
IEEE TRANSACTIONS ON COMPUTERS, T-2011-06-0372.R1 1

Using Branch Predictors and Variable
Encoding for On-the-Fly Program Tracing

Vladimir Uzelac, Aleksandar Milenković, Senior Member IEEE,

Milena Milenković, Member IEEE, Martin Burtscher, Senior Member IEEE

Abstract— Unobtrusive capturing of program execution traces in real-time is crucial for debugging many embedded systems.

However, tracing even limited program segments is often cost-prohibitive, requiring wide trace ports and large on-chip trace

buffers. This paper introduces a new cost-effective technique for capturing and compressing program execution traces on-the-

fly. It relies on branch predictor-like structures in the trace module and corresponding software modules in the debugger to

significantly reduce the number of events that need to be streamed out of the target system. Coupled with an effective variable

encoding scheme that adapts to changing program patterns, our technique requires merely 0.029 bits per instruction of trace

port bandwidth, providing a 34-fold improvement over the commercial state-of-the-art and a five-fold improvement over

academic proposals, at the low cost of under 5,000 logic gates.

Index Terms— Compression technologies, real time and embedded systems, testing and debugging, tracing.

——————————  ——————————

1 INTRODUCTION

HE ever-increasing hardware and software complexi-
ty and the tightening time to market impose a num-
ber of challenges to embedded system verification

and debugging. According to one estimate, software de-
velopers spend between 50% and 75% of their develop-
ment time debugging [1], and this already high fraction is
likely to grow due to the current shift towards multi-core
systems and parallel software. Yet, in spite of significant
investments in software debugging and testing, it is esti-
mated that the United States alone lose between $20 and
$60 billion a year due to software bugs and glitches [1].
For example, a study found 77% of all electronic failures
in automobiles to be due to software bugs [2]. The recent
recalls in the automotive industry are a stark reminder of
the need for improved software testing and debugging.
To shorten development time and reduce development
cost, programmers need better debugging tools.

Increasingly, developers of embedded systems rely on
on-chip resources for program debugging, as are already
present in most higher-end embedded processors. Tradi-
tional approaches to software debugging using software
instrumentation or run-control debugging are often not
allowed in such systems (e.g., automotive, avionics,
space, or military) because they are too intrusive. For in-
stance, some errors appear only when subtle timing re-

quirements are violated. Such errors are hard to repro-
duce using instrumentation or run-control debugging,
which alter the real-time characteristics of the system and
thus may cause the bugs to not manifest themselves in the
debug runs. Furthermore, it is often not practical to in-
strument critical code sections such as interrupt service
routines. In many high-reliability systems, the final code
is required to be tested absent of any instrumentation and
certified in the production system (e.g., avionics). Track-
ing down bugs in production versions of code thus can-
not rely on software instrumentation, and hardware trac-
ing is the most important tool available. Last but not least,
hardware tracing is very helpful for performance analy-
sis. It allows designers to monitor system performance in
production software without rebuilding or modifying
software or changing the timing of the code, which is in-
evitable with software instrumentation.

The IEEE’s Industry Standard and Technology Organi-
zation has developed a standard named Nexus 5001 [3]
that defines functions and a general-purpose interface for
software development and debugging of embedded pro-
cessors. Nexus 5001 specifies four classes of debug opera-
tions; higher numbered classes progressively support
more complex operations but require more on-chip re-
sources. Class 1 provides basic debug features for run-
control debugging, including single stepping, break-
points, and access to processor registers and memory
while the processor is stopped. It is traditionally imple-
mented through a JTAG interface [4]. Class 2 provides
support for nearly unobtrusive capturing and streaming
out program execution traces (control-flow) in real-time.
Class 3 provides support for capturing and streaming out
memory and I/O read/write data values and addresses,
in addition to the program execution trace. Finally, Class
4 adds resources to support emulated memory and I/O
accesses through the trace port.

xxxx-xxxx/0x/$xx.00 © 200x IEEE

T

————————————————

 V. Uzelac is with Tensilica Inc., 3255 Scott Boulevard #6, Santa Clara, CA
95054. E-mail: vladimir.uzelac@gmail.com.

 A. Milenković is with the Department of Electrical and Computer Engi-
neering, the University of Alabama in Huntsville, 301 Sparkman Drive,
Huntsville, AL 35899. E-mail: milenka@uah.edu.

 M. Milenković is with IBM, 380 Weatherford Dr. NW, Madison, AL
35757. E-mail: mmilenko@us.ibm.com.

 M. Burtscher is with the Department of Computer Science, Texas State
University-San Marcos, 601 University Drive, San Marcos, TX 78666-
4684. E-mail: burtscher@txstate.edu.

Manuscript received 3 Jun. 2011; revised 31 Mar. 2012; accepted 18 Oct. 2012.

2 IEEE TRANSACTIONS ON COMPUTERS, T-2011-06-0372.R1

Fig. 1 illustrates a typical embedded processor with its
trace and debug module. It encompasses logic for run-
control debugging (Class 1), logic to capture and filter
program execution traces (Class 2) and data traces (Class
3), on-chip buffers for storing traces (on the order of kilo-
bytes), and a trace port that connects the target system to
an external trace unit (trace probe) or directly to a devel-
opment workstation (host machine). The external trace
probe typically includes a probe processor for control, a
communication interface to the host (e.g., Ethernet or
USB), and very large trace buffers (on the order of giga-
bytes). The host machine runs a software debugger and
other trace processing tools that can read and analyze
traces, allowing programmers to step forward and back-
ward through the program execution. This way, pro-
grammers are able to gain complete visibility into the tar-
get system and its behavior while the target processor is
running at full speed.

Whereas Class 1 debug operations are widely de-
ployed and routinely used, they are lacking in several
important aspects. First, setting breakpoints and examin-
ing the processor state to locate difficult and intermittent
bugs in large software projects is demanding and time-
consuming for developers. Second, setting a breakpoint is
often not practical in debugging real-time embedded sys-
tems, e.g., it may be harmful for hard drives or engine
controllers. Third, as discussed above, debugging through
breakpoints interferes with program execution causing
original bugs to disappear in the debug run.

Many vendors have recently introduced modules with
program tracing capabilities that can be integrated into
their platforms. They usually support Class 1 operations,
often Class 2, and optionally Class 3. Some examples in-
clude ARM’s Embedded Trace Module [5][6], MIPS’s
PDTrace [7], and Tensilica’s TRAX-PC [8]. Commercial
trace modules require trace-port bandwidths in the range
of 1 to 4 bits per instruction per core for program execu-
tion traces and 8 to 16 bits per instruction per core for
data traces [9]. Thus, an internal 1 kilobyte trace buffer
can capture the execution of a program segment of 2,000
to 8,000 instructions if a program execution trace is col-
lected, or a program segment of 400 to 800 instructions if
a data trace is collected. Such short segments are often
insufficient for locating software errors in modern proces-
sors, where the distances between bug sources and their
manifestations may be millions or even billions of instruc-
tions.

To support unobtrusive tracing in Class 2 and Class 3,
the commercially available trace modules rely on hefty

on-chip buffers and wide trace ports that can sustain
streaming out large amounts of trace data in real-time.
However, these resources significantly increase system
complexity and cost, making embedded processor ven-
dors reluctant to support higher classes of the Nexus 5001
standard. This problem is exacerbated in multi-core pro-
cessors where the number of I/O pins dedicated to trace
ports cannot keep pace with the exponential growth in
the number of cores per chip. Hence, reducing the size of
the output trace is critical to (a) lower the cost of on-chip
debugging resources (smaller buffers and narrower trace
ports), (b) enable unobtrusive tracing in real time, and (c)
support debugging of processors with multiple cores.

In this paper we focus on program execution traces,
i.e., on Class 2 operations in Nexus 5001. Program execu-
tion traces record the control flow of the program and are
invaluable for hardware and software debugging as well
as for program profiling. It should be noted that for cer-
tain classes of software bugs (e.g., data races), program
execution traces alone are insufficient and data value
traces are also required. However, program execution
traces are still necessary in those cases, too – e.g., to cap-
ture exceptions. Because of the high costs, data tracing is
typically done only on a limited program segment rather
than on the entire program. Program execution traces and
program check-pointing are used to pinpoint the program
segment for which a full data trace is needed. Capturing
and compression of data traces is thus out of the scope of
this paper. More information on capturing and filtering of
data traces in real-time can be found elsewhere [10].

