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Abstract—We propose algorithms for distributing the classifier
rules to two TCAMs (ternary content addressable memories)
and for incrementally updating the TCAMs. The performance of
our scheme is compared against the prevalent scheme of storing
classifier rules in a single TCAM in priority order. Our scheme
results in an improvement in average lookup speed by up to 49%
and an improvement in update performance by up to3.84 times
in terms of the number of TCAM writes.

Index Terms—Packet classifiers, TCAM, updates.

I. I NTRODUCTION

Internet packets are classified into different flows based on
the packet header fields. This classification of packets is done
using a table of rules in which each rule is of the form(F,A),
whereF is a filter andA is an action. When an incoming
packet matches a filter in the classifier, the corresponding
action determines how the packet is handled. For example,
the packet could be forwarded to an appropriate output link,
or it may be dropped. Ad-dimensional filterF is a d-tuple
(F [1], F [2], · · · , F [d]), whereF [i] is a range specified for an
attribute in the packet header, such as destination address,
source address, port number, protocol type, Transmission
Control Protocol (TCP) flag, etc. A packet matches filterF , if
its attribute values fall in the ranges ofF [1], · · · , F [d]. Since
it is possible for a packet to match more than one of the
filters in a classifier thereby resulting in a tie, each rule has
an associated cost or priority. When a packet matches two or
more filters, the action corresponding to the matching rule with
the lowest cost (highest priority) is applied on the packet.It is
assumed that filters that match the same packet have different
costs.

[4], [5] survey the many solutions that have been proposed
for packet classifiers. Among these, TCAMs have widely
been used for packet classification as they support high speed
lookups and are simple to use. Each bit of a TCAM may be set
to one of the three states 0, 1, andx (don’t care). A TCAM is
used in conjunction with an SRAM. Given a rule (F , A), the
filter F of a packet classifier rule is stored in a TCAM word
whereas and actionA is stored in an associated SRAM word.
All TCAM entries are searched in parallel and the first match
is used to access the corresponding SRAM word to retrieve
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the action. So, when the packet classifier rules are stored in
a TCAM in decreasing order of priority (increasing order of
cost), we can determine the action in one TCAM cycle.

We present a TCAM architecture, update algorithms and a
TCAM lookup mechanism in this paper for packet classifiers.
The two main contributions of our method are fast TCAM
lookup for packet classifiers and an advanced incremental
update scheme that requires few TCAM writes per update.
The fast lookup scheme is enabled by exploiting a TCAM
without a priority encoder to store selected rules in a classifier.
TCAMs without an encoder reduce TCAM search latencies by
50%[1]. The incremental update scheme uses a novel TCAM
rule insertion algorithm that either shifts the overlapping rules
with lower priority (compared to a new rule) downwards or
those with higher priority upwards to allot a slot for the new
rule, assuming TCAM addresses increase downwards. Conven-
tionally, the overlapping rules with lower priority are shifted
downwards in the TCAM for packet classifier and forwarding
table updates. The new insertion scheme reduces the number
of TCAM writes by up to 52% on our tests, compared to
the conventional scheme. Further, this algorithm may be used
with any TCAM architecture for packet classifiers, and is not
limited to PC-DUOS+.

We begin in Section II by reviewing the background and
related work. In Section III we describe our scheme of storing
packet classifiers in TCAMs. An experimental evaluation
of our scheme is done in Section IV and we conclude in
Section V.

II. BACKGROUND AND RELATED WORK

We first describe the PC-DUOS+ architecture in Sec-
tion II-A and then present the related work in the field of
TCAM based packet classifiers in Section II-B. Section II-C
describes a simple TCAM and how classifier rules are stored,
whereas Section II-D describes the differences between PC-
DUOS+ and PC-DUOS.

A. The Architecture

DUOS [9] is a dual-TCAM architecture with simple SRAM
(word size of 32 bits) used for packet forwarding. The same
basic architecture is used in PC-DUOS (Packet Classifier -
DUOS) [15], and in PC-DUOS+, which is an extension of



PC-DUOS. The TCAM architecture used in DUOS is shown
in Figure 1. There are two TCAMs, labeled as the ITCAM
(Interior TCAM) and the LTCAM (Leaf TCAM). DUOS also
employs a binary trie in the control plane of the router to
represent the prefixes in the forwarding table. The prefixes
found in the leaf nodes of the trie are stored in the LTCAM,
and the remaining prefixes are stored in the ITCAM. The
prefixes stored in the LTCAM are independent and therefore
at most one LTCAM prefix can match a specified destination
address. Hence the LTCAM doesn’t need a priority encoder.
Prefix lookup works in parallel on both the TCAMs. If a
match is found in the LTCAM then that is guaranteed to be
the longest matching prefix and the corresponding next hop
is returned. At the same time the ongoing lookup process on
the ITCAM (which takes longer due to the priority resolution
step) is aborted. Thus, if a match is found on the LTCAM,
the overall lookup time is shortened by about 50% [1]. The
logic on the final stage in Figure 1 that chooses between the
two next hops could be moved ahead and placed between the
TCAM and SRAM stages. In that case, the logic receives one
“matching index” input from the LTCAM and another from
the ITCAM. If a match is found in the LTCAM, the index
from LTCAM input is used to access the LSRAM, otherwise,
the ITCAM index is used to access the ISRAM. Further, if a
match is found in the LTCAM, the ITCAM lookup is aborted.

The memory management schemes used in DUOS are
highly efficient. The ITCAM needs to store the prefixes in
decreasing order of length, for example, so that the first
matching prefix is also the longest matching prefix. DUOS [9]
uses a memory management scheme (Scheme 3, also known as
DLFS PLO - Distributed and Linked Free Space with Prefix
Length Ordering), which initially distributes the free space
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Fig. 1. Dual TCAM Architecture

available in a TCAM between blocks of prefixes (of same
length) in proportion to the number of prefixes in a block. A
free slot needed to add a new prefix is moved from a location
that requires the minimum number of moves. As a prefix is

deleted, the freed slot is added to a list of free spaces for
that prefix block. Each prefix block has its own list of free
slots. With this scheme even with 99% prefix occupancy in the
TCAM and 1% free space, the total number of prefix moves
using DLFS PLO is at most 0.7% of the total number of prefix
inserts and deletes.

To support lock-free updates, so the TCAMs can be up-
dated without locking them from lookups, DUOS implements
consistent update operations that rule out incorrect matches or
erroneous next hops during lookup. For consistent updates,it
is assumed that:

1) Each TCAM has two ports, which can be used to
simultaneously access the TCAM from the control plane
and the data plane.

2) Each TCAM entry/slot is tagged with a valid bit, that
is set to 1 if the content for the entry is valid, and to
0 otherwise. A TCAM lookup engages only those slots
whose valid bit is 1. The TCAM slots engaged in a
lookup are determined at the start of a lookup to be
those slots whose valid bits are 1 at that time. Changing a
valid bit from 1 to 0 during a data plane lookup does not
disengage that slot from the ongoing lookup. Similarly,
changing a valid bit from 0 to 1 during a data plane
lookup does not engage that slot until the next lookup.

Additionally, the availability of the function
waitWriteV alidate is assumed which writes to a TCAM
slot and sets the valid bit to 1. In case the TCAM slot being
written to is the subject of an ongoing data plane lookup,
the write is delayed till this lookup completes. During the
write, the TCAM slot being written to is excluded from
data plane lookups. Similarly, the availability of the function
invalidateWaitWrite, is assumed. This function sets the
valid bit of a TCAM slot to 0 and then writes an address to
the associated SRAM word in such a way that the outcome
of the ongoing lookup is unaffected. All these assumptions
for DUOS are also made by our PC-DUOS and PC-DUOS+
architectures.

