PC-DUOS+: A TCAM Architecture for Packet
Classifiers

Tania Banerjee-Mishra and Sartaj Sahni
Department of Computer and Information Science and Engingeri
University of Florida, Gainesville, FL 32611
{tmishra, sahnrji@cise.ufl.edu

Gunasekaran Seetharaman, AFRL, Rome, NY
Gunasekaran.Seetharaman@rl.af.mil

Abstract—We propose algorithms for distributing the classifier the action. So, when the packet classifier rules are stored in
rules to two TCAMs (ternary content addressable memories) a TCAM in decreasing order of priority (increasing order of
and for incrementally updating the TCAMs. The performance of cost), we can determine the action in one TCAM cycle.

our scheme is compared against the prevalent scheme of storing . .
classifier rules in a single TCAM in priority order. Our scheme We present a TCAM architecture, update algorithms and a

results in an improvement in average lookup speed by up to 49% TCAM lookup mechanism in this paper for packet classifiers.
and an improvement in update performance by up t03.84 times The two main contributions of our method are fast TCAM

in terms of the number of TCAM writes. lookup for packet classifiers and an advanced incremental
Index Terms—Packet classifiers, TCAM, updates. update scheme that requires few TCAM writes per update.
The fast lookup scheme is enabled by exploiting a TCAM
l. INTRODUCTION without a priority encoder to store selected rules in a diass
’ o) TCAMs without an encoder reduce TCAM search latencies by
Internet packets are classified into different flows based 8896[1]. The incremental update scheme uses a novel TCAM
the packet header fields. This classification of packets medqje jnsertion algorithm that either shifts the overlagpiles
using a table of rules in which each rule is of the foff A), \ith lower priority (compared to a new rule) downwards or
where F" is a filter andA is an action. When an incoming iqse with higher priority upwards to allot a slot for the new
packet matches a filter in the classifier, the correspondifge assuming TCAM addresses increase downwards. Conven-
action determines how the packet is handled. For examplgnaly the overlapping rules with lower priority are &bl
the packet could be forwarded to an appropriate output line\yn\ards in the TCAM for packet classifier and forwarding
or it may be dropped. Al-dimensional filterf" is a d-tuple (ahje ypdates. The new insertion scheme reduces the number
(F[1], F[2],---, F[d]), where F'[i] is a range specified for an ot Tcam writes by up to 52% on our tests, compared to
attribute in the packet header, such as destination addrggs conventional scheme. Further, this algorithm may bel use
source address, port number, protocol type, Transmissipfh any TCAM architecture for packet classifiers, and is not
Control Protocol (TCP) flag, etc. A packet matches fillerif |, ited to PC-DUOS+.
its attribute values fall in the ranges 6f[1],---, F'|d]. Sincé \yg pegin in Section Il by reviewing the background and
it is possible for a packet to match more than one of thejated work. In Section Ill we describe our scheme of stprin

filters in a classifier thereby resulting in a tie, each ruls h%acket classifiers in TCAMs. An experimental evaluation
an associated cost or priority. When a packet matches tWoRr ;v scheme is done in Section IV and we conclude in
more filters, the action corresponding to the matching rite w goction V.

the lowest cost (highest priority) is applied on the packes
assumed that filters that match the same packet have differen
costs.

[4], [5] survey the many solutions that have been propose_dwe first describe the PC-DUOS+ archlte_cture in Sec-
for packet classifiers. Among these, TCAMs have widel§on I-A and then present the related work in the field of
been used for packet classification as they support highdspd&AM based packet classifiers in Section 1I-B. Section 1I-C
lookups and are simple to use. Each bit of a TCAM may be Hgscribes a simple TCAM and how classifier rules are stored,
to one of the three states 0, 1, angdon’t care). A TCAM is whereas Section II-D describes the differences between PC-
used in conjunction with an SRAM. Given a rul (A), the DUOS+ and PC-DUCS.
filter ' of a packet classifier rule is stored in a TCAM word
whereas and actioA is stored in an associated SRAM wordA. The Architecture
AII TCAM entries are searched in parallel and the first ma.tch DUOS [9] is a dual-TCAM architecture with simple SRAM
is used to access the corresponding SRAM word to retrieygorq size of 32 bits) used for packet forwarding. The same

This material is based upon work funded by AFRL, under AFRL tGart basic architecture .|S used in PC'DU_OS .(PaCket CIa;smer B
No. FA8750-10-1-0236. DUQOS) [15], and in PC-DUOS+, which is an extension of

II. BACKGROUND AND RELATED WORK

PC-DUOQOS. The TCAM architecture used in DUOS is showdeleted, the freed slot is added to a list of free spaces for
in Figure 1. There are two TCAMSs, labeled as the ITCAMhat prefix block. Each prefix block has its own list of free
(Interior TCAM) and the LTCAM (Leaf TCAM). DUOS also slots. With this scheme even with 99% prefix occupancy in the
employs a binary trie in the control plane of the router ttCAM and 1% free space, the total number of prefix moves
represent the prefixes in the forwarding table. The prefixasing DLFS PLO is at most 0.7% of the total number of prefix
found in the leaf nodes of the trie are stored in the LTCAMpserts and deletes.

and the remaining prefixes are stored in the ITCAM. The To support lock-free updates, so the TCAMs can be up-
prefixes stored in the LTCAM are independent and therefodated without locking them from lookups, DUOS implements
at most one LTCAM prefix can match a specified destinatiaronsistent update operations that rule out incorrect neatohn
address. Hence the LTCAM doesn't need a priority encod@rroneous next hops during lookup. For consistent updétes,
Prefix lookup works in parallel on both the TCAMs. If ais assumed that:

match is found in the LTCAM then that is guaranteed to be 1) Each TCAM has two ports, which can be used to

the longest matching prefix and the corresponding next hop
is returned. At the same time the ongoing lookup process on
the ITCAM (which takes longer due to the priority resolution 2)
step) is aborted. Thus, if a match is found on the LTCAM,
the overall lookup time is shortened by about 50% [1]. The
logic on the final stage in Figure 1 that chooses between the

simultaneously access the TCAM from the control plane
and the data plane.

Each TCAM entry/slot is tagged with a valid bit, that

is set to 1 if the content for the entry is valid, and to

0 otherwise. A TCAM lookup engages only those slots
whose valid bit is 1. The TCAM slots engaged in a

lookup are determined at the start of a lookup to be
those slots whose valid bits are 1 at that time. Changing a
valid bit from 1 to O during a data plane lookup does not
disengage that slot from the ongoing lookup. Similarly,

two next hops could be moved ahead and placed between the
TCAM and SRAM stages. In that case, the logic receives one
“matching index” input from the LTCAM and another from
the ITCAM. If a match is found in the LTCAM, the index
from LTCAM input is used to access the LSRAM, otherwise, changing a valid bit from 0 to 1 during a data plane
the ITCAM index is used to access the ISRAM. Further, if a lookup does not engage that slot until the next lookup.
match is found in the LTCAM, the ITCAM lookup is aborted Additionally, ~ the availability = of the function

The memory management schemes used in DUOS areitWriteValidate is assumed which writes to a TCAM
highly efficient. The ITCAM needs to store the prefixes iislot and sets the valid bit to 1. In case the TCAM slot being
decreasing order of length, for example, so that the firstitten to is the subject of an ongoing data plane lookup,
matching prefix is also the longest matching prefix. DUOS [®he write is delayed till this lookup completes. During the
uses a memory management scheme (Scheme 3, also knownrite, the TCAM slot being written to is excluded from
DLFS PLO - Distributed and Linked Free Space with Prefidata plane lookups. Similarly, the availability of the ftino
Length Ordering), which initially distributes the free spa invalidateW aitWrite, is assumed. This function sets the
valid bit of a TCAM slot to 0 and then writes an address to
the associated SRAM word in such a way that the outcome
of the ongoing lookup is unaffected. All these assumptions
for DUOS are also made by our PC-DUOS and PC-DUOS+
architectures.