Filtering and compressing program execution traces at
runtime in hardware can reduce the requirements for on-
chip trace buffers and trace port bandwidth. Whereas
commercially available trace modules typically imple-
ment only rudimentary forms of hardware compression
with a relatively small compression ratio (down to about
1 bit per instruction) [9], several recent research efforts in
academia propose trace compression techniques that
reach much higher compression ratios. For example, Kao
et al. [11] propose an LZ-based program trace compressor
that achieves a good compression ratio for a selected set
of programs. However, the proposed module has a rela-
tively high complexity (50,000 gates). Uzelac and Milen-
ković introduced a double move-to-front method that
requires 0.12 bits per instruction on the trace port on av-
erage at an estimated cost of 24,600 logic gates [12]. A
compressor using a stream descriptor cache and predictor
structures requires a slightly higher trace port bandwidth
(0.15 bits per instruction) but has a much lower hardware
complexity [13].

In this paper we introduce a new technique that com-
bines hardware structures in the trace module and corre-
sponding modules in the software debugger to enable
very cost-effective compression of program execution
traces in real-time (Section 3). The proposed trace module
includes predictor structures that predict outcomes of
conditional branches and target addresses of indirect
branches (only those that cannot be inferred by the soft-
ware debugger). Identical predictor structures are main-
tained in the software debugger. The key insight that

CPU

Run Control

Instruction &
Data Tracing

Trace
Port

Target System Trace Probe

Buffers (~ GB)

Probe CPU

Communication
Interface

Host

On-chip
Buffers
(~ KB)

Software
Debugger

Trace
Tools

Communication
Interface

Binary

Fig. 1. Tracing and debugging in embedded systems: a system
view

UZELAC ET AL.: USING BRANCH PREDICTORS AND VARIABLE ENCODING FOR ON-THE-FLY PROGRAM TRACING 3

leads to good compression is that to be able to replay the
program execution off-line, we only need to record the
rare misprediction events in the trace module. We encode
these events efficiently using a variable encoding scheme
(Section 4) before they are streamed out of the chip
through a trace port, thus further reducing the required
bandwidth.

Our experimental evaluation shows that a trace mod-
ule with a predictor configuration requiring fewer than
5,000 logic gates (a 512-entry outcome predictor, an 8-
entry return address stack, and a 64-entry indirect branch
target buffer) results in only 0.0292 bits per instruction on
the trace port (which is equivalent to a compression ratio
of 1,098:1). We consider a range of branch predictor con-
figurations and their impact on the trace port bandwidth.
We also explore how to most effectively encode the trace
messages and determine good encoding parameters that
work well for a diverse set of benchmarks and for a range
of trace module configurations (Section 5).
The main contributions of this work are as follows.
• We propose using branch predictor like structures in

the trace module for cost-effectively and unobtrusive-
ly capturing and compressing program traces at run-
time.

• We introduce an effective and low-complexity encod-
ing scheme for the events that are captured at these
hardware structures.

• We perform a detailed experimental analysis that
shows the proposed trace compression scheme to
achieve excellent compression ratios, substantially
outperforming existing hardware-based techniques
for compression of program execution traces. It re-
quires over 34 times less bandwidth on the trace port
than commercial state-of-the-art solutions and over
five times less than the best published academic pro-
posal [13] at lower hardware cost.

Whereas the approach we propose in this paper shares
some commonalities with the mechanism described in
[13], such as utilizing cost-effective hardware structures
in the processor’s trace module and their counterparts in
the software debugger, the proposed approach signifi-
cantly outperforms the prior mechanism due to the fol-
lowing five reasons. (1) It employs smaller hardware
structures akin to the processor’s branch predictor to
maintain the program’s state instead of a stream de-
scriptor caches and a last stream predictor. (2) The hard-
ware structures work in parallel whereas the multi-level
structures used in [13] work in series. (3) It reduces the
number of trace messages that need to be communicated
through the trace port by employing local hit counters. (4)
It employs a variable trace record encoding scheme that
further reduces the required trace port bandwidth for a
range of benchmarks and predictor configurations. (5) It
better handles benchmarks with a significant number of
indirect branches.

The proposed method promises (a) to significantly re-
duce the cost of capturing and streaming out control-flow
traces by eliminating the need for large on-chip trace
buffers and wide trace ports, (b) to shorten the time soft-
ware developers spend on debugging, and (c) to expedite

certification and validation of production systems be-
cause entire program traces can be captured and later
analyzed.

2 PROGRAM EXECUTION TRACES

Program execution traces are created by recording the
program counter (PC) values of the committed instruc-
tions. However, to be able to replay a program offline in a
software debugger with access to the program binary, we
need to record only changes in the program flow, caused
by control-flow instructions or exceptions during pro-
gram execution. When a change in the program flow oc-
curs, we need to capture (a) the PC of the currently exe-
cuting instruction and (b) the branch target address (BTA)
in case of a control-flow instruction or the exception-
handler target address (ETA) in case of an exception.
With this information, the program’s execution path can
be recreated from a sequence of <PC, BTA/ETA> pairs.
To reduce the number of bits required to encode a <PC,
BTA/ETA> pair, a program counter can be replaced by
the number of instructions executed in a sequential run
since the last change in the control flow (we call this
number stream length or SL for short). Thus, a program’s
execution path can be represented by a sequence of <SL,
BTA/ETA> pairs. However, even this already much
smaller trace still contains redundant information that can
be omitted. For example, the target address of a direct
branch is known statically and can be inferred by the
software debugger from the program binary. Conse-
quently, in such cases only the stream length needs to be
reported <SL, ->. Similarly, there is no need to report un-
conditional direct branches; their outcomes and targets
are also known statically. However, in spite of these op-
timizations the number of bits that need to be streamed
out through the trace port remains relatively large.

To illustrate the challenges associated with program
execution tracing, we profiled 17 representative bench-
marks from the MiBench suite [14]. The benchmarks are
compiled for the ARM instruction set [15] and statistics
are collected on the SimpleScalar functional simulator
[16]. TABLE 1 shows the benchmark statistics of interest
for capturing program flow information. The relatively
low frequency of branch instructions (only stringsearch
has more than 20%) is due to ARM’s ISA support for con-
ditional (predicated) instructions, which allows the com-
piler to reduce the number of control flow instructions.
The last row shows statistics for the entire benchmarks
suite.

The last column shows the required trace port band-
width for the program execution trace (PET) when
enough information necessary to reconstruct program
execution is streamed out, i.e., the stream length and tar-
get address for indirect branches and exceptions. The
bandwidth is expressed as the average number of bits per
executed instruction (bits/ins). The total trace port band-
width is 1.05 bits/ins, which closely matches the band-
width reported for commercial state-of-the-art trace
modules [9]. The trace port bandwidth ranges from 0.15
to 4.91 bits/ins, depending on the frequency and type of

4 IEEE TRANSACTIONS ON COMPUTERS, T-2011-06-0372.R1

control-flow instructions executed by the benchmarks.
For example, in the bf_e benchmark, over 5.5 percent of all
instructions are indirect branches, resulting in a high trace
port bandwidth of 4.91 bits/ins. To be able to capture a
program execution trace without stopping the target pro-
cessor, we need either trace buffers that can hold a signif-
icant portion of the program execution or a wide trace
port so the trace can be streamed out on the fly. An alter-
native is to further reduce the required bandwidth, as
shown in the next section.

3 PROGRAM TRACING USING BRANCH PREDICTOR

STRUCTURES

Almost all modern mid- to high-end embedded proces-
sors include branch predictors in their front-ends. Branch
predictors detect branches and predict the branch target
address and the branch outcome early in the pipeline,
thus reducing the number of wasted clock cycles due to
control hazards. The target of a branch is predicted using
a branch target buffer (BTB), a cache-like structure in-
dexed by a portion of the branch PC [17] that keeps target
addresses of taken branches. A separate hardware struc-
ture named indirect branch target buffer (iBTB) can be
used to better predict indirect branches that may have
multiple targets [18]. A dedicated stack-like hardware
structure called return address stack (RAS) is often used
to predict return addresses [19]. Branch outcome predic-
tors range from a simple linear branch history table (BHT)
with 2-bit saturating counters to very sophisticated hy-
brid branch outcome predictor structures [20] found in
recent commercial microprocessors [21]. Branch predic-
tors are typically very effective, predicting branch out-
comes and target addresses with high accuracy.

The concept of branch prediction can be used to dra-
matically reduce the amount of trace information that
needs to be streamed out of the target platform. Assum-
ing a software debugger that can replay control-flow in-
structions and includes a software model of the target
machine’s branch predictor (with the same organization
and functionality), it is possible to replace the control-
flow trace <SL, -/BTA/ETA> with a branch predictor
trace. By maintaining its own copy of the branch predic-
tor structures, the software debugger only requires trace
messages when the target platform’s branch predictor
mispredicts. With the typically high prediction accuracy
of branch predictors, this approach promises a dramatic
reduction in the number of trace messages that needs to
be communicated.

