
Complete System Power Estimation using
Processor Performance Events

W. Lloyd Bircher and Lizy K. John

Abstract— This paper proposes the use of microprocessor performance counters for online measurement of complete

system power consumption. The approach takes advantage of the “trickle-down” effect of performance events in

microprocessors. While it has been known that CPU power consumption is correlated to processor performance, the use of

well-known performance-related events within a microprocessor such as cache misses and DMA transactions to estimate

power consumption in memory and disk and other subsystems outside of the microprocessor is new. Using measurement of

actual systems running scientific, commercial and productivity workloads, power models for six subsystems (CPU, memory,

chipset, I/O, disk and GPU) on two platforms (server and desktop) are developed and validated. These models are shown to

have an average error of less than 9% per subsystem across the considered workloads. Through the use of these models

and existing on-chip performance event counters, it is possible to estimate system power consumption without the need for

power sensing hardware.

1. INTRODUCTION
In order to improve microprocessor performance while

limiting power consumption, designers increasingly utilize

dynamic hardware adaptations. These adaptations provide an

opportunity to extract maximum performance while remaining

within temperature and power limits. Two of the most

common examples are dynamic voltage/frequency scaling

(DVFS) and clock gating. With these adaptations it is possible

to reduce power consumption and therefore chip temperature,

by reducing the amount of available performance. Due to the

thermal inertia in microprocessor packaging, detection of

temperature changes may occur significantly later than the

power events causing them. Rather than relying on relatively

slow temperature sensors for observing power consumption it

has been demonstrated [3][16][24][5] that performance

counters are effective proxies for power measurement. These

counters provide a timely, readily accessible means of

observing power consumption in real systems.

This paper extends the concept of using performance events as

proxies for power measurement beyond the microprocessor to

various computer subsystems. Models are presented for six

subsystems: microprocessor, graphics processing unit (GPU),

chipset, memory, I/O and disk. Though microprocessors are

typically the largest consumers of power, other subsystems

constitute 40%-60% of total power. By providing a means for

power management policies to consider these additional

subsystems it is possible to have a significant effect on power

and temperature. In data and computing centers, this can be a

valuable tool for keeping the center within temperature and

power limits [35]. Further, since this approach utilizes existing

microprocessor performance counters, the cost of

implementation is small.

This approach is distinct since it uses events local to the

processor, eliminating the need for sensors spread across

various parts of the system and corresponding interfaces.

Lightweight, adaptive systems can easily be built using models

of this type. This study shows that microprocessor

performance events can accurately estimate total system

power. By considering the propagation of power inducing

events within the various subsystems, a modest number of

performance events for modeling complete system power are

identified. Power models for two distinct hardware platforms

are presented: a quad-socket server and a multi-core desktop.

The resultant models have an average error of less than 9%

across a wide range of workloads including SPEC CPU,

SPECJbb, DBT-2, SYSMark and 3DMark. Though power

models exist for common computer subsystems, these models

rely on events local to the subsystem for representing power,

which are typically measured using sensors/counters within the

subsystem. Our emphasis is on creating a model using no

additional sensors or counters other than what the performance

engineers have already incorporated.

2. COMPLETE SYSTEM POWER MODEL
Trickle-down power modeling [6] provides an accurate

representation of complete-system power consumption using a

simple methodology. The approach relies on the broad

visibility of system-level events to the processor. This allows

accurate, performance counter-based models to be created

using events local to the processor. These local events can be

measured using ubiquitous performance counters found in all

modern microprocessors. Local events are preferred since

power models can be built using a single interface. There is no

need to create interfaces to multiple devices and subsystems

that have inconsistent or incomplete performance counter APIs

(Application Programming Interface). It is particularly

common at the system level since components are often

designed by multiple vendors.

Trickle-down modeling also addresses hardware costs in

systems implementing direct measurement. Rather than

providing sensors and power measurement hardware for

multiple subsystems, measurement need only be implemented

on a single system during the design stage. The model is

created based on measurement from a small number of systems

which allows power measurement hardware to be eliminated

from the final product. This paper focuses on the study of the

subsystems with the largest variation. Areas not accounted for

in this study, such as cooling and power supply inefficiency,

are well known and easily accountable. For example power

supply losses can be accounted for as a function of total power

[42].

While the trickle-down approach simplifies power modeling of

complete systems it requires a modest knowledge of

subsystem-level interaction. The effectiveness of the model at

capturing system-level power is determined by the selection of

comprehensive performance events. Some events such as top-

level cache or memory accesses are intuitive. A miss in the

first level cache will necessarily generate traffic in higher level

caches and or the memory subsystem. Other events such as

those found in I/O devices are not as obvious. Consider the

system diagram in Figure 1.

Figure 1. Propagation of Performance Events

The depiction in Figure 1 represents a general server type

system. Specific systems will have other components which

should appropriately be added to the diagram as needed. The

arrows flowing outward from the processor represent events

that originate in the processor and trickle-down to other

subsystems (L3 Miss, TLB Miss, MemBus Access and

Uncacheable Access). Arrows flowing inward such as DMA

(Direct Memory Access) or bus master access and I/O

interrupts may not be directly generated by the processor, but

are nevertheless visible. Since DMA access is typically

performed to addresses marked as cacheable by the processor,

they can be observed in the standard cache access metrics. To

distinguish DMA accesses by a particular device, events

should be qualified by address range. Each device typically

uses a private range of addresses in system memory for DMA

access. Similarly interrupts from multiple devices can be

distinguished by interrupt number or address in the case of

message signaled interrupts.

In this paper, we present the application of the model to two

different systems, a quad-socket Intel server and an AMD

dual-core with a graphics processing unit (GPU). Figure 1

adequately represents the quad-socket server, while the GPU

has to be added to the depiction in Figure 1 in order to

adequately represent the AMD dual-core platform.

Figure 2 illustrates the iterative modeling procedure that we

developed to estimate power from performance events. This

procedure utilizes linear and polynomial regression techniques

to build power models for individual subsystems. The user

identifies workloads which target a particular subsystem

(cache, system memory, disk) and performs regression

modeling using performance events as inputs. The model is

then applied to a larger set of workloads to confirm accuracy

and the lack of outlier cases. Depending on the outcome, the

process is repeated with alternate performance events as

inputs. Though an exhaustive search of performance events

can be performed, a rapid solution is found when events are

selected with high correlation to subsystem activity. The

modeling process in Figure 2 involves several steps:

1. Measure subsystem-level power using subset of

workloads. Begin with simple, easy-to-run workloads.

2. Confirm that Coefficient of Variation is greater than a

threshold α for the chosen workload. The simplest workloads

often do not generate sufficient power variation for model

tuning. For example consider any of the cache-resident

workloads in SPEC CPU 2000 which generate little or no

activity in subsystems outside of the processor cores such as

memory. Tuning the model based on these low-variation

workloads may cause the process to include performance

events that do not correlate well with power.

3. Based on basic domain knowledge, choose

performance events, measureable by performance counters that

are most relevant to the subsystem in question. Choose

counters that are expected to “trickle-down” to other

subsystems. The pool of candidate performance counters may

need to be expanded if sufficient accuracy is not achieved.

4. Using the selected performance counter events as the

input variables and subsystem power as the output variable,

perform linear regression modeling. For example, in the

general linear equation y = mx + b, vary the coefficients m and

b until the sum-of-squares error is minimized. Multiple linear

or polynomial regression may be used in subsequent iterations

of algorithm if sufficient accuracy is not obtained using simple

linear regression.

5. Using a subset of workloads calculate average error

per sample. If less than the desired ρ% error cannot be

achieved, a new performance event must be chosen. One

should select ρ depending on the required model accuracy and

time required for solution. Setting ρ to a low (restrictive) value

may extend the time taken to reach a solution. It may also

prevent the process from finding a solution.

6. Assess the representativeness of the model by

graphically comparing modeled versus measured power. This

avoids the case in which statistical assessment cannot detect

major errors such as those seen in Anscombe’s Quartet [1].

7. Using complete set of workloads calculate average

error per sample. If less than the desired δ % error cannot be

achieved, choose a new performance event. Like ρ, δ is

selected according the accuracy and time-to-solution

requirements.

CPU

Chipset Memory

I/O

Disk Network

L3 Miss
TLB Miss
DMA Access
MemBus Access
Uncacheable
I/O Interrupt

Figure 2. Trickle-Down Modeling Process

This modeling process is applied to two platforms, (i) a server

and (ii) a desktop/embedded system. In section 3, the

application of the process to an Intel quad-CPU server and

illustrate the creation of the model as well as its validation is

presented. In section 4, the feasibility of extending the model

to a completely different system with different components is

presented, illustrating the applicability of the model to other

platforms. The second platform we use is a dual-core AMD

system with a graphics processing unit (GPU).

3 APPLICATION TO SERVER PLATFORM
In this section, we describe the application of the proposed

power modeling process to a quad-CPU system. The target

system is composed of a quad-CPU server with two hardware

threads per CPU,

3.1 SUBSYSTEM DESCRIPTION

The server system is composed of five major subsystems

whose power can be separately measured: CPU, chipset,

memory, I/O and disk. The CPU subsystem is composed of

four Pentium IV Xeon 2.8 GHz MP processors. Chipset is

defined as processor interface chips not included in other

subsystems. The memory subsystem includes memory

controller and DRAM power. I/O includes PCI buses and all

devices attached to them. The disk subsystem is composed of

two SCSI disks. The system components are listed in Table 1.

Table 1. Server System Description

Platform Segment Server

Model IBM x440

Processor(s) Quad-socket 130nM 2.8GHz

Memory 8GB DDR-200

Power Management CPU Clock Gating and DRAM Power Down

Graphics Rage ProXL

Observable Subsystems CPU, Chipset, Memory, I/O and Disk

3.2 POWER MEASUREMENT

To measure power in the five subsystems, resistors connected

in series with the power source are employed. This allows

each subsystem to be measured independently of the others.

This is important since the subsystems must be isolated in

order to accurately correlate power consumption in the

subsystem to performance events in the processor. The voltage

drop across the resistor is directly proportional to the power

being consumed in the subsystem. This voltage drop is

captured using data acquisition hardware in a separate

workstation. Ten thousand samples are taken each second and

are then averaged for relation to performance counter samples

taken at the rate of once per second.

Since the performance counter samples are taken by the target

system itself, a synchronization signal is included to match

data from the two sources. At each sampling of the target

performance counters, a single byte is sent to a USB serial port

attached to the target system. The transmit line of the serial

port is sampled by the data acquisition hardware along with the

other power data. The single byte of data acts as a

synchronization pulse signature. Then using the

synchronization information, the data is analyzed offline using

software tools.

3.3 PERFORMANCE MEASUREMENT

To gather a record of performance events in the processor, the

Pentium IV’s on-chip performance monitoring counters are

periodically sampled. Sampling is performed on each

processor at a rate of once per second. The total count of

various events is recorded and the counters are cleared.

Software access to the performance counters is provided by the

Linux perfctr [25] device driver. As described in the power

measurement section, a synchronization signal is asserted at

each performance counter sample.

3.4 WORKLOAD SELECTION

The selection of workloads is driven by two major factors: the

workload’s effectiveness at utilizing particular subsystems and

a diverse set of behaviors across all workloads. The first

requirement is important for development and tuning of the

power models. The second is required to validate the models.