B. Existing Work on Packet Classifiers in TCAMs

When packet classifiers are stored in a TCAM, the main
attributes for optimization are TCAM space and power con-
sumption, updating mechanism and lookup performance. A
classifier rule often needs more than one TCAM entry to
represent port ranges, and this is called the port range ex-
pansion problem. Various approaches have been proposed in
the literature to alleviate the range expansion problem. The
schemes in [3], [14], [12], [17], [18], [19], [26] encode the
ranges and store modified rules in the TCAM. As a packet
arrives, an encoded search key is created from the packet
header fields using the encoding algorithm and the TCAM
is searched using the encoded search key. Spitznagel et al.
[20] proposed enhancements to the TCAM hardware to include
range comparison. With such an enhanced TCAM circuit, each
rule occupies a single entry in the TCAM.

A reduction of port range expansion helps to reduce TCAM
power consumption. Other strategies for TCAM power re-
duction are compressing packet classifiers by removing re-
dundancies is an effective strategy to reduce TCAM power



consumption. The approaches in [21], [22], [25], [23], [24]
present algorithms that transform an input classifier to an
equivalent smaller classifier. These algorithms quite naturally
contain port range expansions. While these approaches bring
about significant reductions in classifier size, they are generally
not suitable for incremental updates, since a rule to be deleted,
for instance, may not be present in the transformed classifier.

The problem of incorporating updates to packet classifiers
stored in TCAMs has been studied in [6] and [2]. The authors
in [6] present a method for consistent updates when the
classifier updates arrive in a batch. All deletes in an update
batch are first performed to create empty slots in the TCAM.
Then the relative priority of the relevant rules (for example
rules overlapping with a new rule being inserted) is determined
and the existing rules are moved accordingly to reflect any
change in priority ordering as the entire batch of updates is
applied. Following the ordering of existing rules, new rules are
inserted in appropriate locations. A problem with the algorithm
of [6] is that it performs the deletes in the update batch first.
This could lead to temporary inconsistencies in lookup [10].

Given a packet classifier, a naive approach is to store it in
a TCAM by entering each rule sequentially as they appear
in the classifier and distribute all the empty slots between
rules. As mentioned in [2], this approach could lead to high
power consumption during look as the whole TCAM has to be
searched including the empty entries. On the other hand, if the
empty entries are kept together at the higher addresses of the
TCAM, then those may be excluded from lookups. However,
if the empty spaces are kept at one end of the TCAM, then
it would require a large number of rule moves to create an
empty slot at a given location. Specifically, all the rules inthe
TCAM, below the slot to be emptied must be moved below.

Song and Turner [2] describe a fast TCAM update scheme
on packet classifiers. In their method, the classifier rules are
entered arbitrarily in the TCAM and are not arranged accord-
ing to decreasing order of priority. They ensure that the action
corresponding to the highest priority matching rule is returned
by performing multiple searches on the TCAM. Specifically,
they assign a priority (which we call block number here) to
each rule and encode the block number as a TCAM field
and allow the highest priority TCAM match to be found
using log

2
n searches, wheren is the total number of block

values assigned in the classifier. The highest priority match
corresponds to the rule with the minimum block number. The
rule and its assigned block number are entered in the TCAM.
Even though this method does not incur TCAM writes due
to rule moves for maintaining consistent block numbers for
overlapping rules or to create an empty slot at the right place
for inserting a new rule, this method involves a number of
TCAM writes as the assigned block numbers of rules change
due to inserts or deletes. Moreover, lookup speed is slowed
down since multiple TCAM searches are required and these
searches cannot be pipelined as they take place on the same
TCAM.

Zheng et al. [13] describe a distributed and parallel TCAM
architecture, DPPC-RE (Distributed and Parallel Packet Clas-
sification with Range Encoding), for packet classification in
which the rules are stored inK (>1) TCAMS with some

rules possibly being stored in more than 1 TCAM. The
rule to TCAM distribution strategy ensures that an incoming
packet can be matched only by the rules in a single TCAM.
As a result, the packets in an incoming stream may be
distributed to appropriate TCAMs for classification achieving
an expected throughput that is aboutK/3 (when key encoding
is used1) times the throughput of a simple TCAM classifier
(Section II-C). However, since an adversary may inject a
packet stream all of whose packets require the same TCAM for
lookup, the worst-case throughput is about a third (the same)
that of a simple TCAM classifier when key encoding is (not)
used. Further, even though it may be possible to initialize the
TCAMs to have a roughly equal share of the rules, as updates
are performed, the TCAM occupancy can become unbalanced.
The strategies suggested in [13] to re-balance the TCAMs
delay processing of the packet stream as the affected TCAMs
are not available for lookup during re-balancing. In the extreme
case, expensive redistribution algorithms have to be run and
the entire set of rules redistributed to theK TCAMs. The
strategy of [13] also requires substantial additional hardware (a
distributer,K processing units, a mapper, etc.) to orchestrate
the system. PC-DUOS+, on the other hand, requires much
less additional hardware and no re-balancing. Further, the
TCAMs are never locked out for lookup and so there is never
a delay in processing the packet stream. PC-DUOS+, which
uses two TCAMs and no key encoding, obtains an expected
throughput of about twice that of a simple single TCAM.
This is comparable to the expected throughput of DPPC-RE
whenK = 2 and key encoding is not used. However, the PC-
DUOS+ architecture is much simpler, requires no re-balancing
and has no lockout of lookups. Since some components (e.g.
dispatcher and mapper) of DPPC-RE must operate atK times
the speed of a TCAM, the scalability of DPPC-RE is limited
to a technology dependent valueKmax. When this limit is
reached, the expected throughput may be further doubled by
replacing each TCAM of DPPC-RE with a PC-DUOS+.

The idea of splitting a given set of rules to speed up lookup
was used by Kasnavi et al. [16] for packet forwarding. They
use different treatment for prefixes that are 16-bits or lessand
those that are more than 16 bits in length to achieve a low
power, high throughput lookup system.

C. Simple TCAM (STCAM)

We use a STCAM architecture for performance comparison.
The STCAM is a modification over the naive TCAM in that
the rules are grouped by block numbers, which reduces the
number of required moves when a free slot is needed. The
required number of moves is now bounded by the total number
of blocks. The block numbers are assigned to the rules using
the algorithm presented in [2], based on a priority graph. A
priority graph is a representation of the rules in a classifier.
Each rule is represented by a vertex in the priority graph.
There is an edge between two vertices iff the corresponding

1We assume that a rule fits in a TCAM slot. So, when key encoding is
used, two TCAM searches (one for each of the source and destination ports)
are needed to encode the key and a third TCAM search is needed for rule
matching.



rules overlap. The direction of the edge is from the vertex for
the higher priority rule to the vertex for the lower priorityrule.

Example: Suppose a classifier has four two-field rules as
shown in Figure 2. Figure 3 shows the priority graph for

Index Rule (Source, Destination) Priority
R1 (1.0.0.0/8, 0.0.0.0/16) 1
R2 (1.0.0.0/8, 0.0.0.0/0) 2
R3 (0.0.0.0/8, 0.0.0.0/0) 3
R4 (0.0.0.0/0, 0.0.0.0/0) 4

Fig. 2. A classifier with four rules

this classifier. Consider rules R1 and R4. These two rules
overlap with each other and rule R1 is of higher priority
compared to rule R4. Thus there is an edge between the
vertices corresponding to rules R1 and R4 and the direction
of the edge is from rule R1 to R4. On the other hand, there
is no edge between the rules R1 and R3, because the source
prefix fields of these rules are non-overlapping. For example,
R3 matches source addresses with 0 on the first octet, whereas
R1 matches those with 1 on the first octet. Thus, the sets of
addresses matched by R1 and R3 are disjoint.