11y

Inde Nexthop

B. Existing Work on Packet Classifiers in TCAMs

When packet classifiers are stored in a TCAM, the main

attributes for optimization are TCAM space and power con-

| Nexthor sumption, updating mechanism and lookup performance. A
classifier rule often needs more than one TCAM entry to
represent port ranges, and this is called the port range ex-
pansion problem. Various approaches have been proposed in
the literature to alleviate the range expansion problene Th
schemes in [3], [14], [12], [17], [18], [19], [26] encode the
ranges and store modified rules in the TCAM. As a packet
arrives, an encoded search key is created from the packet
header fields using the encoding algorithm and the TCAM
is searched using the encoded search key. Spitznagel et al.
[20] proposed enhancements to the TCAM hardware to include
range comparison. With such an enhanced TCAM circuit, each
rule occupies a single entry in the TCAM.

available in a TCAM between blocks of prefixes (of same A reduction of port range expansion helps to reduce TCAM

length) in proportion to the number of prefixes in a block. Aower consumption. Other strategies for TCAM power re-

free slot needed to add a new prefix is moved from a locatioluction are compressing packet classifiers by removing re-

that requires the minimum number of moves. As a prefix dundancies is an effective strategy to reduce TCAM power

YIAOONT ALIHOIAd

R

Input
destinatio
address

(100.24.1.7)

ITCAM ISRAM

Index

T

Nexthop

LTCAM LSRAM

Fig. 1. Dual TCAM Architecture

consumption. The approaches in [21], [22], [25], [23], [24]ules possibly being stored in more than 1 TCAM. The
present algorithms that transform an input classifier to anle to TCAM distribution strategy ensures that an incoming
equivalent smaller classifier. These algorithms quite nadliu packet can be matched only by the rules in a single TCAM.
contain port range expansions. While these approaches brikg) a result, the packets in an incoming stream may be
about significant reductions in classifier size, they areegaly distributed to appropriate TCAMs for classification acliigy
not suitable for incremental updates, since a rule to beetle an expected throughput that is abd(t3 (when key encoding
for instance, may not be present in the transformed classifis used) times the throughput of a simple TCAM classifier
The problem of incorporating updates to packet classifiefSection 1I-C). However, since an adversary may inject a
stored in TCAMs has been studied in [6] and [2]. The authomacket stream all of whose packets require the same TCAM for
in [6] present a method for consistent updates when th@kup, the worst-case throughput is about a third (the $ame
classifier updates arrive in a batch. All deletes in an updateat of a simple TCAM classifier when key encoding is (not)
batch are first performed to create empty slots in the TCAMsed. Further, even though it may be possible to initialiee t
Then the relative priority of the relevant rules (for examplTCAMs to have a roughly equal share of the rules, as updates
rules overlapping with a new rule being inserted) is deteedi are performed, the TCAM occupancy can become unbalanced.
and the existing rules are moved accordingly to reflect afhe strategies suggested in [13] to re-balance the TCAMs
change in priority ordering as the entire batch of updatesdslay processing of the packet stream as the affected TCAMs
applied. Following the ordering of existing rules, new sugge are not available for lookup during re-balancing. In theexte
inserted in appropriate locations. A problem with the aillpon case, expensive redistribution algorithms have to be ruh an
of [6] is that it performs the deletes in the update batch.firdhe entire set of rules redistributed to tli& TCAMs. The
This could lead to temporary inconsistencies in lookup [10]strategy of [13] also requires substantial additional ivaire (a
Given a packet classifier, a naive approach is to store it dimstributer, X' processing units, a mapper, etc.) to orchestrate
a TCAM by entering each rule sequentially as they appetlre system. PC-DUOS+, on the other hand, requires much
in the classifier and distribute all the empty slots betwedess additional hardware and no re-balancing. Further, the
rules. As mentioned in [2], this approach could lead to highCAMs are never locked out for lookup and so there is never
power consumption during look as the whole TCAM has to ke delay in processing the packet stream. PC-DUOS+, which
searched including the empty entries. On the other hankeif tuses two TCAMs and no key encoding, obtains an expected
empty entries are kept together at the higher addresse® of ttiroughput of about twice that of a simple single TCAM.
TCAM, then those may be excluded from lookups. Howevethis is comparable to the expected throughput of DPPC-RE
if the empty spaces are kept at one end of the TCAM, thevhen K = 2 and key encoding is not used. However, the PC-
it would require a large number of rule moves to create @&UJOS+ architecture is much simpler, requires no re-batanci
empty slot at a given location. Specifically, all the ruleghie and has no lockout of lookups. Since some components (e.g.
TCAM, below the slot to be emptied must be moved belowdispatcher and mapper) of DPPC-RE must operaf€ #tmes
Song and Turner [2] describe a fast TCAM update schertiee speed of a TCAM, the scalability of DPPC-RE is limited
on packet classifiers. In their method, the classifier rutes @o a technology dependent valué,,.,. When this limit is
entered arbitrarily in the TCAM and are not arranged accorteached, the expected throughput may be further doubled by
ing to decreasing order of priority. They ensure that théact replacing each TCAM of DPPC-RE with a PC-DUOS+.
corresponding to the highest priority matching rule is metd The idea of splitting a given set of rules to speed up lookup
by performing multiple searches on the TCAM. Specificallywas used by Kasnavi et al. [16] for packet forwarding. They
they assign a priority (which we call block number here) tase different treatment for prefixes that are 16-bits or éewb
each rule and encode the block number as a TCAM fietdose that are more than 16 bits in length to achieve a low
and allow the highest priority TCAM match to be foundoower, high throughput lookup system.
using log, n searches, where is the total number of block
values assigned in the classifier. The highest priority mat _
corresponds to the rule with the minimum block number. Thg Simple TCAM (STCAM)
rule and its assigned block number are entered in the TCAM.We use a STCAM architecture for performance comparison.
Even though this method does not incur TCAM writes duéhe STCAM is a modification over the naive TCAM in that
to rule moves for maintaining consistent block numbers féhe rules are grouped by block numbers, which reduces the
overlapping rules or to create an empty slot at the righteplaoumber of required moves when a free slot is needed. The
for inserting a new rule, this method involves a number ¢equired number of moves is now bounded by the total number
TCAM writes as the assigned block numbers of rules changéblocks. The block numbers are assigned to the rules using
due to inserts or deletes. Moreover, lookup speed is slowdag algorithm presented in [2], based on a priority graph. A
down since multiple TCAM searches are required and theggority graph is a representation of the rules in a clagsifie
searches cannot be pipelined as they take place on the s&aeh rule is represented by a vertex in the priority graph.
TCAM. There is an edge between two vertices iff the corresponding
Zheng et al. [13] describe a distributed and parallel TCAM

architecture, DPPC-RE (Distributed and Parallel PackesCl IWe assume that a rule fits in a TCAM slot. So, when key encoding is
used, two TCAM searches (one for each of the source and déstinports)

sification with Range Encoding), for packet classification iare needed to encode the key and a third TCAM search is needed|é
which the rules are stored X (>1) TCAMS with some matching.

rules overlap. The direction of the edge is from the vertex fo Xﬁﬂss

the higher priority rule to the vertex for the lower priorityle.

Block #
R1: 1.x.x.x 0.0.x.x }—> 1
R2: 1.X.X.X X.X.X.X

} > 2
R3: 0.X.X.X X.X.X.X
R4: X.XXXXXXX | = 3

Example: Suppose a classifier has four two-field rules as
shown in Figure 2. Figure 3 shows the priority graph for

a bW N P O

Index | Rule (Source, Destination) Priority

TCAM Block numbers
R1 (1.0.0.0/8, 0.0.0.0/16) 1

R2 (1.0.0.0/8, 0.0.0.0/0) 2 Fig. 4. Rules of Figure 2 in a TCAM; and mapping of TCAM addreste
R3 (0.0.0.0/8, 0.0.0.0/0) 3 block numbers
R4 (0.0.0.0/0, 0.0.0.0/0) 4

Fig. 2. A classifier with four rules algorithms for ITCAM rule insertion which require fewer

moves to rearrange rules for priority based adjustments. Th
this classifier. Consider rules R1 and R4. These two rulgpCAM insert algorithm is not specific to PC-DUOS+, and

overlap with each other and rule R1 is of higher prioritycan be used with any packet classifier architecture to reduce
compared to rule R4. Thus there is an edge between i@ number of writes during an update.

vertices corresponding to rules R1 and R4 and the direction

of the edge is from rule R1 to R4. On the other hand, there m
is no edge between the rules R1 and R3, because the source .)
prefix fields of these rules are non-overlapping. For example PC-DUOS+ uses the 2-TCAM architecture used in PC-
R3 matches source addresses with 0 on the first octet, wherP440S[15] (Figure 1). During lookup, the LTCAM and IT-

R1 matches those with 1 on the first octet. Thus, the setscdfM are searched in parallel using the packet header in-
addresses matched by R1 and R3 are disjoint. formation. If a match is found in the LTCAM, the ongoing

search in the ITCAM is aborted. When the ITCAM search is
aborted, lookup time is reduced by about 50%][1], because the

LTCAM has no priority encoder. For this lookup strategy to
./ yield correct results, the following requirements mustdhol
@ R1) No packet is matched by more than one rule in the
LTCAM.

@ R2) When a packet is matched by a rule in the LTCAM,

the matched rule must be the highest priority match-
Fig. 3. A priority graph ing rule.

The method of assigning block numbers to the rules 1€ algorithms used fpr stor.ing and updating rules in the
explained as follows: a subset of the rules is identified sudl-AMs are discussed in detail below.
that within the subset, each rule overlaps with every othlex. r
Such a subset, in this example, are the rules R1, R2 and R4.Storing Rules in TCAMs
Each rule in the subset is assigned a different block number_. . .