In order to meet the requirement of subsystem utilization, the

power measurement system is employed. Workloads are

chosen based on their apparent utilization of a subsystem.

Then actual power measurement is done to verify the selection.

It is found that high subsystem utilization is difficult to achieve

using only conventional workloads. As a result, small

synthetic workloads are created that are able to sufficiently

utilize the subsystems. Additionally, multiple instances of

single-threaded workloads such as SPEC CPU 2000 are

combined to produce high utilization. Since the target system

is composed of a quad-socket SMP with two hardware threads

per processor, it is found that most workloads saturate (no

increased subsystem power consumption) with eight threads.

In addition to utilizing a particular subsystem, it is necessary to

have sufficient variation within the workload for training of the

models. In the case of the 8-thread workloads, the start of each

thread is staggered by a fixed time, approximately 30 seconds,

to generate a range of activity levels (i.e 1 thread running at

certain times, 2 threads at other times, etc). This broad range

of utilization ensures that the models are not only valid within

a narrow range of utilization. Also, this ensures a proper

relationship between power and the observed metric. Without

a sufficiently large range of samples, complex power

relationships may appear to be simple linear ones.

3.5 MODEL VALIDATION

Eleven workload are used for validation: eight from the SPEC

CPU 2000 benchmark suite [38], two commercial server-type

(SPECjbb and DBT-2) and a synthetic disk workload. The

SPEC workloads are computationally intensive scientific

applications intended to stress the CPU and memory

subsystems. The only access to other subsystems by these

workloads occurs at program initialization and completion. In

this study only single or multiple instances of identical

workloads are considered. Two commercial workloads DBT-2

[31] and SPECjbb [39] are used to create system-level activity.

DBT-2 is intended to approximate the TPC-C transaction

processing benchmark. This workload does not require

network clients, but does use actual hard disk access through

the PostgreSQL [32] database. Unfortunately, the target

system does not have a sufficient number of hard disks to fully

utilize the four Pentium IV processors. Therefore, the

SPECjbb server-side java benchmark is included. This

benchmark is able to more fully utilize the processor and

memory subsystems without a large number of hard disks.

To further validate the I/O and disk models, a synthetic

workload is developed to generate high disk utilization. Each

instance of this workload creates a large file (1GB). Then the

contents of the file are overwritten. After approximately 100K

pages have been modified, the sync() operating system call is

issued to force the modified pages to disk. The synthetic

workload is used because none of the application based

benchmarks are able to create sufficient level of disk activity.

For all subsystems, the power models are trained using a single

workload trace that offers high utilization and variation. The

validation is then performed using the entire set of workloads.

3.6 PERFORMANCE EVENT SELCTION

With over forty [40] detectable performance events, the

Pentium IV provides a challenge in selecting events that are

most representative of subsystem power. In this approach the

interconnection of the various subsystems pictured in Figure 1

are considered. By noting the “trickle-down” effect of events

in the processor, a subset of the performance events can be

selected to model subsystem power consumption. As a simple

example, consider the effect of cache misses in the processor.

For the target server processor, the highest level of cache is the

L3. Transactions that cannot be satisfied (cache miss) by the

L3 cause a cache line (block) sized access to the main memory.

Since the number of main memory accesses is directly

proportional to the number of L3 misses, it is possible to

approximate the number of accesses using only L3 misses.

Since these memory accesses must go off-chip, power is

consumed proportionally in the memory controller and

DRAM. In reality the relation is not that simple, but there is

still a strong causal relationship between L2 misses and main

memory accesses.

Though the initial selection of performance events for

modeling is dictated by an understanding of subsystem

interactions (as in the previous example), the final selection of

which event type(s) to use is determined by the average error

rate during regression analysis and a comparison of the

measured and modeled power traces. If wrong performance

events are chosen in the beginning, the process described in

Figure 2 will eventually identify the relevant performance

events. The system knowledge simply helps to reduce the time

to arrive at an appropriate solution. The dominant, power-

related performance events identified for the server system are

described below.

Cycles – Execution time in terms of CPU clock cycles. The

cycles metric is combined with most other metrics to create per

cycle metrics. This corrects for slight differences in sampling

rate. Though sampling is periodic, the actual sampling rate

varies slightly due to cache effects and interrupt latency.

Halted Cycles – Cycles in which clock gating is active. When

the Pentium IV processor is idle, it saves power by gating the

clock signal to portions of itself. Idle phases of execution are

“detected” by the processor through the use of the HLT (halt)

instruction. When the operating system process scheduler has

available slack time, it halts the processor with this instruction.

The processor remains in the halted state until receiving an

interrupt. Though the interrupt can be an I/O device, it is

typically the periodic OS timer that is used for process

scheduling/preemption. This has a significant effect on power

consumption by reducing processor idle power from ~36W to

9W. Because this significant effect is not reflected in the

typical performance metrics, it is accounted for explicitly in

the halted cycles counter.

Fetched µops – Micro-operations fetched. The micro-

operations (µops) metric is used rather than an instruction

metric to improve accuracy. Since in the P6 architecture

instructions are composed of a varying number of µops, some

instruction mixes give a skewed representation of the amount

of computation being done. Using µops normalizes the metric

to give representative counts independent of instruction mix.

Also, by considering fetched rather than retired µops, the

metric is more directly related to power consumption. Looking

only at retired µops would neglect work done in execution of

incorrect branch paths and pipeline flushes.

L3 Cache Misses – Loads/stores that missed in the Level 3

cache. Most system main memory accesses can be attributed

to misses in the highest level cache, in this case L3. Cache

misses can also be caused by DMA access to cacheable main

memory by I/O devices. The miss occurs because the DMA

must be checked for coherency in the processor cache.

TLB Misses – Loads/stores that missed in the instruction or

data Translation Lookaside Buffer. TLB misses are distinct

from cache misses in that they typically cause trickle-down

events farther away from the microprocessor. Unlike cache

misses, which usually cause a cache line to be transferred

from/to memory, TLB misses often cause the transfer of a page

of data (4KB or larger). Due to the large size of pages, they

are often stored on disk. Therefore, power is consumed on the

entire path from the CPU to the hard disk.

DMA Accesses – Transaction that originated in an I/O device

whose destination is system main memory. Though DMA

transactions do not originate in the processor, they are

fortunately visible to the processor. As demonstrated in the L3

Miss metric description, these accesses to the processor (by an

I/O device) are required to maintain memory coherency.

Being able to observe DMA traffic is critical since it causes

power consumption in the memory subsystem. An important

thing to consider in the use of the Pentium IV’s DMA counting

feature is that it cannot distinguish between DMA and

processor coherency traffic. All memory bus accesses that do

not originate within a processor are combined into a single

metric (DMA/Other). For the uniprocessor case this is not a

problem. However, when using this metric in an SMP

environment such as this, care must be taken to attribute

accesses to the correct source. Fortunately, the workloads

considered here have little processor-processor coherency

traffic. This ambiguity is a limitation of the Pentium IV

performance counters and is not specific to this technique.

Processor Memory Bus Transactions – Reads or writes on

processor’s external memory bus. All transactions that

enter/exit the processor must pass through this bus. Intel calls

this the Front Side Bus (FSB). As mentioned in the section on

DMA, there is a limitation of being able to distinguish between

externally generated (other processors) and DMA transactions.

Uncacheable Accesses – Load/Store to a range of memory

defined as uncacheable. These transactions are typically

representative of activity in the I/O subsystem. Since the I/O

buses are not cached by the processor, downbound (processor

to I/O) transactions and configuration transactions are

uncacheable. Since all other address space is cacheable, it is

possible to directly identify downbound transactions. Also,

since configuration accesses typically precede large upbound

(I/O to processor) transactions, it is possible to indirectly

observe these.

Interrupts – Interrupts serviced by CPU. Like DMA

transactions, most interrupts do not originate within the

processor. In order to identify the source of interrupts, the

interrupt controller sends a unique ID (interrupt vector

number) to the processor. This is particularly valuable since

I/O interrupts are typically generated by I/O devices to indicate

the completion of large data transfers. Therefore, it is possible

to attribute I/O bus power to the appropriate device. Though,

the interrupt vector information is available in the processor, it

is not available as a performance event. Therefore, the

presence of interrupt information in the processor is simulated

by obtaining it from the operating system. Since the operating

system maintains the actual interrupt service routines, interrupt

source accounting can be easily performed. In this case the

“/proc/interrupts” file available in Linux operating systems is

used.

3.7 MODEL FORMAT

The form of the subsystem power models is dictated by two

requirements: low computational cost and high accuracy.

Since these power models are intended to be used for runtime

power estimation, it is preferred that they have low

computational overhead. For this reason initial attempts at

regression curve fitting use single or multiple input linear

models. If it is not possible to obtain high accuracy with a

linear model, single or multiple input quadratics are chosen.

3.8 RESULTS

3.8.1 AVERAGE WORKLOAD POWER

In this section a power characterization of eleven workloads is

presented. The average power in Watts for the considered

workloads are given in Table 2. Also, workload variation is

presented in Table 3 as the standard deviation of the power

values in Watts.

With a maximum sustained total power of just over 305 Watts,

the system consumes 46% of the maximum power at idle. This

is lower than the typical value of 60% suggested for IA32

systems by Rajamani et al.[33]. The largest contributor to the

reduced power at idle is the clock gating feature implemented

in the microprocessor. Without this feature, idle power would

be approximately 80% of peak. Due to the lack of a power

management implementation, the other subsystems consume a

large percentage of their peak power at idle. The chipset and

disk subsystems have nearly constant power consumption over

the entire range of workloads.

For the SPEC CPU 2000 workloads, there is the expected

result of high microprocessor power. For all eight workloads,

greater than 53% of system power goes to the microprocessors.

The next largest consumer is the memory subsystem at 12%-

18%. All of the top consumers are floating point workloads.

This is expected due to the high level of memory boundedness

of these workloads. I/O and disk consume almost the same

power as the idle case since there is no access to network or

storage during the workloads.

Table 2. Subsystem Average Power (Watts)

Workload CPU Chipset Memory I/O Disk Total

idle 38.4 19.9 28.1 32.9 21.6 141

gcc 162 20.0 34.2 32.9 21.8 271

mcf 167 20.0 39.6 32.9 21.9 281

vortex 175 17.3 35.0 32.9 21.9 282

art 159 18.7 35.8 33.5 21.9 269

lucas 135 19.5 46.4 33.5 22.1 257

mesa 165 16.8 33.9 33.0 21.8 271

mgrid 146 19.0 45.1 32.9 22.1 265

wupwise 167 18.8 45.2 33.5 22.1 287

DBT-2 48.3 19.8 29.0 33.2 21.6 152

SPECjbb 112 18.7 37.8 32.9 21.9 223

DiskLoad 123 19.9 42.5 35.2 22.2 243

The commercial workloads exhibited quite different power

behavior compared to the scientific workloads. In DBT-2 the

limitation of sufficient disk resources is evident in the low

microprocessor utilization. Memory and I/O power are

marginally higher than the idle case. Disk power is almost

identical to the idle case also due to the mismatch in storage

size compared to processing and main memory capacity.

