these
representations can be interpreted as denoised versions of
the original. In denoising, the goal is of course to discard
as much noise as possible, without losing any structure.
Therefore the minimal sufficient statistic, which was
described in the previous section, is the best candidate
for applications of denoising.

While the minimum sufficient statistic is a denoised
representation of the original signal, it is not necessarily
given in a directly usable form. For instance,Y could
consist of subsets ofX , but asetof source-words is not
always acceptable as a denoising result. So in general
one may need to apply some functionf : Y → X to
the sufficient statistic to construct a usable object. But
if X = Y and the distortion function is a metric, as
in our case, then the representations are already in an
acceptable format, so here we use the identity function
for the transformationf .

In applications of lossy compression, one may be
willing to accept a rate which is lower than the mini-
mal sufficient statistic complexity, thereby losing some
structural information. However, for a minimal sufficient
statisticy, theory does tell us that it is not worthwhile
to set the rate to a higher value than the complexity

1This is superficially similar to the MDL function defined in [5], but
it is not exactly the same since it involves optimisation of the distortion
at a given rate rather than direct optimisation of the code length.

3

of y. The original objectx is a random element of
Sy(d(x, y)), and it cannot be distinguished from any
other randomz ∈ Sy(d(x, y)) using only “simply
described” properties. So we have no “simply described”
test to discredit the hypothesis thatx (or any suchz) is
the original object, giveny and d(x, y). But increasing
the rate, yielding a modely′ andd(x, y′) < d(x, y), we
commonly obtain a sphereSy′ of smaller cardinality than
Sy, with some random elements ofSy not being random
elements ofSy′ . These excluded elements, however,
were perfectly good candidates of being the original
object. That is, at rate higher than that of the minimal
sufficient statistic, the resulting representationy′ models
irrelevant features that are specific tox, that is, noise
and no structure, that exclude viable candidates for the
olriginal object: the representation starts to “overfit”.

In lossy compression, as in denoising, the represen-
tations themselves may be unsuitable for presentation
to the user. For example, when decompressing a lossily
compressed image, in most applications asetof images
would not be an acceptable result. So again a transfor-
mation from representations to objects of a usable form
has to be specified. There are two obvious ways of doing
this:

1) If a representationy witnesses the rate-distortion
function for a source wordx ∈ X , then this means
that x cannot be distinguished from any other
object x′ ∈ Sy(d(x, y)) at rateK(y). Therefore
we should not use a deterministic transforma-
tion, but rather report the uniform distribution on
Sy(d(x, y)) as the lossily compressed version ofx.
This method has the advantage that it is applicable
whether or notX = Y.

2) On the other hand, ifX = Y and the distortion
function is a metric, then it makes sense to use
the identity transformation again, although here the
motivation is different. Suppose we select some
x′ ∈ Sy(d(x, y)) instead of y. Then the best
upper bound we can give on the distortion is
d(x, x′) ≤ d(x, y) + d(y, x′) = 2d(x, y) (by the
triangle inequality and symmetry). On the other
hand if we selecty, then the distortion is exactly
d(x, y), which is only half of the upper bound we
obtained forx′. Therefore it is more suitable if one
adopts a worst-case approach. This method has as
an additional advantage that the decoder does not
need toknow the distortiond(x, y) which often
cannot be computed fromy without knowledge of
x.

To illustrate the difference one may expect from these
approaches, consider the situation where the rate is lower

than the rate that would be required to specify a sufficient
statistic. Then intuitively, all the noise in the source
word x as well as some of the structure are lost by
compressing it to a representationy. The second method
immediately reportsy, which contains a lot less noise
than the source objectx; thusx andy are qualitatively
different, which may be undesirable. On the other hand,
the compression result will be qualitatively different
from x anyway, because the rate simply is too low to
retain all structure. If one would apply the first approach,
then a resultx′ would likely containmorenoise than the
original, because it contains less structure at the same
level of distortion (meaning thatK(x′) > K(x) while
d(x′, y) = d(x, y)).

If the rate is high enough to transmit a sufficient
statistic, then the first approach seems preferable. We
have nevertheless chosen to always reporty directly in
our analysis, which has the advantage that this way, all
reported results are of the same type.

III. C OMPUTING INDIVIDUAL OBJECT

RATE-DISTORTION

The rate-distortion function for an objectx with side
information z and a distortion functiond is found by
simultaneous minimizing two objective functions

g1(y) = K(y|z) (3)

g2(y) = d(x, y) (4)

g(y) = 〈g1(y), g2(y)〉 .

We call the tupleg(y) the trade-off of y. We impose a
partial order on representations:

y 4 y′ (5)

if and only if g1(y) ≤ g1(y
′) and g2(y) ≤ g2(y

′). Our
goal is to find the set of Pareto-optimal representations,
that is, the set of representations that are minimal under
4.

Such an optimisation problem cannot be implemented
because of the uncomputability ofK(·). To make the
idea practical, we need to approximate the conditional
Kolmogorov complexity. As observed in [7], it follows
directly from symmetry of information for Kolmogorov
complexity (see [3, p.233]) that:

K(y|z) = K(zy)− K(z) + O(log n), (6)

where n is the length ofzy. Ignoring the logarithmic
term, this quantity can be approximated by replacing
K(·) by the length of the compressed representation
under a general purpose compression algorithmA : X →
{0, 1}∗. The length of the compressed representation of

4

x is denoted byLA(x). This way we obtain, up to an
additive independent constant:

K(y|z) ≤ LA(zy)− LA(z). (7)

We redefineg1(y) := LA(zy)−LA(z) in order to get a
practical objective function.

This may be a poor approximation: we only have that
0 ≤ K(y|z) ≤ LA(zy) − LA(z), up to a constant,
so the compressed size is an upper bound that may
be quite high even for objects that have Kolmogorov
complexity close to zero. Our results show evidence
that some of the theoretical properties of the distortion-
rate function nevertheless carry over to the practical
setting; we also explain how some observations that
are not predicted by theory are in fact related to the
(unavoidable) inefficiencies of the used compressor.

A. Compressor (rate function)

We could have used any general-purpose compressor
in (7), but we chose to implement our own for three
reasons:

• It should be both fast and efficient. We can gain
some advantage over other available compressors
because there is no need to actually construct a
code. It suffices to compute codelengths, which is
much easier. As a secondary advantage, the code-
lengths we compute are not necessarily multiples of
eight bits: we allow rational idealised codelengths,
which may improve precision.

• It should not have any arbitrary restrictions or opti-
misations. Most general purpose compressors have
limited window sizes or optimisations to improve
compression of common file types; such features
could make the results harder to interpret.

In our experiments we used a block sorting compression
algorithm with a move-to-front scheme as descibed in
[8]. In the encoding stage M2 we employ a simple
statistical model and omit the actual encoding as it
suffices to accumulate codelengths. The source code of
our implementation (in C) is available from the authors
upon request. The resulting algorithm is very similar
to a number of common general purpose compressors,
such the freely available bzip2[9] and zzip[10], but it is
simpler and faster for small inputs.