. o . Figure 5 shows the overall flow of storing rules in the
based on its priority. Block numbers can be reused for differ . . .
:) ITCAM and the LTCAM. The first phase involves creating

non-overlapping rule subsets. Thus, rules with the samekblo

number are all non-overlanping or independent. Two rules a priority graph and a multi-dimensional trie for the rules i
ppIng P ' ahe classifier. This is further discussed in Section Ill-Ahe

independent iff there is no packet that matches both thes.ruleecond phase in our methodology consists of identifying a

The rules R2 and R3 are independent rules in this examp?e . Lo . ’
. . . set of highest priority independent rules and storing these
Filters are grouped based on their assigned block numbefs;, LT) . X
.] . .~ the LTCAM, which is discussed in Section IlI-A2. In the third

The group with the lowest block number is of highest priorit

: h he remaining rul r red in the ITCAM in prori
and these rules are stored in the lowest memory addresse Fs€ the remaining rules are sto edin the ITC pyorit
order. This is discussed in Section IlI-A3.

the TCAM. Figure 4 shows how the rules are grouped into 1) Representing Classifier Rule§he classifier rules are

three blocks in the TCAM, where ‘X’ represents an octet of : o . .
g A represented in a priority graph as well as in a multi-
don't care’ bits.

dimensional trie. A priority graph contains one vertex fack

rule in the classifier. There is a directed edge between two
D. Difference between PC-DUOS+ and PC-DUOS vertices iff the two rules overlap and the direction of thged

PC-DUOS+ differs from PC-DUOS in the way the selectiois from the higher to the lower priority rule. Two rules oagl

of rules for the LTCAM is made. PC-DUOS filters tfeaves iff there exists at least one packet that matches both tles.rul
of leavesset in a multi-dimensional trie to keep only the Each dimension in a multi-dimensional trie represents one
highest priority rules among all overlapping rules. Theesul field of the rule. The fields in a filter rule appear in the
in the filtered leaves of leaves set is then entered in tfalowing order in the trie:<destination, source, protocol,
LTCAM. PC-DUOS+, on the other hand, uses a priority grapsource port range, destination port range We assume that
to select rules for the LTCAM. PC-DUOS+ also uses nethe destination and source fields of the filters are specified

. PC-DUOS+: METHODOLOGY

Packet Classifier, E TCAM . .
acket aSS'Jer mey ated with the block number of the vertex. While—hpri

equals the block number af in PC-DUOS, in PC-DUOS+,
priority M ap(v—hpri) is the block number for rule.. The

Create priority graph and
multi-dimensional trie

¢ example below shows the initial assignment of rules to an
[Store some rules i LTCAM} ITCAM and the pseudo-priorities assigned to the rules. when
¢ PC-DUOQOS and PC-DUOS+ are used.
[Store remaining rules in ITCA% Example: The rules in Figure 2 are inserted in ITCAM in
priority order as shown in Figure 6. Its an initial assignmen
Filled TCAMs and there are three blocks. Rule R1 is placed in the first hlock

rules R2 and R3 are placed in the second and rule R4 in the
third block. The first block is assigned to TCAM address 1, the
second to TCAM addresses 2-3, and the third to 4. The pseudo-

as prefixes. So, these are represented in a trie in the stand§fCrities assigned to the blocks are 1, 2, and 3 respegivel

way with the left child of a node representing a 0 and the righf{e Will see later how the pseudo priorities change as new

child a 1. Ranges may be handled in one of many ways. /€S are added.
this paper, we use the DIRPE scheme of [3] that requires the

Fig. 5. Flow diagram for storing packet classifiers in TCAMs

CAM

use of a multi-bit trie. Our methodology may also be applied agdress Block # | Seudo-priority
to other range encoding schemes, such as those in [12] and 0 PC-DUOS| PC-DUOSH
[14]. 1 |RL1xxx00xx| }> 1 1 1

2) Storing rules in the LTCAMRecall that two rules are 2 | R2: LXXX X XXX }»
independent iff no packet is matched by both rules. For the 3 | R3: 0.XXX XXXX 2 2 2
LTCAM we are interested in identifying the largest set oesul 4 | R4 xxxxxxxx| F* 3 3 3
that are pairwise independent. Note that every independent 5

rule set satisfies the first requirement (R1) for a lookup to
work correctly. To find an independent rule set in acceptabfi- 6. Pseudo priority assignments in PC-DUOS and PC-DUOS+
computing time, we relax the “largest set” requirement and
instead look for a large set of independent rules. It is easyWhen the priority graph is constructed for the initial classi
to see that the rules in the vertices of the priority grapthwifier, v—hpri equals the block number efandpriorityMap
in-degree 0 are independent rules. Further, these ruleslsue is an identity mapping. However, as we insert and deletesyule
the highest priority rules among all rules that overlap wita—hpri may no longer equal the block numberwofin fact,
them. This satisfies the second requirement (R2) for a lookupshpri may not be an integer) andiority M ap is no longer
to work correctly. Hence, we choose to enter these rules irda identity mapping.
the LTCAM. All remaining rules are entered in the ITCAM. To build the priority graph, we first iterate over the clagsifi
3) Storing rules in the ITCAM:The rules to be stored in rules and for each rule, identify all rules that overlap it
the ITCAM, are assigned block numbers. The priority graptie-based algorithm to determine the rules that overlapeng
is used to assign block numbers as follows [2]. All verticesule is presented in Figure 7. For simplicity, the algorithm
to which there are no incoming edges, are assigned a bldaskspecified for the case when rules have only two fields -
number of 1. All children of the vertices with block numbedestination and source prefix. Its extension to rules with a
1 are assigned a block number of 2 and so ompafent of a larger number of fields is straight forward. Given a rule, the
vertexv in the priority graph, is a vertex from which there isalgorithm first extracts the values for the different fields f
an incoming edge te. Similarly, achild of v is a vertex to the rule, and traverses the trie along these prefix pathkalinti
which there is an out-going edge from Thus a child of any overlapping rules are found. For each overlapping rule doan
vertex is assigned a block number that is at least one malieected edge is added to the priority graph. The priorigpgr
than that of this vertex. Aath in a graph is a sequence ofis a directed acyclic graph and block numbers are assigned
vertices such that from each vertex there is an edge to tEing an iterative process.
next vertex in the sequence. A non-trivial path is a path with Even though in the worst case all the trie nodes have
at least two vertices. Aancestor of a vertexv is a node that to be explored for finding overlapping rules (this happens,
has a non-trivial path ta. A descendant of v is a vertex for example, whenruleInstance is the root of the multi-
to which there is a non-trivial path from. In other words, a dimensional trie and thus represents a classifier rule with-w
descendant of hasv as one of its ancestors. carded fields) this approach works well on average and, in
In the block assignment scheme, rules that are assigrfadt, it makes the computation in PC-DUOS+ scalable during
the same block number are independent and hence grouties initial setup as well as while processing the updates. In
together in a single block. These blocks are entered in thentrast, the simple approach of iterating over all the sule
TCAM in increasing order of the assigned block numbersf the classifier to compare overlaps and priorities, qyickl
In our implementation, each vertex in the priority graph becomes a performance bottleneck as the number of rules in
has a fieldv—hpri which stores a pseudo priority associthe classifier increases.

Algorithm: findOverlappingRules(ruleInstance) Function: Trie.insert
Inputs: Trie.insert(rule, action);

ruleInstance: a binary trie node representing a rule and stgring T_his fu_nction ‘inserts a rule and its action into the conpialne multi
its action dimensional trie.
Sre: source prefix obtained fromuleInstance. Function: Trie.delete

; L . h Trie.delete(rule);
Dest: destination prefix obtained fromulelnstance. This function deletes a rule from the control plane trie.

(_)utput_:))] Function: Trie.change
list: a list of rules overlapping with the input rule Trie.change(rule, action);

This function changes the action associated with a prefix.
nodeD = root of destination trie;
for (i=0; i<length of destination prefix; ++i)
if (root of a source trie is stored at nodeD) Fig. 8. Table of control-plane trie functions
nodeS = root of source trie
for (j=0; j<length of source prefix and nodesS; ++j)

i ”:;;esn dsltgiisligt rulg overlapping rule. Overlapping rules are identified by trairey
branchBitS =Src[j]; // jth bit of Sre prefix the trie using the_ a_lgorlthm of Flgure_ 7. After adding a new
nodeS = nodeS-child[branchBitS]; vertexv to the priority graphp—hpri is calculated. Ifv has

/I nodeS~child[0] and nodeSschild[1] are no incoming edges—hpri is set to 0 and the new rule inis

I the two chidren of nodeS in the trie placed in the LTCAM. Otherwise; is placed in the ITCAM.

endfor
if (nodeS != NULL)then
visit all nodes in subtrie rooted at nodeS

If v is placed in the ITCAM therw—hpri is set either
by movingv’s ancestors upward or its descendants downward

if (any node stores a rulg) or by moving neither descendants nor ancestors. These three
appendR to list. possibilities are shown in Figures 9(c), (d) and (e). Fig(ed
endif depicts a portion of the original graph. The number next to
endif each vertex shows thipri value on that vertex. The newly
endif . R .
branchBitD = Dest[i]; added vertew is colored black in Figure 9(b). In Figure 9(c),
nodeD = nodeB-child[branchBitD]; v—hpri is set based on’s parenthpri so thatv will be placed
endfor in the ITCAM block below that of its parent. Note that the
for nodeX in subtrie rooted at nodeD hpri of v's child must be updated too and the child is moved

if (any node stores a rulg) one block downward, thus avoiding and its child being
appendR to list.

endif placed in the same ITCAM block. Such updates propagate
endfor to all descendants. In Figure 9(d)~hpri is set based on the
hpri of v’s child so thatv will be placed in the block above
that of its child. Thehpri of v's parent is updated so that the
Fig. 7. Find overlapping rules by trie traversal parent is moved one block upward and these updates propagate
to all ancestors. Figure 9(e) shows a case where a new block
is inserted between the parent block and the child block, and
the hpri associated with the new block is 3.5. Thushpri

When an update request is received, the priority graphset to 3.5, and neither the descendants nor the ancestors o
and the multi-dimensional trie are updated. Section IlI-Bthe new block are moved.
describes how this is done. Next the existing ITCAM rules tha Figure 10 shows the algorithm to setshpri. Figure 11
overlap with the rule involved in the update arexrranged shows how the descendants are moved downwards. In Fig-
to ensure that the highest priority rules are still matchiéera ure 10, we first calculate the number of moves towsethpri
the update is complete. Rules may also be moved from tW@en descendants are moved downwards (childMoves) and
ITCAM to the LTCAM or vice versa as a result of the updatesvhen the ancestors are moved upwards (parentMoves). These
This step is discussed in Section IlI-B2. calculations are based on the flow diagram in Figure 13(b).