Ideally, we would be able to use the CPU’s branch
predictor and augment it with additional logic to com-
pose trace messages, enabling control-flow tracing almost
for free. Unfortunately, such an approach poses several
challenges. First, tracing functionality is typically imple-
mented in trace modules offered as intellectual property
cores that connect to a processor core through a well-
defined interface. Thus, tight integration of tracing infra-
structure with the critical portion of the processor pipe-
line is not desirable. More importantly, support for trac-
ing would place debilitating restrictions on the branch

predictor’s design and operation. For example, if the
software debugger cannot replay kernel code (e.g., be-
cause the software debugger does not have a complete
image of the system), we would need to reset the content
of the branch predictor to a known state on each context
switch to maintain consistency between the branch pre-
dictor in the CPU pipeline and the branch predictor in the
software debugger. Next, we would need to disallow
speculative updates of the branch predictor structures
because they cannot be recreated on the software debug-
ger side unless a detailed cycle accurate simulator of the
target machine is available, which is impractical and/or
economically infeasible. These restrictions would result in
an unacceptable loss of accuracy of the branch predictor
and therefore CPU performance, and are not further con-
sidered in this paper. Instead, we propose a trace module
that incorporates branch predictor structures that are
solely devoted to tracing. To distinguish it from the pro-
cessor’s branch predictor, we named it Tracing Branch
Predictor, or T-raptor for short.

T-raptor includes structures for predicting branch tar-
gets and branch outcomes. Unlike regular branch predic-
tors, T-raptor does not need to include a large BTB be-
cause direct branch targets can be inferred from the bina-
ry. Instead, it may include an iBTB for predicting targets
of indirect branches, and a RAS for predicting return ad-
dresses. T-raptor structures are updated like regular
branch predictors, but later in the pipeline, i.e., only when
a branch instruction is retired. As long as the prediction
from T-raptor corresponds to the actual program flow,
the trace module does not need to send any trace records.
It reports only misprediction events. These events are encod-
ed and sent via a trace port to a software debugger. The
software debugger maintains an exact software copy of

TABLE 1
MIBENCH PROGRAM STATISTICS RELATED TO INSTRUCTION

TRACING

IC DirUB DirCB IndUB IndCB SWI PET

[mil.] [%] [%] [%] [%] [%] bits/ins

adpcm_c 732.52 0.01 3.64 0.01 0.00 0.00 0.150
bf_e 544.06 5.66 6.73 5.55 0.00 0.00 4.913
cjpeg 104.61 1.19 9.11 0.17 0.15 0.00 0.790
djpeg 23.39 0.64 5.15 0.14 0.01 0.00 0.390
fft 631.04 2.30 11.27 1.78 0.49 0.00 1.895
ghostscript 708.10 2.22 12.15 2.18 0.34 0.00 1.814
gsm_d 1299.27 4.23 5.49 0.33 0.00 0.00 0.621
lame 1285.12 0.83 4.45 0.32 0.00 0.00 0.452
mad 287.09 0.76 5.57 0.57 0.20 0.00 0.785
rijndael_e 319.98 1.33 3.81 1.08 0.13 0.00 1.013
rsynth 824.94 1.31 5.70 0.67 0.00 0.00 0.883
sha 140.89 0.22 6.60 0.11 0.04 0.00 0.602
stringsearch 3.68 2.11 17.41 1.56 0.48 0.00 2.157
tiff2bw 143.26 0.06 7.76 0.08 0.02 0.01 0.668
tiff2rgba 151.70 0.08 3.53 0.11 0.03 0.01 0.349
tiffdither 832.95 1.15 14.29 0.21 0.00 0.00 0.692
tiffmedian 541.26 0.04 4.64 0.04 0.00 0.00 0.380
Total 1.82 7.06 0.92 0.08 0.00 1.055

IC – instruction count, DirUB – frequency of direct unconditional branch-

es, DirCB – frequency of direct conditional branches, IndUB – frequency of

indirect unconditional branches, IndCB – frequency of indirect conditional

branches, SWI – frequency of software exceptions, and PET – program

execution trace.

UZELAC ET AL.: USING BRANCH PREDICTORS AND VARIABLE ENCODING FOR ON-THE-FLY PROGRAM TRACING 5

the T-raptor structures. It reads the branch predictor trace
records, replays the control-flow instructions, and up-
dates its branch predictor structures in the same way T-
raptor is updated on the target platform during program
execution.

We assume that only retired instructions are passed to
the trace module, allowing the software debugger to re-
play program execution utilizing a fast functional simula-
tor for the given architecture. An alternative would be to
capture speculative instructions as well, in which case we
would need additional trace message to invalidate the
prior trace messages and re-synchronize the state of the
hardware structures.

Fig. 2 shows a system view of the proposed tracing
mechanism. The trace module is coupled with the CPU
core’s instruction retirement unit through an interface
that carries the relevant information for each instruction
(PC, BTA, ETA, instruction type, exception). The trace
module monitors this information and updates its state
accordingly. It includes two counters: an instruction
counter (iCnt) that counts the number of instructions re-
tired since the last trace event has been reported and a
branch counter (bCnt) that counts the number of relevant
control-flow instructions executed since the last trace
event has been reported (see Fig. 3 for the trace module
operation). The iCnt counter is incremented upon retire-
ment of each instruction and bCnt is incremented only
upon retirement of control-flow instructions of certain
types, namely after direct conditional branches (DirCB)
and all indirect branches (IndUB and IndCB). These
branch instructions may be either correctly predicted or
mispredicted by T-raptor. In case of a correct prediction,
i.e., the frequent case, the trace module does nothing be-
yond the counter updates. In case of a misprediction, i.e.,
the infrequent case, the trace module generates a trace
message that needs to be sent to the software debugger
and clears the counters.

The type and format of the trace message depends on
the branch type and the misprediction event type (TABLE
2). In case of a direct branch outcome misprediction, the
trace record includes only the bCnt value so that the soft-
ware debugger can replay the program execution until
the mispredicted branch is reached. Then, it simply fol-
lows the not-predicted path. In case of an indirect branch
misprediction, we can have an outcome misprediction, a
target address misprediction, or both. For an indirect
branch incorrectly predicted as taken, the trace record
includes the bCnt and information specifying that the
branch is not taken (NT bit). In case of a target address
misprediction, the trace record includes the bCnt, the out-
come taken bit (T), and the actual target address (BTA).
Finally, in case of an exception, the trace module emits a
trace record that includes the iCnt and the starting ad-
dress of the corresponding exception handler.

The software debugger replays all instructions, updat-
ing the software copy of T-raptor and the counters in the
same way their hardware counterparts are updated (see
Fig. 4); in particular, all branch instructions update the
predictors. The debugger reads a trace message and then
replays the program instruction-by-instruction. If it pro-

cesses a non-exception trace message, the counter bCnt is
decremented on direct conditional and indirect branch
instructions. When the counter reaches zero, the software
debugger processes the current instruction depending on
its type. If the instruction is a direct conditional branch,
the debugger takes the opposite outcome from the one
provided by the predictor. Then a new trace message is
read to continue program replay. If the current instruc-
tion is an indirect branch, the debugger reads the out-
come bit and possibly the target address from the trace
message and redirects program execution accordingly.
Similarly, if the debugger processes an exception trace
record, the iCnt counter is decremented on each instruc-
tion retirement until the instruction on which the excep-
tion has occurred is reached. If the software debugger can
replay the exception handler, tracing can continue and the
compressor structures are updated as usual. Alternative-
ly, the tracing is stopped and resumed upon return from
the exception handler. A developer needs to configure the
trace module for one of these two options using configu-
ration messages before the tracing starts; in addition, the
software debugger also needs to know which of these two
approaches is used.

Although this paper focuses on single-threaded
benchmarks, the proposed method can be extended to
support multi-threaded workloads through the addition
of a ‘thread switch’ trace message. Akin to the exception
trace record, this message would encompass an iCnt
counter field and a thread identification number. In case
of self-modifying code, T-raptor would require synchro-
nization trace records that are emitted whenever a new
region of the code is dynamically compiled. This syn-
chronization message will need to be accompanied by the
newly generated code from the Virtual Machine.

Target CPU

Program
Binary

Software
Debugger

Debug HOST

External Trace
Unit

PC
Trace B

u
ffer

Trace
Storage

Trace R
ec. D

eco
d

er

I/O
 In

terface

BTA/ETA

CPU
Core

Tr
ac

e
P

o
rt

Exception

Tr
ac

e
B

u
ff

er

iType T-raptor
Structures

Tr
ac

e
R

ec
. E

n
co

d
er

Hit/Miss
Events

HW Trace Module

SW Trace Module

BTA

ETA
bCnt

iCnt

bCnt

T-raptor
Structures

iCnt

Fig. 2. System view of program-execution tracing using T-raptor.

iType-instruction type, PC – program counter, BTA – branch target ad-

dress, ETA – exception target address, iCnt – instruction counter, bCnt –

branch counter.