Of course, domain specific compressors might yield
better compression for some object types (such as sound
wave files), and therefore a better approximation of
the Kolmogorov complexity. However, the compressor
that we implemented is quite efficient for objects of
many of the types that occur in practice; in particular
it compressed the objects of our experiments (text and

small images) quite well. We have tried to improve
compression performance by applying standard image
preprocessing algorithms to the images, but this turned
out not to improve compression at all. Figure 2 lists the
compressed size of an image of a mouse under various
different compression and filtering regimes. Compared to
other compressors, ours is quite efficient; this is probably
because other compressors are optimised for larger files
and because we avoid all overhead inherent in the
encoding process. Most compressors have optimisations
for text files which might explain why our compressor
compares less favourably on the Oscar Wilde fragment.

B. Codelength Function

In Section II-B we introduced the codelength function
λx(r). Its definition makes use of (2), for which we have
not yet provided a computable alternative. We use the
following approximation:

Ly(x) ≈ L′
y(x) = LA(y)+LD(d(x, y)|y)+LU (x|y, d(x, y)),

(8)
where LD is yet another code which is necessary to
specify the radius of the distortion sphere aroundy in
which x can be found. It is possible that this distortion
is uniquely determined byy, for example ifY is the set
of all finite subsets ofX and list decoding distortion is
used, as described in [5]. Ifd(x, y) is a function ofy then
LD(d(x, y)|y) = 0. In other cases, the representations
do not hold sufficient information to determine the
distortion. This is typically the case whenX = Y as in
the examples in this text. In that case we actually need
to encoded(x, y) separately. It turns out that the number
of bits that are required to specify the distortion are
negligible in proportion to the total three part codelength.
In the remainder of the paper we use forLD a universal
code on the integers similar to the one described in [3];
it has codelengthLD(d) = log(d + 1) + O(log log d).

C. Distortion Functions

We use three common distortion functions which we
describe below. All distortion functions used in this text
are metrics, which have the property thatX = Y.

a) Hamming distortion: Hamming distortion is
perhaps the simplest distortion function that could be
used. Letx andy be two objects of equal lengthn. The
Hamming distortiond(x, y) is equal to the number of
symbols inx that do not match those in the correspond-
ing positions iny.

5

Compression mouse cross Wilde description
A 7995.11 3178.63 3234.45 Our compressor, described in§III-A
zzip 8128.00 3344.00 3184.00 An efficient block sorting compressor
PPMd 8232.00 2896.00 2744.00 High end statistical compressor
RLE → A 8341.68 3409.22 – A with run length encoding filter
bzip2 9296.00 3912.00 3488.00 Widespread block sorting compressor
gzip 9944.00 4008.00 3016.00 LZ77 compressor
sub→ A 10796.29 4024.26 – A with Sub filter
paeth→ A 13289.34 5672.70 – A with Paeth filter
None 20480.00 4096.00 5864.00 Literal description

Fig. 2. Compressed sizes of three objects that we experimentupon. See Figure 5 for the mouse, Figure 6 for the cross with added noise and
Figure 10 for the corrupted Oscar Wilde fragment (the middleversion). In the latter we give the compressed sizeconditional on a training text,
like in the experiments. “A” is our own algorithm, describedin Section III-A. For a description of the filters see [11].

b) Euclidean distortion: As before, let x =
x1 . . . xn and y = y1 . . . yn be two objects of
equal length, but the symbols now have a numeri-
cal interpretation. Euclidean distortion isd(x, y) =
√

∑n
i=1(xi − yi)2: the distance betweenx andy when

they are interpreted as vectors in ann-dimensional
Euclidean space. Note that this definition of Euclidean
distortion differs from the one in [4].

c) Edit distortion: The edit distortion of two strings
x and y, of possibly different lengths, is the minimum
number of symbols that have to be deleted from, inserted
into, or changed inx in order to obtainy (or vice
versa)[12]. It is also known asLevenshtein distortion.
It is a well-known measure that is often used in appli-
cations that require approximate string matching.

D. Searching for the Rate-Distortion Function

The search problem that we propose to address has
two properties that make it very hard. Firstly, the search
space is enormous: for an object ofn bits there are2n

candidate representations of the same size, and objects
that are typically subjected to lossy compression are
often millions or billions of bits long. Secondly, we want
to avoid making too many assumptions about the two
objective functions, so that we can later freely change
the compression algorithm and the distortion function.
Under such circumstances the two most obvious search
methods are not practical:

• An exhaustive search is infeasible for search spaces
of such large size, unless more specific properties
of the objective functions are used in the design
of the algorithm. To investigate how far we could
take such an approach, we have implemented an
exhaustive algorithm under the requirement that,
given a prefix of a representationy, we can compute
reasonable lower bounds on the values of both

objective functionsg1 andg2. This allows for rela-
tively efficient enumeration of all representations of
which the objective functions do not exceed specific
maxima: it is never necessary to consider objects
which have a prefix for which the lower bounds
exceed the constraints, which allows for significant
pruning. In this fashion we were able to find the
rate-distortion function under Hamming distortion
for objects of which the compressed size is about
25 bits or less within a few hours on a desk-top
computer.

• A greedy search starts with a poor solution and
iteratively makes modifications that constitute strict
improvements. We found that this procedure tends
to terminate quickly in some local optimum that is
very bad globally.

Since the structure of the search landscape is at present
poorly understood and we do not want to make any
unjustifiable assumptions, we use a genetic search algo-
rithm which performs well enough that interesting results
can be obtained. It is described in the Appendix .

IV. EXPERIMENTS

We have subjected four objects to our program. The
following considerations have influenced our choice of
objects:

• Objects should not be too complex, allowing our
program to find a good approximation of the
distortion-rate curve. We found that the running
time of the program seems to depend mostly on the
complexity of the original object; a compressed size
of 20,000 bits seemed to be about the maximum our
program could handle within a reasonable amount
of time, requiring a running time of the order of
weeks on a desk-top computer.

• To check that our method really is general, objects
should be quite different: they should come from

6

different object domains, for which different dis-
tortion functions are appropriate, and they should
contain structure at different levels of complexity.

• Objects should contain primary structure and reg-
ularities that are distinguishable and compressible
by a block sorting compressor such as the one we
use. Otherwise, we may no longer hope that the
compressor implements a significant approximation
of the Kolmogorov complexity. For instance, we
would not expect our program to do well on a
sequence of digits from the binary expansion of the
numberπ.

With this in mind, we have selected the objects listed in
Figure 3.

In each experiment, as time progressed the program in
Appendix found less and less improvements per itera-
tion, but the set of candidate solutions, called thepool in
the Appendix, never stabilized completely. Therefore we
interrupted each experiment when (a) after at least one
night of computation, the pool did not improve a lot, and
(b) for all intuitively good modelsy ∈ Y that we could
conceive of a priori, the algorithm had found any′ in the
pool with y′ 4 y according to (5). For example, in each
denoising experiment, this test included the original,
noiseless object. In the experiment on the mouse without
added noise, we also included the images that can be
obtained by reducing the number of grey levels in the
original with an image manipulation program. Finally for
the greyscale images we included a number of objects
that can be obtained by subjecting the original object to
JPEG2000 compression at various quality levels.