R1

R2 R3

R4

Fig. 3. A priority graph

The method of assigning block numbers to the rules is
explained as follows: a subset of the rules is identified such
that within the subset, each rule overlaps with every other rule.
Such a subset, in this example, are the rules R1, R2 and R4.
Each rule in the subset is assigned a different block number
based on its priority. Block numbers can be reused for different
non-overlapping rule subsets. Thus, rules with the same block
number are all non-overlapping or independent. Two rules are
independent iff there is no packet that matches both the rules.
The rules R2 and R3 are independent rules in this example.
Filters are grouped based on their assigned block numbers.
The group with the lowest block number is of highest priority
and these rules are stored in the lowest memory addresses of
the TCAM. Figure 4 shows how the rules are grouped into
three blocks in the TCAM, where ‘x’ represents an octet of
‘don’t care’ bits.

D. Difference between PC-DUOS+ and PC-DUOS

PC-DUOS+ differs from PC-DUOS in the way the selection
of rules for the LTCAM is made. PC-DUOS filters theleaves
of leavesset in a multi-dimensional trie to keep only the
highest priority rules among all overlapping rules. The rules
in the filtered leaves of leaves set is then entered in the
LTCAM. PC-DUOS+, on the other hand, uses a priority graph
to select rules for the LTCAM. PC-DUOS+ also uses new
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algorithms for ITCAM rule insertion which require fewer
moves to rearrange rules for priority based adjustments. The
ITCAM insert algorithm is not specific to PC-DUOS+, and
can be used with any packet classifier architecture to reduce
the number of writes during an update.

III. PC-DUOS+: METHODOLOGY

PC-DUOS+ uses the 2-TCAM architecture used in PC-
DUOS[15] (Figure 1). During lookup, the LTCAM and IT-
CAM are searched in parallel using the packet header in-
formation. If a match is found in the LTCAM, the ongoing
search in the ITCAM is aborted. When the ITCAM search is
aborted, lookup time is reduced by about 50%[1], because the
LTCAM has no priority encoder. For this lookup strategy to
yield correct results, the following requirements must hold:

R1) No packet is matched by more than one rule in the
LTCAM.

R2) When a packet is matched by a rule in the LTCAM,
the matched rule must be the highest priority match-
ing rule.

The algorithms used for storing and updating rules in the
TCAMs are discussed in detail below.

A. Storing Rules in TCAMs

Figure 5 shows the overall flow of storing rules in the
ITCAM and the LTCAM. The first phase involves creating
a priority graph and a multi-dimensional trie for the rules in
the classifier. This is further discussed in Section III-A1.The
second phase in our methodology consists of identifying a
set of highest priority independent rules and storing thesein
the LTCAM, which is discussed in Section III-A2. In the third
phase, the remaining rules are stored in the ITCAM in priority
order. This is discussed in Section III-A3.

1) Representing Classifier Rules:The classifier rules are
represented in a priority graph as well as in a multi-
dimensional trie. A priority graph contains one vertex for each
rule in the classifier. There is a directed edge between two
vertices iff the two rules overlap and the direction of the edge
is from the higher to the lower priority rule. Two rules overlap
iff there exists at least one packet that matches both the rules.

Each dimension in a multi-dimensional trie represents one
field of the rule. The fields in a filter rule appear in the
following order in the trie:<destination, source, protocol,
source port range, destination port range>. We assume that
the destination and source fields of the filters are specified
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Fig. 5. Flow diagram for storing packet classifiers in TCAMs

as prefixes. So, these are represented in a trie in the standard
way with the left child of a node representing a 0 and the right
child a 1. Ranges may be handled in one of many ways. In
this paper, we use the DIRPE scheme of [3] that requires the
use of a multi-bit trie. Our methodology may also be applied
to other range encoding schemes, such as those in [12] and
[14].

2) Storing rules in the LTCAM:Recall that two rules are
independent iff no packet is matched by both rules. For the
LTCAM we are interested in identifying the largest set of rules
that are pairwise independent. Note that every independent
rule set satisfies the first requirement (R1) for a lookup to
work correctly. To find an independent rule set in acceptable
computing time, we relax the “largest set” requirement and
instead look for a large set of independent rules. It is easy
to see that the rules in the vertices of the priority graph with
in-degree 0 are independent rules. Further, these rules arealso
the highest priority rules among all rules that overlap with
them. This satisfies the second requirement (R2) for a lookup
to work correctly. Hence, we choose to enter these rules into
the LTCAM. All remaining rules are entered in the ITCAM.

3) Storing rules in the ITCAM:The rules to be stored in
the ITCAM, are assigned block numbers. The priority graph
is used to assign block numbers as follows [2]. All vertices,
to which there are no incoming edges, are assigned a block
number of 1. All children of the vertices with block number
1 are assigned a block number of 2 and so on. Aparent of a
vertexv in the priority graph, is a vertex from which there is
an incoming edge tov. Similarly, a child of v is a vertex to
which there is an out-going edge fromv. Thus a child of any
vertex is assigned a block number that is at least one more
than that of this vertex. Apath in a graph is a sequence of
vertices such that from each vertex there is an edge to the
next vertex in the sequence. A non-trivial path is a path with
at least two vertices. Anancestor of a vertexv is a node that
has a non-trivial path tov. A descendant of v is a vertex
to which there is a non-trivial path fromv. In other words, a
descendant ofv hasv as one of its ancestors.

In the block assignment scheme, rules that are assigned
the same block number are independent and hence grouped
together in a single block. These blocks are entered in the
TCAM in increasing order of the assigned block numbers.
In our implementation, each vertexv in the priority graph
has a fieldv→hpri which stores a pseudo priority associ-

ated with the block number of the vertex. Whilev→hpri
equals the block number ofv in PC-DUOS, in PC-DUOS+,
priorityMap(v→hpri) is the block number for rulev. The
example below shows the initial assignment of rules to an
ITCAM and the pseudo-priorities assigned to the rules. when
PC-DUOS and PC-DUOS+ are used.

Example: The rules in Figure 2 are inserted in ITCAM in
priority order as shown in Figure 6. Its an initial assignment
and there are three blocks. Rule R1 is placed in the first block,
rules R2 and R3 are placed in the second and rule R4 in the
third block. The first block is assigned to TCAM address 1, the
second to TCAM addresses 2-3, and the third to 4. The pseudo-
priorities assigned to the blocks are 1, 2, and 3 respectively.
We will see later how the pseudo priorities change as new
rules are added.
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Fig. 6. Pseudo priority assignments in PC-DUOS and PC-DUOS+

When the priority graph is constructed for the initial classi-
fier, v→hpri equals the block number ofv andpriorityMap
is an identity mapping. However, as we insert and delete rules,
v→hpri may no longer equal the block number ofv (in fact,
v→hpri may not be an integer) andpriorityMap is no longer
an identity mapping.

To build the priority graph, we first iterate over the classifier
rules and for each rule, identify all rules that overlap withit. A
trie-based algorithm to determine the rules that overlap a given
rule is presented in Figure 7. For simplicity, the algorithm
is specified for the case when rules have only two fields -
destination and source prefix. Its extension to rules with a
larger number of fields is straight forward. Given a rule, the
algorithm first extracts the values for the different fields for
the rule, and traverses the trie along these prefix paths until all
overlapping rules are found. For each overlapping rule found, a
directed edge is added to the priority graph. The priority graph
is a directed acyclic graph and block numbers are assigned
using an iterative process.