6 IEEE TRANSACTIONS ON COMPUTERS, T-2011-06-0372.R1

3.1 Related Software-Based Trace Compression
Techniques

A number of software-based trace compression tech-
niques have been introduced [22] [23] [24] [25]. The rela-
tionship between data compression and branch predic-
tion was first noted by Chen et al. [26]. Several recent
software-based trace compression techniques rely on
branch predictors [27] or, more generally, on value pre-
dictors [28]. Many of these schemes include trace-specific
compression in the first stage, combined with a general-
purpose compressor in the second stage. For example,
Barr and Asanović [27] have proposed a branch-predictor
based trace compression scheme for improving architec-
tural simulation. Similar to our scheme, they keep track of
the number of correct predictions and emit entire trace
records only in case of mispredictions. Whereas this
scheme utilizes the same underlying program characteris-
tics as our scheme, there are some notable differences.
First, their algorithm compresses program traces in software
and is aimed at warming-up architectural simulators. It is
designed to maximize the compression ratio assuming
virtually unlimited storage and processing resources.
Hence, it relies on large predictor structures that require
megabytes of memory storage. More importantly, it uti-
lizes the gzip compression algorithm for efficient encod-
ing of the output trace. Such an approach would be cost-
prohibitive or infeasible for real-time compression in
hardware. Moreover, the inner workings of Barr and As-
anović’s compression algorithm are different from our
approach. Whereas we use a subset of regular branch
predictor structures in the trace module and encode regu-
lar misprediction events, they use the incoming branch
trace records as input into a range of branch predictor-
like software structures to predict the next trace record,
rather than the next instruction.

In summary, our goal is to develop a hardware trace
compressor that uses a minimal subset of branch predic-
tor structures (e.g., we do not use a BTB) and employs an
efficient encoding scheme that ensures unobtrusive trac-
ing in real-time at minimal hardware cost. Our work
strives to answer key questions concerning (a) the organi-
zation and implementation of the predictor structures in
the trace module, (b) the efficient tracking of program
behavior, (c) efficient adaptive encoding of trace messag-
es, and (d) the overall performance of the proposed
method.

4 VARIABLE ENCODING OF TRACE MESSAGES

Trace messages should be encoded in a way that mini-
mizes the trace port bandwidth requirements and enables
simple and efficient implementation. A straightforward
approach to encode the trace messages shown in TABLE 2
is to use fixed length fields for the counter values (bCnt,
iCnt), the prediction bit (T/NT), and the target address
field (BTA or ETA). However, using fixed-field formats is
a suboptimal solution. The bCnt values in trace messages
vary widely between programs and even within a pro-
gram as it moves through different program phases (e.g.,
mispredictions are more likely during initialization due to

cold misses in the predictor structures). Moreover, the
bCnt values in the trace messages are heavily influenced
by the T-raptor misprediction rate, which in turn is a
function of the type and organization of the predictor
structures. For example, a fixed 8-bit field can encode
bCnt values from 1 to 255. However, we may have bCnt
values that require more than 8 bits to encode. Moreover,
a number of upper bits will often be unused, resulting in
unnecessary waste in trace port bandwidth (e.g., when
reporting bCnt=3, the six upper bits would effectively be
unused). Similarly to the bCnt values, the iCnt values also
vary widely and are influenced by the frequency and the
distribution of exception events. Thus, the challenge is to
devise an encoding scheme that will work well across

different benchmarks and configurations while minimiz-
ing the number of bits streamed out through the trace
port.

To illustrate some of these encoding challenges, we
profiled our benchmarks on a range of T-raptor configu-
rations, starting from those that include only a small
branch outcome predictor to those that include a larger
outcome predictor, an indirect branch target buffer

1. // For each committed instruction

2. iCnt++; // increment iCnt

3. if ((iType==IndBr) || (iType==DirCB)) {

4. bCnt++; // increment bCnt

5. if (T-raptor mispredicts) {

6. Encode mispredicton event;

7. Place record into the Trace Buffer;

8. iCnt = 0;

9. bCnt = 0;

10. }
11. }
12. if (Exception event) {
13. Encode an exception event;
14. Place record into the Trace Buffer;
15. iCnt = 0;
16. bCnt = 0;
17. }

Fig. 3. T-raptor operation.

1. // For each instruction

2. Replay the current instruction;

3. if (exception rec. is being processed) {

4. iCnt--;

5. if (iCnt == 0) {

6. Goto Exception Handler Routine;

7. Get the next trace record;

8. }

9. }

10. if (iType==AnyBranch) {
11. Update software copy of T-raptor;
12. if ((iType==IndBr) || (iType==DirCB)) {
13. bCnt--;
14. if (bCnt==0) Get the next trace rec.;
15. }
16. }

Fig. 4. Execution replay in the software debugger.

TABLE 2
TRACE MODULE BRANCH PREDICTION EVENTS AND CONTENT

OF TRACE RECORDS

Control-flow Type T-raptor Events Trace Record For-
mat

DirCB Outcome mispred. <bCnt>
IndCB (NT) Outcome mispred. <bCnt, NT>
IndCB (T) or IndUB Target mispred. <bCnt, T, BTA>
Exception -- <iCnt, ETA>

UZELAC ET AL.: USING BRANCH PREDICTORS AND VARIABLE ENCODING FOR ON-THE-FLY PROGRAM TRACING 7

(iBTB), and a return address stack (RAS). Fig. 5 shows the
cumulative distribution function (CDF) for the minimum
number of bits needed to encode the values found in the
bCnt counter, referred to as length(bCnt), for several char-
acteristic benchmarks (bf_e and lame). The line marked
total shows the CDF when all benchmark programs in our
suite are taken into account. We consider two extreme T-
raptor configurations, S0 (Fig. 5a) and B4 (Fig. 5b). The S0
configuration includes only a 256-entry gshare outcome
predictor, whereas B4 includes a 1024-entry gshare out-
come predictor, a 64-entry iBTB, and an 8-entry RAS. The
relatively low prediction rate for S0 results in frequent
trace messages with small bCnt values that can be encod-
ed with a small number of bits (see Fig. 5a). For example,
considering the total CDF for the benchmark suite, we see
that over 30 percent of all bCnt values can be encoded
with a single bit (bCnt=1, indicating a large number of
consecutive misses in the branch predictor), over 70 per-
cent can be encoded with two bits (bCnt=1, 2, or 3), and
over 90 percent can be encoded with 3 bits. In contrast,
the B4 configuration achieves a higher prediction rate,
resulting in fewer trace messages with larger bCnt values
(Fig. 5b). For example, 40 percent of all bCnt values can be
encoded with two bits, over 70 percent can be encoded
with four bits (bCnt values 1 to 15), and over 95 percent
can be encoded with six bits. This shows that the predic-
tor configuration impacts the bCnt profiles, and in some
cases the change is quite significant. For example, bf_e
with the B4 configuration has a very small number of
mispredictions and over 70 percent of the bCnt values
require exactly five bits. The remaining 30 percent of the
bCnt values require exactly nine bits. This is quite a signif-
icant change relative to the profile of this program when
using the S0 configuration. We further observe that dif-
ferent benchmarks exhibit very different profiles for the
same configuration (e.g., compare bf_e and lame with the
B4 configuration). Thus, to meet the encoding challenge,
we opt for a variable encoding scheme and an empirical
approach to determine good encoding parameters.

In our encoding scheme, all trace messages start with
the field that contains the bCnt value. The length of this
field is variable: after eliminating the leading zero bits,
the bCnt counter bits are divided into a certain number of
chunks, which do not necessarily need to be of equal size
(see Fig. 6a). Each chunk is followed by a so-called con-
nect bit (C) that indicates whether it is the terminating
chunk for the bCnt field (C=0), or whether it is followed
by more chunks with additional bits from the bCnt value
(C=1). For example, a trace message that includes a 3-bit
chunk ‘110’ (the least significant bit of the chunk goes
first) followed by a connect bit with value ‘0’ indicates a
misprediction event occurred on the third control-flow
instruction from the previous event (bCnt=3). If the first
chunk ends with a connect bit C=1, more bits follow in
the next chunk. Let us assume that the following chunk is
also three bits long and its value is ‘010’ and C=0. This
trace record thus specifies a bCnt value of ‘010_011’ or 19
in decimal.