1) Update the priority graph and the trieThis is the Supposev—hpri is set by moving descendants downwards,
first step in the update process. The multi-dimensional tréad the block number corresponding to the maximiuymi of
is updated with the help of functions as described in Figure Bie parent vertices i&. Thenv is assigned to a blockB + 1

and no child vertex o) can be in a block lower tha® + 2.

The priority graph is updated next. If the update is a deletea child vertex is found to be in a block lower thah + 2
request, then the vertex for the rule to be deleted (togeth®r mapping the child’sipri, then that child must be moved
with incident edges) is removed from the priority graph ani® an appropriate block, which could be either bldgk-2 or
rules corresponding to vertices whose in-degree becomes 0gome higher block such & + 3, B + 4, etc. Such updating
moved from the ITCAM to the LTCAM. Each rule that is tohappens recursively for all descendants as shown in Figure 1
be so moved is first inserted into the LTCAM and then deletelche algorithm to sev—hpri by moving ancestors upwards
from the ITCAM using insert/delete procedures described ia similar.

Sections 11I-B2b and llI-B2d. If the update is an insert,ritle =~ Example: This example highlights the difference in moving
new vertex is added to the priority graph. All rules overlagp the descendants downwards versus the ancestors upwards
with the new rule are found, and a new edge is added for eagbon an insert. We start with the TCAM assignment shown

B. Update algorithms

(a) Original graph

v

4
o b
AR

(c) Adjusted descendants (d) Adjusted ancestors (e) Created new block for
Fig. 9. Settinghpr: on a new vertex in a priority graph

in Figure 6. We insert a new rule R:(1.0.0.0/8, 0.0.0.0/8}his case, the actual number of moves is computed for both
with priority lower than R1, but higher than R2. When th¢he cases when the descendants and the ancestors are moved.
descendants are moved downwards, we need three TCAMdMoves stores the number of rule moves computed when
writes. The first TCAM write copies R4 to position 5, ththe descendants are moved and parentMoves stores the corre-
second write copies R2 to position 4 and the third write itsersponding number when the ancestors are mowed: Limit

the new rule R at position 3. The pseudo priority of the blocks the maximum number of rule moves when descendants or
preserve identity mapping. Descendants are moved dowswapdrents are movednax Limit is set to infinity and does not

to create a free slot during an insert by both PC-DUQOS anplay any role in this decision diagram.

the update scheme in [2]. This strategy is also selectivedu 1, 5y0id this performance bottleneck, we calculate the

in PC-DUOS+. number of moves based on the flowchart in the Figure 13(b). A
Now consider the other situation when the ancestors atkresholdmax Limit is set to avoid calculating the exact num-
moved upwards. In this case we need just two TCAM writdger of moves. Whemax Limit is set, “Compute childMoves”
The first TCAM write copies R1 to position 1, and the secomhd “Compute parentMoves” return the number of moves if
TCAM write inserts the rule R to position 2. In this case thigs below maz Limit, otherwise they returmax Limit. The
relative rule ordering is still the same. However, now thetfir following example shows how the flowchart helps in speeding
block cannot continue to have a pseudo-priority of 1, sindle calculations. Suppose, the exact number of child arehpar
the second block (consisting of R) is already assigned 1. Sapves are 870 and 3050 respectively. If it is found that
the priority of the first block is changed to a number lowechildMoves=870, then before computing parentMoves, we set
than 1 (but greater than 0, since rules with priority O arenaxLimit to a number larger than 870 (say 900), and then
inserted in the LTCAM) and we set it to 0.5. This is showgall ‘Compute parentMoves’. The parentMoves returned is
in Figure 12(a). Thus identity mapping is not preserved ar800, instead of 3050, which is sufficient information for #ie
more. gorithm in Figure 10, as it tells that parentMoves are moaa th

PC-DUOSH, initially estimates the number of TCAM writehildMoves. Thus, the time to count parentMoves up to 3050
that would be needed when the descendants are moved dolirSved by settingnaxzLimit appropriately. The flowchart
wards, versus when the ancestors are moved upwards gﬂﬂables maxMoves, maxChlldMoyes and mpreMoves, were
the direction that yields a lower number of TCAM writes jSetto 500, 50 and 100 in our e>_<per|ments. This filtered out_ the
selected for moving the rules. This step is computational‘%SS than 10 percent of the child or pare_nt move calculations
intensive, with a worst case complexity 6f(NVL), where at took 90 percent of the total processing time.

N is the number of vertices in the priority graph andis We use another optimization in the ITCAM rule placement
number of vertices on the longest path.s also referred to strategy, where a new block is inserted into the TCAM
as themaximum chain lengtbf the priority graph. The worst between two existing blocks as shown in Figure 9(e) and on
case happens when each vertex is connected to every otlms 18 and 43 of Figure 10. If the maximum block number
vertex. The flowchart in Figure 13(a) shows an unoptimizeaf the parents ob is B and the minimum block number of
decision diagram that causes a performance bottleneck.iteichildren isB + 1, then instead of moving all children in

maxLimit = maxMoves
Compute childMoves

Move descendantg

Set maxLimit to infinity

compute childMoves

compute parentMoves Compute parentMoves

{maxLimit = childMoves + moreMov}s

Compare with childMoves al
parentMoves > move the descendants or

childMoves ?

adjust ancestors

the ancestors accordingly

Yes

Set maxLimit to infinity
Compute childMoves

maxLimit = childMoves + moreMoves
Compute parentMoves

(a) Inefficient flow (b) Efficient flow

Fig. 13. Decision diagrams for priority adjustment of deseansl vs. ancestors

block B+ 1 to B + 2 or all parents in blockB to B — 1, a insert or move a rule in a TCAM we need a free slot at an
new block is created in the ITCAM between the blodkend appropriate location. This slot can be obtained efficieniyng

B + 1 andv—hpri is set to the average of the hpri-s of thenemory management algorithms. In particular, the memory
two blocks (i.e. (hpriof(B) + hpri_of(B + 1)) /2). The new management schemes from DUOS may be used here. For the
rule for v is then added to the new block. If the new rule is téTCAM of PC-DUOS+ as well as PC-DUOS, we implemented
be added on top of the topmost ITCAM block as on line 38 dhe DLFS PLO scheme, as its the most efficient scheme
Figure 10, therv—hpri is set to (hpriof(B) /2). Recall that known to us for moving free slots to a desired location in a
the vertices with in-degree 0 are assigned an block numberT@CAM. In the DLFS PLO initial rule placement scheme, free
Hence the assignment of hpri, ensures that the block numistats are kept in the region between two blocks. Additignall

is still greater than 0. Addition of a new block must be donthere may be free slotaithin a block. So a list of free
judiciously, since it requires an extra move while bringing slots is maintained for each block on the TCAM, with the list
a free slot to a particular bloclkB when the newly inserted being empty initially. As rules are deleted from a block, the
block is between the free space pool aBdThis is shown in freed slots are added to the list for that block. The memory
Figure 14. While it takes just a single rule move in block @anagement scheme for LTCAM is relatively simple as all
to get a free slot in block B in the setup of Figure 14(a), ithe rules in the LTCAM are independent so a new rule
takes 2 rule moves when a new block A is added as showndan be inserted anywhere in the TCAM. However, we still
Figure 14(b). This optimization is enabled by the user b&tta need to locate a free slot. The LTCAM memory management
‘isinsertFlag’ on lines 17 and 42 of Figure 10. Figure 9(edlgorithm of DUOS creates a linked list of the free slots. When
shows thatv—hpri for the new vertex is set t03.5. A new a free slot is needed, a slot is obtained from the head of &we fr
block is added between the parent and the child blocks in tisiet list. PC-DUOS+, as well as PC-DUQOS, uses the memory
case. management algorithm for DUOS for its LTCAM [9].