Even though in the worst case all the trie nodes have
to be explored for finding overlapping rules (this happens,
for example, whenruleInstance is the root of the multi-
dimensional trie and thus represents a classifier rule with wild-
carded fields) this approach works well on average and, in
fact, it makes the computation in PC-DUOS+ scalable during
the initial setup as well as while processing the updates. In
contrast, the simple approach of iterating over all the rules
of the classifier to compare overlaps and priorities, quickly
becomes a performance bottleneck as the number of rules in
the classifier increases.



Algorithm: findOverlappingRules( ruleInstance)
Inputs:
ruleInstance: a binary trie node representing a rule and storing
its action.
Src: source prefix obtained fromruleInstance.
Dest: destination prefix obtained fromruleInstance.
Output:
list: a list of rules overlapping with the input rule

nodeD = root of destination trie;
for (i=0; i<length of destination prefix; ++i)

if (root of a source trie is stored at nodeD)
nodeS = root of source trie
for (j=0; j<length of source prefix and nodeS; ++j)

if nodeS stores a ruleR
appendR to list.

branchBitS =Src[j]; // jth bit of Src prefix
nodeS = nodeS→child[branchBitS];

// nodeS→child[0] and nodeS→child[1] are
// the two chidren of nodeS in the trie

endfor
if (nodeS != NULL) then

visit all nodes in subtrie rooted at nodeS
if (any node stores a ruleR)

appendR to list.
endif

endif
endif
branchBitD =Dest[i];
nodeD = nodeD→child[branchBitD];

endfor
for nodeX in subtrie rooted at nodeD

if (any node stores a ruleR)
appendR to list.

endif
endfor

Fig. 7. Find overlapping rules by trie traversal

B. Update algorithms

When an update request is received, the priority graph
and the multi-dimensional trie are updated. Section III-B1
describes how this is done. Next the existing ITCAM rules that
overlap with the rule involved in the update arerearranged
to ensure that the highest priority rules are still matched after
the update is complete. Rules may also be moved from the
ITCAM to the LTCAM or vice versa as a result of the updates.
This step is discussed in Section III-B2.

1) Update the priority graph and the trie:This is the
first step in the update process. The multi-dimensional trie
is updated with the help of functions as described in Figure 8.

The priority graph is updated next. If the update is a delete
request, then the vertex for the rule to be deleted (together
with incident edges) is removed from the priority graph and
rules corresponding to vertices whose in-degree becomes 0 are
moved from the ITCAM to the LTCAM. Each rule that is to
be so moved is first inserted into the LTCAM and then deleted
from the ITCAM using insert/delete procedures described in
Sections III-B2b and III-B2d. If the update is an insert, then a
new vertex is added to the priority graph. All rules overlapping
with the new rule are found, and a new edge is added for each

Function: Trie.insert
Trie.insert(rule, action);
This function inserts a rule and its action into the control-plane multi-
dimensional trie.
Function: Trie.delete
Trie.delete(rule);
This function deletes a rule from the control plane trie.
Function: Trie.change
Trie.change(rule, action);
This function changes the action associated with a prefix.

Fig. 8. Table of control-plane trie functions

overlapping rule. Overlapping rules are identified by traversing
the trie using the algorithm of Figure 7. After adding a new
vertexv to the priority graph,v→hpri is calculated. Ifv has
no incoming edgesv→hpri is set to 0 and the new rule inv is
placed in the LTCAM. Otherwise,v is placed in the ITCAM.

If v is placed in the ITCAM thenv→hpri is set either
by movingv’s ancestors upward or its descendants downward
or by moving neither descendants nor ancestors. These three
possibilities are shown in Figures 9(c), (d) and (e). Figure9(a)
depicts a portion of the original graph. The number next to
each vertex shows thehpri value on that vertex. The newly
added vertexv is colored black in Figure 9(b). In Figure 9(c),
v→hpri is set based onv’s parenthpri so thatv will be placed
in the ITCAM block below that of its parent. Note that the
hpri of v’s child must be updated too and the child is moved
one block downward, thus avoidingv and its child being
placed in the same ITCAM block. Such updates propagate
to all descendants. In Figure 9(d),v→hpri is set based on the
hpri of v’s child so thatv will be placed in the block above
that of its child. Thehpri of v’s parent is updated so that the
parent is moved one block upward and these updates propagate
to all ancestors. Figure 9(e) shows a case where a new block
is inserted between the parent block and the child block, and
the hpri associated with the new block is 3.5. Thusv→hpri
is set to 3.5, and neither the descendants nor the ancestors of
the new block are moved.

Figure 10 shows the algorithm to setv→hpri. Figure 11
shows how the descendants are moved downwards. In Fig-
ure 10, we first calculate the number of moves to setv→hpri
when descendants are moved downwards (childMoves) and
when the ancestors are moved upwards (parentMoves). These
calculations are based on the flow diagram in Figure 13(b).
Supposev→hpri is set by moving descendants downwards,
and the block number corresponding to the maximumhpri of
the parent vertices isB. Thenv is assigned to a blockB + 1
and no child vertex ofv can be in a block lower thanB + 2.
If a child vertex is found to be in a block lower thanB + 2
by mapping the child’shpri, then that child must be moved
to an appropriate block, which could be either blockB+2 or
some higher block such asB + 3, B + 4, etc. Such updating
happens recursively for all descendants as shown in Figure 11.
The algorithm to setv→hpri by moving ancestors upwards
is similar.

Example: This example highlights the difference in moving
the descendants downwards versus the ancestors upwards
upon an insert. We start with the TCAM assignment shown
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Fig. 9. Settinghpri on a new vertex in a priority graph

in Figure 6. We insert a new rule R:(1.0.0.0/8, 0.0.0.0/8),
with priority lower than R1, but higher than R2. When the
descendants are moved downwards, we need three TCAM
writes. The first TCAM write copies R4 to position 5, the
second write copies R2 to position 4 and the third write inserts
the new rule R at position 3. The pseudo priority of the blocks
preserve identity mapping. Descendants are moved downwards
to create a free slot during an insert by both PC-DUOS and
the update scheme in [2]. This strategy is also selectively used
in PC-DUOS+.

Now consider the other situation when the ancestors are
moved upwards. In this case we need just two TCAM writes.
The first TCAM write copies R1 to position 1, and the second
TCAM write inserts the rule R to position 2. In this case the
relative rule ordering is still the same. However, now the first
block cannot continue to have a pseudo-priority of 1, since
the second block (consisting of R) is already assigned 1. So,
the priority of the first block is changed to a number lower
than 1 (but greater than 0, since rules with priority 0 are
inserted in the LTCAM) and we set it to 0.5. This is shown
in Figure 12(a). Thus identity mapping is not preserved any
more.

PC-DUOS+, initially estimates the number of TCAM writes
that would be needed when the descendants are moved down-
wards, versus when the ancestors are moved upwards and
the direction that yields a lower number of TCAM writes is
selected for moving the rules. This step is computationally
intensive, with a worst case complexity ofO(NL), where
N is the number of vertices in the priority graph andL is
number of vertices on the longest path.L is also referred to
as themaximum chain lengthof the priority graph. The worst
case happens when each vertex is connected to every other
vertex. The flowchart in Figure 13(a) shows an unoptimized
decision diagram that causes a performance bottleneck. In

this case, the actual number of moves is computed for both
the cases when the descendants and the ancestors are moved.
childMoves stores the number of rule moves computed when
the descendants are moved and parentMoves stores the corre-
sponding number when the ancestors are moved.maxLimit
is the maximum number of rule moves when descendants or
parents are moved.maxLimit is set to infinity and does not
play any role in this decision diagram.