The first experiment illustrates how algorithmic rate-
distortion theory may be applied to lossy compression
problems, and it illustrates how for a given rate, some
features of the image are preserved while others can
no longer be retained. We compare the performance of
our method to the performance of JPEG and JPEG2000
at various quality levels. Standard JPEG images were
encoded using the ImageMagick version 6.2.2; profile in-
formation was stripped. JPEG2000 images were encoded
to jpc format with three quality levels using NetPBM
version 10.33.0; all other options are default. For more
information about these software packages refer to [13]
and [14].

The other three experiments are concerned with de-
noising. Any model that is output by the program can be
interpreted as a denoised version of the input object. We
measure the denoising success of a modely asd(x′, y),
wherex′ is the original version of the input objectx,
before noise was added. We also compare the denoising
results to those of other denoising algorithms:

1) BayesShrink denoising[15]. BayesShrink is a pop-
ular wavelet-based denoising method that is con-
sidered to work well for images.

2) Blurring (convolution with a Gaussian kernel).
Blurring works like a low-pass filter, eliminating
high frequency information such as noise. Unfortu-
nately other high frequency features of the image,
such as sharp contours, are also discarded.

3) Naive denoising. We applied a naive denoising
algorithm to the noisy cross, in which each pixel
was inverted if five or more out of the eight
neighbouring pixels were of different colour.

4) Denoising based on JPEG2000. Here we subjected
the noisy input image to JPEG2000 compression at
different quality levels. We then selected the result
for which the distortion to the original image was
lowest.

A. Names of Objects

To facilitate description and discussion of the exper-
iments we will adopt the following naming convention.
Objects related to the experiments with the mouse, the
noisy cross, the noisy mouse and the Wilde fragment, are
denoted by the symbolsM, C, N andW respectively. A
number of important objects in each experiment are iden-
tified by a subscript as follows. ForO ∈ {M, C, N, W},
the input object, for which the rate-distortion function
is approximated by the program, is calledOIN , which
is sometimes abbreviated toO. In the denoising ex-
periments, the input object is always constructed by
adding noise to an original object. The original objects
and the noise are calledOORIG andONOISE respectively.
If Hamming distortion is used, addition is carried out
modulo 2, so that the input object is in effect a pixelwise
exclusive OR of the original and the noise. In particular,
CIN equalsCORIG XOR CNOISE. The program outputs the
reduction of the gene pool, which is the set of considered
models. Two important models are also given special
names: the model within the gene pool that minimizes
the distortion toOORIG constitutes the best denoising of
the input object and is therefore calledOBEST, and the
minimal sufficient statistic as described in Section II-B
is calledOMSS. Finally, in the denoising experiments we
also give names to the results of the alternative denoising
algorithms. Namely,CNAIVE is the result of the naive
denoising algorithm applied to the noisy cross,NBLUR is
the convolution ofN with a Gaussian kernel withσ =
0.458, NBS is the denoising result of the BayesShrink
algorithm, andNJPEG2000 is the image produced by
subjectingN to JPEG2000 compression at the quality
level for which the distortion toNORIG is minimized.

7

A picture of a mouse of64×40 pixels.
The picture is analyzed with respect to
Euclidean distortion.

A noisy monochrome image of64×64
pixels that depicts a cross. 377 pixels
have been inverted. Hamming distortion
is used.

The same picture of a mouse, but now
zero mean Gaussian noise withσ = 8
has been added to each pixel. Euclidean
distortion is used; the distortion to the
original mouse is391.1.

Beauty, real beauty, ends2wheresan
intellectual expressoon begins. IntellHct
isg in itself a mMde ofSexggeration, an\
destroys theLharmony of n face. [. . .]

(See Figure 10)

A corrupted quotation from Chapter 1
of The Picture of Dorian Gray, by Os-
car Wilde. The 733 byte long fragment
was created by performing 68 random
insertions, deletions and replacements
of characters in the original text. Edit
distortion is used. The rest of chapters
one and two of the novel are given to
the program as side information.

Fig. 3. The four objects that are subjected to rate-distortion analysis.

V. RESULTS AND DISCUSSION

We will occasionally use terminology from Appendix ,
but such references can safely be glossed over on first
reading. After running for some time on each input
object, our program outputs the reduction of a pool
P , which is interpreted as a set of models. For each
experiment, we report a number of different properties
of these sets. Since we are interested in the rate-distortion
properties of the input objectx = OIN, we plot the
approximation of the distortion-rate function of each
input object:dx(r) = min{d(x, y) : y ∈ Y, K(y) ≤
r} ≈ min{d(x, y) : y ∈ trd(P), LA(y) ≤ r}, whereLA

denotes the codelength for an object under our compres-
sion algorithm. Such approximations of the distortion-
rate function are provided for all four experiments. For
the greyscale images we also plot the distortion-rate
approximation that is achieved by JPEG2000 (and in
Figure 5 also ordinary JPEG) at different quality levels.
Here, the rate is the codelength achieved by JPEG(2000),
and the distortion is the Euclidean distortion toOIN. We
also plot the codelength function as discussed in Sec-
tion II-B. Minimal sufficient statistics can be identified
by locating the minimum of this graph.

A. Lossy Compression

Experiment 1:Mouse (Euclidean distortion):Our first
experiment involved the lossy compression ofM, a
greyscale image of a mouse. A number of elements of
the gene pool are shown in Figure 4. The pictures show
how at low rates, the models capture the most important
global structures of the image; at higher rates more subtle
properties of the image can be represented. Figure 4(a)
shows a rough rendering of the distribution of bright and
dark areas inMIN . These shapes are rectangular, which

is probably an artifact of the compression algorithm
we used: it is better able to compress images with
rectangular structure than with circular structure. There
is no real reason why a circular structure should be
in any way more complex than a rectangular structure,
but most general purpose data compression software is
similarly biased. In 4(b), the rate is high enough that
the oval shape of the mouse can be accommodated, and
two areas of different overall brightness are identified.
After the number of grey shades has been increased a
little further in 4(c), the first hint of the mouse’s eyes
becomes visible. The eyes are improved and the mouse
is given paws in 4(d). At higher rates, the image becomes
more and more refined, but the improvements are subtle
and seem of a less qualitative nature.

Figure 5(b) shows that the only sufficient statistic in
the set of models isMIN itself, indicating that the image
hardly contains any noise. It also shows the rates that
correspond to the models that are shown in Figure 4.
By comparing these figures it can be clearly seen that
the image quality only starts to deteriorate significantly
after more than half of the information inMIN has been
discarded. Note that this is not a statement about the
compression ratio, where the size is related to the size
of the uncompressedobject. For example,MIN has an
uncompressed size of64 · 40 · 8 = 20480 bits, and
the representation in Figure 4(g) has a compressed size
of 3190.6 bits. This representation therefore constitutes
compression by a factor of20480/3190.6 = 6.42, which
is substantial for an image of such small size. At the
same time the amount ofinformation is reduced by a
factor of 7995.0/3190.6 = 2.51.