For consistent updates [10], [11], if the vertices are to Since the blocks grow both ways, up as well as down, PC-
be moved downwards, then the moves may be executedDbOS+ has a modified initial rule placement policy as shown
increasing order of priority starting from the lowest pifpr in Figure 15 where 25% of the free slots (represented by white
rule and after all the descendants are moved, the new rblecks) are placed on the top of the TCAM (that is, covering
is added. If the vertices are moved upwards, then the movhe lowest addresses) and another 25% are kept at the bottom
may be executed in decreasing order of priority, startiognfr of the TCAM (covering the highest addresses). The remaining
the highest priority rule. After all the ancestors are mqve80% of the free slots are distributed to the region between th
the new rule is added. Lines 55-59 of Figure 10 ensure tHalbcks in proportion to the number of rules in a block.
nodes are moved to their assigned slots in the reverse order . .

a) ITCAM.insert: :

.Of visiting them. Thus, the nqde IasF visited for updath}g’i To insert a new rule in the ITCAM, a free slot is first made
is the first to be moved to its assigned slot. This PresenV e ailable at the desired block. A free slot may be present in
update consistency for both the cases when the descend ne?ssame block in which casé no moves are needed to get it
;ﬁg&%‘fgﬂ%ﬁn{;’:‘?tisgdGS;e parents upwards. The new "5 the free slot list of the block. If there is no free slotire
' block, then a free slot may be obtained from the inter-block
2) Updating the TCAMs:TCAM updates are generatedregion on the top or the bottom of the block. No moves are
after updating the priority graph. Rules may be moved fromeeded in this case too. If there is no free slot in the inter-
the ITCAM to the LTCAM or vice versa or they may be movedlock region adjacent to the block, then a free slot is moved

within the ITCAM for rearrangement of overlapping rules. Tdrom the nearest neighboring block where its available.

Algorithm: insertRule(v)

Inputs:

Rule stored in vertex in the priority graph.

User settable ‘isInsertFlag’ which is used for optimization and
explained in Section I11-B1

maxP = max(parerthpri) from ITCAM parents ofv;
minC = min(child—hpr:) from children ofv;
/I Default values are maxP:1 and minC: infinity
childMoves = parentMoves = 0;
if (maxP > minC) then
compute childMoves to push descendants down and
parentMoves to push ancestors up according to Figure 1
endif
/I Get block BC' corresponding to minC. I& has no outgoing
10// edges, theBC' — 1 is the last block in the ITCAM.
11 BC = priorityMap(minC);
12 BP = priorityMap(maxP);
13if (v has a parent vertex in the ITCAlnd
14 parentMoves< childMoves)then
15 /I Move ancestors upwards
16 targetBlock =BC — 1;
17 if (BC — 1== BP and isInsertFlag)hen
18 targetBlock = create a new block betweBi and BC'.
19 endif
20 /I Function reversePriorityMap returns pseudo-priority
21 /I corresponding to targetBlock.
22 v—hpri = reversePriorityMap(targetBlock);
23 assign slot in targetBlock far;

OCO~NOUOThWNEP

24 if (v—hpri < maxP)begin

25 sort the parent vertices in a decreasing order of hpri;
26 for each parent of

27 if (v—hpri < parent>hpri)

28 if (parent is in ITCAM) moveParentUp(parent);
29 endif

30else// Move descendants downwards

31 /I Initially, the highest priority rules in ITCAM havipri
32 /I set to2. So, targetBlock is initialized to that block.
33 targetBlock = priorityMam);

34 if (v has no parent in the ITCAMjhen

35 if (there exists a blocilBC' — 1) then

36 targetBlock =BC' — 1;

37 else if (isInsertFlag)then

38 targetBlock = create a new block on top BE'.

39 endif

40 else

41 targetBlock =BP + 1;

42 if (BP + 1 == BC and isInsertFlag)then

43 targetBlock = create a new block betweBi® and BC.
44 endif

45 endif

46 v—hpri = reversePriorityMap(targetBlock);

47 assign slot in targetBlock far;

48 if (v—hpri > minC) begin

49 sort the descendant vertices in an increasing order of
50 for each child ofv

51 if (v—hpri > child—hpri) moveChildDown(child);
52 endif

53endif

54 /] Process nodeList from moveParentUp/moveChildDown
55for eachw in nodelList starting from the last one

56 slotW = current TCAM slot occupied by the rule of

57 write the rule ofw in the assigned slot;

58 free slotW,

59endfor

60 write the rule ofv in the assigned slot.

Algorithm: moveChildDown(child)
Input: Rule stored in vertex ‘child’ in the priority graph.

mP = find max(parenbhpri) from all parents of child
mC = find min(child—hpri) from all children of child
if (mP < child—hpri and child—hpri < mC) return;
block = priorityMap(maxP) + 1;
child—hpri = reversePriorityMap(block);
assign a slot in block for child; append child to nodeList;
if (child—hpri > mC) begin
sort the descendant vertices in an increasing order of hpri
for each childi of child
if (child—hpri > childi—hpri) moveChildDown(childi);

Fig. 10. Insert a rule in the ITCAM

3)e'ndif
Fig. 11. Moving descendants downward in the ITCAM
TCAM
Address Block # | Pseudo—priority
0 PC-DUOS/PC-DUOS
1 |R1:1.xxx0.0xX | }— 1 1
2 | R: 1.xx.X 0.X.X.X }—» 2 2
3 | R3: 0.X.X.X X.X.X.X }_»
4 | R2: 1XXX X.XX.X 3 3
5 | R4 XXXXXXXX | > 4 4
(a) Descendants move down (3 TCAM writes)
TCAM Block # | Pseudo—priority
Address PC-DUOS+
0 |R1:1.xxx0.0xx | }—{ 1 0.5
1| R:1xXX0XXX | }—f 2 1
2 | R2: 1.X.X.X X.X.X.X }_» 3 2
3 | R3: 0.X.X.X X.X.X.X
4 [Ra: xxxxxxxx | Y 4 3
5

(b) Ancestors move up (2 TCAM writes)

Fig. 12. Comparison of the number of TCAM writes to insert a nale R

To insert a new block between two blocks in the ITCAM,

it is first checked if there is a free slot between the top and

bottom blocks. If there are free slots in the region between

the top and the bottom blocks, then the rule in the new block

is inserted there in such a way that there are some free slots
above and below the new block. Otherwise, free slots for the

new block are moved in from the nearest neighboring block

that has free slots.

b) ITCAM.delete::

After deleting the vertex corresponding to the rule in the

hpri
2
1, SR
< folele 1
—Free-Slots
(a) 1 move (b) 2 moves
Fig. 14. Number of moves to get a free slot to block B, moves ara/sho

by arrows.

CPU. It is difficult to get real life packet classifiers from
ISPs, mainly due to security reasons. So, we generated test
classifiers using ClassBench [7], which is a well known tool
for generating synthetic classifiers and packet traces. The
classifiers generated using ClassBench closely model real
life packet classifiers. The three different types of clss
modeled by ClassBench are access control lists, firewatls an
IP chains. The 12 seed files included in ClassBench contain th
basic parameters used to generate the classifiers of a specifi
type. Each generated rule has the traditional 5-field filter,
namely, source address, destination address, sourceapg,r

N destination port range, and protocol. We generated the test

classifiers, by using the seed files and specifying the number

of rules in each classifier.

To test the performance of TCAM lookup, we generated
priority graph, the valid bit on the corresponding TCAM slopacket traces using ClassBench with 100,000 packet headers
is set to 0. DLFSPLO frees up the block if the rule deleted issimulated lookups in PC-DUOS and PC-DUOS+. To test the

the last rule in the block. Otherwise, the freed slot is pnejeel update algorithms of PC-DUOS+, we generated an update
to the head of the list of free slots in the block. sequence, by randomly marking some of the rules in a dataset

c) ITCAM.change:: for insertion and some others for deletion. The rules marked
Suppose the specified change is with respect to the fields dpa insertion were removed from the dataset to arrive at the
rule, then such a change is implemented as an insert followadial configuration for the classifier. A random permutatiof
by a delete. The insert adds the changed rule to the sath@ removed rules (i.e., those marked for insertion) tageth
block as the old rule, while the delete removes the old rutth those marked for deletion define the update sequence.
from this block. If the change is in the priority of the ruleSince we use the same update sequence on PC-DUOSH,
then, we revisit all the incoming and outgoing edges of tfRC-DUOS and the STW architectures, the comparison of
corresponding vertex in the priority graph and reverse theupdate performance is fair. We generated two sets of tests
edges appropriately to maintain the edge direction from tit@ experiment with our update algorithms.
higher to the lower priority rule. Then the block number is For the first set of tests, we generated a classifier of about
freshly calculated fow, and the rule is moved to a block atl0000 rules, from each seed file. Then for a classifier we
a higher address (if the priority was lowered) or to a block generated 10 insert sequences each comprising of a differen
a lower address (if the priority of the rule was increased) et of 5000 rules to be inserted. Then for each insert sequenc
the ITCAM. If the vertexv does not have any incoming edgeve generated 10 different permutations. Thus we generated
following the update, it is moved to the LTCAM. 100 tests for a seed file, where each test has an insert sequenc

d) LTCAM.insert, LTCAM.delete and LTCAM.change: of 5000 rules.

