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Abstract— This paper proposes the use of microprocessor performance counters for online measurement of complete 

system power consumption.  The approach takes advantage of the “trickle-down” effect of performance events in 

microprocessors. While it has been known that CPU power consumption is correlated to processor performance, the use of  

well-known performance-related events within a microprocessor such as cache misses and DMA transactions to estimate 

power consumption in memory and disk and other subsystems outside of the microprocessor is new.  Using measurement of 

actual systems running scientific, commercial and productivity workloads, power models for six subsystems (CPU, memory, 

chipset, I/O, disk and GPU) on two platforms (server and desktop) are developed and validated.  These models are shown to 

have an average error of less than 9% per subsystem across the considered workloads.  Through the use of these models 

and existing on-chip performance event counters, it is possible to estimate system power consumption without the need for 

power sensing hardware. 

1. INTRODUCTION 
In order to improve microprocessor performance while 

limiting power consumption, designers increasingly utilize 

dynamic hardware adaptations.  These adaptations provide an 

opportunity to extract maximum performance while remaining 

within temperature and power limits.  Two of the most 

common examples are dynamic voltage/frequency scaling 

(DVFS) and clock gating.  With these adaptations it is possible 

to reduce power consumption and therefore chip temperature, 

by reducing the amount of available performance.  Due to the 

thermal inertia in microprocessor packaging, detection of 

temperature changes may occur significantly later than the 

power events causing them.  Rather than relying on relatively 

slow temperature sensors for observing power consumption it 

has been demonstrated [3][16][24][5] that performance 

counters are effective proxies for power measurement.  These 

counters provide a timely, readily accessible means of 

observing power consumption in real systems.   

This paper extends the concept of using performance events as 

proxies for power measurement beyond the microprocessor to 

various computer subsystems.  Models are presented for six 

subsystems: microprocessor, graphics processing unit (GPU), 

chipset, memory, I/O and disk.  Though microprocessors are 

typically the largest consumers of power, other subsystems 

constitute 40%-60% of total power.  By providing a means for 

power management policies to consider these additional 

subsystems it is possible to have a significant effect on power 

and temperature.  In data and computing centers, this can be a 

valuable tool for keeping the center within temperature and 

power limits [35].  Further, since this approach utilizes existing 

microprocessor performance counters, the cost of 

implementation is small.   

This approach is distinct since it uses events local to the 

processor, eliminating the need for sensors spread across 

various parts of the system and corresponding interfaces.  

Lightweight, adaptive systems can easily be built using models 

of this type.  This study shows that microprocessor 

performance events can accurately estimate total system 

power.  By considering the propagation of power inducing 

events within the various subsystems, a modest number of 

performance events for modeling complete system power are 

identified.  Power models for two distinct hardware platforms 

are presented: a quad-socket server and a multi-core desktop.  

The resultant models have an average error of less than 9% 

across a wide range of workloads including SPEC CPU, 

SPECJbb, DBT-2, SYSMark and 3DMark.  Though power 

models exist for common computer subsystems, these models 

rely on events local to the subsystem for representing power, 

which are typically measured using sensors/counters within the 

subsystem.  Our emphasis is on creating a model using no 

additional sensors or counters other than what the performance 

engineers have already incorporated.   

2. COMPLETE SYSTEM POWER MODEL 
Trickle-down power modeling [6] provides an accurate 

representation of complete-system power consumption using a 

simple methodology.  The approach relies on the broad 

visibility of system-level events to the processor.  This allows 

accurate, performance counter-based models to be created 

using events local to the processor.  These local events can be 

measured using ubiquitous performance counters found in all 

modern microprocessors.  Local events are preferred since 

power models can be built using a single interface.  There is no 

need to create interfaces to multiple devices and subsystems 

that have inconsistent or incomplete performance counter APIs 

(Application Programming Interface).  It is particularly 

common at the system level since components are often 

designed by multiple vendors.   

Trickle-down modeling also addresses hardware costs in 

systems implementing direct measurement.  Rather than 

providing sensors and power measurement hardware for 

multiple subsystems, measurement need only be implemented 

on a single system during the design stage.  The model is 

created based on measurement from a small number of systems 

which allows power measurement hardware to be eliminated 

from the final product.  This paper focuses on the study of the 

subsystems with the largest variation.  Areas not accounted for 

in this study, such as cooling and power supply inefficiency, 

are well known and easily accountable.  For example power 



supply losses can be accounted for as a function of total power 

[42].         

While the trickle-down approach simplifies power modeling of 

complete systems it requires a modest knowledge of 

subsystem-level interaction.  The effectiveness of the model at 

capturing system-level power is determined by the selection of 

comprehensive performance events.  Some events such as top-

level cache or memory accesses are intuitive.  A miss in the 

first level cache will necessarily generate traffic in higher level 

caches and or the memory subsystem.  Other events such as 

those found in I/O devices are not as obvious.  Consider the 

system diagram in Figure 1. 

 

Figure 1. Propagation of Performance Events 

The depiction in Figure 1 represents a general server type 

system.  Specific systems will have other components which 

should appropriately be added to the diagram as needed.  The 

arrows flowing outward from the processor represent events 

that originate in the processor and trickle-down to other 

subsystems (L3 Miss, TLB Miss, MemBus Access and 

Uncacheable Access).  Arrows flowing inward such as DMA 

(Direct Memory Access) or bus master access and I/O 

interrupts may not be directly generated by the processor, but 

are nevertheless visible.  Since DMA access is typically 

performed to addresses marked as cacheable by the processor, 

they can be observed in the standard cache access metrics.  To 

distinguish DMA accesses by a particular device, events 

should be qualified by address range.  Each device typically 

uses a private range of addresses in system memory for DMA 

access.  Similarly interrupts from multiple devices can be 

distinguished by interrupt number or address in the case of 

message signaled interrupts. 

In this paper, we present the application of the model to two 

different systems, a quad-socket Intel server and an AMD 

dual-core with a graphics processing unit (GPU). Figure 1 

adequately represents the quad-socket server, while the GPU 

has to be added to the depiction in Figure 1 in order to 

adequately represent the AMD dual-core platform. 

Figure 2 illustrates the iterative modeling procedure that we 

developed to estimate power from performance events.  This 

procedure utilizes linear and polynomial regression techniques 

to build power models for individual subsystems.  The user 

identifies workloads which target a particular subsystem 

(cache, system memory, disk) and performs regression 

modeling using performance events as inputs.  The model is 

then applied to a larger set of workloads to confirm accuracy 

and the lack of outlier cases.  Depending on the outcome, the 

process is repeated with alternate performance events as 

inputs.  Though an exhaustive search of performance events 

can be performed, a rapid solution is found when events are 

selected with high correlation to subsystem activity.  The 

modeling process in Figure 2 involves several steps: 

1. Measure subsystem-level power using subset of 

workloads.  Begin with simple, easy-to-run workloads. 

2. Confirm that Coefficient of Variation is greater than a 

threshold α for the chosen workload.  The simplest workloads 

often do not generate sufficient power variation for model 

tuning.  For example consider any of the cache-resident 

workloads in SPEC CPU 2000 which generate little or no 

activity in subsystems outside of the processor cores such as 

memory.  Tuning the model based on these low-variation 

workloads may cause the process to include performance 

events that do not correlate well with power.  

3. Based on basic domain knowledge, choose 

performance events, measureable by performance counters that 

are most relevant to the subsystem in question.  Choose 

counters that are expected to “trickle-down” to other 

subsystems.  The pool of candidate performance counters may 

need to be expanded if sufficient accuracy is not achieved. 

4. Using the selected performance counter events as the 

input variables and subsystem power as the output variable, 

perform linear regression modeling.  For example, in the 

general linear equation y = mx + b, vary the coefficients m and 

b until the sum-of-squares error is minimized.  Multiple linear 

or polynomial regression may be used in subsequent iterations 

of algorithm if sufficient accuracy is not obtained using simple 

linear regression. 

5. Using a subset of workloads calculate average error 

per sample.  If less than the desired ρ% error cannot be 

achieved, a new performance event must be chosen.  One 

should select ρ depending on the required model accuracy and 

time required for solution.  Setting ρ to a low (restrictive) value 

may extend the time taken to reach a solution.  It may also 

prevent the process from finding a solution. 

6. Assess the representativeness of the model by 

graphically comparing modeled versus measured power.  This 

avoids the case in which statistical assessment cannot detect 

major errors such as those seen in Anscombe’s Quartet [1]. 

7. Using complete set of workloads calculate average 

error per sample.  If less than the desired δ % error cannot be 

achieved, choose a new performance event.  Like ρ, δ is 

selected according the accuracy and time-to-solution 

requirements.  
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Figure 2. Trickle-Down Modeling Process 

This modeling process is applied to two platforms, (i) a server 

and (ii) a desktop/embedded system. In section 3, the 

application of the process to an Intel quad-CPU server and 

illustrate the creation of the model as well as its validation is 

presented. In section 4, the feasibility of extending the model 

to a completely different system with different components is 

presented, illustrating the applicability of the model to other 

platforms. The second platform we use is a dual-core AMD 

system with a graphics processing unit (GPU). 

3 APPLICATION TO SERVER PLATFORM 
In this section, we describe the application of the proposed 

power modeling process to a quad-CPU system. The target 

system is composed of a quad-CPU server with two hardware 

threads per CPU, 

3.1 SUBSYSTEM DESCRIPTION 

The server system is composed of five major subsystems 

whose power can be separately measured: CPU, chipset, 

memory, I/O and disk.   The CPU subsystem is composed of 

four Pentium IV Xeon 2.8 GHz MP processors.  Chipset is 

defined as processor interface chips not included in other 

subsystems.  The memory subsystem includes memory 

controller and DRAM power.  I/O includes PCI buses and all 

devices attached to them.  The disk subsystem is composed of 

two SCSI disks.  The system components are listed in Table 1. 

Table 1. Server System Description 

Platform Segment Server 

Model IBM x440 

Processor(s) Quad-socket 130nM 2.8GHz 

Memory 8GB DDR-200 

Power Management CPU Clock Gating and DRAM Power Down 

Graphics Rage ProXL 

Observable Subsystems CPU, Chipset, Memory, I/O and Disk 

3.2 POWER MEASUREMENT 

To measure power in the five subsystems, resistors connected 

in series with the power source are employed.  This allows 

each subsystem to be measured independently of the others.  