The length of individual chunks (i0, i1, …, ik) is a de-
sign parameter that should be determined empirically. In

determining the length of individual chunks, we need to
balance the overhead caused by the connect bits (shorter
chunks result in a relative increase in the overall number
of connect bits) and the number of wasted bits in individ-
ual chunks (longer chunks result in lower overhead due
to connect bits, but may have more unused leading zero
bits).

The trace records for mispredicted indirect branches
contain information about the correct target address, in
addition to the bCnt value. An alternative to sending an

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14

length(bCnt) [bits]

CDF

bf_e

lame

total

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14

length(bCnt) [bits]

CDF

bf_e

lame

total

(b)

Fig. 5. Cumulative distribution function for the minimum bCnt length
for the S0 (a) and B4 (b) configurations.

b0 … bi0-1 1 …bi0 … bi0+i1-1 1 bi(k-1)…bi(k-1)+ik-1 0

(a) Encoding bCnt values

t0 … tj0-1 1 …tp … tp+q-1 1 tp+q*l…tp+q*l+q-1 0

(b) Encoding |diffTA| values

0 1 k

i0 bits i1 bits ik bits

j0 bits j1 bits jl bits

0 1 l

Fig. 6. Variable encoding of branch counters and target addresses

8 IEEE TRANSACTIONS ON COMPUTERS, T-2011-06-0372.R1

entire 32-bit address is to encode the difference between
subsequent target addresses. The trace module maintains
the previous target address (PTA), that is, the target ad-
dress of the last mispredicted indirect branch. When a
new target misprediction event is detected, the trace
module calculates the difference diffTA as follows: diffTA
= TA - PTA, where the TA is the target address of the cur-
rent branch. The trace module then updates the PTA,
PTA=TA. By profiling the absolute value of the diffTA,
|diffTA|, we found that we can, indeed, shorten the trace
records by using difference encoding. Fig. 7 shows the
cumulative distribution function for the minimum num-
ber of bits needed to encode the |diffTA|, called
length(|diffTA|), for two benchmarks with a significant
number of indirect branch instructions (fft and ghost-
script). The line marked total represents the CDF for the
entire benchmark suite. Similarly to the bCnt profiles, we
again consider the two T-raptor configurations S0 (Fig.
7a) and B4 (Fig. 7b).

The results from Fig. 7 indicate that we rarely need
more than 18 bits to encode the |diffTA| field for our
benchmarks, regardless of the T-raptor configuration. The
slowly rising slopes of CDFs indicate that a variable en-
coding should be applied to encode the |diffTA| field,
too. Whereas the CDFs for individual benchmarks change
with the T-raptor configuration, they generally follow
similar trends. One may wonder about the source of a
certain number of |diffTA| values that can be encoded by
a single bit as illustrated in Fig. 7b. This seeming anomaly
stems from a certain number of hard to predict indirect
branches that are consecutively mispredicted, that is,
|diffTA| = 0. With the B4 configuration, the number of
such branches is relatively high because the majority of
the remaining indirect branches are correctly predicted by
the iBTB and RAS structures. With the S0 configuration,
all indirect branch target addresses are mispredicted and
need to be streamed out. To implement variable encoding
for |diffTA|, we can use a similar scheme as shown for
the bCnt value (see Fig. 6b for illustration). The trace mes-
sages carrying the |diffTA| field are followed by a sign
bit that specifies whether the difference is a positive or a
negative number.

An exception trace record starts with a single chunk
where bCnt = 0, followed by a field that holds the value of
the iCnt counter and the starting address of the exception
handler (ETA). We employ variable encoding for both of
these fields. A detailed analysis aimed at finding good
values for chunk sizes is provided in the next section.

5 EXPERIMENTAL EVALUATION

The goal of our experimental evaluation is to thoroughly
explore the design space for the proposed trace module.
We want to identify a T-raptor configuration that
achieves maximum compression (or minimum trace port
bandwidth) at minimal cost in hardware complexity. As a
measure of performance, we use the average number of
bits emitted on the trace port per instruction, which is
equivalent to 32/(Compression Ratio) for the 32-bit ARM
ISA. The trace port bandwidth is a function of (a) the pre-

diction rates of the T-raptor structures, which in turn de-
pend on the benchmark characteristics and predictors’
size and organization, and (b) the encoding parameters.
We explore a wide range of T-raptor configurations (15 in
total), starting from those that include only a small out-
come predictor, to those with large outcome predictors, a
RAS, and an iBTB (Section 5.1). The selection of the en-
coding parameters and their impact on the trace port
bandwidth is discussed in Section 5.2. We compare the
trace port bandwidth of the proposed mechanism to the
best pre-existing techniques in Section 5.3. Finally, we
perform a complexity estimation and provide recommen-
dations for configurations that strike a balance between
complexity and compression ratio (Section 5.4).

5.1 T-Raptor Organization

Fig. 8 shows the T-raptor block diagram. For outcome
prediction, T-raptor uses a global gshare outcome predic-
tor in three sizes with p=256 (configuration marked with
S), 512 (M), and 1024 (B) entries, each entry with a 2-bit
counter. The index function is gshare.index =
BHR[log2(p):0] xor PC[4+ log2(p):4], where the BHR register
holds the outcome history of the last log2(p) conditional
branches.

For target address prediction of indirect branches, we
consider five configurations, marked 0 through 4, which
are: (0) no predictor structures dedicated to target address

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

length(|diffTA|) [bits]

CDF

fft

ghostscript

total

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

length(|diffTA|) [bits]

CDF

fft

ghostscript

total

(b)

Fig. 7. Cumulative distribution function (CDF) for minimum |diffTA|
length for the S0 (a) and B4 (b) configurations.

UZELAC ET AL.: USING BRANCH PREDICTORS AND VARIABLE ENCODING FOR ON-THE-FLY PROGRAM TRACING 9

prediction; (1) an 8-entry RAS only, (2) an 8-entry RAS
and a 16-entry iBTB, (3) an 8-entry RAS and a 32-entry
iBTB, and (4) an 8-entry RAS and a 64-entry iBTB. All
iBTB predictors are 2-way set-associative structures. Each
entry in the iBTB includes a tag field and the target ad-
dress. The tag and iBTB index are calculated based on
information from a path information register (PIR) [29].
For example, a 64-entry iBTB uses a 13-bit PIR that is up-
dated by relevant branch instructions as follows:
PIR[12:0]=((PIR[12:0]<<2) xor PC[16:4]) | Outcome, where
PC is the program counter and Outcome is the outcome bit
of conditional branches. The iBTB tag and index are calcu-
lated as follows: iBTB.tag = PIR[7:0] xor PC[17:10], and
iBTB.index = PIR[12:8] xor PC[8:4].

TABLE 3 shows outcome prediction rates for the three
sizes of outcome predictor (S, M, and B) and target ad-
dress prediction rates (M0 – M4). We can see that only a
few benchmarks benefit from an increased size of the out-
come predictor (fft, ghostscript, mad, and stringsearch); one
benchmark has a relatively low prediction rate (lame) of
about 86 percent, regardless of the predictor size. For in-
direct target address predictors, the RAS captures a large
number of indirect target addresses (e.g., bf_e), and sever-
al other benchmarks benefit significantly from the iBTBs
(fft, ghostscipt, rinjndael_e, and tiff2bw). It should be noted
that more sophisticated predictors may be considered that
would provide even higher prediction rates, but here we
opted for a simple and straightforward design to prove
that branch predictor structures are practical in compress-
ing program execution traces.

5.2 Encoding Parameters Selection

To select good encoding parameters, i.e., chunk sizes, for
the proposed variable encoding, we profiled the MiBench
benchmarks using all T-raptor configurations (as shown
in Fig. 5 for the S0 and B4 configurations). Whereas each
benchmark has its own set of parameters that yields the
minimal size of the output trace, we searched for parame-
ters that minimize the size of the output trace when all
benchmarks are considered. However, it should
be noted that the proposed encoding makes
benchmark-wise customization of chunk sizes
practical – it can be accomplished before tracing
through initialization of trace module control reg-
isters based on typical program profiles.

In the search for good values for chunk sizes i0,
i1, i2 … ik (Fig. 6), we limited the design space by
requiring that i1=i2=…= ik. We vary the parame-
ters i0, i1  [1, 6] and jm  [1, 14], m=0 … l. TABLE
4 lists the parameters that yield the minimal out-
put trace sizes for all configurations. For the bCnt
encoding, we can see that configurations that pre-
dict only outcomes (S0, M0, B0) favor shorter
chunks (i0 = 2, i1 = 1). Configurations with an
iBTB and a RAS favor larger chunk sizes (i0 = 2, i1
= 2; i0 = 3, i1 = 1; and i0 = 3, i1 = 2). One interest-
ing question is how important it is to use the en-
coding parameters that give the minimal output
trace. All four pairs shown in TABLE 4 lay within

10% of each other, so selecting any of them will not cause
dramatic changes in the trace port bandwidth. Other en-
coding parameters not listed in TABLE 4 may result in
larger differences, though. In general, the sensitivity to
variation in the encoding parameters is more pronounced
for configurations with no predictor structures for target
prediction (S0, M0, and B0).