Because the working set fits easily within the main memory,

few accesses to the I/O and disk subsystem are needed. The

SPECjbb workload gives a better estimate of processor and

memory power consumption in a balanced server workload

with sustained power consumption of 61% and 84% of

maximum for microprocessor and memory.

Table 3. Subsystem Power Standard Deviation

Workload CPU Chipset Memory I/O Disk

idle 0.340 0.0918 0.0328 0.13 0.027

gcc 8.37 0.226 2.36 0.13 0.053

mcf 5.62 0.171 1.43 0.13 0.033

vortex 1.22 0.0711 0.719 0.14 0.017

art 0.393 0.0686 0.190 0.14 0.0055

lucas 1.64 0.123 0.266 0.13 0.0072

mesa 1.00 0.0587 0.299 0.13 0.0084

mgrid 0.525 0.0469 0.151 0.13 0.0052

wupwise 2.60 0.131 0.427 0.14 0.011

DBT-2 8.23 0.133 0.688 0.15 0.035

SPECjbb 26.2 0.327 2.88 0.06 0.073

DiskLoad 18.6 0.0948 3.80 0.15 0.075

Finally, a synthetic workload intended to better utilize the disk

and I/O subsystems is considered. The DiskLoad workload

generates the highest sustained power in the memory, I/O and

disk subsystems. Surprisingly, the disk subsystem consumed

only 2.8% more power than the idle case. The largest

contribution to this result is a lack of power saving modes in

the SCSI disks. According to Zedlewski [41], the power

required for rotation of the disk platters is 80% of the peak

amount, which occurs during disk write events. Since, the

hard disks used in this study lack the ability to halt rotation

during idle phases, at most a 20% increase in power compared

to the idle state. There is the possibility that the difference for

these disks is even less than the 20% predicted for Zedlewski’s

[41] mobile hard disk. Unfortunately, this cannot be verified

since the hard disk manufacturer does not provide power

specifications for the various hard disk events (seek, rotate,

read/write and standby). The large increase in the I/O

subsystem is directly related to the number of hard disk data

transfers required for the workload. No other significant I/O

traffic is present in this workload. The large increase in

memory power consumption is due to the implementation of

the synthetic workload and the presence of a software hard

disk cache provided by the operating system. In order to

generate a large variation in disk and I/O power consumption,

the workload modifies a portion of a file approximately the

size of the operating system disk cache. Then using the

operating system’s sync() call, the contents of the cache, which

is located in main memory, are flushed to the disk. Since the

memory is constantly accessed during the file modification

phase (writes) and the disk flush phase (reads), high memory

utilization results.

3.8.2 SUBSYSTEM POWER MODELS

This section describes the details of the subsystem power

models. Issues encountered during the selection of appropriate

input metrics are described. For each subsystem a comparison

of modeled and measured power under a high variation

workload is provided.

3.8.2.1 CPU

The CPU power model improves an existing model [5] to

account for idle clock cycles. Since it is possible to measure

the percent of time spent in the idle or halted state, the greatly

reduced power consumption due to clock gating can be

accounted for. This addition is not a new contribution, since a

similar accounting is made in the model by Isci [16]. The

largest distinction is that this implementation accounts for

clock gating while retaining a lightweight model composed of

only three input metrics: idle cycles, Fetched µops and total

cycles. In contrast, Isci’s model requires 22 events to attain a

similar accuracy level.

Given that the Pentium IV can fetch three instructions/cycle,

the model predicts range of power consumption from 9.25

Watts to 48.6 Watts. The form of the model is given in

Equation 1.

∑
=

×+×−+

NumCPUs

i

i
i

Cycle

sFetchedUop
ivePercentAct

1

31.4)25.97.35(25.9

Equation 1. Processor Power Model

 Figure 3. Processor Power Model – gcc

A trace of the total measured and modeled power for the four

processors is given in Figure 3. The workload used in the trace

is eight threads of gcc, started at 30s intervals. Average error

is found to be 3.1%. Note that unlike the memory bound

workloads that saturate at eight threads, the cpu-bound gcc

saturates after only four simultaneous threads.

3.8.2.2 MEMORY

This section considers models for memory power consumption

based on cache misses and processor bus transactions.

The first attempt at modeling memory power made use of

cache misses. A model based on only the number of cache

misses/cycle is an attractive prospect as it is a well understood

metric and is readily available in performance monitoring

counters. The principle behind using cache misses as proxy

for power is that loads not serviced by the highest level cache,

must be serviced by the memory subsystem. As demonstrated

in [12], power consumption in DRAM modules is highest

when the module is in the active state. This occurs when either

read or write transactions are serviced by the DRAM module.

-100%

-50%

0%

50%

100%

0

50

100

150

200

0 100 200 300 400

E
rr

o
r

(%
)

W
at

ts

Seconds

Measured
Modeled
Error

Therefore, the effect of high-power events such as DRAM

read/writes can be estimated.

In this study, the number of L3 Cache load misses per cycle is

used. Since the Pentium IV utilizes a write-back cache policy,

write misses do not necessarily cause an immediate memory

transaction. If the miss is due to a cold start, no memory

transaction occurs. For conflict and capacity misses, the

evicted cache block will cause a memory transaction as it

updates memory.

The initial findings show that L3 cache misses are strong

predictors of memory power consumption (Figure 4). The first

workload considered is the integer workload mesa from the

SPEC CPU 2000 suite. Since a single instance of this

workload cannot sufficiently utilize the memory subsystem,

multiple instances are used to increase utilization. For mesa,

memory utilization increases noticeably with each instance of

the workload. Utilization appears to taper off once the number

of instances approaches the number of available hardware

threads in the system. In this case the limit is 8 (4 physical

processors with 2 threads per processor). The resultant

quadratic power model is given in Equation 2.

66.7
3

43.3
3

28

2

1

×+×+∑
=

Cycle

LoadMissesL

Cycle

LoadMissesL i
NumCPUs

i

i

Equation 2. Cache Miss Memory Power Model

Figure 4. Memory Power Model (L3 Misses) – mesa

The average error under the mesa workload is low at only 1%.

However, the model fails under extreme cases. Unfortunately,

the L3 miss event does not perform well for the power model

under all workloads. In cases of extremely high memory

utilization, L3 misses tend to underestimate power

consumption. It is found that when using multiple instances of

the mcf workload, memory power consumption continues to

increase, while L3 misses are slightly decreasing.

One of the possible causes is hardware-directed prefetches that

are not accounted for in the number of cache misses.

However, Figure 5 shows that though prefetch traffic does

increase after the model failure, the total number of bus

transactions does not. Since the number of bus transactions

generated by each processor does not sufficiently predicting

memory power, an outside (non-CPU) agent must be accessing

the memory bus. For the target system the only other agent on

the memory bus is the memory controller itself, performing

DMA transactions on behalf of I/O devices.

Changing the model to include memory accesses generated by

the microprocessors and DMA events resulted in a model that

remains valid for all observed bus utilization rates.

Figure 5. Prefetch & Non-Prefetch Bus Transactions – mcf

It should be noted that using only the number of read/write

accesses to the DRAM does not directly account for power

consumed when the DRAM is in the precharge state. DRAM

in the precharge state consumes more power than in

idle/disabled state, but less than in the active state. During the

precharge state, data held in the sense amplifiers is committed

to the DRAM array. Since the initiation of a precharge event

is not directly controlled by read/write accesses, precharge

power cannot be directly attributed to read/write events.

However, in practice it is found that read/write accesses are

reasonable predictors. Over the long term (thousands of

accesses) the number of precharge events should be related to

the number of access events. The resultant model is given in

Equation 3.

8

2

1

4 10813101.502.29 −

=

−

××+××−∑
MCycle

tionsBusTransac

MCycle

tionsBusTransac i
NumCPUs

i

i

Equation 3. Memory Bus Transaction Memory Power

Model

A trace of the model is shown in Figure 6 for the mcf workload

that could not be modeled using cache misses. The model

yields an average error rate of 2.2%.

Figure 6. Memory Power Model (Memory Bus

Transactions)- mcf

3.8.2.3 DISK

The modeling of disk power at the level of the microprocessor

presents two major challenges: large distance from CPU to

disk and little variation in disk power consumption. Of all the

subsystems considered in this study, the disk subsystem is at

the greatest distance and delay from the microprocessor.

Therefore, there are challenges in getting timely information

from the processor’s perspective. The various hardware and

software structures that are intended to reduce the average

access time to the distant disk by the processor make power

modeling difficult. The primary structures that cause difficulty

are: microprocessor cache, operating system disk cache, I/O

queues and I/O and disk caches. The structures offer the

benefit of decoupling high-speed processor events from the

-100%

-50%

0%

50%

100%

25

30

35

40

45

0 500 1000 1500

E
rr

o
r(

%
)

W
at

ts

Seconds

Measured
Modeled
Error

-100%

-50%

0%

50%

100%

0

5

10

15

20

25

30

0 50 100 150 200

E
rr

o
r(

%
)

B
u
s

T
ra

n
sa

ct
io

n
s/

1
K

C
y
cl

es

Seconds

Non-Prefetch
Prefetch
Error

-100%

-50%

0%

50%

100%

0

10

20

30

40

50

0 500 1000 1500

E
rr

o
r

(%
)

W
at

ts

Seconds

Measured
Modeled
Error

low-speed disk events. Since the power modeling techniques

relies on the close relationship between the subsystems, this is

a problem.

This is evidenced by the poor performance of the initial models

that were created. Initially, two events are considered: DMA

accesses and uncacheable accesses. Since the majority of disk

transfers are handled through DMA by the disk controller, this

appeared to be a strong predictor. Also, the number of

uncacheable accesses by the processor are considered. Unlike

the majority of application memory, memory mapped I/O (I/O

address mapped to system address space) is not typically

cached. Generally, I/O devices use memory mapped I/O for

configuration and handshaking. Therefore, it should be

possible to detect accesses to the I/O devices through

uncacheable accesses. In practice it is found that both of these

metrics do not fully capture the fine-grain power behavior.

Since such little variation exists in the disk power consumption

it is critical to accurately capture the variation that does exist.

To address this limitation the manner in which DMA

transactions are performed is utilized. Coarsely stated, DMA

transactions are initiated by the processor by first configuring

the I/O device. The transfer size, source and destination are

specified through the memory mapped I/O space. The disk

controller performs the transfer without further intervention

from the microprocessor. Upon completion or incremental

completion (buffer full/empty) the I/O device interrupts the

microprocessor. The microprocessor is then able to use the

requested data or discard local copies of data that is sent. Our

approach is to use the number of interrupts originating from

the disk controller. This approach has the advantage over the

other metrics in that the events are specific to the subsystem of

interest. This approach is able to represent fine-grain variation

with low error. In the case of the synthetic disk workload, the

number of disk interrupts/cycle is used to achieve an average

error of 1.75% is achieved. The model is provided in Equation

4.

4.4518.9

101.11106.106.21

2

1

15

2

7

×−×+

××−××+∑
=

Cycle

DMAAccess

Cycle

DMAAccess

Cycle

Interrupt

Cycle

Interrupts

ii

NumCPUs

i

ii

Equation 4. DMA+Interrupt Disk Power Model

An application of the model to the memory-intensive

benchmark program mcf is shown in Figure 7. Note that this

error rate accounts for the large DC offset within the disk

power consumption. This error is calculated by first

subtracting the 21.6W of idle (DC) disk power consumption.