This is important since the subsystems must be isolated in 

order to accurately correlate power consumption in the 

subsystem to performance events in the processor.  The voltage 

drop across the resistor is directly proportional to the power 

being consumed in the subsystem.  This voltage drop is 

captured using data acquisition hardware in a separate 

workstation.  Ten thousand samples are taken each second and 

are then averaged for relation to performance counter samples 

taken at the rate of once per second.  

Since the performance counter samples are taken by the target 

system itself, a synchronization signal is included to match 

data from the two sources.  At each sampling of the target 

performance counters, a single byte is sent to a USB serial port 

attached to the target system.  The transmit line of the serial 

port is sampled by the data acquisition hardware along with the 

other power data.  The single byte of data acts as a 

synchronization pulse signature.  Then using the 

synchronization information, the data is analyzed offline using 

software tools. 

3.3 PERFORMANCE MEASUREMENT 

To gather a record of performance events in the processor, the 

Pentium IV’s on-chip performance monitoring counters are 

periodically sampled.  Sampling is performed on each 

processor at a rate of once per second.  The total count of 

various events is recorded and the counters are cleared.  

Software access to the performance counters is provided by the 

Linux perfctr [25] device driver.  As described in the power 

measurement section, a synchronization signal is asserted at 

each performance counter sample. 

3.4 WORKLOAD SELECTION 

The selection of workloads is driven by two major factors: the 

workload’s effectiveness at utilizing particular subsystems and 

a diverse set of behaviors across all workloads.  The first 

requirement is important for development and tuning of the 

power models.  The second is required to validate the models. 

In order to meet the requirement of subsystem utilization, the 

power measurement system is employed.  Workloads are 

chosen based on their apparent utilization of a subsystem.  

Then actual power measurement is done to verify the selection.  

It is found that high subsystem utilization is difficult to achieve 

using only conventional workloads.  As a result, small 

synthetic workloads are created that are able to sufficiently 

utilize the subsystems.  Additionally, multiple instances of 

single-threaded workloads such as SPEC CPU 2000 are 



combined to produce high utilization.  Since the target system 

is composed of a quad-socket SMP with two hardware threads 

per processor, it is found that most workloads saturate (no 

increased subsystem power consumption) with eight threads. 

In addition to utilizing a particular subsystem, it is necessary to 

have sufficient variation within the workload for training of the 

models.  In the case of the 8-thread workloads, the start of each 

thread is staggered by a fixed time, approximately 30 seconds, 

to generate a range of activity levels (i.e 1 thread running at 

certain times, 2 threads at other times, etc).  This broad range 

of utilization ensures that the models are not only valid within 

a narrow range of utilization.  Also, this ensures a proper 

relationship between power and the observed metric.  Without 

a sufficiently large range of samples, complex power 

relationships may appear to be simple linear ones. 

3.5 MODEL VALIDATION 

Eleven workload are used for validation: eight from the SPEC 

CPU 2000 benchmark suite [38], two commercial server-type 

(SPECjbb and DBT-2) and a synthetic disk workload.  The 

SPEC workloads are computationally intensive scientific 

applications intended to stress the CPU and memory 

subsystems.  The only access to other subsystems by these 

workloads occurs at program initialization and completion.  In 

this study only single or multiple instances of identical 

workloads are considered.  Two commercial workloads DBT-2 

[31] and SPECjbb [39] are used to create system-level activity.  

DBT-2 is intended to approximate the TPC-C transaction 

processing benchmark.  This workload does not require 

network clients, but does use actual hard disk access through 

the PostgreSQL [32] database.  Unfortunately, the target 

system does not have a sufficient number of hard disks to fully 

utilize the four Pentium IV processors.  Therefore, the 

SPECjbb server-side java benchmark is included.  This 

benchmark is able to more fully utilize the processor and 

memory subsystems without a large number of hard disks. 

To further validate the I/O and disk models, a synthetic 

workload is developed to generate high disk utilization.  Each 

instance of this workload creates a large file (1GB).  Then the 

contents of the file are overwritten.  After approximately 100K 

pages have been modified, the sync() operating system call is 

issued to force the modified pages to disk. The synthetic 

workload is used because none of the application based 

benchmarks are able to create sufficient level of disk activity. 

For all subsystems, the power models are trained using a single 

workload trace that offers high utilization and variation.  The 

validation is then performed using the entire set of workloads. 

3.6 PERFORMANCE EVENT SELCTION 

With over forty [40] detectable performance events, the 

Pentium IV provides a challenge in selecting events that are 

most representative of subsystem power.  In this approach the 

interconnection of the various subsystems pictured in Figure 1 

are considered.  By noting the “trickle-down” effect of events 

in the processor, a subset of the performance events can be 

selected to model subsystem power consumption.  As a simple 

example, consider the effect of cache misses in the processor.  

For the target server processor, the highest level of cache is the 

L3.  Transactions that cannot be satisfied (cache miss) by the 

L3 cause a cache line (block) sized access to the main memory.  

Since the number of main memory accesses is directly 

proportional to the number of L3 misses, it is possible to 

approximate the number of accesses using only L3 misses.  

Since these memory accesses must go off-chip, power is 

consumed proportionally in the memory controller and 

DRAM.  In reality the relation is not that simple, but there is 

still a strong causal relationship between L2 misses and main 

memory accesses.   

Though the initial selection of performance events for 

modeling is dictated by an understanding of subsystem 

interactions (as in the previous example), the final selection of 

which event type(s) to use is determined by the average error 

rate during regression analysis and a comparison of the 

measured and modeled power traces.  If wrong performance 

events are chosen in the beginning, the process described in 

Figure 2 will eventually identify the relevant performance 

events. The system knowledge simply helps to reduce the time 

to arrive at an appropriate solution. The dominant, power-

related performance events identified for the server system are 

described below.   

Cycles – Execution time in terms of CPU clock cycles.  The 

cycles metric is combined with most other metrics to create per 

cycle metrics.  This corrects for slight differences in sampling 

rate.  Though sampling is periodic, the actual sampling rate 

varies slightly due to cache effects and interrupt latency. 

Halted Cycles – Cycles in which clock gating is active.  When 

the Pentium IV processor is idle, it saves power by gating the 

clock signal to portions of itself.  Idle phases of execution are 

“detected” by the processor through the use of the HLT (halt) 

instruction.  When the operating system process scheduler has 

available slack time, it halts the processor with this instruction.  

The processor remains in the halted state until receiving an 

interrupt.  Though the interrupt can be an I/O device, it is 

typically the periodic OS timer that is used for process 

scheduling/preemption.  This has a significant effect on power 

consumption by reducing processor idle power from ~36W to 

9W.  Because this significant effect is not reflected in the 

typical performance metrics, it is accounted for explicitly in 

the halted cycles counter.   

Fetched µops – Micro-operations fetched.  The micro-

operations (µops) metric is used rather than an instruction 

metric to improve accuracy.  Since in the P6 architecture 

instructions are composed of a varying number of µops, some 

instruction mixes give a skewed representation of the amount 

of computation being done.  Using µops normalizes the metric 

to give representative counts independent of instruction mix.  

Also, by considering fetched rather than retired µops, the 

metric is more directly related to power consumption.  Looking 

only at retired µops would neglect work done in execution of 

incorrect branch paths and pipeline flushes.  

L3 Cache Misses – Loads/stores that missed in the Level 3 

cache.  Most system main memory accesses can be attributed 

to misses in the highest level cache, in this case L3.  Cache 



misses can also be caused by DMA access to cacheable main 

memory by I/O devices.  The miss occurs because the DMA 

must be checked for coherency in the processor cache. 

TLB Misses – Loads/stores that missed in the instruction or 

data Translation Lookaside Buffer.  TLB misses are distinct 

from cache misses in that they typically cause trickle-down 

events farther away from the microprocessor.  Unlike cache 

misses, which usually cause a cache line to be transferred 

from/to memory, TLB misses often cause the transfer of a page 

of data (4KB or larger).  Due to the large size of pages, they 

are often stored on disk.  Therefore, power is consumed on the 

entire path from the CPU to the hard disk. 

DMA Accesses – Transaction that originated in an I/O device 

whose destination is system main memory.  Though DMA 

transactions do not originate in the processor, they are 

fortunately visible to the processor.  As demonstrated in the L3 

Miss metric description, these accesses to the processor (by an 

I/O device) are required to maintain memory coherency.  

Being able to observe DMA traffic is critical since it causes 

power consumption in the memory subsystem.  An important 

thing to consider in the use of the Pentium IV’s DMA counting 

feature is that it cannot distinguish between DMA and 

processor coherency traffic.  All memory bus accesses that do 

not originate within a processor are combined into a single 

metric (DMA/Other).  For the uniprocessor case this is not a 

problem.  However, when using this metric in an SMP 

environment such as this, care must be taken to attribute 

accesses to the correct source.  Fortunately, the workloads 

considered here have little processor-processor coherency 

traffic.  This ambiguity is a limitation of the Pentium IV 

performance counters and is not specific to this technique.   

Processor Memory Bus Transactions – Reads or writes on 

processor’s external memory bus.  All transactions that 

enter/exit the processor must pass through this bus.  Intel calls 

this the Front Side Bus (FSB).  As mentioned in the section on 

DMA, there is a limitation of being able to distinguish between 

externally generated (other processors) and DMA transactions.   

Uncacheable Accesses – Load/Store to a range of memory 

defined as uncacheable.  These transactions are typically 

representative of activity in the I/O subsystem.  Since the I/O 

buses are not cached by the processor, downbound (processor 

to I/O) transactions and configuration transactions are 

uncacheable.  Since all other address space is cacheable, it is 

possible to directly identify downbound transactions.  Also, 

since configuration accesses typically precede large upbound 

(I/O to processor) transactions, it is possible to indirectly 

observe these.  

Interrupts – Interrupts serviced by CPU.  Like DMA 

transactions, most interrupts do not originate within the 

processor.  In order to identify the source of interrupts, the 

interrupt controller sends a unique ID (interrupt vector 

number) to the processor.  This is particularly valuable since 

I/O interrupts are typically generated by I/O devices to indicate 

the completion of large data transfers.  Therefore, it is possible 

to attribute I/O bus power to the appropriate device.  Though, 

the interrupt vector information is available in the processor, it 

is not available as a performance event.  Therefore, the 

presence of interrupt information in the processor is simulated 

by obtaining it from the operating system.  Since the operating 

system maintains the actual interrupt service routines, interrupt 

source accounting can be easily performed.  In this case the 

“/proc/interrupts” file available in Linux operating systems is 

used. 