To avoid this performance bottleneck, we calculate the
number of moves based on the flowchart in the Figure 13(b). A
thresholdmaxLimit is set to avoid calculating the exact num-
ber of moves. WhenmaxLimit is set, “Compute childMoves”
and “Compute parentMoves” return the number of moves if
its belowmaxLimit, otherwise they returnmaxLimit. The
following example shows how the flowchart helps in speeding
the calculations. Suppose, the exact number of child and parent
moves are 870 and 3050 respectively. If it is found that
childMoves=870, then before computing parentMoves, we set
maxLimit to a number larger than 870 (say 900), and then
call ‘Compute parentMoves’. The parentMoves returned is
900, instead of 3050, which is sufficient information for theal-
gorithm in Figure 10, as it tells that parentMoves are more than
childMoves. Thus, the time to count parentMoves up to 3050
is saved by settingmaxLimit appropriately. The flowchart
variables maxMoves, maxChildMoves and moreMoves, were
set to 500, 50 and 100 in our experiments. This filtered out the
less than 10 percent of the child or parent move calculations
that took 90 percent of the total processing time.

We use another optimization in the ITCAM rule placement
strategy, where a new block is inserted into the TCAM
between two existing blocks as shown in Figure 9(e) and on
lines 18 and 43 of Figure 10. If the maximum block number
of the parents ofv is B and the minimum block number of
its children isB + 1, then instead of moving all children in
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block B + 1 to B + 2 or all parents in blockB to B − 1, a
new block is created in the ITCAM between the blocksB and
B + 1 and v→hpri is set to the average of the hpri-s of the
two blocks (i.e. (hpriof(B) + hpri of(B + 1)) /2). The new
rule for v is then added to the new block. If the new rule is to
be added on top of the topmost ITCAM block as on line 38 of
Figure 10, thenv→hpri is set to (hpriof(B) /2). Recall that
the vertices with in-degree 0 are assigned an block number 0.
Hence the assignment of hpri, ensures that the block number
is still greater than 0. Addition of a new block must be done
judiciously, since it requires an extra move while bringingin
a free slot to a particular blockB when the newly inserted
block is between the free space pool andB. This is shown in
Figure 14. While it takes just a single rule move in block C
to get a free slot in block B in the setup of Figure 14(a), it
takes 2 rule moves when a new block A is added as shown in
Figure 14(b). This optimization is enabled by the user settable
‘isInsertFlag’ on lines 17 and 42 of Figure 10. Figure 9(e)
shows thatv→hpri for the new vertexv is set to3.5. A new
block is added between the parent and the child blocks in this
case.

For consistent updates [10], [11], if the vertices are to
be moved downwards, then the moves may be executed in
increasing order of priority starting from the lowest priority
rule and after all the descendants are moved, the new rule
is added. If the vertices are moved upwards, then the moves
may be executed in decreasing order of priority, starting from
the highest priority rule. After all the ancestors are moved,
the new rule is added. Lines 55-59 of Figure 10 ensure that
nodes are moved to their assigned slots in the reverse order
of visiting them. Thus, the node last visited for updatinghpri
is the first to be moved to its assigned slot. This preserves
update consistency for both the cases when the descendants
are moved downwards and the parents upwards. The new rule
is added at the end (Line 60).

2) Updating the TCAMs:TCAM updates are generated
after updating the priority graph. Rules may be moved from
the ITCAM to the LTCAM or vice versa or they may be moved
within the ITCAM for rearrangement of overlapping rules. To

insert or move a rule in a TCAM we need a free slot at an
appropriate location. This slot can be obtained efficientlyusing
memory management algorithms. In particular, the memory
management schemes from DUOS may be used here. For the
ITCAM of PC-DUOS+ as well as PC-DUOS, we implemented
the DLFS PLO scheme, as its the most efficient scheme
known to us for moving free slots to a desired location in a
TCAM. In the DLFS PLO initial rule placement scheme, free
slots are kept in the region between two blocks. Additionally,
there may be free slotswithin a block. So a list of free
slots is maintained for each block on the TCAM, with the list
being empty initially. As rules are deleted from a block, the
freed slots are added to the list for that block. The memory
management scheme for LTCAM is relatively simple as all
the rules in the LTCAM are independent so a new rule
can be inserted anywhere in the TCAM. However, we still
need to locate a free slot. The LTCAM memory management
algorithm of DUOS creates a linked list of the free slots. When
a free slot is needed, a slot is obtained from the head of the free
slot list. PC-DUOS+, as well as PC-DUOS, uses the memory
management algorithm for DUOS for its LTCAM [9].

Since the blocks grow both ways, up as well as down, PC-
DUOS+ has a modified initial rule placement policy as shown
in Figure 15 where 25% of the free slots (represented by white
blocks) are placed on the top of the TCAM (that is, covering
the lowest addresses) and another 25% are kept at the bottom
of the TCAM (covering the highest addresses). The remaining
50% of the free slots are distributed to the region between the
blocks in proportion to the number of rules in a block.

a) ITCAM.insert: :
To insert a new rule in the ITCAM, a free slot is first made
available at the desired block. A free slot may be present in
the same block in which case no moves are needed to get it
from the free slot list of the block. If there is no free slot inthe
block, then a free slot may be obtained from the inter-block
region on the top or the bottom of the block. No moves are
needed in this case too. If there is no free slot in the inter-
block region adjacent to the block, then a free slot is moved
from the nearest neighboring block where its available.



Algorithm: insertRule( v)
Inputs:
Rule stored in vertexv in the priority graph.
User settable ‘isInsertFlag’ which is used for optimization and
explained in Section III-B1

1 maxP = max(parent→hpri) from ITCAM parents ofv;
2 minC = min(child→hpri) from children ofv;
3 // Default values are maxP:−1 and minC: infinity
4 childMoves = parentMoves = 0;
5 if (maxP≥ minC) then
6 compute childMoves to push descendants down and
7 parentMoves to push ancestors up according to Figure 13(b).
8 endif
9 // Get blockBC corresponding to minC. Ifv has no outgoing
10 // edges, thenBC − 1 is the last block in the ITCAM.
11BC = priorityMap(minC);
12BP = priorityMap(maxP);
13if (v has a parent vertex in the ITCAMand
14 parentMoves< childMoves)then
15 // Move ancestors upwards
16 targetBlock =BC − 1;
17 if (BC − 1== BP and isInsertFlag)then
18 targetBlock = create a new block betweenBP andBC.
19 endif
20 // Function reversePriorityMap returns pseudo-priority
21 // corresponding to targetBlock.
22 v→hpri = reversePriorityMap(targetBlock);
23 assign slot in targetBlock forv;
24 if (v→hpri ≤ maxP)begin
25 sort the parent vertices in a decreasing order of hpri;
26 for each parent ofv
27 if (v→hpri ≤ parent→hpri)
28 if (parent is in ITCAM) moveParentUp(parent);
29 endif
30else// Move descendants downwards
31 // Initially, the highest priority rules in ITCAM havehpri
32 // set to2. So, targetBlock is initialized to that block.
33 targetBlock = priorityMap(2);
34 if (v has no parent in the ITCAM)then
35 if (there exists a blockBC − 1) then
36 targetBlock =BC − 1;
37 else if (isInsertFlag)then
38 targetBlock = create a new block on top ofBC.
39 endif
40 else
41 targetBlock =BP + 1;
42 if (BP + 1 == BC and isInsertFlag)then
43 targetBlock = create a new block betweenBP andBC.
44 endif
45 endif
46 v→hpri = reversePriorityMap(targetBlock);
47 assign slot in targetBlock forv;
48 if (v→hpri ≥ minC) begin
49 sort the descendant vertices in an increasing order of hpri
50 for each child ofv
51 if (v→hpri ≥ child→hpri) moveChildDown(child);
52 endif
53endif
54 // Process nodeList from moveParentUp/moveChildDown
55for eachw in nodeList starting from the last one
56 slotW = current TCAM slot occupied by the rule ofw;
57 write the rule ofw in the assigned slot;
58 free slotW;
59endfor
60 write the rule ofv in the assigned slot.