Similarly, we analyzed the minimum bit length of the
|diffTA| field in search of a good set of encoding parame-
ters (Fig. 7). Again, the selection is somewhat influenced
by the T-raptor configuration. The three sets of parame-
ters shown in TABLE 4 emerge as the most effective. The
selected parameters result in output target address trace
sizes that are within 12% of each other, indicating a cer-
tain level of stability in the variable encoding. To quantify
the impact of the proposed encoding of the |diffTA|, we
compare it to an encoding where entire 32-bit addresses
are streamed out for target address mispredictions. We
find that the proposed encoding almost halves the num-
ber of target address bits that needs to be streamed out
through the trace port.

Path Information

Register (PIR)

iBTB

iBTB hit

PC

iBTB target

Tag

 ...

Target

0

1

 q-1

...

RAS

0

1

7

XOR
iBTB.tag

iBTB.index

Branch History

Register (BHR)

PC

XOR
ghare.index

...

0

1

 p-1

Gshare

way0

way1

p=256 p=512 p=1024

none S0 M0 B0

RAS, q=0 S1 M1 B1

RAS, q=8 S2 M2 B2

RAS, q=16 S3 M3 B3

RAS, q=32 S4 M4 B4

Fig. 8. T-raptor organization and configurations.

TABLE 3
OUTCOME AND TARGET ADDRESS PREDICTION RATES

Outcome Prediction Rate

Target Address Prediction Rate

S M B

M0 M1 M2 M3 M4

adpcm_c 0.999 0.999 0.999

0.000 0.999 0.999 0.999 0.999
bf_e 0.982 0.984 0.984

0.000 1.000 1.000 1.000 1.000

cjpeg 0.916 0.923 0.928

0.000 0.599 0.923 0.945 0.967
djpeg 0.940 0.950 0.954

0.000 0.383 0.674 0.756 0.852

fft 0.860 0.908 0.937

0.000 0.807 0.914 0.916 0.949
ghostscript 0.896 0.948 0.959

0.000 0.285 0.409 0.607 0.974

gsm_d 0.965 0.973 0.976

0.000 0.983 0.984 0.991 0.993
lame 0.855 0.871 0.879

0.000 0.983 0.984 0.986 0.986

mad 0.888 0.914 0.926

0.000 0.973 0.975 0.975 0.977
rijndael_e 0.951 0.950 0.967

0.000 0.722 0.777 0.998 0.999

rsynth 0.938 0.945 0.947

0.000 0.996 0.998 0.998 0.999
sha 0.951 0.951 0.956

0.000 0.747 0.991 0.997 0.996

stringsearch 0.889 0.919 0.931

0.000 0.502 0.555 0.728 0.786
tiff2bw 0.996 0.997 0.997

0.000 0.467 0.467 0.612 0.901

tiff2rgba 0.992 0.993 0.994

0.000 0.485 0.595 0.763 0.881
tiffdither 0.900 0.909 0.918

0.000 0.979 0.979 0.981 0.986

tiffmedian 0.979 0.980 0.982

0.000 0.588 0.609 0.643 0.812

10 IEEE TRANSACTIONS ON COMPUTERS, T-2011-06-0372.R1

In spite of the relatively low frequency of exception
events, we also analyzed the profiles for the iCnt counters
to determine good encoding parameters. The profiles for
software exceptions indicate that all iCnt values can be
encoded using 2-bit chunk sizes.

5.3 Trace Port Bandwidth Analysis

Fig. 9 shows the total trace port bandwidth on our
benchmark suite for several configurations of the pro-
posed trace module (S0, S1, S4, M4, and B4) and several
preexisting techniques (NEXS, TSLZ, DMTF, and SDC-
LSP). TABLE 5 provides more detail by showing the av-
erage trace port bandwidth for each benchmark. We
compare our technique with a Nexus-like trace module
(NEXS) [3] and two trace-specific adaptations of general-
purpose compression algorithms, namely the LZ scheme
(TSLZ) [11] and the DMTF scheme [12], and a trace-
specific compression method that uses stream cache and
last stream predictor structures (rSDC-LSP) [13]. To illus-
trate the effectiveness of the proposed technique, we also
compare it to the software gzip utility when compressing
a sequence of <SL, -/BTA/ETA> pairs (SW-GZIP). Note
that implementing a gzip compressor in hardware would
be cost-prohibitive in both the on-chip area and the com-
pression latency.

The NEXS scheme assumes sending the minimum in-
formation needed to the trace port to replay the program
off-line; it consists of a sequence of <SL, -/TA> pairs. The
TA field is differentially encoded and leading zeros are
not emitted, which is similar to the Nexus standard. The
TA field is XORed with the previous TA and the differ-
ence is split into groups of 6 bits. For example, if dif-
fTA[31:6] consists of zeros, then only diffTA[5:0] is sent to
the trace port, together with a 2-bit header indicating that
this is a terminating byte for the target address. The aver-
age trace port bandwidth required for the NEXS scheme
is 0.907 bits/ins (close to the reporting bandwidths of
commercial trace modules), ranging from 0.149 bits/ins
for adpcm_c to 4.01 bits/ins for bf_e. Assuming a CPU core
that can execute one instruction per clock cycle (IPC=1),

and a trace port working at the processor clock speed, we
would need at least 5 data pins on the trace port to trace
the program execution unobtrusively (the worst case bf_e

requires over 4 bits/ins on average).
The TSLZ compressor encompasses three stages: filter-

ing of branch and target addresses, then difference-based
encoding, and finally hardware-based LZ compression.
We implemented this compressor and analyzed its per-

TABLE 4
CHUNK SIZES FOR THE BCNT AND |DIFFTA| VALUES

bCnt chunk sizes Configurations

i0 = 2, i1 = 1 S0, M0, B0

i0 = 3, i1 = 1 S1, M1, M2

i0 = 2, i1 = 2 S2, S3

i0 = 3, i1 = 2 S4, M3, M4, B1,B2, B3, B4

|diffTA| chunk sizes Configurations

j0 = 8, j1 = 6, j2 = 6, j3 = 12 S0, M0, B0

j0 = 1, j1 =7, j2 = 10, j3 = 14 S1, S2, S3, S4

j0 = 1, j1 = 11, j2 = 6, j3 = 14 M1, M2, M3, M4,

B1, B2, B3, B4

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

NEXS TSLZ DMTF rSDC-LSPSW-GZIP S0 S1 S4 M4 B4

b
it

s/
in

st
r

Trace Port Bandwidth

Fig. 9. Trace port bandwidth evaluation.

TABLE 5
TRACE PORT BANDWIDTH: A COMPARATIVE ANALYSIS

NEXS TSLZ DMTF rSDC-LSP SW-GZIP

S0 S1 S4 M4 B4

adpcm_c 0.1486 0.0237 0.0011 0.0013 0.0014

0.0011 0.0005 0.0003 0.0003 0.0003
bf_e 4.0102 0.3538 0.2840 0.3452 0.0377

0.9628 0.0118 0.0099 0.0093 0.0093

cjpeg 0.7523 0.4312 0.0906 0.0884 0.0497

0.0936 0.0690 0.0426 0.0409 0.0382
djpeg 0.3656 0.2298 0.0522 0.0536 0.0191

0.0507 0.0428 0.0230 0.0209 0.0199

fft 1.5545 1.9208 0.2011 0.5538 0.0648

0.4658 0.1777 0.1118 0.0874 0.0711
ghostscript 1.5776 1.3938 0.3060 0.2161 0.0381