The remaining quantity is used for the error calculation.

3.8.2.4 I/O

Since the majority of I/O transactions are DMA transactions

from the various I/O controllers, an I/O power model must be

sensitive to these events. Three events are considered for

observing DMA traffic: DMA accesses on memory bus,

uncacheable accesses and interrupts. Of the three,

interrupts/cycle is the most representative. DMA accesses to

main memory seemed to be the logical best choice since there

is such a close relation to the number of DMA accesses and the

switching factor in the I/O chips. For example, a transfer of

cache line aligned 16 dwords (4 bytes/dword), maps to a single

cache line transfer on the processor memory bus. However, in

the case of smaller, non-aligned transfers the linear

relationship does not hold. A cache line access measured as a

single DMA event from the microprocessor perspective may

contain only a single byte. This would grossly overestimate

the power being consumed in the I/O subsystem. Further

complicating the situation is the presence of performance

enhancements in the I/O chips.

Figure 7. Disk Power Model (DMA+Interrupt) – Synthetic

Disk Workload

One of the common enhancements is the use of write-combing

memory. In write-combining, the processor or I/O chip in this

case combines several adjacent memory transactions into a

single transaction further removing the one-to-one mapping of

I/O traffic to DMA accesses on the processor memory bus. As

a result interrupt events are found to be better predictors of I/O

power consumption. DMA events failed to capture the fine-

grain power variations. DMA events tend to have few rapid

changes, almost as if the DMA events have a low-pass filter

applied to them. The details of the model can be seen in

Equation 5.

9

2

1

6 1012.1101087.32 ××−××+∑
=

Cycle

Interrupt

Cycle

Interrupt i
NumCPUs

i

i

Equation 5. Interrupt I/O Power Model

Accounting for the large DC offset increases error significantly

to 32%. Another consideration with the model is the I/O

configuration used. The model has a significant idle power

which is related to the presence to two I/O chips capable of

providing six 133MHz PCI-X buses. While typical in servers,

this is not common for smaller scale desktop/mobile systems

that usually contain 2-3 I/O buses and a single I/O chip.

Further, the server only utilizes a small number of the I/O

buses present. It is expected that with a heavily populated,

system with fewer I/O buses, the DC term would become less

prominent. This assumes a reasonable amount of power

management within the installed I/O devices.

3.8.2.5 CHIPSET

The chipset power model proposed here is the simplest of all

subsystems as a constant is all that is required. There are two

reasons for this. First, the chipset subsystem exhibits little

variation in power consumption. Therefore, a constant power

model is an obvious choice. Further, it is difficult to identify

the effect performance events have on power consumption

compared to induced electrical noise in the sensors. The

-100%

-50%

0%

50%

100%

21.2

21.4

21.6

21.8

22

22.2

22.4

0 100 200 300 400

E
rr

o
r

(%
)

W
at

ts

Seconds

Measured
Modeled
Error

second, and more critical reason, is a limitation in the power

sampling environment. Since the chipset subsystem uses

power from more than one power domain, the total power

cannot be measured directly. Instead it is derived by finding

the average measured difference in power between multiple

domains. The average chipset power is 19.9W.

3.8.3 MODEL VALIDATION

Tables 3 and 4 present summaries of average errors for the five

models applied to twelve workloads. Errors are determined by

comparing modeled and measured error at each sample. A

sample corresponds to one second of program execution or

approximately 1.5 billion instructions per processor. For

performance counter sampling, the total number of events

during the previous one second is used. For power

consumption, the average of all samples in the previous second

(ten thousand) is used. The average for each combination of

workload and subsystem model is calculated using Equation 6.

The results quantify the error in total power. They do not

cover only the dynamic range from idle to maximum power.

This should be considered for subsystems that have a small

dynamic range such as the I/O and disk subsystems.

%100
1

×

−

=

∑
=

NumSamples

Measured

MeasuredModeled

orAverageErr

NumSamples

i i

ii

Equation 6. Average Error Calculation

The I/O and disk models performed well under all workloads.

The low error rates are partly due to low power variation / high

idle power consumption. The CPU and memory subsystems

have larger errors, but also larger workload variation. The

worst case errors for CPU occurred in mcf workload which is

memory-bound. Due to a high CPI (cycles/instruction) of

greater than ten cycles, the fetch-based power model

consistently underestimates CPU power. This is because while

running mcf the processor only fetches one instruction every

10 cycles even though it is continuously searching for (and not

finding) ready instructions in the instruction window. For mcf

this speculative behavior has a high power cost that is

equivalent to executing an additional 1-2 instructions/cycle.

The memory model averaged about 9% error across all

workloads. Surprisingly the memory model faired better under

integer workloads. The error rate for floating point workloads

tended to be highest for workloads with the highest sustained

power consumption. For these cases our model tends to

underestimate power. Since the rate of bus transactions is

similar for high and low error rate workloads the

underestimation is likely caused by access pattern. In

particular our model does not account for differences in the

power for read versus write access. Also, the number of active

banks within the DRAM is not accounted for directly.

Accounting for the mix of reads versus writes would be a

simple addition to the model. However, accounting for active

banks will likely require some form of locality metric.

Idle power error is low for all cases indicating a good match

for the DC term in the models. Chipset error is high

considering the small amount of variation. This is due to the

limitation of the constant model assumed for chipset power.

Table 4. Integer Average Model Error %

Workload CPU Chipset Memory I/O Disk

idle 1.74# 0.59 3.80 0.36 0.17

gcc 4.23 10.9 10.7 0.41 0.20

mcf 12.3 7.7 2.2* 0.33 0.15

vortex 6.53 13.0 15.6 0.30 0.33

DBT-2 9.67 0.56 2.17 5.62 0.18

SPECjbb 9.00 7.45 6.14 0.39 0.14

DiskLoad 5.93 3.06 2.93 0.71* 0.16*

Integer Average
7.00

±3.50

6.18

±4.92

6.22

±5.12

1.16

±1.97

0.19

±0.07

All Workload

Average

6.67

±3.42

5.97

±4.23

8.80

±5.54

0.82

±1.52

0.39

±0.49

Table 5. Floating Point Average Model Error %

Workload CPU Chipset Memory I/O Disk

art 9.65 5.87 8.92 0.24 1.90

lucas 7.69 1.46 17.5 0.25 0.31

mesa 5.59 11.3 8.31 0.33 0.17

mgrid 0.36 4.51 11.4 0.37 0.55

wupwise 7.34 5.21 15.9 0.59 0.42

FP Average
6.13

±3.53

5.67

±3.57

12.41

±4.13

0.35

±0.14

0.67

±0.70

All Workload

Average

6.67

±3.42

5.97

±4.23

8.80

±5.54

0.82

±1.52

0.39

±0.49

4 APPLICATION TO DESKTOP PLATFORM

Section 3 presented a complete system power model using

performance events, using a quad-core server as the target

platform. In order to prove the generality of the proposed

approach, we apply the scheme to a very different system, a

desktop platform. The platform is an AMD dual-core system

with a graphics Processing Unit (GPU). This platform differs

from the previous server in terms of process technology,

system architecture, manufacturer and workload among others.

They also differ in their power management implementations

and subsystem components. A comparison of the two systems

used in this study (server and desktop) is provided in Table 7.

Of particular importance are two major differences: subsystem

level power management and workload characteristics. Power

management increases the complexity and utility of the power

model as power consumption varies greatly with the

application of power management. In contrast, in the server

system, power remains near a constant level due to subsystems

not reducing performance capacity, and therefore power

consumption, during periods of low utilization. Increased

power variation is also attributable to desktop-specific

workloads. While server workloads tend to always operate at

full speed (eq. SPEC CPU) desktop workloads such as

SYSMark and 3DMark contain large portions of low

utilization. This exposes the impact of power management and

the need to model it.

In this section, power modeling of the AMD system with GPU

using the approach presented in section 2 is presented. It is

shown that though this platform is significantly different than

the server, the trickle-down modeling approach still accurately

models power.

4.1 SYSTEM DESCRIPTION

. The target desktop system considered here is optimized for

power efficiency rather than performance. This leads to

greater variation in power consumption compared to a server

since power management features reduce power greatly during

low utilization. Server systems tend to employ less aggressive

power savings. Therefore, power at low utilization is greater

and overall variation is less. This difference is evident in the

analysis of average subsystem-level power in Tables 1-2 and

7-8. The power management implementation in the desktop

system also requires the use of more extensive power models.

Rather than only needing to consider CPU clock gating and

DRAM power down modes, the desktop system model must

consider DVFS, chipset link power management, disk and

GPU power management. The wider range of power

consumption also leads to greater temperature sensitivity.

Another major difference is the ability to measure subsystem

power at a finer granularity. The desktop platform allows

direct measurement of memory controller and GPU in addition

to all the subsystems that are measureable in the server system.

One exception is the server I/O subsystem which contains

numerous PCI-X busses and bridges. The desktop system does

not contain comparable I/O subsystem. Therefore, it is not

included in the study.

Table 6. System Comparison

Platform

Segment

Server Desktop

Manufacturer Intel AMD

Processor(s) Quad-socket 130nM

2.8GHz

Dual-core 45nM 2.0GHz

Memory 8GB DDR-200 4GB DDR3-1066

Power

Management

CPU Clock Gating

DRAM Power Down

CPU Clock Gating and DVFS

DRAM Pwr Down and Self Ref.

Chipset Link Disconnect

Harddrive Spin Down and ATA

modes

GPU Clock Gating

Graphics Rage ProXL RS780

Observable

Subsystems

CPU

Chipset

Memory

I/O

Disk

CPU

Chipset

Memory

Memory Controller

GPU

Disk

4.2 WORKLOADS

Due to the distinctions between server and desktop systems

several desktop or client-appropriate workloads are added. In

typical server or desktop benchmarks the GPU subsystem is

almost entirely idle. Therefore, to exercise the GPU subsystem

the 3DMark06 benchmark is included. 3DMark06 contains six

subtests covering CPU and GPU intensive workloads. Four of

the subtests (gt1, gt2, hdr1, hdr2) target the GPU’s 3D

processing engine. The other two tests (cpu1 and cpu2)

heavily utilize CPU cores but have almost no GPU utilization.

Targeting the 3D engine generates the largest power variation

since the 3D engine is by far the largest power consumer in the

GPU. An interesting side effect of the desktop GPU is intense

system DRAM utilization. To reduce cost and power

consumption, desktop systems such as this use a portion of

system DRAM in lieu of locally attached, private DRAM. As

a result, 3D workloads in desktop systems are effective at

generating wide power variation in the memory subsystem.