Fig. 10. Insert a rule in the ITCAM

Algorithm: moveChildDown(child)
Input: Rule stored in vertex ‘child’ in the priority graph.

mP = find max(parent→hpri) from all parents of child
mC = find min(child→hpri) from all children of child
if (mP< child→hpri and child→hpri < mC) return ;
block = priorityMap(maxP) + 1;
child→hpri = reversePriorityMap(block);
assign a slot in block for child; append child to nodeList;
if (child→hpri ≥ mC) begin

sort the descendant vertices in an increasing order of hpri
for each childi of child

if (child→hpri ≥ childi→hpri) moveChildDown(childi);
endif

Fig. 11. Moving descendants downward in the ITCAM
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Fig. 12. Comparison of the number of TCAM writes to insert a new rule R

To insert a new block between two blocks in the ITCAM,
it is first checked if there is a free slot between the top and
bottom blocks. If there are free slots in the region between
the top and the bottom blocks, then the rule in the new block
is inserted there in such a way that there are some free slots
above and below the new block. Otherwise, free slots for the
new block are moved in from the nearest neighboring block
that has free slots.

b) ITCAM.delete::
After deleting the vertex corresponding to the rule in the

������
������
������

������
������
������������
������
������
������

������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

1

Free Slots

Block C

Block B

(a) 1 move

������
������
������

������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������

������
������
������

������
������
������
������

Free Slots

Block C

Block A

Block B

1

2

(b) 2 moves

Fig. 14. Number of moves to get a free slot to block B, moves are shown
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Fig. 15. Initial ITCAM layout

priority graph, the valid bit on the corresponding TCAM slot
is set to 0. DLFSPLO frees up the block if the rule deleted is
the last rule in the block. Otherwise, the freed slot is prepended
to the head of the list of free slots in the block.

c) ITCAM.change::
Suppose the specified change is with respect to the fields of a
rule, then such a change is implemented as an insert followed
by a delete. The insert adds the changed rule to the same
block as the old rule, while the delete removes the old rule
from this block. If the change is in the priority of the rule,
then, we revisit all the incoming and outgoing edges of the
corresponding vertexv in the priority graph and reverse the
edges appropriately to maintain the edge direction from the
higher to the lower priority rule. Then the block number is
freshly calculated forv, and the rule is moved to a block at
a higher address (if the priority was lowered) or to a block at
a lower address (if the priority of the rule was increased) in
the ITCAM. If the vertexv does not have any incoming edge
following the update, it is moved to the LTCAM.

d) LTCAM.insert, LTCAM.delete and LTCAM.change::
To insert a new rule in the LTCAM, a free slot is obtained
from the head of the LTCAM free slot list. If a rule is deleted
from the LTCAM, then the valid bit of the slot is set to 0 and
the freed up slot is prepended to the head of the free slot list.

For incorporating a changed rule, if the change is with
respect to the fields of a rule, then the changed rule is simply
inserted in the LTCAM and the old rule deleted. If the change
is in the priority of a rule in such a way that the corresponding
vertex now has an incoming edge, then the rule is moved to
the ITCAM. Otherwise, if the rule continues to be the highest
priority rule among all overlapping rules even after the change,
then nothing needs to be done.

IV. EXPERIMENTAL RESULTS

The experimental setup is described in Section IV-A. The
results obtained for lookup and update performance are de-
scribed in Sections IV-B and IV-C.

A. Setup

We programmed the lookup and update algorithms for
STCAM, PC-DUOS and PC-DUOS+ in C++ and compared
their performance on an x86 Linux box with a 64-bit, 1.2GHz

CPU. It is difficult to get real life packet classifiers from
ISPs, mainly due to security reasons. So, we generated test
classifiers using ClassBench [7], which is a well known tool
for generating synthetic classifiers and packet traces. The
classifiers generated using ClassBench closely model real
life packet classifiers. The three different types of classifiers
modeled by ClassBench are access control lists, firewalls and
IP chains. The 12 seed files included in ClassBench contain the
basic parameters used to generate the classifiers of a specific
type. Each generated rule has the traditional 5-field filter,
namely, source address, destination address, source port range,
destination port range, and protocol. We generated the test
classifiers, by using the seed files and specifying the number
of rules in each classifier.

To test the performance of TCAM lookup, we generated
packet traces using ClassBench with 100,000 packet headers
simulated lookups in PC-DUOS and PC-DUOS+. To test the
update algorithms of PC-DUOS+, we generated an update
sequence, by randomly marking some of the rules in a dataset
for insertion and some others for deletion. The rules marked
for insertion were removed from the dataset to arrive at the
initial configuration for the classifier. A random permutation of
the removed rules (i.e., those marked for insertion) together
with those marked for deletion define the update sequence.
Since we use the same update sequence on PC-DUOS+,
PC-DUOS and the STW architectures, the comparison of
update performance is fair. We generated two sets of tests
to experiment with our update algorithms.

For the first set of tests, we generated a classifier of about
10000 rules, from each seed file. Then for a classifier we
generated 10 insert sequences each comprising of a different
set of 5000 rules to be inserted. Then for each insert sequence
we generated 10 different permutations. Thus we generated
100 tests for a seed file, where each test has an insert sequence
of 5000 rules.

Figure 16 describes the second set of tests, in which we
generate a single test from each file, and these tests contain
a longer sequence of updates which include deletes. In Fig-
ure 16, the first and second columns give the indexes and
names of the classifiers, the third column shows the seed files
in ClassBench from which these tests were derived, the fourth
column shows the number of rules in the initial configuration
of a classifier, and columns five to seven give the number of
insert and delete operations in the update sequence. We used
12 seed files based on access control lists (acl), firewalls (fw)
and IP chains (ipc) to generate the 13 classifiers. Out of these
13 tests, the first seven were used in [15].

We use DIRPE [3] to store the port ranges in the TCAM.
DIRPE was implemented by using multi-bit tries for source
and destination port ranges. We assume that 36 bits are
available for encoding each port range in a rule. With this
assumption, we use strides 223333 for our experiments, which
give us minimum expansion of the rules. The stride value
223333 indicates that for a given port number (16 bits), the
root of the port range trie will use the first two bits to branch
to one of its four possible child nodes at level 1. Each node
at level 1 uses the next two bits to branch to one among its
four possible child nodes at level 2. A node at the level 2, on



Index Datasetseedfile #Rules #Inserts #Deletes
1 acl1 acl1 seed 30075 69300 29700
2 fw1 fw1 seed 7989 28800 7200
3 ipc1 ipc1 seed 15338 34300 14700
4 acl2 acl2 seed 53970 45000 45000
5 fw5 fw5 seed 5571 45900 5100
6 acl4 acl4 seed 34254 5000 5000
7 ipc2 ipc1 seed 5165 94050 4950
8 acl3 acl3 seed 19745 2976 3124
9 acl5 acl5 seed 19492 12500 12500
10 fw2 fw2 seed 16668 15000 15000
11 fw3 fw3 seed 16841 33400 16600
12 fw4 fw4 seed 12882 10000 10000
13 ipc3 ipc2 seed 20000 15000 15000

Fig. 16. Synthetic classifiers and update traces used in the experiments

the other hand, uses the next 3 bits to branch to one among
its eight possible child nodes at the level 3, and so on. Thus,
all the 16 bits (2 + 2 + 3 + 3 + 3 + 3 = 16) are used to
traverse the trie and arrive at the last node (at the 6th level)
representing the port number.