3.7 MODEL FORMAT 

The form of the subsystem power models is dictated by two 

requirements: low computational cost and high accuracy.  

Since these power models are intended to be used for runtime 

power estimation, it is preferred that they have low 

computational overhead.  For this reason initial attempts at 

regression curve fitting use single or multiple input linear 

models.  If it is not possible to obtain high accuracy with a 

linear model, single or multiple input quadratics are chosen. 

3.8 RESULTS 

3.8.1 AVERAGE WORKLOAD POWER 

In this section a power characterization of eleven workloads is 

presented.  The average power in Watts for the considered 

workloads are given in Table 2.  Also, workload variation is 

presented in Table 3 as the standard deviation of the power 

values in Watts.  

With a maximum sustained total power of just over 305 Watts, 

the system consumes 46% of the maximum power at idle.  This 

is lower than the typical value of 60% suggested for IA32 

systems by Rajamani et al.[33].  The largest contributor to the 

reduced power at idle is the clock gating feature implemented 

in the microprocessor.  Without this feature, idle power would 

be approximately 80% of peak.  Due to the lack of a power 

management implementation, the other subsystems consume a 

large percentage of their peak power at idle.  The chipset and 

disk subsystems have nearly constant power consumption over 

the entire range of workloads.  

For the SPEC CPU 2000 workloads, there is the expected 

result of high microprocessor power.  For all eight workloads, 

greater than 53% of system power goes to the microprocessors.  

The next largest consumer is the memory subsystem at 12%-

18%.  All of the top consumers are floating point workloads.  

This is expected due to the high level of memory boundedness 

of these workloads.  I/O and disk consume almost the same 

power as the idle case since there is no access to network or 

storage during the workloads. 

Table 2. Subsystem Average Power (Watts) 

Workload CPU Chipset Memory I/O Disk Total 

idle 38.4 19.9 28.1 32.9 21.6 141 

gcc 162 20.0 34.2 32.9 21.8 271 

mcf 167 20.0 39.6 32.9 21.9 281 

vortex 175 17.3 35.0 32.9 21.9 282 

art 159 18.7 35.8 33.5 21.9 269 

lucas 135 19.5 46.4 33.5 22.1 257 

mesa 165 16.8 33.9 33.0 21.8 271 

mgrid 146 19.0 45.1 32.9 22.1 265 

wupwise 167 18.8 45.2 33.5 22.1 287 

DBT-2 48.3 19.8 29.0 33.2 21.6 152 

SPECjbb 112 18.7 37.8 32.9 21.9 223 



DiskLoad 123 19.9 42.5 35.2 22.2 243 

The commercial workloads exhibited quite different power 

behavior compared to the scientific workloads.  In DBT-2 the 

limitation of sufficient disk resources is evident in the low 

microprocessor utilization.  Memory and I/O power are 

marginally higher than the idle case.  Disk power is almost 

identical to the idle case also due to the mismatch in storage 

size compared to processing and main memory capacity.  

Because the working set fits easily within the main memory, 

few accesses to the I/O and disk subsystem are needed.  The 

SPECjbb workload gives a better estimate of processor and 

memory power consumption in a balanced server workload 

with sustained power consumption of 61% and 84% of 

maximum for microprocessor and memory.  

Table 3. Subsystem Power Standard Deviation 

Workload CPU Chipset Memory I/O Disk 

idle 0.340 0.0918 0.0328 0.13 0.027 

gcc 8.37 0.226 2.36 0.13 0.053 

mcf 5.62 0.171 1.43 0.13 0.033 

vortex 1.22 0.0711 0.719 0.14 0.017 

art 0.393 0.0686 0.190 0.14 0.0055 

lucas 1.64 0.123 0.266 0.13 0.0072 

mesa 1.00 0.0587 0.299 0.13 0.0084 

mgrid 0.525 0.0469 0.151 0.13 0.0052 

wupwise 2.60 0.131 0.427 0.14 0.011 

DBT-2 8.23 0.133 0.688 0.15 0.035 

SPECjbb 26.2 0.327 2.88 0.06 0.073 

DiskLoad 18.6 0.0948 3.80 0.15 0.075 

Finally, a synthetic workload intended to better utilize the disk 

and I/O subsystems is considered.  The DiskLoad workload 

generates the highest sustained power in the memory, I/O and 

disk subsystems.  Surprisingly, the disk subsystem consumed 

only 2.8% more power than the idle case.  The largest 

contribution to this result is a lack of power saving modes in 

the SCSI disks.  According to Zedlewski [41], the power 

required for rotation of the disk platters is 80% of the peak 

amount, which occurs during disk write events.  Since, the 

hard disks used in this study lack the ability to halt rotation 

during idle phases, at most a 20% increase in power compared 

to the idle state.  There is the possibility that the difference for 

these disks is even less than the 20% predicted for Zedlewski’s 

[41] mobile hard disk.  Unfortunately, this cannot be verified 

since the hard disk manufacturer does not provide power 

specifications for the various hard disk events (seek, rotate, 

read/write and standby).  The large increase in the I/O 

subsystem is directly related to the number of hard disk data 

transfers required for the workload.  No other significant I/O 

traffic is present in this workload.  The large increase in 

memory power consumption is due to the implementation of 

the synthetic workload and the presence of a software hard 

disk cache provided by the operating system.  In order to 

generate a large variation in disk and I/O power consumption, 

the workload modifies a portion of a file approximately the 

size of the operating system disk cache.  Then using the 

operating system’s sync() call, the contents of the cache, which 

is located in main memory, are flushed to the disk.  Since the 

memory is constantly accessed during the file modification 

phase (writes) and the disk flush phase (reads), high memory 

utilization results.   

3.8.2 SUBSYSTEM POWER MODELS 

This section describes the details of the subsystem power 

models.  Issues encountered during the selection of appropriate 

input metrics are described.  For each subsystem a comparison 

of modeled and measured power under a high variation 

workload is provided. 

3.8.2.1 CPU  

The CPU power model improves an existing model [5] to 

account for idle clock cycles.  Since it is possible to measure 

the percent of time spent in the idle or halted state, the greatly 

reduced power consumption due to clock gating can be 

accounted for.  This addition is not a new contribution, since a 

similar accounting is made in the model by Isci [16].  The 

largest distinction is that this implementation accounts for 

clock gating while retaining a lightweight model composed of 

only three input metrics: idle cycles, Fetched µops and total 

cycles.  In contrast, Isci’s model requires 22 events to attain a 

similar accuracy level.   

Given that the Pentium IV can fetch three instructions/cycle, 

the model predicts range of power consumption from 9.25 

Watts to 48.6 Watts.  The form of the model is given in 

Equation 1.   

∑
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Equation 1. Processor Power Model 

 Figure 3. Processor Power Model – gcc 

A trace of the total measured and modeled power for the four 

processors is given in Figure 3.  The workload used in the trace 

is eight threads of gcc, started at 30s intervals.  Average error 

is found to be 3.1%.  Note that unlike the memory bound 

workloads that saturate at eight threads, the cpu-bound gcc 

saturates after only four simultaneous threads. 

3.8.2.2 MEMORY 

This section considers models for memory power consumption 

based on cache misses and processor bus transactions. 

The first attempt at modeling memory power made use of 

cache misses.  A model based on only the number of cache 

misses/cycle is an attractive prospect as it is a well understood 

metric and is readily available in performance monitoring 

counters.  The principle behind using cache misses as proxy 

for power is that loads not serviced by the highest level cache, 

must be serviced by the memory subsystem.  As demonstrated 

in [12], power consumption in DRAM modules is highest 

when the module is in the active state.  This occurs when either 

read or write transactions are serviced by the DRAM module.  
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Therefore, the effect of high-power events such as DRAM 

read/writes can be estimated.   

In this study, the number of L3 Cache load misses per cycle is 

used.  Since the Pentium IV utilizes a write-back cache policy, 

write misses do not necessarily cause an immediate memory 

transaction.  If the miss is due to a cold start, no memory 

transaction occurs.  For conflict and capacity misses, the 

evicted cache block will cause a memory transaction as it 

updates memory. 

The initial findings show that L3 cache misses are strong 

predictors of memory power consumption (Figure 4).  The first 

workload considered is the integer workload mesa from the 

SPEC CPU 2000 suite.  Since a single instance of this 

workload cannot sufficiently utilize the memory subsystem, 

multiple instances are used to increase utilization.  For mesa, 

memory utilization increases noticeably with each instance of 

the workload.  Utilization appears to taper off once the number 

of instances approaches the number of available hardware 

threads in the system.  In this case the limit is 8 (4 physical 

processors with 2 threads per processor).  The resultant 

quadratic power model is given in Equation 2.   
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Equation 2. Cache Miss Memory Power Model 

 

Figure 4. Memory Power Model (L3 Misses) – mesa 

The average error under the mesa workload is low at only 1%.  

However, the model fails under extreme cases. Unfortunately, 

the L3 miss event does not perform well for the power model 

under all workloads.  In cases of extremely high memory 

utilization, L3 misses tend to underestimate power 

consumption.  It is found that when using multiple instances of 

the mcf workload, memory power consumption continues to 

increase, while L3 misses are slightly decreasing.  

One of the possible causes is hardware-directed prefetches that 

are not accounted for in the number of cache misses.  

However, Figure 5 shows that though prefetch traffic does 

increase after the model failure, the total number of bus 

transactions does not.  Since the number of bus transactions 

generated by each processor does not sufficiently predicting 

memory power, an outside (non-CPU) agent must be accessing 

the memory bus.  For the target system the only other agent on 

the memory bus is the memory controller itself, performing 

DMA transactions on behalf of I/O devices. 

Changing the model to include memory accesses generated by 

the microprocessors and DMA events resulted in a model that 

remains valid for all observed bus utilization rates. 

 

Figure 5. Prefetch & Non-Prefetch Bus Transactions – mcf 

It should be noted that using only the number of read/write 

accesses to the DRAM does not directly account for power 

consumed when the DRAM is in the precharge state.  DRAM 

in the precharge state consumes more power than in 

idle/disabled state, but less than in the active state.  During the 

precharge state, data held in the sense amplifiers is committed 

to the DRAM array.  Since the initiation of a precharge event 

is not directly controlled by read/write accesses, precharge 

power cannot be directly attributed to read/write events.  