8

(a) r=163.0, d=2210.0 (b) r=437.8, d=1080.5

(c) r=976.6, d=668.9 (d) r=1242.9, d=546.4

(e) r=1676.6, d=406.9 (f) r=2324.5, d=298.9

(g) r=3190.6, d=203.9 (h) r=7995.0, d=0

Fig. 4. Lossy image compression results forM (Image (h)). Pixel intensities range from 0 (black) to 255 (white). r denotes the rate (the
image’s compressed length in bits),d denotes the Euclidean distortion toM.

9

4h

 0

 200

 400

 600

 800

 1000

 1200

 0 2000 4000 6000 8000 10000 12000 14000 16000

di
st

or
tio

n
(e

uc
lid

ea
n)

rate (compressed size in bits)

Our approximation
JPEG 2000

JPEG

(a) Approximate distortion-rate function

4h

4g
4f

4d
4b

4a

4e
4c

 0

 5000

 10000

 15000

 20000

 25000

 0 1000 2000 3000 4000 5000 6000 7000 8000

co
de

le
ng

th
 (

bi
ts

)

rate (compressed size in bits)

(b) Approximate codelength function

Fig. 5. Results for theMouse (Figure 4).
10

B. Denoising

For each denoising experiment, we report a number
of important objects, a graph that shows the approxi-
mate distortion-rate function and a graph that shows the
approximate codelength function. In the distortion-rate
graph we plot not only the distortion toOIN but also the
distortion toOORIG, to visualise the denoising success at
each rate.

In interpreting these results, it is important to realise
that only the reported minimal sufficient statistic and the
results of the BayesShrink and naive denoising methods
can be obtained without knowledge of the original object
– the other objectsOBEST, OJPEG2000andOBLUR require
selecting between a number of alternatives in order to
optimise the distortion toOORIG, which can only be done
in a controlled experiment. Their performance may be
better than what can be achieved in practical situations
whereOORIG is not known.

Experiment 2: NoisyCross (Hamming distortion):
In the first denoising experiment we approximated the
distortion-rate function of a monochrome crossCORIG of
very low complexity, to which artificial noise was added
to obtainCIN . Figure 6 shows the result; the distortion
to the noiseless cross is displayed in the same graph.
The best denoisingCBEST has a distortion of only3 to
the originalCORIG, which shows that the distortion-rate
function indeed separates structure and noise extremely
well in this example. Figure 6(b) shows the codelength
function for the noisy cross; the minimum on this graph
is the minimal sufficient statisticCMSS. In this low
complexity example, we haveCMSS = CBEST, so the best
denoising is not only very good in this simple example,
but it can also be identified.

We did not subjectC to BayesShrink or blurring
because those methods are unsuitable to monochrome
images. Therefore we used the extremely simple, “naive”
denoising method that is described in Section IV on
this specific image instead. The result is shown in
Figure 6(c); while it does remove most of the noise, 40
errors remain which is a lot more than those incurred by
the minimal sufficient statistic. Figure 6(d) shows that all
errors except one are close to the contours of the cross.
This illustrates how the naive algorithm is limited by
its property that it takes only the local neighbourhood
of each pixel into account, it cannot represent larger
structures such as straight lines.

Experiment 3:Noisy mouse (Euclidean distortion):
The noisy mouse poses a significantly harder denoising
problem, where the total complexity of the inputNIN is
more than five times as high as for the noisy cross. The
graphs that show the approximation to the distortion-rate

function and the codelength function are in Figure 8,
below we discuss the approximations that are indicated
on the graphs with references to Figure 7.

Figure 7(b) shows the input objectNIN ; it was con-
structed by adding noise to the original noiseless image
NORIG=MIN . We have displayed the denoising results
which were obtained in three different ways. In Fig-
ure 7(c) we have shownNBEST, the best denoised object
from the gene pool. Visually it appears to resemble
NORIG quite well, but it might be the case that there is
structure inNORIG that is lost in the denoising process.
Because human perception is perhaps the most sensitive
detector of structure in image data, we have shown the
difference betweenNBEST andNORIG in Figure 7(d). We
would expect any significant structure in the original
image that is lost in the denoising process, as well as
structure that is not present in the original image, but
is somehow introduced as an artifact of the denoising
procedure, to become visible in this residual image. In
the case ofNBEST we cannot make out any particular
features in the residual.

We have done the same for the minimal sufficient
statistic (Figure 7(e)). The result also appears to be a
quite successful denoising, although it is clearly of lower
complexity than the best one. This is also visible in the
residual, which still does not appear to contain much
structure, but darker and lighter patches are definitely
discernible. Apparently the difference betweenNIN and
NMSS does contain some structure, but is nevertheless
coded more efficiently using a literal description than
using the given compression algorithm. We think that
the fact that the minimal sufficient statistic is of lower
complexity than the best possible denoising result should
therefore again be attributed to inefficiencies of the
compressor.

For comparison, we have also denoisedN using the
alternative denoising method BayesShrink and the meth-
ods based on blurring and JPEG2000 as described in
Section IV. We found that BayesShrink does not work
well for images of such small size: the distortion between
NBS and NIN is only 72.9, which means that the input
image is hardly effected at all. Also,NBS has a distortion
of 383.8 toNORIG, which is hardly less than the distortion
of 392.1 achieved byNIN itself.

(Continued after Figures 6–8.)

11

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 500 1000 1500 2000 2500 3000 3500

di
st

or
tio

n
(h

am
m

in
g)

rate (compressed size in bits)

Distortion to noisy cross
Distortion to original

(a) Approximate distortion-rate function and denoising success function. Marked areCBEST (left) andCIN (right). We haveLA(CIN) =
3178.6, d(CORIG, CIN) = 377, LA(CBEST) = 260.4 andd(CORIG, CBEST) = 3.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500 3000 3500
rate (compressed size in bits)

co
de

le
ng

th
 (

bi
ts

)

(b) Approximate codelength function.CMSS is marked. In this case we haveCMSS = CBEST.

(c) CNAIVE . LA(CNAIVE) = 669.2,
d(CORIG, CNAIVE) = 40, d(CIN , CNAIVE) = 389.

(d) CNAIVE − CORIG

Fig. 6. Results for the noisyCross (top right inset).

12

(a) NORIG = MIN ;
r=7995.0, d(a) = 0, d(b) = 392.1

(b) NIN ;
r=16699.7, d(a) = 392.1, d(b) = 0

(c) NBEST;
r=3354.4, d(a)=272.2, d(b)=483.4

(d) NBEST− NORIG

(e) NMSS;
r=1969.8, d(a)=337.0, d(b)=474.7

(f) NMSS− NORIG

(g) NBLUR, Gaussian kernelσ = 0.458; r=
14117, d(a)=291.2, d(b)=260.4

(h) NBLUR − NORIG

(i) NJPEG2000;
r=2704, d(a)=379.8, d(b)=444.4

(j) NJPEG2000− NORIG

Fig. 7. Denoising results for theNoisy Mouse. Pixel intensities range from 0 (black) to 255 (white). r denotes the rate (the image’s compressed
length in bits),d(label) denotes the Euclidean distortion to image (label).