We compare our results with those from a single TCAM
setup (STCAM) as is commonly used today for packet clas-
sification. In this setup, all rules are entered into the TCAM
in priority order. The ordering is needed only for rules that
overlap. If two rules do not overlap, their relative ordering does
not matter. We use a priority graph for the whole set of rules
to track the block numbers of the rules as well as to compute
adjustments to block numbers as new rules are inserted. We
do not compare PC-DUOS+’ update performance with that
of the work in [2], since PC-DUOS+’ lookup performance
is far superior to the worst case of [2], which is at least 4
times slower in the worst case, on our datasets (obtained as
logarithm of the number of blocks).

We analyze the results based on two perspectives – im-
provement in lookup performance and improvement in update
performance.

B. Lookup Performance

We computed the overall improvement in lookup time using
the lookup traces generated using ClassBench.
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Fig. 17. Percentage of rules in LTCAM of PC-DUOS+

Figure 17 shows the percentage of rules entered in the
LTCAM of PC-DUOS+. For example, test 13 has about 60%
of the rules in the LTCAM and the remaining 40% in the
ITCAM.
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Fig. 18. Comparison of improvement in lookup time between PC-DUOS
and PC-DUOS+, with respect to STCAM

Figure 18 shows the improvement in average lookup time
of PC-DUOS and PC-DUOS+ with respect to STCAM. Recall
that during a lookup, if a match is found in LTCAM then
the lookup finishes faster. Having a large number of rules in
the LTCAM makes the probability of finding a match in the
LTCAM, higher. Thus the tests 1 (acl1) and 9 (acl5) with 99%
of their rules in the LTCAM, had the LTCAM serve almost
all the lookups. The improvement in average lookup time on
these tests was, therefore, almost 50%, which is the maximum
improvement achievable by yanking a priority encoder.

PC-DUOS+ had better improvement in lookup time partic-
ularly for the tests based on forwarding tables, namely, tests 2,
5, 10, 11, 12, and comparable performance on the other tests
based on ACL lists and IP chains. The observed improvement
is because the LTCAM of PC-DUOS+ on those tests contained
more rules than the LTCAM of PC-DUOS, which is a result of
the different algorithm employed in PC-DUOS+ for selecting
rules for the TCAMs.

Figure 19 presents the details on the number of rules in
the ITCAM and LTCAM and the percentage improvement in
lookup performance of PC-DUOS+. The first three columns
give the dataset index, name and the number of rules respec-
tively. The fourth and fifth columns give the number of rules in
the ITCAM and LTCAM, respectively. The sixth and seventh
columns give, respectively, the number of lookups and the
percentage improvement in average lookup time.

Index Dataset #Rules #ITCAM #LTCAM #Lookups %Improve
1 acl1 30075 305 29731 120301 49.6
2 fw1 7989 4885 3068 103857 19.2
3 ipc1 15338 3504 11834 107618 40.6
4 acl2 53970 8875 45095 107940 42.6
5 fw5 5571 2689 2796 105430 30.8
6 acl4 34254 5882 28372 103104 41.1
7 ipc2 5165 1476 3689 98136 38.7
8 acl3 19745 6737 13007 102851 31.4
9 acl5 19492 260 19209 97460 49.4
10 fw2 16668 4739 11929 100008 40.6
11 fw3 16841 5688 10986 103794 33
12 fw4 12882 5004 7878 103266 20.2
13 ipc3 20000 8027 11973 100163 34.9

Fig. 19. Number of rules in ITCAM and LTCAM of PC-DUOS+ and
improvement in lookup time relative to STCAM



Seed STCAM PC-DUOS PC-DUOS+ PC-DUOS+*
Avg.
writes

Std. Dev. #Min Avg.
writes

Std. Dev. #Min Avg.
writes

Std. Dev. #Min Avg.
writes

Std. Dev.

acl1 2.19 4.04 1 1.4 2.58 69 1.245 0.16 30 1.283 0.123
acl2 99.7 372 0 4.59 2.29 0 1.59 0.43 100 1.78 0.409
acl3 51.04 161.34 0 1.8 0.69 0 1.62 0.298 100 1.84 0.286
acl4 28.1 252 1 1.87 0.913 0 1.6 0.58 99 1.73 0.43
acl5 3.42 2.53 0 1.13 0.1 100 1.18 0.07 0 1.21 0.11
fw1 83.7 88.1 2 14.99 15.06 0 2.57 2.203 98 3.69 3.376
fw2 3.18 3.84 0 1.92 2.07 0 1.4 0.071 100 1.496 1.063
fw3 54.4 498 14 8.98 8.95 0 2.36 1.34 86 2.36 4.28
fw4 29.7 45.5 0 14.3 23.9 0 7.66 17.36 100 9.85 22.7
fw5 16.9 18.1 0 7.62 10.63 0 2 2.95 100 3.95 9.66
ipc1 9.72 8.99 0 2.23 1.35 0 1.34 0.35 100 1.55 0.39
ipc2 1.022 10.22 0 1 0 100 1 0 100 1 0

Fig. 20. Data obtained on TCAM writes

C. Update Performance

We first present the results from the setup in which we ran
100 tests for each seed file, where each test executed 5000
insert operations. Figure 20 shows the data we collected from
these runs. The data in each column is described as follows.
The column ‘Avg. writes’ gives the average TCAM writes per
insert operation which is obtained by first getting the average
for each of the 100 tests and then dividing the average by 5000,
which is the number of inserts for each test. ‘Std. dev.’ gives
the standard deviation, which is obtained by calculating the
average TCAM writes per insert for each of the 10 classifiers
for a seed file and then computing the difference with the
average (for the 100 tests) from the previous column. from
the difference of average TCAM writes (for each of the 100
tests) from the average of the average in the previous column.
‘#Min’ gives the number of tests (out of the total of 100) for
which the given architecture resulted in a minimum value of
the average TCAM writes.

The PC-DUOS+* is a version of PC-DUOS+, that im-
plements only the standard “descendants move downwards”
algorithm for ITCAM rule insertion. PC-DUOS+* will be
used to compare improvements only due to the new insertion
algorithm of PC-DUOS+, thereby nullifying the effects of the
other enhancements in PC-DUOS+ such as selection of rules
for the TCAMs, with respect to PC-DUOS.

We briefly describe the variable setup used for our experi-
ments. The “isInsertFlag” of Figure 10 was set to true for all
ACL and IP chain based classifiers in our experiments. The
reason is these classifiers had a small number of rules in the
ITCAM and the degree of overlap among the rules was low,
in contrast to the third type of classifiers that are based on
forwarding rules. If the flag is set to true for the latter, then a
lot of small blocks are added in between, which increases the
cost to move a free slot.