However, in practice it is found that read/write accesses are 

reasonable predictors.  Over the long term (thousands of 

accesses) the number of precharge events should be related to 

the number of access events.  The resultant model is given in 

Equation 3. 
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Equation 3. Memory Bus Transaction Memory Power 

Model 

A trace of the model is shown in Figure 6 for the mcf workload 

that could not be modeled using cache misses.  The model 

yields an average error rate of 2.2%. 

 

Figure 6. Memory Power Model (Memory Bus 

Transactions)- mcf 

3.8.2.3 DISK 

The modeling of disk power at the level of the microprocessor 

presents two major challenges: large distance from CPU to 

disk and little variation in disk power consumption.  Of all the 

subsystems considered in this study, the disk subsystem is at 

the greatest distance and delay from the microprocessor. 

Therefore, there are challenges in getting timely information 

from the processor’s perspective.  The various hardware and 

software structures that are intended to reduce the average 

access time to the distant disk by the processor make power 

modeling difficult.  The primary structures that cause difficulty 

are: microprocessor cache, operating system disk cache, I/O 

queues and I/O and disk caches.  The structures offer the 

benefit of decoupling high-speed processor events from the 
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low-speed disk events.  Since the power modeling techniques 

relies on the close relationship between the subsystems, this is 

a problem.   

This is evidenced by the poor performance of the initial models 

that were created.  Initially, two events are considered: DMA 

accesses and uncacheable accesses.  Since the majority of disk 

transfers are handled through DMA by the disk controller, this 

appeared to be a strong predictor.  Also, the number of 

uncacheable accesses by the processor are considered.  Unlike 

the majority of application memory, memory mapped I/O (I/O 

address mapped to system address space) is not typically 

cached.  Generally, I/O devices use memory mapped I/O for 

configuration and handshaking.  Therefore, it should be 

possible to detect accesses to the I/O devices through 

uncacheable accesses.  In practice it is found that both of these 

metrics do not fully capture the fine-grain power behavior.  

Since such little variation exists in the disk power consumption 

it is critical to accurately capture the variation that does exist. 

To address this limitation the manner in which DMA 

transactions are performed is utilized.  Coarsely stated, DMA 

transactions are initiated by the processor by first configuring 

the I/O device.  The transfer size, source and destination are 

specified through the memory mapped I/O space.  The disk 

controller performs the transfer without further intervention 

from the microprocessor.  Upon completion or incremental 

completion (buffer full/empty) the I/O device interrupts the 

microprocessor.  The microprocessor is then able to use the 

requested data or discard local copies of data that is sent.  Our 

approach is to use the number of interrupts originating from 

the disk controller.  This approach has the advantage over the 

other metrics in that the events are specific to the subsystem of 

interest.  This approach is able to represent fine-grain variation 

with low error.  In the case of the synthetic disk workload, the 

number of disk interrupts/cycle is used to achieve an average 

error of 1.75% is achieved.  The model is provided in Equation 

4.   
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Equation 4. DMA+Interrupt Disk Power Model 

An application of the model to the memory-intensive 

benchmark program mcf is shown in Figure 7.  Note that this 

error rate accounts for the large DC offset within the disk 

power consumption.  This error is calculated by first 

subtracting the 21.6W of idle (DC) disk power consumption.  

The remaining quantity is used for the error calculation. 

3.8.2.4 I/O 

Since the majority of I/O transactions are DMA transactions 

from the various I/O controllers, an I/O power model must be 

sensitive to these events.  Three events are considered for 

observing DMA traffic: DMA accesses on memory bus, 

uncacheable accesses and interrupts.  Of the three, 

interrupts/cycle is the most representative.  DMA accesses to 

main memory seemed to be the logical best choice since there 

is such a close relation to the number of DMA accesses and the 

switching factor in the I/O chips.  For example, a transfer of 

cache line aligned 16 dwords (4 bytes/dword), maps to a single 

cache line transfer on the processor memory bus.  However, in 

the case of smaller, non-aligned transfers the linear 

relationship does not hold.  A cache line access measured as a 

single DMA event from the microprocessor perspective may 

contain only a single byte.  This would grossly overestimate 

the power being consumed in the I/O subsystem.  Further 

complicating the situation is the presence of performance 

enhancements in the I/O chips.   

 

Figure 7. Disk Power Model (DMA+Interrupt) – Synthetic 

Disk Workload 

One of the common enhancements is the use of write-combing 

memory.  In write-combining, the processor or I/O chip in this 

case combines several adjacent memory transactions into a 

single transaction further removing the one-to-one mapping of 

I/O traffic to DMA accesses on the processor memory bus.  As 

a result interrupt events are found to be better predictors of I/O 

power consumption.  DMA events failed to capture the fine-

grain power variations.  DMA events tend to have few rapid 

changes, almost as if the DMA events have a low-pass filter 

applied to them.  The details of the model can be seen in 

Equation 5.   
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Equation 5. Interrupt I/O Power Model 

Accounting for the large DC offset increases error significantly 

to 32%.  Another consideration with the model is the I/O 

configuration used.  The model has a significant idle power 

which is related to the presence to two I/O chips capable of 

providing six 133MHz PCI-X buses.  While typical in servers, 

this is not common for smaller scale desktop/mobile systems 

that usually contain 2-3 I/O buses and a single I/O chip.  

Further, the server only utilizes a small number of the I/O 

buses present.  It is expected that with a heavily populated, 

system with fewer I/O buses, the DC term would become less 

prominent.  This assumes a reasonable amount of power 

management within the installed I/O devices. 

3.8.2.5 CHIPSET 

The chipset power model proposed here is the simplest of all 

subsystems as a constant is all that is required.  There are two 

reasons for this.  First, the chipset subsystem exhibits little 

variation in power consumption.  Therefore, a constant power 

model is an obvious choice.  Further, it is difficult to identify 

the effect performance events have on power consumption 

compared to induced electrical noise in the sensors.  The 
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second, and more critical reason, is a limitation in the power 

sampling environment.  Since the chipset subsystem uses 

power from more than one power domain, the total power 

cannot be measured directly.  Instead it is derived by finding 

the average measured difference in power between multiple 

domains.  The average chipset power is 19.9W. 

3.8.3 MODEL VALIDATION 

Tables 3 and 4 present summaries of average errors for the five 

models applied to twelve workloads.  Errors are determined by 

comparing modeled and measured error at each sample.  A 

sample corresponds to one second of program execution or 

approximately 1.5 billion instructions per processor.  For 

performance counter sampling, the total number of events 

during the previous one second is used.  For power 

consumption, the average of all samples in the previous second 

(ten thousand) is used.  The average for each combination of 

workload and subsystem model is calculated using Equation 6.  

The results quantify the error in total power.  They do not 

cover only the dynamic range from idle to maximum power.  

This should be considered for subsystems that have a small 

dynamic range such as the I/O and disk subsystems. 
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Equation 6. Average Error Calculation 

The I/O and disk models performed well under all workloads.  

The low error rates are partly due to low power variation / high 

idle power consumption.  The CPU and memory subsystems 

have larger errors, but also larger workload variation.  The 

worst case errors for CPU occurred in mcf workload which is 

memory-bound.  Due to a high CPI (cycles/instruction) of 

greater than ten cycles, the fetch-based power model 

consistently underestimates CPU power.  This is because while 

running mcf the processor only fetches one instruction every 

10 cycles even though it is continuously searching for (and not 

finding) ready instructions in the instruction window.  For mcf 

this speculative behavior has a high power cost that is 

equivalent to executing an additional 1-2 instructions/cycle. 

The memory model averaged about 9% error across all 

workloads.  Surprisingly the memory model faired better under 

integer workloads. The error rate for floating point workloads 

tended to be highest for workloads with the highest sustained 

power consumption.  For these cases our model tends to 

underestimate power.  Since the rate of bus transactions is 

similar for high and low error rate workloads the 

underestimation is likely caused by access pattern.  In 

particular our model does not account for differences in the 

power for read versus write access.  Also, the number of active 

banks within the DRAM is not accounted for directly.  

Accounting for the mix of reads versus writes would be a 

simple addition to the model.  However, accounting for active 

banks will likely require some form of locality metric. 

Idle power error is low for all cases indicating a good match 

for the DC term in the models.  Chipset error is high 

considering the small amount of variation.  This is due to the 

limitation of the constant model assumed for chipset power. 

Table 4. Integer Average Model Error % 

Workload CPU Chipset Memory I/O Disk 

idle 1.74# 0.59 3.80 0.36 0.17 

gcc 4.23 10.9 10.7 0.41 0.20 

mcf 12.3 7.7 2.2* 0.33 0.15 

vortex 6.53 13.0 15.6 0.30 0.33 

DBT-2 9.67 0.56 2.17 5.62 0.18 

SPECjbb 9.00 7.45 6.14 0.39 0.14 

DiskLoad 5.93 3.06 2.93 0.71* 0.16* 

Integer Average 
7.00 

±3.50 

6.18 

±4.92 

6.22 

±5.12 

1.16 

±1.97 

0.19 

±0.07 

All Workload 

Average 

6.67 

±3.42 

5.97 

±4.23 

8.80 

±5.54 

0.82 

±1.52 

0.39 

±0.49 

Table 5. Floating Point Average Model Error % 

Workload CPU Chipset Memory I/O Disk 

art 9.65 5.87 8.92 0.24 1.90 

lucas 7.69 1.46 17.5 0.25 0.31 

mesa 5.59 11.3 8.31 0.33 0.17 

mgrid 0.36 4.51 11.4 0.37 0.55 

wupwise 7.34 5.21 15.9 0.59 0.42 

FP Average 
6.13 

±3.53 

5.67 

±3.57 

12.41 

±4.13 

0.35 

±0.14 

0.67 

±0.70 

All Workload 

Average 

6.67 

±3.42 

5.97 

±4.23 

8.80 

±5.54 

0.82 

±1.52 

0.39 

±0.49 

4 APPLICATION TO DESKTOP PLATFORM 

Section 3 presented a complete system power model using 

performance events, using a quad-core server as the target 

platform. In order to prove the generality of the proposed 

approach, we apply the scheme to a very different system, a 

desktop platform. The platform is an AMD dual-core system 

with a graphics Processing Unit (GPU). This platform differs 

from the previous server in terms of process technology, 

system architecture, manufacturer and workload among others. 