Overall subsystem level power management is exposed

through the addition of the SYSMark07 benchmark. This

workload contains Microsoft Office, Adobe Photoshop, Adobe

Flash and similar desktop applications. The various programs

are classified into four categories called E-Learning, Video

Creation, Productivity and 3D. This workload is implemented

using simulated user input through the application GUI. The

numerous delays required for GUI interaction causes many idle

phases across the subsystems. This allows power management

to become active. Contrast this to the vast majority of

benchmarks which, by design, operate the CPU and other

subsystems only at the 100% load level. The DBT-2 database

workload is excluded as it is not practical and relevant to run

on a desktop platform. For comparison to the server model,

SPEC CPU, SPEC jbb and idle workloads are included. The

workloads on targeted subsystems are summarized below in

Table 7.

Table 7. Desktop Workloads

Workload Description
Subsystems

Targeted

Idle
Only background OS

processes

All (power

managed)

SPEC CPU

2006

INT

perlbench, bzip2, gcc, mcf,

gobmk, hmmer, sjeng,

libquantum, h264ref,

omnetpp, astar, xalancbmk

CPU

Memory

Memory

Controller

FP

bwaves, games, milc, zeusmp,

gromacs, cactusADM,

leslie3d, namd, dealII, soplex,

povray, calculix, gemsFDTD,

tonto, lbm, wrf, sphinx3

CPU

Memory

Memory

Controller

3DMark06

gt1

Graphics Test 1 and 2

GPU

Memory

Memory

Controller
gt2

cpu1
CPU Test 1 and 2 CPU

cpu2

hdr1
High Dynamic Range Test 1

and 2

GPU

Memory

Memory

Controller hdr2

SYSMark0

7

EL E-Learning CPU

Memory

Memory

Controller

Chipset

Disk

VC Video Creation

PR Productivity

3D 3D

SPECjbb2005 Server-Side Java

CPU

Memory

Memory

Controller

4.3 PERFORMANCE EVENT SELECTION

In this section the various performance monitoring counter

events used to construct the trickle-down model for the target

desktop system are described. The definition and insight

behind selection of the counters is provided.

Fetched µops – Micro-operations fetched. Comparable to the

Pentium IV fetched micro-operations, this metric is highly

correlated to processor power. It accounts for the largest

portion of core pipeline activity including speculation. This is

largely the result of fine-grain clock gating. Clocks are gated

to small portions of the pipelines when they are not being used.

FP µops Retired – Floating point micro-operations retired.

This metric is used to account for the difference in power

consumption between floating point and integer instructions.

Assuming equal throughput, floating point instructions have

significantly higher average power. Ideally, the number of

fetched FPU µops would be useful. Unfortunately, this metric

is not available as a performance counter. This is not a major

problem though since the fetched µops metric contains all

fetched µops, integer and floating point.

DC Accesses – Level 1 Data Cache Accesses. This is a proxy

for overall cache instruction and data accesses including Level

1,2, and 3. Considering the majority of workloads, level 1 data

cache access rate dominates cache-dependent power

consumption. No other single cache access metric correlates

as well to processor core power (including caches).

%Halted/%Not-Halted – Percent time processor is in halted

state. This represents power saved due to explicit clock gating.

The processor saves power using fine-grain and coarse-grain

gating of clock. Fine-grain clock gating saves power in

unutilized portions of the processor while instructions are in-

flight. Coarse-grain clock gating can save more power than

fine-grain yet it requires the processor to be completely idle.

The processor applies this type of gating only when the

processor is guaranteed to not have any instructions in-flight.

This condition by definition occurs following execution of the

HLT instruction. Halt residency is controlled by the operating

system and interrupts scheduling work on processors.

CPU Clock Frequency – Core clocks per second. Due to the

use of DVFS, it is necessary to track the instantaneous

frequency of the processor. Though some metrics such as

µops fetched or retired implicitly track the power consumed in

many components due to clock frequency, they do not track

workload-independent power consumers such as clock grids.

Using clock frequency in conjunction with %Halt it is possible

to account for power consumed in these units.

CPU Voltage – CPU Voltage Rail. Due to the application of

DVFS the processor may operate at a range of discrete

voltages in order to save power. Changes in voltage have a

significant impact on power consumption due to the

exponential relationship between voltage and dynamic power

(~V2) and the cubic relationship between voltage and leakage

power (~V3). Due to a single, shared voltage plane, the actual

voltage applied is the maximum requested of all cores in a

socket. The requested voltage can be read using the P-State

Status register [4].

Temperature – CPU Temperature. At the high voltages

required for multi-GHz operation, leakage power becomes a

major component of power consumption. Also, at idle when

dynamic power is nearly eliminated due to clock gating

leakage power can be the dominant contributor. Since

temperature has a strong relation to leakage power (T2) it is

necessary to account for this effect by measuring temperature.

Temperature can be approximated using a series of on-die

thermal sensors. The output of these sensors can be obtained

using a configuration-space register [4].

GPU Non-Gated Clocks – Number of GPU clocks per second.

Similar to CPU power, GPU power is greatly impacted by the

amount of clock gating and DVFS. In this study DVFS usage

is restricted to frequency changes only. Therefore, nearly all

GPU power variation can be accounted for by this single

metric.

DCT Accesses – ∑ N=0-1 DCTNPageHits+DCTNPageMisses +

DCTNPageConflicts. DCT (DRAM Controller) Access

accounts for all memory traffic flowing out of the two on-die

memory controllers, destined for system DRAM. These events

include cpu-generated and DMA traffic.

Link Active% – Percent time Hypertransport links connected.

To save power in the I/O interconnection during idle periods,

the Hypertransport links are disconnected. During periods of

disconnect, cache snoop traffic and interrupts are blocked.

This allows power to be saved in the CPU I/O interconnect and

I/O subsystem. Also, the DRAM may be placed in self-refresh

mode since DRAM access is blocked. If a cache snoop or

interrupt event occurs, the links are reconnected.

Spindle Active % – Percent time hard disk spindle is

spinning. In traditional mechanical hard drives, the spindle

motor represent the largest single consumer of power in the

drive. To save energy the spindle motor can be powered

down. Due to the high latency (and energy consumption) for

starting/stopping the spindle this can only be done when the

drive is expected to be idle for a long time (minutes or more).

In practice, typical workloads prevent the spindle from ever

powering down. This includes all benchmarks used in this

study, except idle. Therefore, spindle activity can be

sufficiently accounted for by only distinguishing between idle

and all other workloads.

CPUTo IOTransactions – Non-cacheable access to memory-

mapped I/O devices . I/O device activity can be approximated

using a measure of how many memory transactions generated

by the CPUs are targeted at non-cacheable address space.

Typically, I/O devices contain a DMA controller which

performs access to cacheable space in system memory. The

configuration and control of these transactions is performed by

the CPU through small blocks of addresses mapped in non-

cacheable space to each I/O device.

DRAMActive% – Percent time DRAM channel is active.

Power savings in the DRAM and memory controller is

controlled by the memory controller. When a memory channel

has not issued a memory transaction for at least fixed period of

time, the memory controller sends the channel to one of the

precharge power down modes [4]. This primarily saves power

in the DRAM chips, but also provides a slight savings in the

memory controller.

4.4 RESULTS

4.4.1 AVERAGE WORKLOAD POWER

To understand subsystem-level power consumption average

and standard deviation results are presented. Table 8 displays

average power of each subsystem measured in Watts. To give

an indication of the variation in power consumption Table 9

displays the standard deviation of subsystem power. Two

major differences are apparent comparing desktop to server

power consumption: power in each subsystem is much less

while relative variability is much greater. In both cases, power

management plays a large role. Effective power management

through DVFS, clock gating and link management reduce

average power during idle and low utilization phases. This

leads to a greater difference in sample-to-sample power.

Additionally, semiconductor process improvements have a

major effect.

First, the CPU subsystem is considered. Not surprisingly, the

desktop processor’s average power is an order of magnitude

less than the server processor. This is largely influenced by

process (130nM in server vs. 45nM in desktop), DVFS

(desktop-only) and idle power management. While the server

idle power represents at least 24% of average power, desktop

idle power is no more than 4%. These large power savings

require the CPU model to include additional metrics such as

frequency, voltage and temperature. It is not sufficient to

consider metrics associated only with the instruction stream

(IPC, cache accesses).

Like CPU, the Chipset also exhibits much greater power

variation. Unlike the server chipset which is pragmatically

modeled as a constant, the desktop chipset has much greater

variation with standard deviation representing as much as 10%

of average power. The difference illustrates the impact of link

(Hypertransport) power management. Average power values

are also much less due to the omission of an L3 cache in the

desktop processor. In both platforms the top-level cache is

contained in the chipset power rail. To reduce power

consumption and cost the desktop designer omitted the L3

cache.

Yet another subsystem with order-of-magnitude power

reduction is the DRAM memory. Despite higher operating

frequency (533Mhz vs 100MHz) average DRAM power is

reduced by almost a factor of 10. The reason is reduced

memory voltage (2.8V vs 1.5V), reduced capacity (8GB vs

4GB) and more aggressive memory power management. Note

that the desktop system differentiates between DRAM,

“Memory” subsystem and the Memory Controller. The server

system includes both in the memory subsystem. The desktop

memory controller has a similar level of power variation as the

DRAMs. This is due to the memory controller management

power savings for both subsystems. This also allows

implementation of simple trickle-down models in multiple

subsystems that are driven by the same performance metrics.

A new subsystem, not present in the server analysis is the

RS780 graphics processing unit (GPU). This subsystem has a

unique bi-modal power consumption. In all cases GPU power

is either near the maximum or minimum levels. For workloads

with little or no GPU activity power ranges from 0.8W to

1.3W with little variation. The graphics-centric workloads of

3DMark06 have much greater variation as the workload

alternates between approximately 1W and 4W. This gives the

GPU one of the largest power variations with a standard

deviation covering over 25% of the maximum power. This

unique behavior leads to the creation of a simple power model.

The bimodal power consumption is caused by aggressive idle

power management and low active power variation.

Therefore, it is sufficient to create a power model using only

the ratio of time spent with clocks gated. Low error rates can

be obtained without any instruction or data-dependent metrics.

Lastly, desktop hard drive power is considered. Three factors

affect the large average power reduction and relative standard

deviation increase: spindle speed, platter size and link power

management. Since spindle power is such a large component

of drive power consumption, reducing from 7200rpm to

5400rpm has a large impact. To conform to a smaller form

factor, disk platter diameter is reduced nearly 28% (3.5” to

2.5”). This reduces spindle and drive head power. Less power

is required to rotate a smaller mass and move the drive head a

shorter distance. Also, SATA link power management reduces

power consumption in the control electronics and links during

idle phases. These changes yield a drastic increase in

variability with standard deviation representing 32% of

average power in the most intense workload (video creation).