To insert a new rule in the LTCAM, a free slot is obtained Figure 16 describes the second set of tests, in which we
from the head of the LTCAM free slot list. If a rule is deletedjenerate a single test from each file, and these tests contain
from the LTCAM, then the valid bit of the slot is set to 0 andt longer sequence of updates which include deletes. In Fig-
the freed up slot is prepended to the head of the free slot ligte 16, the first and second columns give the indexes and
For incorporating a changed rule, if the change is withames of the classifiers, the third column shows the seed files
respect to the fields of a rule, then the changed rule is simpilyClassBench from which these tests were derived, theHourt
inserted in the LTCAM and the old rule deleted. If the changeolumn shows the number of rules in the initial configuration
is in the priority of a rule in such a way that the correspogdirof a classifier, and columns five to seven give the number of
vertex now has an incoming edge, then the rule is moved ifisert and delete operations in the update sequence. We used
the ITCAM. Otherwise, if the rule continues to be the highed?2 seed files based on access control lists (acl), firewalls (f
priority rule among all overlapping rules even after theraygg and IP chains (ipc) to generate the 13 classifiers. Out obthes

Fig. 15. Initial ITCAM layout

then nothing needs to be done. 13 tests, the first seven were used in [15].
We use DIRPE [3] to store the port ranges in the TCAM.
IV. EXPERIMENTAL RESULTS DIRPE was implemented by using multi-bit tries for source

hand destination port ranges. We assume that 36 bits are
e .) . . .
(%/_anable_ for encodlng_each port range in a rul_e. With th!S
assumption, we use strides 223333 for our experiments hwhic
give us minimum expansion of the rules. The stride value
223333 indicates that for a given port number (16 bits), the
A. Setup root of the port range trie will use the first two bits to branch
We programmed the lookup and update algorithms féo one of its four possible child nodes at level 1. Each node
STCAM, PC-DUOS and PC-DUOS+ in C++ and comparedt level 1 uses the next two bits to branch to one among its
their performance on an x86 Linux box with a 64-bit, 1.2GH#fur possible child nodes at level 2. A node at the level 2, on

The experimental setup is described in Section IV-A. T
results obtained for lookup and update performance are
scribed in Sections IV-B and IV-C.

Q.
[¢]

Datas¢tseedfile | #Rules #Inserts #Deletes
acll | acll seed| 30075| 69300 | 29700 T
fwl fwl_seed | 7989 | 28800 | 7200 B Pe-buos |
ipcl | ipcl seed| 15338| 34300 | 14700
acl2 acl2 seed| 53970 45000 | 45000
fws fw5_seed | 5571 | 45900 | 5100
acl4 acl4 seed| 34254 5000 | 5000
ipc2 | ipcl seed| 5165 | 94050 | 4950
acl3 acl3 seed| 19745| 2976 | 3124
acl5 | acl5 seed| 19492 12500 | 12500
10 fw2 fw2_seed | 16668 15000 | 15000
11 | fw3 fw3_seed | 16841| 33400 | 16600
12 fw4 fw4_seed | 12882 10000 | 10000
13 | ipc3 | ipc2_seed| 20000| 15000 | 15000 23 s 6 T2

tests

-3
S

) IS a
S S =]

n
=]

©CoOo~NOOR~WNRIS

Lookup time improvement (%)

i
1)

Fig. 16. Synthetic classifiers and update traces used inxpperienents
Fig. 18. Comparison of improvement in lookup time between PC-BUO
and PC-DUOS+, with respect to STCAM

the other hand, uses the next 3 bits to branch to one among
its eight possible child nodes at the level 3, and so on. Thus,

all the 16 bits. (2+2 " 3+3+3+3=16) are used to Figure 18 shows the improvement in average lookup time
traverse the trie and arrive at the last node (at the 6th)level b= HyOs and PC-DUOS+ with respect to STCAM. Recall
representing the port nurlnber.. h th f inal that during a lookup, if a match is found in LTCAM then
we Cg_rl_nCpZRj our resu s W'tl t osg r(()jm 6; sing ekTCAl"Yhe lookup finishes faster. Having a large number of rules in
s_e_tup_() as Is commonly used today or pac et clagie L TCAM makes the probability of finding a match in the
§|f|ca_t|o_n. In this setup, all _rule_s are entered into the TCAMTCAM, higher. Thus the tests 1 (acl1) and 9 (acl5) with 99%
in priority order. The ordering is nee<_jed °'?'y for ru_Ies thalt their rules in the LTCAM, had the LTCAM serve almost
overlap. If two rules do not overlap, their relative orderitoes all the lookups. The improvement in average lookup time on

not matter. We use a priority graph for the whole set of ru"?ﬁese tests was, therefore, almost 50%, which is the maximum
to track the block numbers of the rules as well as to compyje

adjustments to block numbers as new rules are inserted. Wgrovement achievable ny yanking a Prlorlty enc-oder. _

do not compare PC-DUOS+ update performance with that PC-DUOS+ had better improvement in lookup time partic-
of the work in [2], since PC-DUOS+ lookup performancellarly for the tests based on forwarding tables, namelys s

is far superior to the worst case of [2], which is at least % 10, 11, 12, and comparable performance on the other tests
times slower in the worst case, on our datasets (obtainedP@$€d on ACL lists and IP chains. The observed improvement
logarithm of the number of blocks). is because the LTCAM of PC-DUOS+ on those tests contained

We analyze the results based on two perspectives — iROT® rules than the LTCAM of PC-DUQOS, which is a result of
provement in lookup performance and improvement in upddfee different algorithm employed in PC-DUOS+ for selecting

performance. rules for the TCAMs.
Figure 19 presents the details on the number of rules in
B. Lookup Performance the ITCAM and LTCAM and the percentage improvement in

))) . lookup performance of PC-DUOS+. The first three columns
We computed the overall improvement in lookup time Usingy e the dataset index, name and the number of rules respec-
the lookup traces generated using ClassBench. tively. The fourth and fifth columns give the number of rules i
the ITCAM and LTCAM, respectively. The sixth and seventh
columns give, respectively, the number of lookups and the
percentage improvement in average lookup time.

8
2
z
E Index | Dataset #Rules #ITCAM | #LTCAM | #Lookups| %lImprove
s 1 acll 30075 305 29731 120301 | 49.6
& 2 fwl 7989 4885 3068 103857 | 19.2
H 3 ipcl 15338 3504 11834 107618 | 40.6
g 4 acl2 53970 8875 45095 107940 | 42.6
« 5 fws 5571 2689 2796 105430 | 30.8
6 acl4 34254 5882 28372 103104 | 41.1
7 ipc2 5165 1476 3689 98136 38.7
t23es 6 oo 8 acl3 19745 6737 13007 102851 | 31.4
9 acls 19492 260 19209 97460 49.4
10 fw2 16668 4739 11929 100008 | 40.6
Fig. 17. Percentage of rules in LTCAM of PC-DUOS+ 11 fw3 16841 5688 10986 103794 | 33
12 fwa 12882 5004 7878 103266 | 20.2
Figure 17 shows the percentage of rules entered in th&® | P 20000 | 8027 11973 | 100163 | 349

LTCAM of PC-DUOS+. For example, test 13 has about 60%49- 19- Number of rules in ITCAM and LTCAM of PC-DUOS+ and
of the rules in the LTCAM and the remaining 40% in thdProvement in lookup time relative to STCAM
ITCAM.

Seed STCAM PC-DUOS PC-DUOS+ PC-DUOS+*
Avg. Std. Dev. | #Min Avg. Std. Dev. [#Min Avg. Std. Dev. [#Min Avg. Std. Dev.
writes writes writes writes

acll 2.19 4.04 1 1.4 2.58 69 1.245 0.16 30 1.283 0.123

acl2 99.7 372 0 4.59 2.29 0 1.59 0.43 100 1.78 0.409

acl3 51.04 161.34 0 1.8 0.69 0 1.62 0.298 100 1.84 0.286

acl4 28.1 252 1 1.87 0.913 0 1.6 0.58 99 1.73 0.43

acls 3.42 2.53 0 1.13 0.1 100 1.18 0.07 0 1.21 0.11

fwl 83.7 88.1 2 14.99 15.06 0 2.57 2.203 98 3.69 3.376

fw2 3.18 3.84 0 1.92 2.07 0 1.4 0.071 100 1.496 1.063

fw3 54.4 498 14 8.98 8.95 0 2.36 1.34 86 2.36 4.28

fwa 29.7 455 0 14.3 23.9 0 7.66 17.36 100 9.85 22.7

fws 16.9 18.1 0 7.62 10.63 0 2 2.95 100 3.95 9.66

ipcl 9.72 8.99 0 2.23 1.35 0 1.34 0.35 100 1.55 0.39

ipc2 1.022 10.22 0 1 0 100 1 0 100 1 0

Fig. 20. Data obtained on TCAM writes

2
C. Update Performance 10 TR FC-DUOST
We first present the resu_lts from the setup in which we %Eg:%g?
100 tests for each seed file, where each test executed I STCAM

insert operations. Figure 20 shows the data we collected 1
these runs. The data in each column is described as foll
The column ‘Avg. writes’ gives the average TCAM writes p
insert operation which is obtained by first getting the ager
for each of the 100 tests and then dividing the average by,5 rrl .J Id

which is the number of inserts for each test. ‘'Std. dev.’ gi* ﬂ ‘
the standard deviation, which is obtained by calculating acll acl2 acl3 acl4 acls fwl thsfs fw3 fwd w5 ipcl ipc2
average TCAM writes per insert for each of the 10 classifi...

for a seed file and then computing the difference with tl"|§|:g_ 21
average (for the 100 tests) from the previous column. from

the difference of average TCAM writes (for each of the 100
tests) from the average of the average in the previous colunaite moved versus the original version PC-DUOS+), hightight
‘#Min’ gives the number of tests (out of the total of 100) fothe performance benefits of our ITCAM insertion agorithm.
which the given architecture resulted in a minimum value dihe insertion algorithm improved the number of TCAM
the average TCAM writes. writes by up to 49% for test fwb.