They also differ in their power management implementations 

and subsystem components. A comparison of the two systems 

used in this study (server and desktop) is provided in Table 7.  

Of particular importance are two major differences: subsystem 

level power management and workload characteristics.  Power 

management increases the complexity and utility of the power 

model as power consumption varies greatly with the 

application of power management.  In contrast, in the server 

system, power remains near a constant level due to subsystems 

not reducing performance capacity, and therefore power 

consumption, during periods of low utilization.  Increased 

power variation is also attributable to desktop-specific 

workloads.  While server workloads tend to always operate at 

full speed (eq. SPEC CPU) desktop workloads such as 

SYSMark and 3DMark contain large portions of low 

utilization.  This exposes the impact of power management and 

the need to model it.  

In this section, power modeling of the AMD system with GPU 

using the approach presented in section 2 is presented. It is 

shown that though this platform is significantly different than 



the server, the trickle-down modeling approach still accurately 

models power.   

4.1 SYSTEM DESCRIPTION 

.  The target desktop system considered here is optimized for 

power efficiency rather than performance.  This leads to 

greater variation in power consumption compared to a server 

since power management features reduce power greatly during 

low utilization.  Server systems tend to employ less aggressive 

power savings.  Therefore, power at low utilization is greater 

and overall variation is less.  This difference is evident in the 

analysis of average subsystem-level power in Tables 1-2 and 

7-8.  The power management implementation in the desktop 

system also requires the use of more extensive power models.  

Rather than only needing to consider CPU clock gating and 

DRAM power down modes, the desktop system model must 

consider DVFS, chipset link power management, disk and 

GPU power management.  The wider range of power 

consumption also leads to greater temperature sensitivity. 

Another major difference is the ability to measure subsystem 

power at a finer granularity.  The desktop platform allows 

direct measurement of memory controller and GPU in addition 

to all the subsystems that are measureable in the server system.  

One exception is the server I/O subsystem which contains 

numerous PCI-X busses and bridges.  The desktop system does 

not contain comparable I/O subsystem.  Therefore, it is not 

included in the study. 

Table 6. System Comparison 

Platform 

Segment 

Server Desktop 

Manufacturer Intel AMD 

Processor(s) Quad-socket 130nM 

2.8GHz 

Dual-core 45nM 2.0GHz 

Memory 8GB DDR-200 4GB DDR3-1066 

Power 

Management 

CPU Clock Gating 

DRAM Power Down 

CPU Clock Gating and DVFS 

DRAM Pwr Down and Self Ref. 

Chipset Link Disconnect 

Harddrive Spin Down and ATA 

modes 

GPU Clock Gating 

Graphics Rage ProXL RS780 

Observable 

Subsystems 

CPU 

Chipset 

Memory 

I/O 

Disk 

CPU 

Chipset 

Memory 

Memory Controller 

GPU 

Disk 

4.2 WORKLOADS 

Due to the distinctions between server and desktop systems 

several desktop or client-appropriate workloads are added.  In 

typical server or desktop benchmarks the GPU subsystem is 

almost entirely idle.  Therefore, to exercise the GPU subsystem 

the 3DMark06 benchmark is included.  3DMark06 contains six 

subtests covering CPU and GPU intensive workloads.  Four of 

the subtests (gt1, gt2, hdr1, hdr2) target the GPU’s 3D 

processing engine.  The other two tests (cpu1 and cpu2) 

heavily utilize CPU cores but have almost no GPU utilization.  

Targeting the 3D engine generates the largest power variation 

since the 3D engine is by far the largest power consumer in the 

GPU.  An interesting side effect of the desktop GPU is intense 

system DRAM utilization.  To reduce cost and power 

consumption, desktop systems such as this use a portion of 

system DRAM in lieu of locally attached, private DRAM.  As 

a result, 3D workloads in desktop systems are effective at 

generating wide power variation in the memory subsystem. 

Overall subsystem level power management is exposed 

through the addition of the SYSMark07 benchmark.  This 

workload contains Microsoft Office, Adobe Photoshop, Adobe 

Flash and similar desktop applications. The various programs 

are classified into four categories called E-Learning, Video 

Creation, Productivity and 3D.  This workload is implemented 

using simulated user input through the application GUI.  The 

numerous delays required for GUI interaction causes many idle 

phases across the subsystems.  This allows power management 

to become active.  Contrast this to the vast majority of 

benchmarks which, by design, operate the CPU and other 

subsystems only at the 100% load level.  The DBT-2 database 

workload is excluded as it is not practical and relevant to run 

on a desktop platform.  For comparison to the server model, 

SPEC CPU, SPEC jbb and idle workloads are included.  The 

workloads on targeted subsystems are summarized below in 

Table 7. 

Table 7. Desktop Workloads 

Workload Description 
Subsystems 

Targeted 

Idle 
Only background OS 

processes 

All (power 

managed) 

SPEC CPU 

2006 

 

INT 

perlbench, bzip2, gcc, mcf, 

gobmk, hmmer, sjeng, 

libquantum, h264ref, 

omnetpp, astar, xalancbmk 

CPU 

Memory 

Memory 

Controller 

FP 

bwaves, games, milc, zeusmp, 

gromacs, cactusADM, 

leslie3d, namd, dealII, soplex, 

povray, calculix, gemsFDTD, 

tonto, lbm, wrf, sphinx3 

CPU 

Memory 

Memory 

Controller 

3DMark06 

gt1 

Graphics Test 1 and 2 

GPU 

Memory 

Memory 

Controller 
gt2 

cpu1 
CPU Test 1 and 2 CPU 

cpu2 

hdr1 
High Dynamic Range Test 1 

and 2 

GPU 

Memory 

Memory 

Controller hdr2 

SYSMark0

7 

EL E-Learning CPU 

Memory 

Memory 

Controller 

Chipset 

Disk 

VC Video Creation 

PR Productivity 

3D 3D 

SPECjbb2005 Server-Side Java 

CPU 

Memory 

Memory 

Controller 

4.3 PERFORMANCE EVENT SELECTION 

In this section the various performance monitoring counter 

events used to construct the trickle-down model for the target 

desktop system are described.  The definition and insight 

behind selection of the counters is provided. 



Fetched µops – Micro-operations fetched.  Comparable to the 

Pentium IV fetched micro-operations, this metric is highly 

correlated to processor power.  It accounts for the largest 

portion of core pipeline activity including speculation.  This is 

largely the result of fine-grain clock gating.  Clocks are gated 

to small portions of the pipelines when they are not being used. 

FP µops Retired – Floating point micro-operations retired.  

This metric is used to account for the difference in power 

consumption between floating point and integer instructions.  

Assuming equal throughput, floating point instructions have 

significantly higher average power.  Ideally, the number of 

fetched FPU µops would be useful.  Unfortunately, this metric 

is not available as a performance counter.  This is not a major 

problem though since the fetched µops metric contains all 

fetched µops, integer and floating point.  

DC Accesses – Level 1 Data Cache Accesses.  This is a proxy 

for overall cache instruction and data accesses including Level 

1,2, and 3.  Considering the majority of workloads, level 1 data 

cache access rate dominates cache-dependent power 

consumption.  No other single cache access metric correlates 

as well to processor core power (including caches). 

%Halted/%Not-Halted – Percent time processor is in halted 

state.  This represents power saved due to explicit clock gating.  

The processor saves power using fine-grain and coarse-grain 

gating of clock.  Fine-grain clock gating saves power in 

unutilized portions of the processor while instructions are in-

flight.  Coarse-grain clock gating can save more power than 

fine-grain yet it requires the processor to be completely idle.  

The processor applies this type of gating only when the 

processor is guaranteed to not have any instructions in-flight.  

This condition by definition occurs following execution of the 

HLT instruction.  Halt residency is controlled by the operating 

system and interrupts scheduling work on processors.       

CPU Clock Frequency – Core clocks per second.  Due to the 

use of DVFS, it is necessary to track the instantaneous 

frequency of the processor.  Though some metrics such as 

µops fetched or retired implicitly track the power consumed in 

many components due to clock frequency, they do not track 

workload-independent power consumers such as clock grids.  

Using clock frequency in conjunction with %Halt it is possible 

to account for power consumed in these units. 

CPU Voltage – CPU Voltage Rail.  Due to the application of 

DVFS the processor may operate at a range of discrete 

voltages in order to save power.  Changes in voltage have a 

significant impact on power consumption due to the 

exponential relationship between voltage and dynamic power 

(~V2) and the cubic relationship between voltage and leakage 

power (~V3).  Due to a single, shared voltage plane, the actual 

voltage applied is the maximum requested of all cores in a 

socket.  The requested voltage can be read using the P-State 

Status register [4]. 

Temperature – CPU Temperature.  At the high voltages 

required for multi-GHz operation, leakage power becomes a 

major component of power consumption.  Also, at idle when 

dynamic power is nearly eliminated due to clock gating 

leakage power can be the dominant contributor.  Since 

temperature has a strong relation to leakage power (T2) it is 

necessary to account for this effect by measuring temperature.  

Temperature can be approximated using a series of on-die 

thermal sensors.  The output of these sensors can be obtained 

using a configuration-space register [4].   

GPU Non-Gated Clocks – Number of GPU clocks per second.  

Similar to CPU power, GPU power is greatly impacted by the 

amount of clock gating and DVFS.  In this study DVFS usage 

is restricted to frequency changes only.  Therefore, nearly all 

GPU power variation can be accounted for by this single 

metric.   

DCT Accesses – ∑ N=0-1 DCTNPageHits+DCTNPageMisses + 

DCTNPageConflicts.  DCT (DRAM Controller) Access 

accounts for all memory traffic flowing out of the two on-die 

memory controllers, destined for system DRAM.  These events 

include cpu-generated and DMA traffic.   

Link Active% – Percent time Hypertransport links connected.  

To save power in the I/O interconnection during idle periods, 

the Hypertransport links are disconnected.  During periods of 

disconnect, cache snoop traffic and interrupts are blocked.  

This allows power to be saved in the CPU I/O interconnect and 

I/O subsystem.  Also, the DRAM may be placed in self-refresh 

mode since DRAM access is blocked.  If a cache snoop or 

interrupt event occurs, the links are reconnected.  