Table 8. Subsystem Average Power (Watts)

Workload CPU Chipset Memory
Memory

Controller
GPU Disk Total

idle 0.63 0.54 0.24 0.52 0.856 0.827 3.62

CPU06

INT
14.1 2.74 2.97 2.35 0.863 0.945 24.0

CPU06 FP 14.8 2.87 3.35 2.48 0.882 0.866 25.3

gt1 10.2 3.25 3.29 2.41 3.79 1.35 21.9

gt2 10.2 3.29 3.52 2.48 4.00 1.35 22.4

cpu1 14.3 2.86 1.61 1.97 1.28 1.34 21.4

cpu2 14.2 2.86 1.62 1.98 1.28 1.30 21.3

hdr1 10.5 3.24 2.90 2.32 3.70 1.38 21.7

hdr2 10.6 3.26 3.03 2.37 3.75 1.35 22.0

EL 10.6 2.61 1.40 1.98 1.08 1.42 17.1

VC 11.0 2.79 1.12 1.89 1.12 1.74 17.8

PR 10.3 2.76 1.16 1.90 1.11 1.58 16.9

3D 11.9 2.62 1.25 1.91 1.06 1.35 18.2

SPECjbb 11.1 2.90 1.71 2.03 1.09 1.27 18.1

Table 9. Subsystem Power Standard Deviation (Watts)

Workload CPU Chipset Memory
Memory

Controller
GPU Disk Total

Idle 0.03 0.01 0.01 0.01 0.002 0.12 0.13

CPU06 INT 2.59 0.26 1.52 0.45 0.17 0.36 2.69

CPU06 FP 2.33 0.25 1.97 0.50 0.14 0.24 2.26

gt1 0.74 0.09 0.81 0.22 0.90 0.49 1.57

gt2 0.82 0.11 0.91 0.24 1.09 0.49 2.05

cpu1 1.99 0.26 0.71 0.17 0.36 0.47 2.02

cpu2 2.04 0.26 0.71 0.17 0.36 0.42 2.23

hdr1 0.76 0.13 1.04 0.29 1.14 0.53 1.84

hdr2 0.83 0.15 1.13 0.33 1.10 0.50 2.16

EL 0.70 0.16 0.98 0.28 0.05 0.37 1.74

VC 1.77 0.25 0.59 0.11 0.07 0.57 2.54

PR 0.68 0.25 0.81 0.16 0.09 0.44 1.51

3D 1.16 0.17 0.59 0.11 0.03 0.32 1.70

SPECjbb 1.23 0.30 1.10 0.24 0.03 0.23 2.77

4.4.2 SUBSYSTEM POWER MODELS

The impact of effective power management can be seen in the

form of the power models of this section. In all cases it is

necessary to explicitly account for power management to

obtain accurate models. This causes all models to take a

similar form. Previous models [5][6] are dominated by terms

that are directly proportional to workload activity factors (IPC,

cache accesses). While those workload-dependent terms are

also used here, Idle Power Management and Irreducible power

are also quantified. The idle power management term

estimates power saved when instructions or operations are not

actively proceeding through the subsystem. For CPUs this

primarily occurs when executing the idle loop. The CPU

detects one of the idle instructions (HLT, mwait) and takes

actions such as clock or power gating. Other subsystems such

as memory or I/O links similarly detect the absence of

transactions and save power through various degrees of clock

gating. Irreducible power contains the “baseline” power which

is consumed at all times. This baseline power is largely

composed of leakage and ungateable components.

4.4.2.1 CPU

The model presented here improves on existing on-line models

[3][16][6] by accounting for power management and

temperature variation. Like existing models this one contains a

workload dependent portion which is dominated by the number

of instructions completed per second. In this case the number

of fetched operations per second is used in lieu of instructions

completed. The fetched ops metric is preferred as it also

accounts for speculative execution. The distinction of our

model is that it contains a temperature dependent portion.

Using workloads with constant utilization, processor

temperature and voltage are varied to observe the impact on

static leakage power. Temperature is controlled by adjusting

the speed of the processor’s fan. Temperature is observed with

0.125 degree Celsius resolution using an on-die temperature

sensor [4]. This sensor can be accessed by the system under

test through a built-in, on-chip register. Voltage is controlled

using the P-State control register. This allows selection of one

of five available voltage/frequency combinations. Voltage is

observed externally using power instrumentation. Like the

workload dependent model, the coefficients of the static power

model are tuned using regression techniques. Note that the

static power model is highly process dependent. Processors

with different semiconductor process parameters require the

model to be re-tuned.

The dominant power management effects (voltage/frequency

scaling, clock gating) are further accounted for using the

gateable and ungateable power models. Gateable power is

found by measuring the effect of enabling/disabling idle core

clock gating. Ungateable represents the portion of power

which cannot be gated. These components are also found

experimentally. The resultant, average error in the model is

0.89%. The error distribution for SPEC CPU2006 and

SYSmark2007 has the first standard deviation with less than

1% error. Worst-case error is 3.3%. The composition of the

CPU model for the AMD processor is summarized in Table 10.

Table 10. AMD Dual-Core Power Model

Power Models Equation

Total Power
� (�������	
���
	�
�� +�
���������

������

���
+ ��������� + ������� !",$%�&

Workload

Dependent

Power

((FetchOpsN/Sec)×CoeffF+(FloatPointOpsN/Sec)

×CoeffFP

+(DCAccessN/Sec) ×CoeffDC) ×Voltage2

Idle Power

Management

Power

(%HaltedN) ×CoeffGateable×Voltage2×FrequencyN

Irreducible

Power
(%NonHaltedN) ×CoeffUngateable×Voltage2×FrequencyN

Irreducible

Power
(Temp2×CoeffT

2+Temp1×CoeffT
1+×CoeffT

0)VoltageN

Figure 9. CPU Power Model – SPEC CPU 2006 Power and

Average Error

4.4.2.2 GPU

To estimate GPU power consumption, a technique similar to

that typically used for CPUs is employed: count the number of

ungated clocks. In CPUs this is done by subtracting the

number of halted clocks from all clocks [6]. In the case of the

RS780 graphics processing unit, the ungated clocks can be

measured directly. The GPU cycle counter is not physically

located in the CPU, but is directly accessible using a

configuration space access register. The latency is

approximately 15us per access. Fortunately, there is only a

single counter, so the effective overhead is low. Equation 7

presents the GPU power in terms of the non-gated clocks.

0.0068 x (Non-Gated Clocks /sec)/ 106 + 0.8467

Equation 7. GPU Power Model

This approach only accounts directly for power saved due to

clock gating. Power reductions due to DVFS are not explicitly

represented. Despite this, high accuracy of less than 1.7%

error is obtained due to the implementation of DVFS. Unlike

CPU DVFS which allows the operating system to reduce

voltage and frequency during active phases, GPU DVFS

reduces voltage only when clock gating is applied (idle).

Therefore, increased power due to operating at the higher

voltage is included in the non-gated clock metric. This bi-

modal behavior can be seen in Figure 10. The mostly-idle,

30

31

32

33

34

35

36

37

p
er

lb
en

ch

b
zi

p
2

g
cc

m
cf

g
o
b
m

k

h
m

m
er

sj
e
n
g

li
b
q
u
an

t…

h
2
6
4
re

f

o
m

n
et

p
p

as
ta

r

x
al

an
c
b
m

k

b
w

av
e
s

g
am

es
s

m
il

c

ze
u
sm

p

g
ro

m
ac

s

ca
c
tu

sA
…

le
sl

ie
3
d

n
am

d

d
ea

lI
I

so
p
le

x

p
o
v
ra

y

ca
lc

u
li

x

G
em

sF
…

to
n
to

lb
m

w
rf

sp
h
in

x
3

W
at

ts

Measured Modeled

clock-gated portion of the HDR1 workload draws about 1.5W.

The fully active phase increases voltage and eliminates clock

gating. Power increases drastically to over 4W.

An alternative metric for GPU power is also considered: %

GUI Active. This metric represents the portion of time in

which the GPU is updated the display. The main limitation of

this approach is that it does not account for the intensity of

work being performed by the underlying GPU hardware. Low-

power 2D workloads, such as low-bit rate video playback,

appear to have the same GPU utilization as more intense high-

resolution video decoding. An example of modeled versus

measured GPU power for 3DMark06-HDR1 is provided in

Figure 10.

Figure 10. GPU Power Model (Non-Gated Clocks) –

3DMark06-HDR1

4.4.2.3 MEMORY

Memory or DRAM power consumption is one of the more

variable subsystems. Similar to the CPU, the application of

various power management features yields a wide range of

power consumption. For example consider the standard

deviation of power consumption in SPECJbb of 1.096W

compared to its average of 1.71W. This variation is caused by

the three modes of operation: self-refresh, precharge power

down and active. Self-refresh represents the lowest power

state in which DRAM contents are maintained by on-chip

refresh logic. This mode has a high entry/exit latency and is

only entered when the system is expected to be idle for a long

period. The memory controller selects this mode as part of its

hardware-controlled C1e idle [4] state. Since this state is

entered in conjunction with the hypertransport link disconnect,

the power savings can be represented using the LinkActive%

metric. Precharge power down is a higher-power, lower-

latency alternative which provides power savings for short idle

phases. This allows precharge power savings to be considered

with normal DRAM activity power. Light activity yields

higher precharge residency. DRAM activity is estimated using

the DCTAccess metric. The sum of all DCT accesses on both

channels (hit, miss and conflict) correlates positively to active

DRAM power and negatively to precharge power savings.

Equation 8 presents memory power in terms of the DCTAccess

and LinkActive% metrics.

4 x 10-8 x DCTAccess/sec + 0.7434 x LinkActive% + 0.24

Equation 8. Memory Power Model

In most workloads this approach gives error of less than 10%.

The two outliers are the CPU subtests of 3DMark06. Due to

many of the memory transactions being spaced at intervals just

slightly shorter than the precharge power down entry time, the

model underestimates power by a larger margin. Higher

accuracy would require a direct measurement of precharge

power down residency or temporal locality of memory

transactions. An example of model versus measured Memory

power for SYSMark2007-3D is provided in Figure 11.

Figure 11. DRAM Power Model (∑DCT Access,

LinkActive) – SYSMark2007-3D

4.4.2.4 MEMORY CONTROLLLER

Since the memory controller is responsible to entry and exit of

power saving modes for itself and memory, the memory

metrics can also be used to estimate memory controller power.

Equation 9 presents memory power in terms of the DCTAccess

and LinkActive% metrics.

9x10-9 x DCTAccess/sec + 0.798 x LinkActive% + 1.05

Equation 9. Memory Controller Power Model

 Though both memory power model and memory controller

power model use LinkActive% and DCTAccess metrics, the

relative weights are different. Memory power has a large

sensitivity to the transaction rate, 4 x 10-8 W/(transaction/sec).

In comparison, the memory controller model coefficient is

more than four times smaller at 9 x 10-9 W/(transaction/sec).

Similarly, transaction-independent portion is much higher for

the memory controller at 1.9W compared to 0.98W for

memory. This reflects the unmanaged power consumers in the

memory controller. The same 3DMark06 error outliers exist

here. An example of model versus measured Memory

Controller power for 3DMark06-HDR1 is provided in Figure

12.

Figure 12. Memory Controller Power (∑DCT Access,

LinkActive) – HDR1

4.4.2.5 CHIPSET

The Chipset power model represents power consumed in the

Hypertransport controller. Like the memory and memory

controller subsystems, power consumption is dominated by the

link disconnect state and memory controller accesses. Overall

and worst-case are less than the others due to the workload

independent contributions being relatively the largest.

Equation 10 presents the model for the chip set power.