0.6620 0.4546 0.0856 0.0565 0.0483

gsm_d 0.5672 0.1518 0.0396 0.0515 0.0091

0.0837 0.0156 0.0152 0.0128 0.0122
lame 0.3910 0.1706 0.1130 0.1092 0.0405

0.0796 0.0318 0.0322 0.0283 0.0267

mad 0.6678 0.2678 0.1475 0.1170 0.0418

0.1277 0.0351 0.0355 0.0313 0.0273
rijndael_e 0.8400 0.0426 0.0960 0.1849 0.0127

0.2274 0.0964 0.0156 0.0155 0.0111

rsynth 0.7467 0.2707 0.1080 0.1488 0.0182

0.1419 0.0243 0.0225 0.0208 0.0203
sha 0.5666 0.4414 0.3872 0.0745 0.0053

0.0550 0.0267 0.0219 0.0218 0.0204

stringsearch 1.9319 1.9617 0.0489 0.4163 0.1044

0.4510 0.3154 0.1906 0.1727 0.1644
tiff2bw 0.6543 0.1460 0.0114 0.0308 0.0063

0.0203 0.0147 0.0046 0.0045 0.0042

tiff2rgba 0.3296 0.1597 0.0060 0.0124 0.0053

0.0266 0.0178 0.0060 0.0059 0.0056
tiffdither 0.6588 0.5733 0.0118 0.1589 0.0801

0.0895 0.0667 0.0668 0.0619 0.0572

tiffmedian 0.3740 0.0810 0.1656 0.0278 0.0068

0.0135 0.0094 0.0072 0.0070 0.0067
Total 0.9066 0.4462 0.1196 0.1505 0.0307

0.2139 0.0748 0.0352 0.0292 0.0261

UZELAC ET AL.: USING BRANCH PREDICTORS AND VARIABLE ENCODING FOR ON-THE-FLY PROGRAM TRACING 11

formance on our set of benchmarks. TSLZ configured
with a sliding window of 256 12-bit entries requires 0.446
bits/ins on the trace port on average (ranging from 0.024
to 1.96 bits/ins). This compressor’s complexity is estimat-
ed to be 51,678 logic gates [11]. The enhanced DMTF
compressor encompasses two stages, each featuring a
history table performing the move-to-front transfor-
mation. The compressor with a 192-entry first level and a
4-entry second level history table, eDMTF(192,4), requires
on average 0.118 bits/ins on the trace port (ranging from
0.001 to 0.306 bits/ins). These two schemes reduce the
trace port bandwidth, but they rely on fully-associative
search tables that increase the cost of a hardware imple-
mentation and the compression latency. In addition, the
worst performing benchmarks for TSLZ still require more
than a single bit per instruction. Increasing the size of the
search tables could alleviate this problem, but at a further
increase in hardware complexity. The rSDC-LSP trace
compressor with a 128-entry stream cache and a 128-entry
last stream predictor requires on average 0.15 bits/ins, at
much lower complexity of ~6,100 logic gates.

T-raptor demonstrates superior performance with even
lower complexity. For example, configuration S1 (256
entries outcome predictor and an 8-entry RAS) requires
only 0.0748 bits/ins on average on the trace port, which is
a half of the bandwidth required by the rSDC-LSP. Con-
figurations with no target address predictors for indirect
branches (S0, M0, B0) perform poorly for all benchmarks
with a significant number of indirect branches and are
considered here only as border configurations. Our most
complex configuration B4 requires only 0.0261 bits/ins on
average, ranging from 0.0003 bits/ins (adpcm_c) to 0.16
bits/ins (stringsearch). It outperforms eDMTF(192,4) over
4.5 times and rSDC-LSP(128,128) over 5.7 times. We fur-
ther observe that the compression ratio achieved by the
M4 and B4 configurations even outperforms the software
gzip utility when compressing a sequence of <SL,TA/->
pairs, which further underscores the strength of the pro-
posed mechanism.

5.4 Hardware Complexity and Implementation
Issues

To estimate the size of the proposed trace module, we
need to estimate the size of all structures inside the trace
module, including the outcome predictor, RAS, iBTB, PIR,
BHR, the trace encoder, and the trace output buffer. The
estimation of the size of the predictor structures is
straightforward. For the iBTB and RAS, we include an
enhancement to reduce their complexity. We find that the
uppermost 12 bits of the indirect branch targets remain
unchanged relative to the previous target in 99.99% of the
cases in our benchmarks. Consequently, we can use a last
value predictor for the upper 12 bits of the target address
and keep only the lower 18 bits in the iBTB and RAS en-
tries (the last two bits are always zero in the ARM archi-
tecture). A miss in the last value predictor causes the
whole target address to be included in the trace record.
This way we reduce the complexity significantly with
negligible degradation in the iBTB and RAS prediction hit
rates. It should be noted that the number of bits that can

be eliminated from the iBTB target address fields with
negligible penalty for the prediction rates depends on the
benchmark characteristics. However, we believe that a
certain number of upper address bits is likely to stay con-
stant or change infrequently, even with dynamically
loaded libraries, object-oriented code, and other modern
software techniques.

To determine the size of the trace output buffer, we
used a cycle-accurate processor model to find the maxi-
mum number of bits in this buffer at any point during
benchmark execution. We assume the trace buffer is emp-
tied through the trace port at the rate of a one bit per pro-
cessor clock cycle. The worst case happens during warm-
up, when we experience a number of consecutive mis-
predictions in the fft and ghostscript benchmarks. For the
M4 configuration, we find that a buffer of 79 bits ensures
that the processor is never stalled due to tracing and that
no trace records are lost; this number is higher for config-
urations without target address predictors (up to 384
bits).

The estimates for the hardware complexity measured
in logic gates are given in Fig. 10 and range between 1,771
logic gates for S0 to 6,382 for B4. These estimates confirm
our expectations about the relatively small complexity of
the proposed trace module compressor structures and
support. All T-raptor configurations have much lower
complexity than other competitive solutions, except B4,
which has approximately same complexity as the rSDC-
LSP(128,128).

Fig. 10 shows the compression ratio as a function of the
complexity for all configurations. It allows us to trade
compression ratio for complexity and thus meet design
requirements. Clearly, configurations S0, M0, and B0 are
not attractive design points. Since they require deeper
trace buffers, they are almost as complex as configura-
tions with an 8-entry RAS (S1, M1, B1). If we want to min-
imize complexity and trace port bandwidth (maximize
compression ratio) and both are equally important, con-
figurations S1 and M4 are good options. Similarly, if we
value lower complexity more than trace port bandwidth,
configuration S1 emerges as a top choice. Finally, if we
want to minimize trace port bandwidth and do not worry
about additional complexity, then B4 is the top candidate,
followed by M4 and S4.

We do not expect the proposed mechanism to increase

S0 (1,771; 145)

S1 (1,809; 427)

S2 (2,350; 521)

S3 (2,830; 614)

S4 (4,078; 910)

M0 (2,539; 144)

M1 (2,577; 459)

M2 (3,118; 568)

M3 (3,598; 687)

M4 (4,846; 1098)

B0 (4,075; 153)

B1 (4,113; 477)

B2 (4,654; 589)

B3 (5,134; 729)

B4 (6,382; 1228)

0

200

400

600

800

1000

1200

1400

0 1000 2000 3000 4000 5000 6000 7000

C
o

m
p

re
ss

io
n

 R
at

io

Complexity [Logic gates]

Compression Ratio vs. Complexity

S0-S4

M0-M4

B0-B4

Fig. 10. Compression Ratio vs. Complexity.

12 IEEE TRANSACTIONS ON COMPUTERS, T-2011-06-0372.R1

the overall energy expenditures caused by tracing.
Whereas lookups in the predictor structures result in an
additional energy overhead, these structures are relative-
ly small (less than 5 Kgates). In contrast, preexisting solu-
tions rely on large on-chip trace buffers and wide trace
ports. Reads and writes into large on-chip buffers and
streaming out a large amount of trace data through the
trace port are by far the most expensive operations in
terms of energy consumed. By dramatically reducing the
size of the trace that needs to be streamed out and elimi-
nating the need for large on-chip trace buffers, we expect
the proposed method to reduce overall energy expendi-
tures due to tracing activities.

6 CONCLUSIONS

This paper introduces a new low-cost technique for real-
time and unobtrusive tracing of program execution in
embedded computer systems. The proposed trace module
tracks the program execution by maintaining branch pre-
dictor-like structures that are updated during program
execution akin to regular branch predictors. The debug-
ger maintains a software version of these structures and
updates them during program replay using the same pol-
icies as in the trace module. The trace module needs to
stream out only mispredictions in the predictor struc-
tures. Given the generally low misprediction rates of the
predictor structures, the number of trace messages that
needs to be reported is small, thus dramatically reducing
the number of bits that needs to be traced out. We also
introduce a highly-effective variable encoding scheme
and optimize its parameters to further reduce the number
of bits that needs to be streamed out.

Our experimental evaluation explores the design space
of the proposed module, considering a range of predictor
configurations and variable encoding parameters. For
example, we find that a configuration with a 512-entry
gshare outcome predictor, an 8-entry RAS, and a 64-entry
iBTB requires a trace port bandwidth of only 0.0292 bits
per committed instruction, which corresponds to a com-
pression ratio of 1098:1, at a hardware cost of only 4,846
logic gates. This bandwidth represents an over 34-fold
improvement over the commercial state-of-the-art and an
over 5-fold improvement over the best academic pro-
posals at a much lower hardware cost.