Spindle Active % – Percent time hard disk spindle is 

spinning.  In traditional mechanical hard drives, the spindle 

motor represent the largest single consumer of power in the 

drive.  To save energy the spindle motor can be powered 

down.  Due to the high latency (and energy consumption) for 

starting/stopping the spindle this can only be done when the 

drive is expected to be idle for a long time (minutes or more).  

In practice, typical workloads prevent the spindle from ever 

powering down.  This includes all benchmarks used in this 

study, except idle.  Therefore, spindle activity can be 

sufficiently accounted for by only distinguishing between idle 

and all other workloads.   

CPUTo IOTransactions – Non-cacheable access to memory-

mapped I/O devices .  I/O device activity can be approximated 

using a measure of how many memory transactions generated 

by the CPUs are targeted at non-cacheable address space.  

Typically, I/O devices contain a DMA controller which 

performs access to cacheable space in system memory.  The 

configuration and control of these transactions is performed by 

the CPU through small blocks of addresses mapped in non-

cacheable space to each I/O device.    

DRAMActive% – Percent time DRAM channel is active.  

Power savings in the DRAM and memory controller is 

controlled by the memory controller.  When a memory channel 

has not issued a memory transaction for at least fixed period of 

time, the memory controller sends the channel to one of the 

precharge power down modes [4].  This primarily saves power 

in the DRAM chips, but also provides a slight savings in the 

memory controller.    

4.4 RESULTS 



4.4.1 AVERAGE WORKLOAD POWER 

To understand subsystem-level power consumption average 

and standard deviation results are presented.  Table 8 displays 

average power of each subsystem measured in Watts.  To give 

an indication of the variation in power consumption Table 9 

displays the standard deviation of subsystem power.  Two 

major differences are apparent comparing desktop to server 

power consumption:  power in each subsystem is much less 

while relative variability is much greater.  In both cases, power 

management plays a large role.  Effective power management 

through DVFS, clock gating and link management reduce 

average power during idle and low utilization phases.  This 

leads to a greater difference in sample-to-sample power.  

Additionally, semiconductor process improvements have a 

major effect. 

First, the CPU subsystem is considered.  Not surprisingly, the 

desktop processor’s average power is an order of magnitude 

less than the server processor.  This is largely influenced by 

process (130nM in server vs. 45nM in desktop), DVFS 

(desktop-only) and idle power management.  While the server 

idle power represents at least 24% of average power, desktop 

idle power is no more than 4%.  These large power savings 

require the CPU model to include additional metrics such as 

frequency, voltage and temperature.  It is not sufficient to 

consider metrics associated only with the instruction stream 

(IPC, cache accesses).  

Like CPU, the Chipset also exhibits much greater power 

variation.  Unlike the server chipset which is pragmatically 

modeled as a constant, the desktop chipset has much greater 

variation with standard deviation representing as much as 10% 

of average power.  The difference illustrates the impact of link 

(Hypertransport) power management.  Average power values 

are also much less due to the omission of an L3 cache in the 

desktop processor.  In both platforms the top-level cache is 

contained in the chipset power rail.  To reduce power 

consumption and cost the desktop designer omitted the L3 

cache. 

Yet another subsystem with order-of-magnitude power 

reduction is the DRAM memory.  Despite higher operating 

frequency (533Mhz vs 100MHz) average DRAM power is 

reduced by almost a factor of 10.  The reason is reduced 

memory voltage (2.8V vs 1.5V), reduced capacity (8GB vs 

4GB) and more aggressive memory power management.  Note 

that the desktop system differentiates between DRAM, 

“Memory” subsystem and the Memory Controller.  The server 

system includes both in the memory subsystem.  The desktop 

memory controller has a similar level of power variation as the 

DRAMs.  This is due to the memory controller management 

power savings for both subsystems.  This also allows 

implementation of simple trickle-down models in multiple 

subsystems that are driven by the same performance metrics. 

A new subsystem, not present in the server analysis is the 

RS780 graphics processing unit (GPU).  This subsystem has a 

unique bi-modal power consumption.  In all cases GPU power 

is either near the maximum or minimum levels.  For workloads 

with little or no GPU activity power ranges from 0.8W to 

1.3W with little variation.  The graphics-centric workloads of 

3DMark06 have much greater variation as the workload 

alternates between approximately 1W and 4W.  This gives the 

GPU one of the largest power variations with a standard 

deviation covering over 25% of the maximum power.  This 

unique behavior leads to the creation of a simple power model.  

The bimodal power consumption is caused by aggressive idle 

power management and low active power variation.  

Therefore, it is sufficient to create a power model using only 

the ratio of time spent with clocks gated.  Low error rates can 

be obtained without any instruction or data-dependent metrics. 

Lastly, desktop hard drive power is considered.  Three factors 

affect the large average power reduction and relative standard 

deviation increase: spindle speed, platter size and link power 

management.  Since spindle power is such a large component 

of drive power consumption, reducing from 7200rpm to 

5400rpm has a large impact.  To conform to a smaller form 

factor, disk platter diameter is reduced nearly 28% (3.5” to 

2.5”).  This reduces spindle and drive head power.  Less power 

is required to rotate a smaller mass and move the drive head a 

shorter distance.  Also, SATA link power management reduces 

power consumption in the control electronics and links during 

idle phases.  These changes yield a drastic increase in 

variability with standard deviation representing 32% of 

average power in the most intense workload (video creation).       

Table 8. Subsystem Average Power (Watts) 

Workload CPU Chipset Memory 
Memory 

Controller 
GPU Disk Total 

idle 0.63 0.54 0.24 0.52 0.856 0.827 3.62 

CPU06 

INT 
14.1 2.74 2.97 2.35 0.863 0.945 24.0 

CPU06 FP 14.8 2.87 3.35 2.48 0.882 0.866 25.3 

gt1 10.2 3.25 3.29 2.41 3.79 1.35 21.9 

gt2 10.2 3.29 3.52 2.48 4.00 1.35 22.4 

cpu1 14.3 2.86 1.61 1.97 1.28 1.34 21.4 

cpu2 14.2 2.86 1.62 1.98 1.28 1.30 21.3 

hdr1 10.5 3.24 2.90 2.32 3.70 1.38 21.7 

hdr2 10.6 3.26 3.03 2.37 3.75 1.35 22.0 

EL 10.6 2.61 1.40 1.98 1.08 1.42 17.1 

VC 11.0 2.79 1.12 1.89 1.12 1.74 17.8 

PR 10.3 2.76 1.16 1.90 1.11 1.58 16.9 

3D 11.9 2.62 1.25 1.91 1.06 1.35 18.2 

SPECjbb 11.1 2.90 1.71 2.03 1.09 1.27 18.1 

 

Table 9. Subsystem Power Standard Deviation (Watts) 

Workload CPU Chipset Memory 
Memory 

Controller 
GPU Disk Total 

Idle 0.03 0.01 0.01 0.01 0.002 0.12 0.13 

CPU06 INT 2.59 0.26 1.52 0.45 0.17 0.36 2.69 

CPU06 FP 2.33 0.25 1.97 0.50 0.14 0.24 2.26 

gt1 0.74 0.09 0.81 0.22 0.90 0.49 1.57 

gt2 0.82 0.11 0.91 0.24 1.09 0.49 2.05 

cpu1 1.99 0.26 0.71 0.17 0.36 0.47 2.02 

cpu2 2.04 0.26 0.71 0.17 0.36 0.42 2.23 

hdr1 0.76 0.13 1.04 0.29 1.14 0.53 1.84 

hdr2 0.83 0.15 1.13 0.33 1.10 0.50 2.16 



EL 0.70 0.16 0.98 0.28 0.05 0.37 1.74 

VC 1.77 0.25 0.59 0.11 0.07 0.57 2.54 

PR 0.68 0.25 0.81 0.16 0.09 0.44 1.51 

3D 1.16 0.17 0.59 0.11 0.03 0.32 1.70 

SPECjbb 1.23 0.30 1.10 0.24 0.03 0.23 2.77 

4.4.2 SUBSYSTEM POWER MODELS 

The impact of effective power management can be seen in the 

form of the power models of this section.  In all cases it is 

necessary to explicitly account for power management to 

obtain accurate models.  This causes all models to take a 

similar form.  Previous models [5][6] are dominated by terms 

that are directly proportional to workload activity factors (IPC, 

cache accesses).  While those workload-dependent terms are 

also used here, Idle Power Management and Irreducible power 

are also quantified.  The idle power management term 

estimates power saved when instructions or operations are not 

actively proceeding through the subsystem.  For CPUs this 

primarily occurs when executing the idle loop.  The CPU 

detects one of the idle instructions (HLT, mwait) and takes 

actions such as clock or power gating.  Other subsystems such 

as memory or I/O links similarly detect the absence of 

transactions and save power through various degrees of clock 

gating.  Irreducible power contains the “baseline” power which 

is consumed at all times.  This baseline power is largely 

composed of leakage and ungateable components. 

4.4.2.1 CPU 

The model presented here improves on existing on-line models 

[3][16][6] by accounting for power management and 

temperature variation.  Like existing models this one contains a 

workload dependent portion which is dominated by the number 

of instructions completed per second.  In this case the number 

of fetched operations per second is used in lieu of instructions 

completed.  The fetched ops metric is preferred as it also 

accounts for speculative execution.  The distinction of our 

model is that it contains a temperature dependent portion.  

Using workloads with constant utilization, processor 

temperature and voltage are varied to observe the impact on 

static leakage power.  Temperature is controlled by adjusting 

the speed of the processor’s fan.  Temperature is observed with 

0.125 degree Celsius resolution using an on-die temperature 

sensor [4].  This sensor can be accessed by the system under 

test through a built-in, on-chip register.  Voltage is controlled 

using the P-State control register.  This allows selection of one 

of five available voltage/frequency combinations.  Voltage is 

observed externally using power instrumentation.  Like the 

workload dependent model, the coefficients of the static power 

model are tuned using regression techniques.  Note that the 

static power model is highly process dependent.  Processors 

with different semiconductor process parameters require the 

model to be re-tuned.  

The dominant power management effects (voltage/frequency 

scaling, clock gating) are further accounted for using the 

gateable and ungateable power models.  Gateable power is 

found by measuring the effect of enabling/disabling idle core 

clock gating.  Ungateable represents the portion of power 

which cannot be gated.  These components are also found 

experimentally.  The resultant, average error in the model is 

0.89%.  The error distribution for SPEC CPU2006 and 

SYSmark2007 has the first standard deviation with less than 

1% error.  Worst-case error is 3.3%.  The composition of the 

CPU model for the AMD processor is summarized in Table 10. 