-10-16 x (DCTAcc/sec)2 + 2x10-8 x (DCTAcc/sec)

-100%

-50%

0%

50%

100%

0

1

2

3

4

5

0 20 40 60 80

E
rr

o
r(

%
)

W
at

ts

Seconds

Measured

Modeled
Clock gating

-100%

-50%

0%

50%

100%

0

1

2

3

4

0 100 200 300 400 500 600 700

E
rr

o
r(

%
)

W
at

ts

Seconds

Measured
Modeled
Error

1 core

accessing DRAM

4 cores

accessing DRAM

-100%

-50%

0%

50%

100%

0.0

1.0

2.0

3.0

0 20 40 60 80 100

E
rr

o
r(

%
)

W
at

ts

Seconds

Measured
Modeled
Error

+ 1.24 x LinkAct% + 1.34

Equation 10. Chipset Power Model

3.4.2.6 DISK

The improvements in power management for hard disks

between the server-class used in the server study [6] and the

more recent desktop/mobile disk used here is evident in the

power model in Equation 11.

3 x 10-5 x (CPUToIOTrans/sec)

+ 0.629 x SpindleActive + 0.498

Equation 11. Disk Power Model

Rather than the negligible power variation previously observed

(<1%), the variable portion (one standard deviation) is on

average 30%. This provides more power savings, but a more

difficult modeling challenge. As a result average error is

higher at 6.6%.

4.4.3 MODEL VALIDATION

Table 11 summarizes the average error results for the six

subsystem power models. The results quantify the error in

total power. They do not cover only the dynamic range from

idle to maximum power. This is less of a concern for the

desktop system as most subsystems have large dynamic

ranges, unlike the server system. The CPU subsystem has the

second lowest error at 1.64% largely due to the comprehensive

power model that is used. In comparison, the server power

model averaged over 6% error using only three inputs. More

importantly, this low error rate suggests that performance

counter power models are effective across multiple

microprocessor architecture generations, platforms, and

manufacturers (Intel and AMD).

The desktop chipset power model is also improved compared

to the server chipset model with average error of 3.3%. Like

the server model, the desktop model contains a large workload-

independent component: although in this case it contributes

less than half the total chipset power rather than the 100% seen

in the server model.

The memory and memory controller power models have the

highest average error with 5.3% and 6.0% respectively. The

high error is largely due to the CPU portion of the 3DMark06

workload. This workload is found to generate memory

transactions at an interval that prevented effective utilization of

precharge power down modes. Therefore, the model tends to

underestimate memory power consumption. To resolve this

error, a metric of typical memory bus idle duration or power

down residency would be needed.

Table 11. Average Error %

Workload CPU Chipset Memory Memory

Controller

GPU Disk

Idle 0.3 1.8 1.2 0.4 1.7 2.5

CPU06 INT 1.3* 4.0 2.3 3.4 0.2 5.3

CPU06 FP 1.1* 2.6 7.2 2.9 0.5 4.4

gt1 0.8 5.3 3.3 1.3 0.9 7.1

gt2 1.2 5.8 3.3 4.4 0.4 8.7

cpu1 1.6 1.8 12.5 14.1 1.0 6.9

cpu2 1.9 1.9 11.5 13.4 1.3 9.2

hdr1 2.2 2.7 0.8* 0.7* 1.0* 0.9

hdr2 1.9 4.7 1.6 8.6 0.7 2.7

EL 2.7 9.3 8.5 7.7 0.0 1.8*

VC 1.0 1.8 8.4 11.7 1.6 10.6

PR 2.5 1.1* 5.7 5.6 0.9 12.1

3D 2.8 3.5 5.5 4.7 0.0 10.7

SPECjbb 1.5 0.4 2.0 4.1 0.8 9.8

Average 1.63 3.34 5.27 5.93 0.79 6.62

The GPU power model has the lowest error rate at slightly less

than 1%. This illustrates the effectiveness of the non-gated

GPU clocks as a proxy for GPU power. In most workloads the

GPU power has a clear bimodal characteristic. Active regions

have a power level that is consistent. Idle regions also have a

consistent power level due to the presence of idle clock gating.

It is expected that as finer grain power management is applied

to the GPU core logic, larger active power variation will occur.

This will necessitate a comprehensive power model such as

that used in the CPU.

Finally, the disk subsystem is the one subsystem which has a

higher error rate compared the server power model. In this

case the error can be attributed to the effectiveness of on-disk

and link power management. In the case of the server model,

no active power management is provided. This allows for an

accurate model as the workload independent portion

dominates. In contrast the more recent desktop hard drive has

a workload dependent portion which contributes as much as

1/3 of total power. This causes modeling error to have a larger

impact. Note that the subtests with the highest errors are also

those with the highest disk utilization.

5 RELATED WORK

5.1 PERFORMANCE COUNTERS MODELS

The use of performance counters for modeling power is not a

new concept. However, unlike past studies

[3][16][5][24][23][30] we go beyond modeling power

consumed only in a microprocessor to modeling power

consumed by an entire system. One of the earliest studies by

Bellosa et al. [3] demonstrates strong correlations between

performance events (instructions/cycle, memory references,

cache references) and power consumption in the Pentium II.

Isci [16] develops a detailed power model for the Pentium IV

using activity factors and functional unit area, similar to

Wattch [8]. Bircher [5] presents a simple linear model for the

Pentium IV based on the number of instructions fetched/cycle.

Lee [23] extends the use of performance counters for power

modeling to temperature.

5.2 SUBSYSTEM POWER MODELS

5.2.1 LOCAL EVENT MODELS

Existing studies [12][41][20][13] into modeling of subsystem

power have relied on the use of local events to represent

power. In this section existing power modeling studies that

make use of local events are considered.

Memory: It is possible to estimate power consumption in

DRAM modules by using the number of read/write cycles and

percent of time within the precharge, active and idle states

[12]. Since these events are not directly visible to the

microprocessor, we estimate them using the count of memory

bus accesses by the processor and other events that can be

measured at the CPU. We also show that it is not necessary to

account for the difference between read and write power in

order to obtain accurate models. We use a similar approach as

Contreras [11]. His model makes use of instruction cache

misses and data dependency delay cycles in the Intel Xscale

processor to estimate power. We show that for I/O intensive

servers, it is also necessary to account for memory utilization

caused by agents other than the microprocessor, namely I/O

devices performing DMA accesses. Kadayif [19] uses as

similar approach to modeling memory power using cache miss

counters available on the UltraSPARC platform.

Disk: A study by Zedlewski et al. [41] shows that hard disk

power consumption can be modeled by knowing how much

time the disk spends in the following modes of operation:

seeking, rotation, reading/writing, and standby. Rather than

measuring these events directly from the disk, we estimate the

dynamic events, seeking, reading and writing, through

processor events such as interrupts and DMA accesses. Kim et

al. [18-20] find that disk power and temperature can be

accurately modeled using the amount of time spent moving the

disk read/write head and the speed of rotation.

I/O and Chipset: Our objective is to estimate power using

processor counters without having access to specific disk or

memory system metrics. I/O and chipset subsystems are

composed of rather homogeneous structures and we estimate

their power through traditional CMOS power models. These

models divide power consumption into static and dynamic.

Static power represents current leakage, while dynamic

accounts for switching current of CMOS transistors. Since

static power does not vary in our system, due to a relatively

constant voltage and temperature, we estimate dynamic power

in the I/O and chipset subsystems through the number of

interrupts, DMA and uncacheable accesses.

GPU: Ma et al. [27] employ a statistical GPU power model

based on six “workload variables”. These variables are similar

to performance counter events in that they are directly

proportional to functional unit utilization. Specifically, they

track utilization of five units: vertex shader, pixel shader,

texture unit, geometry shader and render output unit. Our

approach achieves similar accuracy while using only one

counter: %Non-Gated Clocks. By measuring a wide range of

CPU and GPU workloads we find that high accuracy can be

obtained by tracking the one event (clock gating) which

reduces power by the greatest amount.

5.2.2 OPERATING SYSTEM EVENT MODELS

Rather than using events local to the subsystem, Heath [14]

[15] uses software counters in the operating system to model

dynamic power of CPU, disk and network subsystems. Our

approach differs by making use of hardware performance

counters. This reduces the performance loss due to sampling

of the software counters. Reading hardware performance

counters requires only a small number of fast CPU register

accesses. Reading software operating system-counters require

relatively slow access using system service routines (file

open/close etc.). The difference in access time between

hardware performance counters and operating system-counters

is greater than an order of magnitude. For example, the

interrupt tracking operating system file: “/proc/interrupts”,

induces greater than 1% overhead if sampled more frequently

than once per 200 milliseconds. In contrast, CPU hardware

performance counter sampling is limited by the overhead of

the interrupt and context switch required for reading the

counters on a particular core. The overhead of these actions is

less than 1% for sample intervals as low as 10 milliseconds.

The effective difference in access time can be less due to

limitations relating to hardware performance counter

implementation. This study was performed using a driver with

privileged access to the counters. If application-level access is

required the overhead for access could increase. Also, it is

assumed that only one entity is accessing the counters. Any

sharing of counters among other processes or operating system

routines would require virtualized counters that could also

reduce the difference in access latency.

Lewis [26] constructs a similar linear regression model using a

combination of operating system counters, hardware

performance counters and physical sensors. Rivoire [36]

compares various system power model types including

operating system counter-driven and hardware performance

counter-driven.

5.3 DYNAMIC ADAPTATION

Several researchers have demonstrated the effectiveness of

techniques for adapting performance/power using DVFS.

Kotla et al. [21] use instruction throttling and a utilization-

based power model to show the effect of DVFS in a server

cluster. At runtime they determine the minimum amount of

required processor performance (frequency) and adjust the

microprocessors accordingly. Due to the significant variation

in web server workloads, Rajamani et al. [33] show that 30%-

50% energy savings can be obtained through powering down

idle compute nodes (severs). Using simulation Chen [9]

applies DVFS and node power down in a dense compute center

environment. However, unlike previous studies that only seek

to minimize energy consumption while maintaining

performance, Chen also considers the reliability impact of

powering servers on and off. From the perspective of

managing thermal, all of these dynamic adaptation schemes

can benefit from the use of power modeling by being able to

implement additional power management policies that

maintain safe operating conditions.

Recently, it has become common for microprocessors [10][28]

to apply DVFS to maximize performance within fixed power

and thermal budgets. Our trickle-down approach is distinct in

that it provides deterministic performance and allows

adaptations to consider complete system power.

5.4 PHASE DETECTION

Researchers have developed numerous techniques for detecting

program phases [11][22][17]. Dhodapkar and Smith [11]

consider the effectiveness of instruction working sets, basic

block vectors (BBV) and conditional branch counts for the

detection of program phases. They find that BBVs offer the

highest sensitivity and phase stability. Lau [22] compares

program structures such as basic blocks, loop branches,

procedures, opcodes, register usage, and memory address

information to identify phases. Using variation in CPI,

compared to that in the observed structures, they show that

loop frequency and register usage provide better accuracy than

the traditional basic block vector approach. For the purpose of

detecting power phases, Isci [17] compares the use of a

traditional control flow metric (BBV) to on-chip performance

counters. He finds that performance counter metrics have a

lower error rate since they account for microarchitectural

characteristics such as data locality or operand values. These

techniques for phase detection are valuable for direct dynamic

adaptations that increase efficiency of the microprocessor. Our

complete-system power model allows power and phase

analysis to be extended to several additional subsystems.