ACKNOWLEDGMENT

The authors would like to thank the anonymous review-
ers for their valuable suggestions. This work was sup-
ported in part by US National Science Foundation (NSF)
grants CNS-0855237, CNS-1217231, and CNS-1217470.

REFERENCES

[1] G. Tassey, “The Economic Impacts of Inadequate Infrastruc-

ture for Software Testing,” 2002. [Online]. Available:

http://www.rti.org/pubs/software_testing.pdf.

[2] K. D. McDonald-Maier and A. B. T. Hopkins, “An awaken-

ing thought: Don’t let the bug bite while you are embedded,”

Embedded Systems Engineering, vol. 12, pp. 32–33, 2004.

[3] IEEE-ISTO, “The Nexus 5001 Forum Standard for a Global

Embedded Processor Debug Interface,” 2003. [Online]. Avail-

able: http://www.nexus5001.org/standard.

[4] IEEE, “IEEE Std 1149.1-1990 IEEE Standard Test Access Port

and Boundary-Scan Architecture -Description,” 2001.

[Online]. Available:

http://standards.ieee.org/reading/ieee/std_public/descript

ion/testtech/1149.1-1990_desc.html.

[5] ARM, “Embedded Trace Macrocell Architecture Specifica-

tion,” 2007. [Online]. Available:

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0014

o/IHI0014O_etm_v3_4_architecture_spec.pdf.

[6] ARM, “CoreSight On-chip Debug and Trace Technology,”

2004. [Online]. Available:

http://www.arm.com/products/solutions/CoreSight.html.

[7] MIPS, “MIPS PDtrace Specification,” 2009. [Online]. Availa-

ble: http://www.mips.com/products/product-

materials/processor/mips-architecture/.

[8] Tensilica, “Non-intrusive Real-Time Trace Debug,” 2009.

[Online]. Available:

http://www.tensilica.com/products/hw-sw-dev-tools/for-

software-developers/real-time-trace-3.htm.

[9] W. Orme, “Debug and Trace for Multicore SoCs,” 2008.

[Online]. Available:

http://www.arm.com/files/pdf/CoresightWhitepaper.pdf.

[10] V. Uzelac and A. Milenković, “Hardware-based data value

and address trace filtering techniques,” in Proceedings of the

2010 international conference on Compilers, architectures and syn-

thesis for embedded systems, New York, NY, USA, 2010, pp.

117–126.

[11] C.-F. Kao, S.-M. Huang, and I.-J. Huang, “A Hardware Ap-

proach to Real-Time Program Trace Compression for Em-

bedded Processors,” IEEE Transactions on Circuits and Systems,

vol. 54, pp. 530–543, 2007.

[12] V. Uzelac and A. Milenkovic, “A Real-Time Program Trace

Compressor Utilizing Double Move-to-Front Method,” in

Proceedings of the 46th Annual Design Automation Conference,

San Francisco, CA, 2009, pp. 738–743.

[13] A. Milenkovic, V. Uzelac, M. Milenkovic, and M. Burtscher,

“Caches and Predictors for Real-Time, Unobtrusive, and

Cost-Effective Program Tracing in Embedded Systems,” IEEE

Transactions on Computers, vol. 60, no. 7, pp. 992–1005, 2011.

[14] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T.

Mudge, and R. B. Brown, “MiBench: A free, commercially

representative embedded benchmark suite,” in Proceedings of

the 4th Annual Workshop on Workload Characterization, 2001, pp.

3–14.

[15] ARM, “Architecture and Implementation of the ARM® Cor-

texTM-A8 Microprocessor,” 2005. [Online]. Available:

http://www.arm.com/pdfs/TigerWhitepaperFinal.pdf.

[16] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An Infra-

structure for Computer System Modeling,” IEEE Computer,

vol. 35, pp. 59–67, 2002.

[17] C. H. Perleberg and A. J. Smith, “Branch Target Buffer De-

sign and Optimization,” IEEE Trans. Comput., vol. 42, pp.

396–412, 1993.

[18] K. Driesen and U. Hölze, “Accurate indirect branch predic-

tion,” SIGARCH Comput. Archit. News, vol. 26, pp. 167–178,

UZELAC ET AL.: USING BRANCH PREDICTORS AND VARIABLE ENCODING FOR ON-THE-FLY PROGRAM TRACING 13

1998.

[19] D. R. Kaeli and P. G. Emma, “Branch history table prediction

of moving target branches due to subroutine returns,”

SIGARCH Comput. Archit. News, vol. 19, pp. 34–42, 1991.

[20] S. McFarling, “Combining Branch Predictors,” Digital

Equipment Corporation, 1993.

[21] S. Gochman, R. Ronen, I. Anati, A. Berkovits, T. Kurts, and

A. Naveh, “The Intel Pentium M Processor: Microarhitecture

and Performance,” Intel Technology Journal, vol. 7, pp. 21–36,

2003.

[22] A. R. Pleszkun, “Techniques for compressing program ad-

dress traces,” in Proceedings of the 27th Annual International

Symposium on Microarchitecture, San Jose, CA, 1994, pp. 32–39.

[23] A. Milenkovic and M. Milenkovic, “An Efficient Single-Pass

Trace Compression Technique Utilizing Instruction Streams,”

ACM Trans. Model. Comput. Simul., vol. 17, pp. 1–27, 2007.

[24] M. Burtscher, I. Ganusov, S. J. Jackson, J. Ke, P.

Ratanaworabhan, and N. B. Sam, “The VPC Trace-

Compression Algorithms,” IEEE Trans. Comput., vol. 54, pp.

1329–1344, 2005.

[25] Y. Luo and L. K. John, “Locality-Based Online Trace Com-

pression,” IEEE Transaction on Computers, vol. 53, pp. 723–731,

2004.

[26] I.-C. K. Chen, J. T. Coffey, and T. N. Mudge, “Analysis of

branch prediction via data compression,” SIGOPS Oper. Syst.

Rev., vol. 30, pp. 128–137, 1996.

[27] K. C. Barr and K. Asanovic, “Branch trace compression for

snapshot-based simulation,” in Proceedings of the International

Symposium on Performance Analysis of Systems and Software,

2006, pp. 25–36.

[28] M. Burtscher and M. Jeeradit, “Compressing Extended Pro-

gram Traces Using Value Predictors,” in Proceedings of the

12th International Conference on Parallel Architectures and Com-

pilation Techniques, 2003, pp. 159–169.

[29] V. Uzelac and A. Milenkovic, “Experiment flows and micro-

benchmarks for reverse engineering of branch predictor

structures,” in Proceedings of the IEEE International Symposium

on Performance Analysis of Systems and Software, 2009, pp. 207–

217.

Vladimir Uzelac. Vladimir Uzelac received his B.S. degree in elec-
trical engineering from the University of Belgrade in 2002 and his
M.S. and Ph.D. degrees in computer engineering from the University
of Alabama in Huntsville in 2008 and 2010. In the meantime he
worked as a hardware design engineer for several years. He is cur-
rently an R&D engineer for embedded software and debugging ar-
chitecture and tools working for Tensilica, Santa Clara.

Aleksandar Milenković is Associate Professor of Electrical and
Computer Engineering at the University of Alabama in Huntsville,
where he leads the LaCASA Laboratory
(http://www.ece.uah.edu/~milenka). He received the Dipl. Ing., M.S.,
and Ph.D. degrees in computer engineering and science from the
University of Belgrade, Serbia, in 1994, 1997, and 1999. His re-
search interests include computer architecture, embedded systems,
VLSI, and wireless sensor networks. Prior to joining the University of
Alabama in Huntsville he held academic positions at the University of
Belgrade in Serbia and the Dublin City University in Ireland. He is a
senior member of the IEEE, its Computer Society, the ACM, and Eta
Kappa Nu.

Milena Milenković received her B.S. and M.S. degrees from the
University of Belgrade and her Ph.D. degree from the University of

Alabama in Huntsville. Her research interests include performance
evaluation, secure computer architectures, data compression, and
architecture-aware compilers. Milena joined IBM in June 2005 as an
advisory software engineer. She is a member of the IEEE, its Com-
puter and Women in Engineering Societies, and the ACM.

Martin Burtscher is Associate Professor in the Department of Com-
puter Science at Texas State University-San Marcos. He received
the combined BS/MS degree in computer science from the Swiss
Federal Institute of Technology (ETH) Zurich in 1996 and the Ph.D.
degree in computer science from the University of Colorado at Boul-
der in 2000. Martin's research interests include efficient paralleliza-
tion of programs for GPUs and multicore CPUs, automatic perfor-
mance assessment and optimization of HPC applications, and high-
speed data compression. He is a senior member of the IEEE, its
Computer Society, and the ACM. Martin has co-authored over 65
peer-reviewed research publications.