13

7c

7i

7b

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

di
st

or
tio

n
(e

uc
lid

ea
n)

rate (compressed size in bits)

Our approximation
JPEG 2000

Our distortion to original
JPEG 2000 distortion to original

(a) Approximate distortion-rate graph for theNoisy Mouse.NBEST, NJPEG2000andNIN are marked.

7e

 0

 5000

 10000

 15000

 20000

 25000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000
rate (compressed size in bits)

co
de

le
ng

th
 (

bi
ts

)

(b) Approximate codelength function. The minimal sufficient statisticNMSS is marked.

Fig. 8. Results for theNoisy Mouse
14

Blurring-based denoising yields much better results:
NBLUR is the result after optimisation of the size of the
Gaussian kernel. Its distortion toNORIG lies in-between
the distortions achieved byNMSS and NBEST, but it is
different from those objects in two important respects.
Firstly, NBLUR remains much closer toNIN , at a distortion
of 260.4 instead of more than 470, and secondly,NBLUR

is much less compressible byLA. (To obtain the reported
size of 14117 bits we had to switch on the averaging
filter, as described in Section III-A.) These observations
are at present not well understood. Figure 7(h) shows
that the contours of the mouse are somewhat distorted
in NBLUR; this can be explained by the fact that contours
contain high frequency information which is discarded
by the blurring operation as we remarked in Section IV.

The last denoising method we compared our results
to is the one based on the JPEG2000 algorithm. Its
performance is clearly inferior to our method visually
as well as in terms of rate and distortion. The result
seems to have undergone a smoothing process similar to
blurring which introduces similar artifacts in the back-
ground noise, as is clearly visible in the residual image.
As before, the comparison may be somewhat unfair
because JPEG2000 was not designed for the purpose of
denoising, might optimise a different distortion measure
and is much faster.

Experiment 4: OscarWilde fragment (edit distortion):
The fourth experiment, in which we analyzeWIN , a
corrupted quotation from Oscar Wilde, shows that our
method is a general approach to denoising that does not
require many domain specific assumptions.WORIG, WIN

andWMSS are depicted in Figure 10, the distortion-rate
approximation, the distortion toWORIG and the three
part codelength function are shown in Figure 11. We
have trained the compression algorithm by supplying
it with the rest of Chapters 1 and 2 of the same
novel as side information, to make it more efficient at
compressing fragments of English text. We make the
following observations regarding the minimal sufficient
statistic:

• In this experiment,WMSS = WBEST so the minimal
sufficient statistic separates structure from noise
extremely well here.

• The distortion is reduced from 68 errors to only 46
errors. 26 errors are corrected (N), 4 are introduced
(H), 20 are unchanged (•) and 22 are changed
incorrectly (⋆).

• The errors that are newly introduced (H) and
the incorrect changes (⋆) typically simplify the
fragment a lot, so that the compressed size may
be expected to drop significantly. Not surprisingly

therefore, many of the symbols markedH or ⋆

are deletions, or modifications that create a word
which is different from the original, but still correct
English. The following table lists examples of the
last category:

Line WORIG WIN WMSS
3 or Nor of
3 the Ghe he
4 any anL an
4 learned JeaFned yearned
4 course corze core
5 then ehen when
7 he fhe the

Since it would be hard forany general-purpose
mechanical method (that does not incorporate a
specialized full linguistic model of English) to de-
termine that these changes are incorrect, we should
not be surprised to find a number of errors of this
kind.

Side Information:Figure 9 shows that the compres-
sion performance is significantly improved if we provide
side information to the compression algorithm, and the
improvement is typically larger if (1) the amount of side
information is larger, or (2) if the compressed object is
more similar to the side information. Thus, by giving
side information, correct English prose is recognised
as “structure” sooner and a better separation between
structure and noise is to be expected. The table also
shows that if the compressed object is in some way
different from the side information, then adding more
side information will at some point become counter-
productive, presumably because the compression algo-
rithm will then use the side information to build up false
expectations about the object to be compressed, which
can be costly.

While denoising performance probably increases if
the amount of side information is increased, it was
infeasible to do so in this implementation. Recall from
Section III that he conditional Kolmogorov complexity
K(y|z) is approximated byLA(zy) − LA(z). The time
required to compute this is dominated by the length
of z if the amount of side information is much larger
than the size of the object to be compressed. This could
be remedied by using a compression algorithmA′ that
operates sequentially from left to right, because the state
of such an algorithm can be cached after processing the
side informationz; computingLA′(zy) would then be
a simple matter of recalling the state that was reached
after processingz and then processingy starting from
that state. Many compression algorithms, among which
Lempel-Ziv compressors and most statistical compres-
sors, have this property; our approach could thus be
made to work with large quantities of side information
by switching to a sequential compressor but we have not
done this.

15

Side information LA(WORIG) LA(WMSS) LA(WIN)
None 3344.1 3333.7 3834.8
Chapters 1,2 (57 kB) 1745.7 1901.9 3234.5
Whole novel (421 kB) 1513.6 1876.5 3365.9

Fig. 9. Compressed size of models for different amounts of side information.WORIG is never included in the side information. We do not let
WMSS vary with side information but keep it fixed at the object reported in Figure 10(c).

Beauty, real beauty, ends where an intellectual expressionbegins. Intellect is in itself a
mode of exaggeration, and destroys the harmony of any face. The moment one sits down
to think, one becomes all nose, or all forehead, or somethinghorrid. Look at the successful
men in any of the learned professions. How perfectly hideousthey are! Except, of course, in
the Church. But then in the Church they don’t think. A bishop keeps on saying at the age
of eighty what he was told to say when he was a boy of eighteen, and as a natural consequence he always looks
absolutely delightful. Your mysterious young friend, whose name you have never told me, but whose picture really
fascinates me, never thinks. I feel quite sure of that.

(a) WORIG, the original text

Beauty, real beauty, ends2wheresan intellectual expressoon begins. IntellHct isg in itself a
mMde ofSexggeration, an\ destroys theLharmony of n face. :The m1ment one sits down
to ahink@ one becomes jll noeˆ Nor all forehbead, or something hNrrid. Look a Ghe successf\l
men in anL of te JeaFned professions. How per}ectly tideous 4they re6 Except, of corze, in7
the Ch4rch. BuP ehen in the Church they dol’t bthink. =A bishop keeps on saying at the age
of eighty what he was told to say wh”n he was aJb4y of eighten, and sja natural cnsequence
fhe a(ways looks ab8olstely de[ightfu). Your mysterious youngL friend, wPose name you h\vo never tld
me, mut whose picture really fa?scinates Lme,Pnever thinCs. I feel quite surS of that9

(b) WIN , the corrupted version of the fragment. At 68 randomly selected positions characters have been inserted, deleted or modified.
New and replacement characters are drawn uniformly from ASCII symbols 32–126.

Beauty, real beauty, ends
⋆

-where
N

an intellectual express
•
oon begins. Intell

N

ect is
N

⊡ in itself a

m
N

ode of
N

ex
•
⊡ggeration, an

N

d destroys the
N

harmony of
•
⊡n

•
⊡ face.