5.5 SUBSYSTEM POWER STUDIES

In order to motivate the use of microprocessor performance

counters in modeling subsystem power, we demonstrate the

significant contribution of the various subsystems to total

power consumption. Unlike previous studies focusing on

workstation [7] and mobile [29] power consumption, we show

that the I/O subsystem makes up a larger part of total power in

servers. Bohrer’s [7] study of workstation power consumption

considers three subsystems: CPU, hard disk, and combined

memory and I/O. Our study provides finer granularity in that

memory, I/O and chipset power are measured separately.

Mahesri’s study [29] presents fine grain measurement (ten

subsystems), but uses a different hardware (laptop) and

software (productivity workloads) configuration. Neither of

the previous works present models based on their subsystem

power characterizations.

Our study is the first to analyze chipset components discretely.

Namely, the memory controller, DRAM and I/O chips are

measured separately unlike the previous studies which group

one or more of them together. This provides a better

understanding of how workloads affect power consumption in

the various subsystems.

6 CONCLUSIONS

In this paper feasibility of predicting complete system power

consumption using processor performance events is

demonstrated. The models take advantage of the trickle-down

effect of these events. These events which are visible in the

processing unit, are highly correlated to power consumption in

subsystems including memory, chipset, I/O, disk and

microprocessor. Subsystems farther away from the

microprocessor require events more directly related to the

subsystem, such as I/O device interrupts or clock gating status.

Memory models must take into account activity that does not

originate in the microprocessor. In this case, DMA events are

shown to have a significant relation to memory power. It is

shown that complete system power can be estimated with an

average error of less than 9% for each subsystem using

performance events that trickle down from the processing unit.

7 ACKNOWLEDGEMENTS

This research is partially supported by the National Science

Foundation under grant number 0429806, and by IBM and

AMD. We would also like to thank the ISPASS [6] reviewers

for their useful suggestions.

8 REFERENCES

[1] F. J. Anscombe. Graphs in Statistical Analysis.

American Statistician, pages 17-21, February 1973.

[2] N. Bansal, K. Lahiri, A. Raghunathan, S. T.

Chakradhar. Power Monitors: A Framework for System-Level

Power Estimation Using Heterogeneous Power Models,

Proceedings of the 18th International Conference on VLSI

Design (January 2005), 579-585.

[3] F. Bellosa. The Benefits of Event-Driven Energy

Accounting in Power-Sensitive Systems. In Proceedings of the

9th Workshop on ACM SIGOPS European Workshop: Beyond

the PC: New Challenges for the Operating System (Kolding,

Denmark, September 2000), 37-42.

[4] BIOS and Kernel Developer’s Guide for AMD

Family 10h Processor. www.amd.com.

[5] W. L. Bircher, M. Valluri, J. Law, and L. John.

Runtime identification of microprocessor energy saving

opportunities. In Proceedings of the 2005 International

Symposium on Low Power Electronics and Design (San

Diego, California, August 2005), 275-280.

[6] W. L. Bircher and L. John. Complete System Power

Estimation: A Trickle-Down Approach based on Performance

Events. In IEEE International Symposium on Performance

Analysis of Systems and Software (San Jose, California, April

2007), 158-168.

[7] P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, C.

Lefurgy, C. McDowell, and R. Rajamony. The Case For Power

Management in Web Servers. IBM Research, Austin TX,

2002.

[8] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A

Framework for Architectural-Level Power Analysis and

Optimizations, In Proceedings of the 27th Annual International

Symposium on Computer Architecture, (Vancouver, British

Columbia, Canada, June 2000), 83-94.

[9] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q.

Wang, and N. Gautam, Managing Server Energy and

Operational Costs in Hosting Centers. In Proceedings of the

2005 ACM SIGMETRICS International Conference on

Measurement and Modeling of Computer Systems (Banff,

Alberta, Canada, June 2005), 303-314.

[10] J. Charles, P. Jassi, N. Ananth, A. Sadat, and A.

Fedorova. Evaluation of the Intel® Core™ i7 Turbo Boost

feature. In Proceedings of the 2009 IEEE International

Symposium on Workload Characterization (Austin, Texas,

October 2009), 188-197.

[11] G. Contreras and M. Martonosi. Power Prediction for

Intel XScale Processors Using Performance Monitoring Unit

Events. In Proceedings of the 2005 International Symposium

on Low Power Electronics and Design (San Diego, California,

August 2005), 221-226. [11] Ashutosh Dhodapkar and

James Smith. Comparing program phase detection techniques.

International Symposium. on Microarchitecture, pp 217-228,

December 2003.

[12] Jeff Janzen. Calculating Memory System Power for

DDR SDRAM. Micro Designline, Volume 10, Issue 2, 2001.

[13] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N.

Vijaykrishnan, M. Kandemir, T. Li, and L. K. John. Using

Complete Machine Simulation for Software Power Estimation:

The SoftWatt Approach. In Proceedings of the 8th

International Symposium on High-Performance Computer

Architecture (Boston, Massachusetts, February 2002), 141-

150.

[14] T. Heath, A. P. Centeno, P. George, L. Ramos, Y.

Jaluria, and R. Bianchini. Mercury and Freon: Temperature

Emulation and Management in Server Systems. In Proceedings

of the 12th International Conference on Architectural Support

for Programming Languages and Operating Systems (San Jose,

California, October 2006), 106-116.

[15] T. Heath, B. Diniz, E. V. Carrera, W. Meira Jr., and

R. Bianchini. "Energy Conservation in Heterogeneous Server

Clusters". Proceedings of the 10th ACM SIGPLAN

Symposium on Principles and Practice of Parallel

Programming (PPoPP), June 2005.

[16] C. Isci and M. Martonosi. Runtime Power Monitoring

in High-End Processors: Methodology and Empirical Data. In

36th International Symposium on Microarchitecture (San

Diego, California, December 2003), 93-104.

[17] C. Isci and M. Martonosi. Phase Characterization for

Power: Evaluating Control-Flow-Based and Event-Counter-

Based Techniques. In Proceedings of the Twelfth International

Symposium on High-Performance Computer Architecture

(Austin, Texas, February 2006), 122-133.

[18] R. Joseph and M. Martonosi. Runtime Power

Estimation in HighPerformance Microprocessors. In

Proceedings of the 2001 International Symposium on Low

Power Electronics and Design (Huntington Beach, California,

2001), 135-140.

[19] I. Kadayif , T. Chinoda , M. Kandemir , N.

Vijaykirsnan , M. J. Irwin , A. Sivasubramaniam, vEC: virtual

energy counters, Proceedings of the 2001 ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools

and Engineering, (Snowbird, Utah, June 2001), 28-31.

[20] Y. Kim, S. Gurumurthi, and A. Sivasubramaniam.

Understanding the performance-temperature interactions in

disk I/O of server workloads. In Proceedings of the Twelfth

International Symposium on High-Performance Computer

Architecture (Austin, Texas, February 2006), 176- 186.

[21] R. Kotla, S. Ghiasi, T. Keller, and F. Rawson.

Scheduling Processor Voltage and Frequency in Server and

Cluster Systems. In Proceedings of the First Workshop on

High-Performance Power-Aware Computing in conjunction

with International Parallel and Distributed Processing

Symposium (Denver, Colorado, April 2005).

[22] J. Lau, S. Schoenmackers, and B. Calder. Structures

for Phase Classification. In Proceedings of the 2004 IEEE

International Symposium on Performance Analysis of Systems

and Software (Austin, Texas, March 2004), 57-67.

[23] K. Lee and K. Skadron. Using Performance Counters

for Runtime Temperature Sensing in High-Performance

Processors. In Proceedings of the First Workshop on High-

Performance Power-Aware Computing in conjunction with

International Parallel and Distributed Processing Symposium

(Denver, Colorado, April 2005).

[24] T. Li and L. John. Run-Time Modeling and

Estimation of Operating System Power Consumption. In

Proceedings of the 2003 ACM SIGMETRICS International

Conference on Measurement and Modeling of Computer

Systems (San Diego, California, June 2003), 160-171.

[25] Linux Perfctr Kernel Patch Version 2.6,

user.it.uu.se/~mikpe/linux/perfctr, October 2006.

[26] A. Lewis, S. Ghosh, and N.-F. Tzeng. Run-time

Energy Consumption Estimation Based on Workload in Server

Systems. Workshop on Power Aware Computing and Systems,

December 2008.

[27] X. Ma, M. Dong, L. Zhong, and Z. Deng. Statistical

Power Consumption Analysis and Modeling for GPU-based

Computing. In Proceedings of the ACM SOSP Workshop on

Power Aware Computing and Systems (HotPower) 2009, (Big

Sky, Montana, October 2009).

[28] R. McGowen, C. Poirier, C. Bostak, J. Ignowski, M.

Millican, W. Parks and S. Naffziger. Temperature Control on a

90-nm Itanium Family Processor. IEEE Journal of Solid State

Circuits, Vol. 41, No. 1, January 2006.

[29] A. Mahesri and V. Vardhan. Power Consumption

Breakdown on a Modern Laptop, In Proceedings of the 4th

International Workshop on Power-Aware Computing Systems

(Portland, Oregon, December 2004), 165-180.

[30] A. Merkel and F. Bellosa. Balancing Power

Consumption in Multiprocessor Systems. Proceedings of the

2006 ACM EuroSys Conference, April 2006.

[31] Open Source Development Lab, Database Test 2,

www.osdl.org, February 2006.

[32] PostgreSQL, www.postgresql.org, October 2006.

[33] K. Rajamani and C. Lefurgy. On Evaluating Request-

Distribution Schemes for Saving Energy in Server Clusters. In

Proceedings of the 2003 IEEE International Symposium on

Performance Analysis of Systems and Software (Austin,

Texas, March 2003), 111-122.

[34] K. Ramani, A. Ibrahim, and D. Shimizu. PowerRed:

Flexible Modeling Framework for Power Efficiency

Exploration in GPUs. In Proceedings of the First Worskshop

on General Purpose Processing on Graphics Processing Units

(GPGPU) (Boston, Massachusetts, October 2007).

[35] P. Ranganathan, P. Leech, D. Irwin, and J. Chase.

Ensemble-Level Power Management for Dense Blade Servers.

In Proceedings of the 33rd International Symposium on

Computer Architecture (Boston, Massachusetts, June 2006),

66-77.

[36] S. Rivoire, P. Ranganathan and C. Kozyrakis. A

Comparison of High-Level Full-System Power Models.

Workshop on Power Aware Computing and Systems,

December 2008.

[37] D. Snowdon. OS-Level Power Management. PhD

Thesis, School of Computer Science and Engineering,

University of New South Wales, 2010.

[38] SPEC CPU 2000 Version 1.3,

www.spec.org/cpu2000, October 2006.

[39] SPECjbb 2005 Version 1.07, www.spec.org/jbb2005,

October 2006.

[40] B. Sprunt. Pentium 4 Performance Monitoring

Features,Micro, July-August, pp 72-82, 2002.

[41] J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A.

Krishnamurthyy, R. Wang. Modeling Hard-Disk Power

Consumption. File and Storage Technologies 2003.

[42] K. Scoones. Power Management Technology for

Portable Devices. Austin Conference on Energy-Efficient

Design, March 2007.