Table 10. AMD Dual-Core Power Model 

Power Models Equation 

Total Power 
� (�������	
���
	�
�� +�
���������

������

���
+ ��������� + ������� !",$%�& 

Workload 

Dependent 

Power 

((FetchOpsN/Sec)×CoeffF+(FloatPointOpsN/Sec) 

×CoeffFP 

+(DCAccessN/Sec) ×CoeffDC) ×Voltage2 

Idle Power 

Management 

Power 

(%HaltedN) ×CoeffGateable×Voltage2×FrequencyN 

Irreducible 

Power 
(%NonHaltedN) ×CoeffUngateable×Voltage2×FrequencyN 

Irreducible 

Power 
(Temp2×CoeffT

2+Temp1×CoeffT
1+×CoeffT

0)VoltageN 

 

Figure 9. CPU Power Model  – SPEC CPU 2006 Power and 

Average Error 

4.4.2.2 GPU 

To estimate GPU power consumption, a technique similar to 

that typically used for CPUs is employed: count the number of 

ungated clocks.  In CPUs this is done by subtracting the 

number of halted clocks from all clocks [6].  In the case of the 

RS780 graphics processing unit, the ungated clocks can be 

measured directly. The GPU cycle counter is not physically 

located in the CPU, but is directly accessible using a 

configuration space access register.  The latency is 

approximately 15us per access.  Fortunately, there is only a 

single counter, so the effective overhead is low.  Equation 7 

presents the GPU power in terms of the non-gated clocks. 

0.0068 x (Non-Gated Clocks /sec)/ 106 + 0.8467 

Equation 7. GPU Power Model 

This approach only accounts directly for power saved due to 

clock gating.  Power reductions due to DVFS are not explicitly 

represented.  Despite this, high accuracy of less than 1.7% 

error is obtained due to the implementation of DVFS.  Unlike 

CPU DVFS which allows the operating system to reduce 

voltage and frequency during active phases, GPU DVFS 

reduces voltage only when clock gating is applied (idle).  

Therefore, increased power due to operating at the higher 

voltage is included in the non-gated clock metric.  This bi-

modal behavior can be seen in Figure 10.  The mostly-idle, 

30

31

32

33

34

35

36

37

p
er

lb
en

ch

b
zi

p
2

g
cc

m
cf

g
o
b
m

k

h
m

m
er

sj
e
n
g

li
b
q
u
an

t…

h
2
6
4
re

f

o
m

n
et

p
p

as
ta

r

x
al

an
c
b
m

k

b
w

av
e
s

g
am

es
s

m
il

c

ze
u
sm

p

g
ro

m
ac

s

ca
c
tu

sA
…

le
sl

ie
3
d

n
am

d

d
ea

lI
I

so
p
le

x

p
o
v
ra

y

ca
lc

u
li

x

G
em

sF
…

to
n
to

lb
m

w
rf

sp
h
in

x
3

W
at

ts

Measured Modeled



clock-gated portion of the HDR1 workload draws about 1.5W.  

The fully active phase increases voltage and eliminates clock 

gating.  Power increases drastically to over 4W. 

An alternative metric for GPU power is also considered: % 

GUI Active.  This metric represents the portion of time in 

which the GPU is updated the display.  The main limitation of 

this approach is that it does not account for the intensity of 

work being performed by the underlying GPU hardware.  Low-

power 2D workloads, such as low-bit rate video playback, 

appear to have the same GPU utilization as more intense high-

resolution video decoding.  An example of modeled versus 

measured GPU power for 3DMark06-HDR1 is provided in 

Figure 10. 

 

Figure 10. GPU Power Model (Non-Gated Clocks) – 

3DMark06-HDR1 

4.4.2.3 MEMORY 

Memory or DRAM power consumption is one of the more 

variable subsystems.  Similar to the CPU, the application of 

various power management features yields a wide range of 

power consumption.  For example consider the standard 

deviation of power consumption in SPECJbb of 1.096W 

compared to its average of 1.71W.  This variation is caused by 

the three modes of operation: self-refresh, precharge power 

down and active.  Self-refresh represents the lowest power 

state in which DRAM contents are maintained by on-chip 

refresh logic.  This mode has a high entry/exit latency and is 

only entered when the system is expected to be idle for a long 

period.  The memory controller selects this mode as part of its 

hardware-controlled C1e idle [4] state.  Since this state is 

entered in conjunction with the hypertransport link disconnect, 

the power savings can be represented using the LinkActive% 

metric.  Precharge power down is a higher-power, lower-

latency alternative which provides power savings for short idle 

phases.  This allows precharge power savings to be considered 

with normal DRAM activity power.  Light activity yields 

higher precharge residency.  DRAM activity is estimated using 

the DCTAccess metric.  The sum of all DCT accesses on both 

channels (hit, miss and conflict) correlates positively to active 

DRAM power and negatively to precharge power savings.  

Equation 8 presents memory power in terms of the DCTAccess 

and LinkActive% metrics. 

4 x 10-8 x DCTAccess/sec + 0.7434 x LinkActive% + 0.24 

Equation 8. Memory Power Model 

In most workloads this approach gives error of less than 10%.  

The two outliers are the CPU subtests of 3DMark06.  Due to 

many of the memory transactions being spaced at intervals just 

slightly shorter than the precharge power down entry time, the 

model underestimates power by a larger margin.  Higher 

accuracy would require a direct measurement of precharge 

power down residency or temporal locality of memory 

transactions.  An example of model versus measured Memory 

power for SYSMark2007-3D is provided in Figure 11. 

 

Figure 11. DRAM Power Model (∑DCT Access, 

LinkActive) – SYSMark2007-3D 

4.4.2.4 MEMORY CONTROLLLER 

Since the memory controller is responsible to entry and exit of 

power saving modes for itself and memory, the memory 

metrics can also be used to estimate memory controller power. 

Equation 9 presents memory power in terms of the DCTAccess 

and LinkActive% metrics. 

9x10-9 x DCTAccess/sec + 0.798 x LinkActive% + 1.05 

Equation 9. Memory Controller Power Model 

 Though both memory power model and memory controller 

power model use LinkActive% and DCTAccess metrics, the 

relative weights are different.  Memory power has a large 

sensitivity to the transaction rate, 4 x 10-8 W/(transaction/sec).  

In comparison, the memory controller model coefficient is 

more than four times smaller at 9 x 10-9 W/(transaction/sec).  

Similarly, transaction-independent portion is much higher for 

the memory controller at 1.9W compared to 0.98W for 

memory.  This reflects the unmanaged power consumers in the 

memory controller.  The same 3DMark06 error outliers exist 

here. An example of model versus measured Memory 

Controller power for 3DMark06-HDR1 is provided in Figure 

12. 

 

Figure 12. Memory Controller Power (∑DCT Access, 

LinkActive) – HDR1 

4.4.2.5 CHIPSET 

The Chipset power model represents power consumed in the 

Hypertransport controller.  Like the memory and memory 

controller subsystems, power consumption is dominated by the 

link disconnect state and memory controller accesses.  Overall 

and worst-case are less than the others due to the workload 

independent contributions being relatively the largest.   

Equation 10 presents the model for the chip set power. 

-10-16 x (DCTAcc/sec)2 + 2x10-8 x (DCTAcc/sec) 
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+ 1.24 x LinkAct% + 1.34 

Equation 10. Chipset Power Model 

3.4.2.6 DISK 

The improvements in power management for hard disks 

between the server-class used in the server study [6] and the 

more recent desktop/mobile disk used here is evident in the 

power model in Equation 11.   

3 x 10-5 x (CPUToIOTrans/sec) 

+ 0.629 x SpindleActive + 0.498 

Equation 11. Disk Power Model 

Rather than the negligible power variation previously observed 

(<1%), the variable portion (one standard deviation) is on 

average 30%.  This provides more power savings, but a more 

difficult modeling challenge.  As a result average error is 

higher at 6.6%.  

4.4.3 MODEL VALIDATION 

Table 11 summarizes the average error results for the six 

subsystem power models.  The results quantify the error in 

total power.  They do not cover only the dynamic range from 

idle to maximum power.  This is less of a concern for the 

desktop system as most subsystems have large dynamic 

ranges, unlike the server system.  The CPU subsystem has the 

second lowest error at 1.64% largely due to the comprehensive 

power model that is used.  In comparison, the server power 

model averaged over 6% error using only three inputs.  More 

importantly, this low error rate suggests that performance 

counter power models are effective across multiple 

microprocessor architecture generations, platforms, and 

manufacturers (Intel and AMD). 

The desktop chipset power model is also improved compared 

to the server chipset model with average error of 3.3%.  Like 

the server model, the desktop model contains a large workload-

independent component: although in this case it contributes 

less than half the total chipset power rather than the 100% seen 

in the server model. 

The memory and memory controller power models have the 

highest average error with 5.3% and 6.0% respectively.  The 

high error is largely due to the CPU portion of the 3DMark06 

workload.  This workload is found to generate memory 

transactions at an interval that prevented effective utilization of 

precharge power down modes.  Therefore, the model tends to 

underestimate memory power consumption.  To resolve this 

error, a metric of typical memory bus idle duration or power 

down residency would be needed. 

Table 11. Average Error % 

Workload CPU Chipset Memory Memory 

Controller 

GPU Disk 

Idle 0.3 1.8 1.2 0.4 1.7 2.5 

CPU06 INT 1.3* 4.0 2.3 3.4 0.2 5.3 

CPU06 FP 1.1* 2.6 7.2 2.9 0.5 4.4 

gt1 0.8 5.3 3.3 1.3 0.9 7.1 

gt2 1.2 5.8 3.3 4.4 0.4 8.7 

cpu1 1.6 1.8 12.5 14.1 1.0 6.9 

cpu2 1.9 1.9 11.5 13.4 1.3 9.2 

hdr1 2.2 2.7 0.8* 0.7* 1.0* 0.9 

hdr2 1.9 4.7 1.6 8.6 0.7 2.7 

EL 2.7 9.3 8.5 7.7 0.0 1.8* 

VC 1.0 1.8 8.4 11.7 1.6 10.6 

PR 2.5 1.1* 5.7 5.6 0.9 12.1 

3D 2.8 3.5 5.5 4.7 0.0 10.7 

SPECjbb 1.5 0.4 2.0 4.1 0.8 9.8 

Average 1.63 3.34 5.27 5.93 0.79 6.62 

 

The GPU power model has the lowest error rate at slightly less 

than 1%.  This illustrates the effectiveness of the non-gated 

GPU clocks as a proxy for GPU power.  In most workloads the 

GPU power has a clear bimodal characteristic.  Active regions 

have a power level that is consistent.  Idle regions also have a 

consistent power level due to the presence of idle clock gating.  