⋆

⊡The m
N

oment one sits down

to
N

think
⋆

⊡ one becomes
⋆

⊡ll no
•
⊡e

⋆

⊡

N

⊡o
H

f all fore
⋆

be
H

⊡d, or something h
⋆

irrid. Look a
•
⊡

⋆

⊡he successf
⋆

⊡l

men in an
⋆

⊡ of t
•
⊡e

⋆

yea
N

rned pro
H

vessions. How per
N

fectly
•
tideous

N

⊡they
•
⊡re

•
6 Except, of co

•
⊡r

⋆

⊡e, in
N

⊡ the Ch
⋆

arch. Bu
N

t
⋆

when in the Church they do
•
l’t

N

⊡think.
⋆

⊡A
H

⊡bishop keeps on saying at the age

of eighty what he was told to say wh
⋆

⊡n he was a
⋆

⊡b
⋆

sy of eight
•
⊡en, and

•
⊡s

•
ja natural c

•
⊡nsequence

⋆

the

a
⋆

⊡ways looks ab
N

sol
N

utely de
⋆

⊡ightfu
N

l. Your mysterious young
N

⊡ friend, w
N

hose name you h
N

av
N

e never t
•
⊡ld me,

•
mut

whose picture really fa
N

⊡scinates
N

⊡me,
N

never thin
•
Cs. I feel quite sur

⋆

⊡ of that
•
9

(c) WBEST = WMSS; it has edit distortion 46 to the original fragment. Marks indicate the error type:N=correction;H=new error;
•=old error; ⋆=changed but still wrong. Deletions are represented as⊡.

Fig. 10. A fragment ofThe Picture of Dorian Gray, by OscarWilde.

16

10c

10b

 0

 100

 200

 300

 400

 500

 600

 700

 800

−500 0 500 1000 1500 2000 2500 3000 3500

di
st

or
tio

n
(e

di
t)

rate (compressed size in bits)

Distortion to corrupted fragment
Distortion to original

(a) Approximate distortion-rate function,WBEST andWIN are marked.

10c

 0

 1000

 2000

 3000

 4000

 5000

 6000

−500 0 500 1000 1500 2000 2500 3000 3500
rate (compressed size in bits)

co
de

le
ng

th
 (

bi
ts

)

(b) Approximate codelength function,WMSS is marked

Fig. 11. Results for a fragment ofThe Picture of Dorian Grayby OscarWilde (also see Figure 10).17

VI. QUALITY OF THE APPROXIMATION

It is easy to see from its definition that the distortion-
rate function must be a non-increasing function of the
rate. The implementation guarantees that our approxi-
mation is also non-increasing. In [4] it is assumed that
for every x ∈ X there exists a representationy ∈ Y
such thatd(x, y) = 0; in the context of this paper this is
certainly true because we haveX = Y and a distortion
function which is a metric. The gene pool is initialised
with OIN, which always has zero weakness and must
therefore remain in the pool. Therefore at a rate that
is high enough to specifyx, the distortion-rate function
reaches zero.

The shape of the codelength function for an objectx is
more complicated. Lety be the representation for which
d(x, y) = 0. In theory, the codelength can never become
less than the complexity ofy, and the minimal sufficient
statistic witnesses the codelength function at the lowest
rate at which the codelength is equal to the complexity of
y. Practically, we found in all denoising experiments that
the total codelength using the minimal sufficient statistic,
L′

OMSS
(OIN), is lower than the codelengthLA(OIN) that

is obtained by compressing the input object directly. This
can be observed in Figures 6(b), 8(b) and 10(c). The
effect is most clearly visible in 6(b), where the separation
between structure and noise is most pronounced.

Our hypothesis is that this departure from the theoret-
ical shape of the codelength function must be explained
by inefficiency of the compression algorithm in dealing
with noise. This is evidenced by the fact that it needs
2735.7 bits to encodeCNOISE, while only log2

(

4096
377

)

≈
1810 bits would suffice if the noise were specified with
a uniform code on the set of indices of all binary
sequences with exactly377 ones out of64 · 64 (see
Appendix C). Similarly,LA(NNOISE) = 14093, whereas
a literal encoding requires at most12829 bits (using the
bound in Appendix D).

Another strange effect occurs in Figure 8(b), where
the codelength function displays a strange “bump”: as
the rate is increased beyond the level required to specify
the minimal sufficient statistic, the codelength goes up as
before, but here at very high rates the codelength starts
dropping again.

It is theoretically possible that the codelength function
should exhibit such behaviour to a limited extent. It can
be seen in [4] that a temporary increase in the codelength
function can occur up to a number of bits that depends on
the so-calledcovering coefficient. Loosely speaking this
is the density of small distortion balls that is required
in order to completely cover a larger distortion ball.
The covering coefficient in turn depends on the used

distortion function and the number of dimensions. It is
quite hard to analyze in the case of Euclidean distortion,
so we cannot at present say if theory admits such a large
increase in the codelength function. However, we believe
that the explanation is more mundane in this case. Since
the noisy mouse is the most complex object of the four
we experimented on, we fear that this bump may simply
indicate that we interrupted our search procedure too
soon. Quite possibly, after a few years of running the
codelength function would have run straight in between
NMSS andNIN .

Figure 5(a) shows that our approximation of the
distortion-rate function is somewhat better than the ap-
proximation provided by either JPEG or JPEG2000,
although the difference is not extremely large for higher
rates. The probable reason is twofold: on the one
hand, we do not know for which distortion function
JPEG(2000) is optimised, but it might well be something
other than Euclidean distortion. If this is the case, then
our comparison is unfair because our method might well
perform worse on JPEG(2000)’s own distortion measure.
On the other hand, JPEG(2000) is very time-efficient:
It took only a matter of seconds to compute models at
various different quality levels, while it took our own
algorithm days or weeks to compute its distortion-rate
approximation. Two conclusions can be drawn from our
result. Namely, if the performance of existing image
compression software had been better than the perfor-
mance of our own method in our experiments, this
would have been evidence to suggest that our algorithm
does not compute a good approximation to the rate-
distortion function. The fact that this is not the case is
thus reassuring. Vice versa, if we assume that we have
computed a good approximation to the algorithmic rate-
distortion function, then our results give a measure of
how close JPEG(2000) comes to the theoretical opti-
mum; our program can thus be used to provide a basis for
the evaluation of the performance of lossy compressors.

VII. C ONCLUSION

Algorithmic rate-distortion provides a good frame-
work for analysis of large and structured objects. It is
based on Kolmogorov complexity, which is not com-
putable. We nevertheless attempted to put this theory
into practice by approximating the Kolmogorov com-
plexity of an object by its compressed size. We also
generalized the theory in order to enable it to cope with
side information, which is interpreted as being available
to both the sender and the receiver in a transmission
over a rate restricted channel. We also describe how
algorithmic rate-distortion theory may be applied to lossy
compression and denoising problems.