The graph in Figure 21 shows a comparison of the average
number of writes for these tests. The observations on these
tests are as follows:
1) The average number of TCAM writes (from column ‘Avg.
writes’) is the minimum for PC-DUOS+ for all the tests
except the one based on seed file acl5 which represents ACL
based tests. For the remaining tests, PC-DUOS+ performed
better than PC-DUOS by an amount between 10-82%. For the
tests based on acl5, PC-DUOS+ was very close to PC-DUOS.
2) The difference in the number of TCAM writes between the
PC-DUOS+ versions (PCDUOS+* in which only descendants
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Fig. 21. Number of TCAM writes with respect to PC-DUOS+

are moved versus the original version PC-DUOS+), highlights
the performance benefits of our ITCAM insertion agorithm.
The insertion algorithm improved the number of TCAM
writes by up to 49% for test fw5.
3) PC-DUOS+ obtained the highest number of minimum
average writes out of 100 tests (from column #Min) for all
the tests except those based on seed files acl1 and acl5. The
number of PC-DUOS+ writes for the tests for which its not
the lowest, is very close to the lowest score for those tests.
For the tests on ipc2, PC-DUOS+ tied with PC-DUOS on
the minimum average writes, both requiring exactly the same
number of writes.
4) Standard deviation is small for PC-DUOS+, indicating
better fidelity to the average.
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Fig. 22. Number of TCAM writes with respect to PC-DUOS+

Now, we present the results from the second set on tests



Index DataSet PC-DUOS+ STCAM
#Average
TCAM
writes

#Worst
case
TCAM
writes

#Average
TCAM
writes

#Worst
case
TCAM
writes

1 acl1 1.18 31 3.31 53
2 fw1 2.22 4161 3.5 12014
3 ipc1 1.33 1607 2.25 3945
4 acl2 1.37 2487 2.28 6194
5 fw5 1.58 2540 5.84 26020
6 acl4 1.39 364 4.3 9821
7 ipc2 1.34 1793 5.27 17285
8 acl3 2 789 7.13 10946
9 acl5 1.14 9 1.124 11
10 fw2 1.71 9 1.98 9
11 fw3 1.44 259 1.87 14693
12 fw4 2.91 1483 6.97 6996
13 ipc3 1 1 1.05 6

Fig. 23. Average and worst case TCAM writes for PC-DUOS+

for update performance. Figure 22 shows the ratios of TCAM
writes needed to process the test update sequence by PC-
DUOS+, PC-DUOS [15] and STCAM, where a ratio is com-
puted by dividing the actual number of writes for each of the
architectures, by the actual number of writes for PC-DUOS+.
A noticeable improvement in the number of writes is observed
compared to STCAM for almost all the tests except for tests 9
(acl5), 10 (fw2) and 13 (ipc3). Test 7 (ipc2) requires up to 3.84
times more writes using an STCAM compared to PC-DUOS+,
while test 11 (fw3) requires up to 3.23 times the number of
writes using PC-DUOS compared to PC-DUOS+.

From Figure 22 we observe that tests 9 (acl5), 10 (fw2)
and 13 (ipc3) need almost similar number of writes in all the
three setups, namely, PC-DUOS+, PC-DUOS and STCAM.
The reason is the degree is overlap among the classifier rules
is very small in these tests. As a result, when a rule is inserted,
it hardly requires any rule moves to adjust the priorities ofthe
descendants or ancestors, which reduces the required number
of TCAM writes.
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Fig. 24. Percentage of updates that require 1 write,≤ 3 and≤ 10 writes

Figure 23 gives the average and the worst case TCAM
writes for PC-DUOS+ and STCAM. The average writes for
PC-DUOS+ are lower than the corresponding numbers for
STCAM. The worst case writes for PC-DUOS+ is lower than
those for STCAM for all tests except test 9 (acl5). The number
of TCAM writes in the worst case for PC-DUOS+ is quite
high, even though from Figure 24 we observe that more than

Index Data-
Sets

PC-DUOS+ PC-DUOS STCAM

Writes Time(s) Writes* Writes Time(s) Writes Time(s)
1 acl1 116408 9.15 116420 116393 8 327675 2469
2 fw1 80210 377 119569 105866 928 126225 935
3 ipc1 65592 124 68812 88736 265 110346 780
4 acl2 124043 185 139147 148727 921 205568 1725
5 fw5 80658 926 169560 113358 2012 297624 2702
6 acl4 13996 7.5 21674 22030 31 43017 118
7 ipc2 133396 540 150839 296663 1449 521653 4808
8 acl3 12233 14.69 18056 11798 47 43494 97
9 acl5 28742 0.9 28752 27366 1.2 28090 167
10 fw2 51304 158 51306 51402 792 59406 488
11 fw3 28710 175 28862 92955 1057 93426 1098
12 fw4 58243 74 79789 69958 362 139434 378
13 ipc3 30000 211 30000 30000 287 31647 416

Fig. 25. Total TCAM writes in PC-DUOS+, PC-DUOS and STCAM

99% of the rules require at most 10 writes.
Figure 25 shows the actual number of TCAM writes for

inserting or deleting rules in the different datasets and the
time taken to perform these updates in PC-DUOS+, PC-DUOS
and STCAM. The fifth column ‘Writes*’ gives the number
of writes using PC-DUOS+*. Using the ITCAM insertion
algorithm of PC-DUOS+, the number of writes reduced by
up to 52% for test fw2, compared to PC-DUOS+*. Compared
to PC-DUOS, the number of TCAM writes using PC-DUOS+,
reduced by up to 69% and compared to STCAM, the number
of TCAM writes reduced by up to 74%.

V. CONCLUSION

PC-DUOS+ is proposed for packet classifier lookup and
update. Two TCAMs named LTCAM and ITCAM are used.
PC-DUOS+ stores the highest priority independent rules in
the LTCAM. The remaining rules are stored in the ITCAM.
During lookup for highest priority rule matching, both the
ITCAM and the LTCAM are searched in parallel. Since the
LTCAM stores independent rules, at most one rule may match
during lookup in the LTCAM and a priority encoder is not
needed. If a match is found in the LTCAM during lookup,
it is guaranteed to be the highest priority match and the
corresponding action can be returned immediately yielding
up to 50% improvement in TCAM search time relative to
STCAM.

Compared to PC-DUOS, PC-DUOS+ has a new rule se-
lection algorithm for allotment of rules to the ITCAM and
the LTCAM. PC-DUOS+ also has a new ITCAM insertion
algorithm which improves the update performance in terms of
the number of TCAM writes, as well as the update processing
time in the control plane. The ITCAM rule insertion algorithm
moves the overlapping rules by either shifting the descendants
downwards, or the ancestors upwards. This is in contrast to
the conventional method of always shifting the descendants
downwards, and improves the number of ITCAM writes by
up to 52% compared to the conventional method. This insert
algorithm is not limited to PC-DUOS+, and may be used with
any architecture to improve the TCAM update performance.
The average improvement in lookup time is found to be be-
tween 19% to 49% for the tests in our dataset. The distribution
of rules to the two TCAMs makes updates faster by reducing
the average number of TCAM writes by up to 3.84 times (for
ipc2) and reducing the control-plane processing time by up to



270 times (for acl1). The maximum reduction in control-plane
processing time is observed for the ACL tests.

The throughput of PC-DUOS+ is comparable to that of
DPPC-RE [13] whenK = 2 TCAMs are used and key
encoding is not used. However, the PC-DUOS+ architecture
is much simpler, requires no re-balancing of rules and has
no lockout of lookups. Further, when the scalability limit
of DPPC-RE is reached, performance may be doubled by
replacing each TCAM of DPPC-RE with a PC-DUOS+.
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