The PC-DUOS+* is a version of PC-DUOS+, that im3) PC-DUOS+ obtained the highest number of minimum
plements only the standard “descendants move downward@¥erage writes out of 100 tests (from column #Min) for all
algorithm for ITCAM rule insertion. PC-DUOS+* will be the tests except those based on seed files acll and acl5. The
used to compare improvements only due to the new insertiBdmber of PC-DUOS+ writes for the tests for which its not
algorithm of PC-DUOS+, thereby nullifying the effects okth the lowest, is very close to the lowest score for those tests.

other enhancements in PC-DUOS+ such as selection of rufle¥ the tests on ipc2, PC-DUOS+ tied with PC-DUOS on
for the TCAMs, with respect to PC-DUOS. the minimum average writes, both requiring exactly the same

We briefly describe the variable setup used for our expefUmber of writes. o
ments. The “isinsertFlag” of Figure 10 was set to true for aff) Standard deviation is small for PC-DUOS+, indicating
ACL and IP chain based classifiers in our experiments. TR&tter fidelity to the average.
reason is these classifiers had a small number of rules in the
ITCAM and the degree of overlap among the rules was '~**
in contrast to the third type of classifiers that are base 5 I PC-DUOS+
forwarding rules. If the flag is set to true for the latter,rthe [Pc-DUOSH+
lot of small blocks are added in between, which increase 4r Eg%mos
cost to move a free slot.

The graph in Figure 21 shows a comparison of the av
number of writes for these tests. The observations on
tests are as follows:

1) The average number of TCAM writes (from column 4 1k ﬁ ,

TCAM writes per update
=
o

Number of TCAM writes with respect to PC-DUOS+

TCAM write ratio

writes’) is the minimum for PC-DUOS+ for all the te
except the one based on seed file acl5 which represent o e e e 0 12 13

based tests. For the remaining tests, PC-DUOS+ perft tests

better than PC-DUOS by an amount between 10-82%. For wuie

tests based on acl5, PC-DUOS+ was very close to PC-DUQS;. 22. Number of TCAM writes with respect to PC-DUOS+

2) The difference in the number of TCAM writes between the

PC-DUOS+ versions (PCDUOS+* in which only descendants Now, we present the results from the second set on tests

Index | DataSet] PC-DUOS+ STCAM IndeX Data- PC-DUOS+ PC-DUOS STCAM
#Average [#Worst #Average | #Worst Sets
TCAM case TCAM case Writes [Time(s) Writes*|| Writes | Time(s)] Writes | Time(s
writes TCAM writes TCAM 1 acll [| 116408 9.15 116420 116393 8 327675 2469
writes writes 2 fwl 80210 | 377 119569 | 105866 928 126225 935
1 acll 1.18 31 3.31 53 3 ipcl 65592 | 124 68812 || 88736 | 265 110346 780
2 fwl 2.22 4161 35 12014 4 acl2 124043 185 139147 148727 921 205568 1725
3 ipcl 1.33 1607 2.25 3945 5 fws 80658 | 926 169560 113358 2012 297624 2702
4 acl2 1.37 2487 2.28 6194 6 acl4 || 13996 | 7.5 21674 || 22030 | 31 43017 | 118
5 fwbs 1.58 2540 5.84 26020 7 ipc2 133396 540 150839| 296663 1449 521653 4808
6 acl4 1.39 364 4.3 9821 8 acl3 12233 | 14.69 | 18056 11798 | 47 43494 | 97
7 ipc2 1.34 1793 5.27 17285 9 acl5 28742 | 0.9 28752 || 27366 | 1.2 28090 | 167
8 acl3 2 789 7.13 10946 10 fw2 51304 | 158 51306 || 51402 | 792 59406 | 488
9 acls 1.14 9 1.124 11 11 fw3 28710 | 175 28862 || 92955 | 1057 93426 | 1098
10 fw2 1.71 9 1.98 9 12 fwa 58243 | 74 79789 || 69958 | 362 139434 378
11 fw3 1.44 259 1.87 14693 13 ipc3 30000 | 211 30000 || 30000 | 287 31647 | 416
12 fw4 291 1483 6.97 6996 . . .
13 ipc3 1 1 1.05 6 Fig. 25. Total TCAM writes in PC-DUOS+, PC-DUOS and STCAM

Fig. 23. Average and worst case TCAM writes for PC-DUOS+

99% of the rules require at most 10 writes.

for update performance. Figure 22 shows the ratios of TCAM F19ureé 25 shows the actual number of TCAM writes for
erting or deleting rules in the different datasets arel th

writes needed to process the test update sequence by pe K f h q .
DUOS+, PC-DUOS [15] and STCAM, where a ratio is COm’t_lme taken to perform these updates in PC-DUOS+, PC-DUOS

puted by dividing the actual number of writes for each of th%nOI STCAM. The fifth column “Writes™ gives the number

architectures, by the actual number of writes for PC—DUOSQ]c writes using PC-DUOS+*. Using the ITCAM insertion

A noticeable improvement in the number of writes is observéacggorithm of PC-DUOSH, the number of writes reduced by

compared to STCAM for almost all the tests except for tests@;%%%ofgr tESt ﬁNZ,t)comfp?rCe:,\;o P_C—DUQS+;.CCBmgaSred
(acl5), 10 (fw2) and 13 (ipc3). Test 7 (ipc2) requires up @43. to PC-DUQOS, the number o writes using PC-DUOS,

times more writes using an STCAM compared to PC—DUOS-rreduced by up to 69% and compared to STCAM, the number

while test 11 (fw3) requires up to 3.23 times the number &f TCAM writes reduced by up to 74%.
writes using PC-DUOS compared to PC-DUOS+.

From Figure 22 we observe that tests 9 (acl5), 10 (fw2) V. CONCLUSION
and 13 (ipc3) need almost similar number of writes in all the pC-DUOS+ is proposed for packet classifier lookup and
three setups, namely, PC-DUOS+, PC-DUOS and STCAMpdate. Two TCAMs named LTCAM and ITCAM are used.
The reason is the degree is overlap among the classifier rues-DUOS+ stores the highest priority independent rules in
is very small in these tests. As a result, when a rule is iedertthe LTCAM. The remaining rules are stored in the ITCAM.
it hardly requires any rule moves to adjust the prioritieshef During lookup for highest priority rule matching, both the
descendants or ancestors, which reduces the required nunfipe AM and the LTCAM are searched in parallel. Since the
of TCAM writes. LTCAM stores independent rules, at most one rule may match
during lookup in the LTCAM and a priority encoder is not
needed. If a match is found in the LTCAM during lookup,
it is guaranteed to be the highest priority match and the
corresponding action can be returned immediately yielding
up to 50% improvement in TCAM search time relative to
STCAM.

Compared to PC-DUOS, PC-DUOS+ has a new rule se-
lection algorithm for allotment of rules to the ITCAM and
the LTCAM. PC-DUOS+ also has a new ITCAM insertion
all ia‘m"s‘lwﬁ‘e algorithm which improves the update performance in terms of

atmost 3 writes .)
—e— atmost 10 writes the number of TCAM writes, as well as the update processing
time in the control plane. The ITCAM rule insertion algorith
moves the overlapping rules by either shifting the descetsda
downwards, or the ancestors upwards. This is in contrast to
the conventional method of always shifting the descendants
Fig. 24. Percentage of updates that require 1 writed and< 10 writes ~ downwards, and improves the number of ITCAM writes by

up to 52% compared to the conventional method. This insert

Figure 23 gives the average and the worst case TCA&lgorithm is not limited to PC-DUOS+, and may be used with
writes for PC-DUOS+ and STCAM. The average writes faany architecture to improve the TCAM update performance.
PC-DUOS+ are lower than the corresponding numbers féhe average improvement in lookup time is found to be be-
STCAM. The worst case writes for PC-DUOS+ is lower thatween 19% to 49% for the tests in our dataset. The distributio
those for STCAM for all tests except test 9 (acl5). The numbef rules to the two TCAMs makes updates faster by reducing
of TCAM writes in the worst case for PC-DUOS+ is quitehe average number of TCAM writes by up to 3.84 times (for
high, even though from Figure 24 we observe that more thgt2) and reducing the control-plane processing time byoup t

1001

90r

801

701

Percentage of Updates

501

40 . P P . . .
0 1 2 3 4 5 6 7 8 9 10 11 12 13
tests

270 times (for acl1). The maximum reduction in control-@an[19] J. van Lunteren and T. Engbersen, Fast and Scalable Packet
processing time is observed for the ACL tests. Classification IJSAG 21, 4, May 2003, 560-571. o
The throughput of PC-DUOS+ is comparable to that 6?0] E. Spitznagel, D. Taylor, and J. Turner, Packet Classification

- Using Extended TCAMSICNP, 2003, 120-131.
DPPC-RE [13] whenk = 2 TCAMs are used and key [21] R. Draves, C. King, S. Venkatachary, and B.Zill, Constructing

encoding is not used. However, the PC-DUOS+ architecture " optimal IP Routing TableSNFOCOM, 1999.

is much simpler, requires no re-balancing of rules and hg2] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and A. Shukla,
no lockout of lookups. Further, when the scalability limit Packet Classifiers in Ternary CAMs can be Smal#GMET-

of DPPC-RE is reached, performance may be doubled f%] RICS 2006, 311-322.