18

Finding the approximate rate-distortion function of
an individual object is a difficult search problem. We
describe a genetic algorithm that is very slow, but
has the important advantage that it requires only few
assumptions about the problem at hand. Judging from
our experimental results, our algorithm provides a good
approximation, as long as its input object is of reasonably
low complexity and is compressible by the used data
compressor. The shape of the approximate rate-distortion
function, and especially that of the associated three part
codelength function, is reasonably similar to the shape
that we would expect on the basis of theory, but there
is a striking difference as well: at rates higher than the
complexity of the minimal sufficient statistic, the three
part codelength tends to increase with the rate, where
theory suggests it should remain constant. We expect
that this effect can be attributed to inefficiencies in the
compressor.

We find that the algorithm performs quite well in lossy
compression, with apparently somewhat better image
quality than that achieved by JPEG2000, although the
comparison may not be altogether fair. When applied
to denoising, the minimal sufficient statistic tends to
be a slight underestimate of the complexity of the best
possible denoising (an example of underfitting). This
is presumably again due to inefficiencies in the used
compression algorithm.

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” Bell
Systems Technical Journal, vol. 27, pp. 379–423, 623–656, 1948.

[2] E. D. Scheirer, “Structured audio, Kolmogorov complexity, and
generalized audio coding,”IEEE Transactions on Speech and
Audio Processing, vol. 9, no. 8, november 2001.

[3] M. Li and P. Vitányi,An Introduction to Kolmogorov Complexity
and its Applications, 2nd ed. Springer-Verlag, New York, 1997.

[4] N. Vereshchagin and P. Vitányi, “Algo-
rithmic rate-distortion theory,” Available at
http://arxiv.org/abs/cs.IT/0411014, 2005.

[5] N. K. Vereshchagin and P. M. Vitányi, “Kolmogorov’s structure
functions and model selection,”IEEE Trans. Inform. Theory,
vol. 50, no. 12, pp. 3265–3290, 2004.

[6] A. Barron, J. Rissanen, and B. Yu, “The Minimum Description
Length principle in coding and modeling,”IEEE Transactions on
Information Theory, vol. 44, no. 6, pp. 2743–2760, 1998, special
Commemorative Issue: Information Theory: 1948-1998.

[7] R. Cilibrasi and P. Vitányi, “Algorithmic clustering of music
based on string compression,”Computer Music Journal, vol. 28,
pp. 49–67, 2004.

[8] M. Burrows and D. J. Wheeler, “A block-sorting lossless data
compression algorithm,” Digital Equipment Corporation, Systems
Research Center, Tech. Rep. 124, May 1994.

[9] J. Seward, “bzip2,” Available athttp://www.bzip2.org,
1996.

[10] D. Debin, “Zzip,” Available athttp://debin.net/zzip,
1999.

[11] G. Roelofs,PNG – The Definitive Guide. O’Reilly, 1999, also
available athttp://www.faqs.org/docs/png.

[12] V. I. Levenshtein, “Binary codes capable of correctingdeletions,
insertions, and reversals,”Soviet Physics Doklady, vol. 10, no. 8,
pp. 707–710, 1966.

[13] “ImageMagick,” http://www.imagemagick.org, open
source package of graphics software.

[14] “NetPBM,” http://netpbm.sourceforge.net, open
source package of graphics software.

[15] G. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding
for image denoising and compression,”IEEE Trans. Image Proc.,
vol. 9, pp. 1532–1546, 2000.

[16] J. G. Cleary and I. H. Witten, “Data compression using adap-
tive coding and partial string matching,”IEEE Transactions on
Communications, vol. COM-32, no. 4, pp. 396–402, April 1984.

19

APPENDIX

We use an almost completely generic procedure to
simultaneously optimise two separate objective functions
for objects that are represented as byte sequences. To
emphasize this we will consider the abstract objective
function g wherever possible, rather than the more con-
crete rate and distortion functions.

A. Definitions

We need a number of definitions to facilitate the
discussion of the algorithm and its results below. A finite
subset ofY is called apool. A poolP induces atradeoff
profile p(P) := {g(y) : y′ 4 y for somey′ in P}.
The weaknesswP(y) of an objecty ∈ P is defined
as the number of elements of the pool that are smaller
according to4. The (transitive) reductiontrd(P) of a
poolP is the subset of all elements with zero weakness.
The elements of the reduction of a poolP are called
models.

B. Genetic Algorithm

The search algorithm initialises a poolP0, which
is then subjected to a process of selection through
survival of the fittest: the pool is iteratively updated by
replacing elements with low fitness (the fitness function
is specified below) by new ones, which are created
through eithermutation (random modifications of ele-
ments) orcrossover(“genetic” recombination of pairs
of other candidates). We writePi to denote the pool
after i iterations. When the algorithm terminates aftern
iterations it outputs the reduction ofPn.

In what follows we will describe our choices for the
important components of the algorithm: the mechanics
of crossover and mutation, the fitness function and the
selection function which specifies the probability that a
candidate is removed from the pool. In the interest of
reproducibility we faithfully describe all our important
design choices, even though some of them are somewhat
arbitrary.

1) Crossover:Crossover (also called recombination)
is effected by the following algorithm. Given two objects
x and y we first split them both in three parts:x =
x1x2x3 and y = y1y2y3, such that the length ofx1 is
chosen uniformly at random between0 and the length
of x and the length ofx2 is chosen from a geometric
distribution with mean5; the lengths of theyi are
proportional to the lengths of thexi. We then construct
a new object by concatenatingx1y2x3.

2) Mutation: The introduction of a mutation oper-
ation is necessary to ensure that the search space is
connected, since the closure of the gene pool under
crossover alone might not cover the entire search space.
While we could have used any generic mutation function
that meets this requirement, for reasons of efficiency
we have decided to design a different mutation function
for every objective function that we implemented. This
is helpful because some distortion functions (here, the
edit distortion) can compare objects of different sizes
while others cannot: mutation is the means by which
introduction of objects of different size to the pool
can be brought about when desirable, or avoided when
undesirable.

The mutation algorithm we use can make two kinds of
change. With probability1/4 we make a small random
modification using an algorithm that depends on the
distortion function. Below is a table of the distortion
functions and a short description of the associated mu-
tation algorithms:

Distortion Mutation algorithm
Hamming Sets a random byte to a uniformly random value
Euclidean Adds anN [0; σ = 10] value to a random byte
Edit A random byte is changed, inserted or deleted

With probability 3/4 we use the following mutation
algorithm instead. It splits the objectx into three parts
x = x1x2x3 where the length ofx1 is chosen uniformly
at random between0 and the length ofx and the
length of x2 is chosen from a geometric distribution
with mean 5. The mutation is effected by training a
(simplified version of) a third order PPM model[16] on
x1 and then replacingx2 with an equally long sequence
that is sampled from the model. The advantage of this
scheme is that every replacement forx2 gets positive
probability, but replacements which have low codelength
and distortion tend to be much more likely than under a
uniform distribution.

3) Fitness Function:In theory, the set of representa-
tions that witness the rate-distortion function does not
change under monotonic transformation of either objec-
tive function g1 or g2. We have tried to maintain this
property throughout the search algorithm including the
fitness function, by never using either objective function
directly but only the ordering relation4. Under such a
regime, a very natural definition of fitness is minus the
weakness of the objects with respect to poolP .