It is expected that as finer grain power management is applied 

to the GPU core logic, larger active power variation will occur.  

This will necessitate a comprehensive power model such as 

that used in the CPU. 

Finally, the disk subsystem is the one subsystem which has a 

higher error rate compared the server power model.  In this 

case the error can be attributed to the effectiveness of on-disk 

and link power management.  In the case of the server model, 

no active power management is provided.  This allows for an 

accurate model as the workload independent portion 

dominates.  In contrast the more recent desktop hard drive has 

a workload dependent portion which contributes as much as 

1/3 of total power.  This causes modeling error to have a larger 

impact.  Note that the subtests with the highest errors are also 

those with the highest disk utilization.     

5 RELATED WORK 

5.1 PERFORMANCE COUNTERS MODELS 

The use of performance counters for modeling power is not a 

new concept.  However, unlike past studies 

[3][16][5][24][23][30] we go beyond modeling power 

consumed only in a microprocessor to modeling power 

consumed by an entire system.  One of the earliest studies by 

Bellosa et al. [3] demonstrates strong correlations between 

performance events (instructions/cycle, memory references, 

cache references) and power consumption in the Pentium II.  

Isci [16] develops a detailed power model for the Pentium IV 

using activity factors and functional unit area, similar to 

Wattch [8].  Bircher [5] presents a simple linear model for the 

Pentium IV based on the number of instructions fetched/cycle.  

Lee [23] extends the use of performance counters for power 

modeling to temperature. 

5.2 SUBSYSTEM POWER MODELS 

5.2.1 LOCAL EVENT MODELS 

Existing studies [12][41][20][13] into modeling of subsystem 

power have relied on the use of local events to represent 

power.  In this section existing power modeling studies that 

make use of local events are considered. 

Memory:  It is possible to estimate power consumption in 

DRAM modules by using the number of read/write cycles and 

percent of time within the precharge, active and idle states 



[12].  Since these events are not directly visible to the 

microprocessor, we estimate them using the count of memory 

bus accesses by the processor and other events that can be 

measured at the CPU.  We also show that it is not necessary to 

account for the difference between read and write power in 

order to obtain accurate models.  We use a similar approach as 

Contreras [11].  His model makes use of instruction cache 

misses and data dependency delay cycles in the Intel Xscale 

processor to estimate power.  We show that for I/O intensive 

servers, it is also necessary to account for memory utilization 

caused by agents other than the microprocessor, namely I/O 

devices performing DMA accesses.  Kadayif [19] uses as 

similar approach to modeling memory power using cache miss 

counters available on the UltraSPARC platform. 

Disk:  A study by Zedlewski et al. [41] shows that hard disk 

power consumption can be modeled by knowing how much 

time the disk spends in the following modes of operation: 

seeking, rotation, reading/writing, and standby.  Rather than 

measuring these events directly from the disk, we estimate the 

dynamic events, seeking, reading and writing, through 

processor events such as interrupts and DMA accesses. Kim et 

al. [18-20] find that disk power and temperature can be 

accurately modeled using the amount of time spent moving the 

disk read/write head and the speed of rotation.   

I/O and Chipset:  Our objective is to estimate power using 

processor counters without having access to specific disk or 

memory system metrics.  I/O and chipset subsystems are 

composed of rather homogeneous structures and we estimate 

their power through traditional CMOS power models.  These 

models divide power consumption into static and dynamic.  

Static power represents current leakage, while dynamic 

accounts for switching current of CMOS transistors.  Since 

static power does not vary in our system, due to a relatively 

constant voltage and temperature, we estimate dynamic power 

in the I/O and chipset subsystems through the number of 

interrupts, DMA and uncacheable accesses. 

GPU:  Ma et al. [27] employ a statistical GPU power model 

based on six “workload variables”.  These variables are similar 

to performance counter events in that they are directly 

proportional to functional unit utilization.  Specifically, they 

track utilization of five units: vertex shader, pixel shader, 

texture unit, geometry shader and render output unit.  Our 

approach achieves similar accuracy while using only one 

counter: %Non-Gated Clocks.  By measuring a wide range of 

CPU and GPU workloads we find that high accuracy can be 

obtained by tracking the one event (clock gating) which 

reduces power by the greatest amount. 

5.2.2 OPERATING SYSTEM EVENT MODELS 

Rather than using events local to the subsystem, Heath [14] 

[15] uses software counters in the operating system to model 

dynamic power of CPU, disk and network subsystems.  Our 

approach differs by making use of hardware performance 

counters.  This reduces the performance loss due to sampling 

of the software counters.  Reading hardware performance 

counters requires only a small number of fast CPU register 

accesses.  Reading software operating system-counters require 

relatively slow access using system service routines (file 

open/close etc.).  The difference in access time between 

hardware performance counters and operating system-counters 

is greater than an order of magnitude.  For example, the 

interrupt tracking operating system file: “/proc/interrupts”, 

induces greater than 1% overhead if sampled more frequently 

than once per 200 milliseconds.  In contrast, CPU hardware 

performance counter sampling is limited by the overhead of 

the interrupt and context switch required for reading the 

counters on a particular core.  The overhead of these actions is 

less than 1% for sample intervals as low as 10 milliseconds. 

The effective difference in access time can be less due to 

limitations relating to hardware performance counter 

implementation.  This study was performed using a driver with 

privileged access to the counters.  If application-level access is 

required the overhead for access could increase.  Also, it is 

assumed that only one entity is accessing the counters.  Any 

sharing of counters among other processes or operating system 

routines would require virtualized counters that could also 

reduce the difference in access latency. 

Lewis [26] constructs a similar linear regression model using a 

combination of operating system counters, hardware 

performance counters and physical sensors.  Rivoire [36] 

compares various system power model types including 

operating system counter-driven and hardware performance 

counter-driven.   

5.3 DYNAMIC ADAPTATION 

Several researchers have demonstrated the effectiveness of 

techniques for adapting performance/power using DVFS. 

Kotla et al. [21] use instruction throttling and a utilization-

based power model to show the effect of DVFS in a server 

cluster.  At runtime they determine the minimum amount of 

required processor performance (frequency) and adjust the 

microprocessors accordingly.  Due to the significant variation 

in web server workloads, Rajamani et al. [33] show that 30%-

50% energy savings can be obtained through powering down 

idle compute nodes (severs).  Using simulation Chen [9] 

applies DVFS and node power down in a dense compute center 

environment.  However, unlike previous studies that only seek 

to minimize energy consumption while maintaining 

performance, Chen also considers the reliability impact of 

powering servers on and off.  From the perspective of 

managing thermal, all of these dynamic adaptation schemes 

can benefit from the use of power modeling by being able to 

implement additional power management policies that 

maintain safe operating conditions.   

Recently, it has become common for microprocessors [10][28] 

to apply DVFS to maximize performance within fixed power 

and thermal budgets.  Our trickle-down approach is distinct in 

that it provides deterministic performance and allows 

adaptations to consider complete system power.    

5.4 PHASE DETECTION 

Researchers have developed numerous techniques for detecting 

program phases [11][22][17].  Dhodapkar and Smith [11] 

consider the effectiveness of instruction working sets, basic 

block vectors (BBV) and conditional branch counts for the 



detection of program phases.  They find that BBVs offer the 

highest sensitivity and phase stability.  Lau [22] compares 

program structures such as basic blocks, loop branches, 

procedures, opcodes, register usage, and memory address 

information to identify phases.  Using variation in CPI, 

compared to that in the observed structures, they show that 

loop frequency and register usage provide better accuracy than 

the traditional basic block vector approach.  For the purpose of 

detecting power phases, Isci [17] compares the use of a 

traditional control flow metric (BBV) to on-chip performance 

counters.  He finds that performance counter metrics have a 

lower error rate since they account for microarchitectural 

characteristics such as data locality or operand values.  These 

techniques for phase detection are valuable for direct dynamic 

adaptations that increase efficiency of the microprocessor.  Our 

complete-system power model allows power and phase 

analysis to be extended to several additional subsystems.   

5.5 SUBSYSTEM POWER STUDIES 

In order to motivate the use of microprocessor performance 

counters in modeling subsystem power, we demonstrate the 

significant contribution of the various subsystems to total 

power consumption.  Unlike previous studies focusing on 

workstation [7] and mobile [29] power consumption, we show 

that the I/O subsystem makes up a larger part of total power in 

servers.  Bohrer’s [7] study of workstation power consumption 

considers three subsystems: CPU, hard disk, and combined 

memory and I/O.  Our study provides finer granularity in that 

memory, I/O and chipset power are measured separately.  

Mahesri’s study [29] presents fine grain measurement (ten 

subsystems), but uses a different hardware (laptop) and 

software (productivity workloads) configuration.  Neither of 

the previous works present models based on their subsystem 

power characterizations.   

Our study is the first to analyze chipset components discretely.  

Namely, the memory controller, DRAM and I/O chips are 

measured separately unlike the previous studies which group 

one or more of them together.  This provides a better 

understanding of how workloads affect power consumption in 

the various subsystems.  

6 CONCLUSIONS 

In this paper feasibility of predicting complete system power 

consumption using processor performance events is 

demonstrated.  The models take advantage of the trickle-down 

effect of these events. These events which are visible in the 

processing unit, are highly correlated to power consumption in 

subsystems including memory, chipset, I/O, disk and 

microprocessor. Subsystems farther away from the 

microprocessor require events more directly related to the 

subsystem, such as I/O device interrupts or clock gating status.  

Memory models must take into account activity that does not 

originate in the microprocessor.  In this case, DMA events are 

shown to have a significant relation to memory power.  It is 

shown that complete system power can be estimated with an 

average error of less than 9% for each subsystem using 

performance events that trickle down from the processing unit. 
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