. . C. R. Meiners, A. X. Liu, and E. Torng, TCAM Razor: A
replacing each TCAM of DPPC-RE with a PC-DUOS+. Systematic Approach Towards Minimizing Packet Classifiers in

TCAMs, ICNP, 2007, 266-275.
REFERENCES [24] A. X. Liu, C. R. Meiners, and Y. Zhou, All-Match Based Com-

[1] M. Akhbarizadeh and M. Nourani, Efficient Prefix Cache For plete Redundancy Removal for Packet Classifiers in TCAMSs,
Network ProcessordEEE Symp. on High Performance Inter- INFOCQM 2008, 574-582. .
connects 41-46, 2004. [25] S. Suri, T. Sandholm and P. Warkhede, Compressing Two-

[2] H. Song and J. Turner, Fast Filter Updates for Packet Classifica- S[,)(!)I‘(I_;.GI’ISIOHN Routing Tablesilgorithmica 35, 4, 2003, 287-
téoLnOlEs‘lzngJ'\j: ,;l(\)/ldeRoutlng Table Compaction in Ternary-CAM,[ZG] Y-K. Chang, A Two Level TCAM Architecture for Ranges,

[3] K. Lakshminarayan, A. Rangarajan and S. Venkatachary, Algo- |EEE Transactions on Computes, 12, Dec 2006, 1614-1629.

. PP : ania Banerjee-Mishra received Ph.D. in Computer Scienma funiversity
gtthnésof&rMAg‘éggced Packet Classification with Temary CAMS; £o/ida in 2012. She did her Integrated M.Sc. in Mathensagiod M.Tech

... .. in CSDP from IIT, Kharagpur. She is currently a Post Doc atvdrsity of
[4] D. E. Taylor, Survey and taxonomy of packet classificatiog|origa, working under the supervision of Prof. Sartaj Sahn

techniquesACM Computing Surveys (CSURDlume 37 Issue Sartaj Sahni is a Distinguished Professor and Chair of Coenpaid
3, September 2005, 238-275 . Information Sciences and Engineering at the University afrih. He is
[5] S. Sahni, K. Kim, and H. Lu, Data structures for onealso a member of the European Academy of Sciences, a Fellow d&,IEE
dimensional packet classification using most-specific-ruRCM, AAAS, and Minnesota Supercomputer Institute, and a iDistished
matching, International Journal on Foundations of ComputerAlumnus of the Indian Institute of Technology, Kanpur. In T9he was
Science 14, 3, 2003, 337-358. awarded_the |IEEE Computer _Souety Taylor L Bo_oth Educat_lwar;ei for
[6] Z. Wang H, Clhe M ’Kumar and S.K. Das. CoPTUA: Consiste ntributions to Computer Science and Engineering edutatiothe areas

. : . . data structures, algorithms, and parallel algorithms™d am 2003, he
Policy Table Update Algorithm for TCAM without Locking, was awarded the IEEE Computer Society W. Wallace McDowell riéw/éor

IEEE Transactions on Computer$3, 12, December 2004, contributions to the theory of NP-hard and NP-complete @oist’. Dr. Sahni
1602-1614. was awarded the 2003 ACM Karl Karlstrom Outstanding Educageard for
[7]1 D. E. Taylor and J. S. Turner, ClassBench: A Packet Classbutstanding contributions to computing education througgpired teaching,
fication Benchmark|EEE/ACM Transactions on Networking development of courses and curricula for distance educationtributions
Volume 15, No. 3, June 2007, 499-511 to professional societies, and authoring significant teokis in several areas

[8] T. Mishra and S.Sahni, PETCAM — A Power Efficient TcAMincluding discrete mathematics, data structures, algorittand parallel and

for Forwarding Tables|EEE Transactions on Computekl- distributed computing.” Dr. Sahni has published over threedned research
ume 61. No. 1. January 2012. 3-15 papers and written 15 texts. His research publications arthe design and
’ o y ’ analysis of efficient algorithms, parallel computing, intereection networks,

[9] T. Mishra and S.Sahni, Green TCAM-based Internet router&esign automation, and medical algorithms.

Handbook of Energy-Aware and Green ComputiG@apman- Dr. Guna Seetharaman is a Principal Engineer for Computeowisind
Hall/CRC Press, 2012 Information Fusion and Exploitation, at the Information Rirate, Air Force
[10] T. Mishra and S. Sahni, CONSIST - Consistent Internet Routesearch Laboratory, Rome, NY. He is currently focused oh pagformance
UpdateslEEE Symposium on Computers and Communicationg@mputing, computer vision, machine learning, content-basegde retrieval,
2010. persistent surveillance and computational science andeedng. He served
[11] Z. Wang, H. Che, M. Kumar, and S.K. Das, COPTUA: ConsisaS 8n associate professor of computer science and engipesrthe Air Force
tent Policy Table Update Algorithm for TCAM without Locking, Institute of Technology (2003-2008) and University of Leiana at Lafayette

) (1988-2003). He was also a CNRS Invited professor at Urityecs Paris
|2I.E6I(E)I2E l'l('srfzsactlons on Computer$3, 12, December 2004, Xl on multiple tenures between1998-2005; and, held a vigitistinguished

. . professorship at Indian Institute of Technology, Mumbai2006.

[12] H. Che, Z. Wang, K. Zheng and B. Liu, DRES: Dynamic Range Dr Seetharaman initiated and established computer visionrabotics
Encoding Scheme for TCAM CoprocessaiSEE Transactions laboratories at The University of Louisiana at Lafayette. ¢é-founded Team
on Computers57, 7, July 2008, 902-915. Cajunbot . a participant in DARPA Grand Challenge. He ledUtiiZAR data

[13] K. Zheng, H. Che, Z. Wang, B. Liu, and X. Zhang, DPPCprocessing and obstacle detection efforts in Team Cajund&shonstrated in
RE: TCAM-Based Distributed Parallel Packet ClassificatioR005 and 2007 DARPA Grand Challenges. He was a member of the AFIT

with Range Encoding|EEE Transactions on Computer§5 based core team for demonstrating and transitioning a wida persistent
8, August 2006, 947-961 " imaging and surveillance system known as Angel Fire. He otlyrdeads

fforts on power, latency and communications optimized videmgssing
[14] A. Bremler-Barr, D. Hay and D. Hendler, Layered Interval . oss video camera networks.

Codgs for TCAM'baSEd ClassificatiotNFOCOM 2009. He has published more than 150 peer- reviewed articles in: Qmyi-
[15] T. Mishra, S. Sahni and G. Seetharaman, PC-DUOS: Fasdn, low-altitude aerial imagery, Parallel Computing, Vissinal processing,
TCAM Lookup and Update for Packet ClassifielSCC 2011. 3D Displays, Nano-Technology, micro-optics, and 3D Videalgsis. He co-
[16] S. Kasnavi, P. Berube, V. C. Gaudet and J. N. Amaral, Arganized the DOE/ONR/NSF Sponsored Second Internatiévagkshop on
Multizone Pipelined Cache for IP RoutinGomputer Networks Foundations of Decision and Information Fusion, in 1996 (Wfagton DC),
Volume 52, No. 2, February 2008, 303-326 and the IEEE Sixth International Workshop on Computer Artgtiire for

[17] D. Pao, P. Zhou, B. Liu, and X. Zhang, Enhanced l:,reﬁg(lachine Perception, New Orleans, 2003. He guest edited IEEEFIPUTER

- - .) . -Special issue devoted to Unmanned Intelligent Autonomouscléh Dec
Inclusion Coding Filter-Encoding Algorithm for Packet Class"zooe. He also guest-edited a special issue of the EURASIPndbion

fication with Ternary Content Addressable MemaBnmputers gmpedded Computing in the topics of Intelligent Vehicles. e active

& Digital Techniques, IET1, 5, Sep 2007, 572-580. member of the IEEE, and ACM. He is also a member of Tau Beta Pi, Eta
[18] H. Liu, Efficient Mapping of Range Classifier into Ternary-kappa Nu and Upsilon Pi Epsilon. He is a Paul Harris Fellowhef Rotary

CAM, Hot Interconnects2002, 95-100. International.