It has been an interesting mini-puzzle to come up with
an efficient algorithm to compute the weakness of all ob-
jects in the pool efficiently. Our solution is the following
very simple algorithm, which has anO(n log n) average
case running time. It first sorts all elements of the pool by
their value underg1 and then inserts them in order into

20

a binary search tree in which the elements are ordered
by their value underg2. As an object is inserted into the
tree, we can efficiently count how many elements with
lower values forg2 the tree already contained. These
elements are precisely the objects that have both lower
values ong1 (otherwise they would not appear in the
tree yet) and ong2; as such their number is the desired
weakness.

4) Selection Function:It is not hard to see that
we havep(P) = p(trd(P)) and p(P) ⊆ p(P ∪ P ′).
Therefore monotonic improvement of the pool under
modification is ensured as long as candidates with weak-
ness0 are never dropped.

We drop other candidates with positive probability
as follows. Lety1, . . . , yn be the elements ofP with
nonzero weakness, ordered such that for1 ≤ i < j ≤ n
we havewP(yi) < wP(yj) or g1(yi) < g1(yj) if yi and
yj have the same weakness. We drop candidateyi from
the pool with probability1/(1+(n

i−1/2 −1)α), which is
a modified sigmoid function whereα ∈ (1,∞) specifies
the sharpness of the transition from probability zero to
one. This function is plotted for different values ofα in
Figure 12. We usedα = 4 in our experiments.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

D
ro

p
pr

ob
ab

ili
ty

(i-1/2)/n

alpha=0
alpha=1
alpha=2
alpha=3
alpha=4

Fig. 12. Drop probability as a function of the index

For each distortion function, we compute or bound
from above the size of adistortion spherearound some
representationy ∈ Y. A sphere with centrey of radius
a is a set of the formSy(a) := {x ∈ X : d(x, y) = a}.

Distortion spheres are important in the analysis be-
cause they enable us to link the distortion to the amount
of discarded information.

C. The Size of a Hamming Distortion Sphere

Hamming distortion can be defined whenX = Y =
Σn, sequences ofn symbols from a finite alphabetΣ.

Let y ∈ Y be an object of lengthn; there is a bijection
between the elements ofSy(a) and all possible ways to
replacea symbols iny with different symbols from the
alphabet. Thus the size of the sphere can be calculated
as

(

n
a

)

(|Σ| − 1)a.

D. The Size of a Euclidean Distortion Sphere

Our variety of Euclidean distortion requires thatX =
Y = Z

n, the set ofn-dimensional vectors of integers.
The size of a Euclidean distortion sphere around some
y ∈ Y of length n is hard to compute analytically. We
use an upper bound that is reasonably tight and can be
computed efficiently. First we defined(v) := d(v,~0) =
√

∑n
i=1 v2

i andS(n, a) as the set{v : |v| = n, d(v) =
a}. We havex ∈ Sy(a) ⇔ x−y ∈ S(n, a), so it suffices
to bound the size ofS(n, a). We define:

p(δ|n, a) := ce−δ2n/2a2

wherec = 1/
δ=255
∑

δ=−255

e−δ2n/2a2

P (v) :=

n
∏

i=1

p(vi|n, d(v));

p(·|n, d(v)) can be interpreted as a probability mass
function on the individual entries ofv (which in our
application always lie between -255 and 255). There-
fore P (v) defines a valid probability mass function on
outcomesv in S(n, a). Thus,

1 >
∑

v∈S(n,a)

P (v) =
∑

v∈S(n,a)

cne−(
∑

δ2

i
)n/2a2

=
∑

v∈S(n,a)

cne−n/2 = cne−n/2|S(n, a)|.

This yields a bound on the size ofS(n, a), which is
reasonably tight unless the distortiona is very low. In
that case, we can improve the bound by observing that
v must have at leastz = n − d(v)2 zero entries. Let
v′ be a vector of lengthn − z that is obtained by
removing z zero entries fromv. Every v in S(n, a)
can be constructed by insertingz zeroes intov′, so we
have |Sy(a)| = |S(n, a)| ≤

(

n
z

)

|S(n − z, a)|. The size
of S(n − z, a) can be bounded by using the method
described before recursively.

E. The Size of an Edit Distortion Sphere

Edit distortion can be defined for spacesX = Y = Σ∗

for a finite alphabetΣ. We develop an upper bound on
the size of the edit distortion sphere. We can identify
any object inSy(a) by a programp that operates on

21

y, and which is defined by a list of instructions to
copy, replace or delete the next symbol fromy, or
to insert a new symbol. We interpret a deletion as a
replacement with an empty symbol; so the replacement
operations henceforth include deletions. Letd(p) denote
the number of insertions and replacements inp. Clearly
for all x ∈ Sy(a), there must be ap such thatp(y) =
x and d(p) = d(x, y) = a. Therefore the size of
Sy(a) can be upper bounded by counting the number of
programs withd(p) = a. Let n be the length ofy. Any
program that containsi insertions and that processesy
completely, must be of lengthn+i. Thei insertions,a−i
replacements andn−a+i copies can be distributed over
the program in

(

n+i
i,a−i,n+a−i

)

different ways. For each
insertion and replacement, the number of possibilities is
equal to the alphabet size. Therefore,

|Sy(a)| ≤ |{p : d(p) = a}|

≤ |Σ|d
a

∑

i=max{0,a−n}

(

n + i

i, n − a + i, a − i

)

.

The sphere can be extremely large, so to facilitate
calculation of the log of the sphere size, as is required in
our application, it is convenient to relax the bound some
more and replace every term in the sum by the largest
one. Calculation reveals that the largest term has

i =

⌊

1

4

(

2(a − n) + 1 +
√

4(n2 + n + a2 + a) + 1
)

⌋

.

22

 0

 5000

 10000

 15000

 20000

 25000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

tw
o

pa
rt

 c
od

e
le

ng
th

 (
bi

ts
)

rate (compressed size in bits)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

di
st

or
tio

n
(e

uc
lid

ea
n)

rate (compressed size in bits)

 0

 5000

 10000

 15000

 20000

 25000

 0 1000 2000 3000 4000 5000 6000 7000 8000

tw
o

pa
rt

 c
od

e
le

ng
th

 (
bi

ts
)

rate (compressed size in bits)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 2000 4000 6000 8000 10000 12000 14000 16000

di
st

or
tio

n
(e

uc
lid

ea
n)

rate (compressed size in bits)

Our approximation
JPEG 2000

	Introduction
	Algorithmic Rate-Distortion
	Side Information
	Distortion Spheres and the Minimal Sufficient Statistic
	Applications: Denoising and Lossy Compression

	Computing Individual Object Rate-Distortion
	Compressor (rate function)
	Codelength Function
	Distortion Functions
	Searching for the Rate-Distortion Function

	Experiments
	Names of Objects

	Results and Discussion
	Lossy Compression
	Denoising

	Quality of the Approximation
	Conclusion
	References
	Appendix
	Definitions
	Genetic Algorithm
	Crossover
	Mutation
	Fitness Function
	Selection Function

	The Size of a Hamming Distortion Sphere
	The Size of a Euclidean Distortion Sphere
	The Size of an Edit Distortion Sphere

