
1

Automatic Generation of Miniaturized Synthetic
Proxies for Target Applications to Efficiently

Design Multicore Processors
Karthik Ganesan, Member, IEEE, and Lizy Kurian John, Fellow, IEEE,

Abstract—Prohibitive simulation time with pre-silicon design models and unavailability of proprietary target applications make
microprocessor design very tedious. The framework proposed in this paper is the first attempt to automatically generate synthetic
benchmark proxies for real world multithreaded applications. The framework includes metrics that characterize the behavior of the
workloads in the shared caches, coherence logic, out-of-order cores, interconnection network and DRAM. The framework is evaluated
by generating proxies for the workloads in the multithreaded PARSEC benchmark suite and validating their fidelity by comparing the
microarchitecture dependent and independent metrics to that of the original workloads. The average error in IPC is 4.87% and maximum
error is 10.8% for Raytrace in comparison to the original workloads. The average error in the power-per-cycle metric is 2.73% with a
maximum of 5.5% when compared to original workloads. The representativeness of the proxies to that of the original workloads in terms
of their sensitivity to design changes is evaluated by finding the correlation coefficient between the trends followed by the synthetic and
the original for design changes in IPC, which is 0.92. A speedup of four to six orders of magnitude is achieved by using the synthetic
proxies over the original workloads.

Index Terms—Computer Architecture, Synthetic Benchmarks, Multicore Systems, Workload Cloning and power modeling.

F

1 INTRODUCTION

When designing microprocessors, architects use simulation
models at different levels of abstraction in combination with
use case workloads to assess the performance and power
consumption of a design. These simulation models are detailed
cycle accurate models or RTL-level models that are at least
a 1000X slower than real hardware. Running a complete
application on these models incur prohibitive simulation time
[1] making the design process very tedious. To reduce sim-
ulation time, sampling techniques like simulation points [2]
and SMARTS [3] are well known and widely used. But,
the problem with such sampling techniques is that most of
them are restricted to phase behavior analysis and check-
pointing of single-threaded applications and none of them
can be directly used for sampling multithreaded applications.
Though there has been some efforts towards extending such
sampling techniques for multicore architectures as in the work
by Biesbrouck et al [4], but it is all still in infancy due
to the numerous combinations of thread samples that could
occur. Another problem with such sampling techniques is that
huge trace files for the particular dynamic execution interval
have to be stored or they require the simulator to have the
capability to fast-forward until it reaches the particular interval
of execution that is of interest to the user. The problem with

• Karthik Ganesan is currently a senior member at Oracle Inc. and this
work was done as a part of his Ph.D., which he received from the
Department of Electrical and Computer Engineering, University of Texas
at Austin in December 2011.

• Lizy Kurian John is a B. N. Gafford Professor in the Electrical and
Computer Engineering department at the University of Texas at Austin.

other techniques like benchmark subsetting [5] is that the
results are still whole programs and are too big to be directly
used with design models.

The previously mentioned simulation time problem is aug-
mented with the unavailability of some of the real target appli-
cations due to being proprietary. For example, when a vendor
is designing a system for defense applications or for military
purposes, it is not possible to have these target applications
in hand for performance analysis. In such cases, the architect
will end up using the publicly available similar applications
or the most generic benchmark suites. But, these proprietary
target applications may have some unique characteristics that
is not accounted for, and could result in the architects ending
up with a non-optimal design.

In our recent research [6] [7] [8] [9], we have created a
benchmark synthesis process, which consists of synthesizing
a miniaturized proxy workload that possesses approximately
the same performance and power characteristics as the original
workload. The key idea behind such a benchmark synthesis
framework is to identify the key characteristics of real world
applications such as instruction mix, thread level parallelism,
memory access behavior, branch predictability etc. that affect
the performance and power consumption of a real program and
create synthetic executable programs by controlling the values
for these characteristics. Firstly, with such a framework, one
can generate miniaturized synthetic proxies for large target
(current and futuristic) applications enabling an architect to use
them with slow low-level simulation models (e.g., RTL models
in VHDL/Verilog) to tailor designs to these targeted applica-
tions. These synthetic benchmark clones can be distributed
to architects and designers even if the original applications
are proprietary and are not publicly available. These proxies

2

do not have any functional meaning and cannot be reverse
engineered in any way to obtain any useful information about
their original counterparts or their algorithms. The synthetic
benchmarks that are provided are space efficient in terms of
storage and do not require any special capability in a simulator
as required by other simulation time reduction techniques [10]
[2] [3].

1.1 Background

The idea of using statistical simulation to guide the process
of design space exploration was introduced by Oskin et al.
[11] and Nussbaum et al. [12]. The usage of Statistical Flow
Graphs (SFG) was introduced by Eeckhout et al [13] in
characterizing the control flow behavior of a program in terms
of the execution frequency of basic blocks annotated with their
mutual transition probabilities. The idea of synthesizing work-
loads based on profiles was introduced by Wong et al. [14]
[15]. Synthesizing workload clones by populating embedded
assembly instructions into loops was proposed by Bell and
John [16], which was further extended by Joshi et al. [17]. The
work by Bell and John included microarchitecture dependent
metrics for workload profiling, but the work by Joshi et al. was
the first effort to use microarchitecture independent metrics to
profile the original workloads.

Previous work [17] [16] with respect to synthetic bench-
mark generation uses metrics categorized into control flow
predictability, instruction mix, instruction level parallelism,
data locality to clone single threaded applications. Ganesan et.
al [6] [18] showed the importance of characterizing and using
the Memory Level Parallelism (MLP) of the workloads along
with other metrics to precisely model the execution behavior
using synthetic benchmarks. In this previous recent work [6]
of ours, we show that the synthetic proxies generated using
our MLP-aware methodology have an error of only 2.8% in
terms of Instruction Per Cycle (IPC) as compared to an error
of 15.3% when using the previous MLP-unaware approaches
for CPU2006. The Figure 2(a) shows the comparison of IPC
between the original and synthetic workloads for CPU2006 for
machine configuration as shown in Figure 1. We also evaluate
their effectiveness in assessing the change in performance
and power consumption for various microarchitecture design
changes. For CPU2006, with synthetics limited to 1 million
dynamic instructions, the average correlation coefficient for
assessing design changes for IPC is 0.95 (0.98 for power-
per-cycle). We achieved a speedup of up to six orders of
magnitude in using the proxies for the CPU2006 workloads
over the original applications. When cloning the futuristic
workloads used in bio-implantable devices included in the
ImplantBench suite [19], we have an average error of 2.9%
in assessing the IPC as shown in Figure 2(b) for the machine
configuration as shown in Figure 1. For ImplantBench, the
correlation coefficient for assessing design changes is 0.94
(0.97 for power-per-cycle).

Automatic synthetic benchmark generation also has another
application, which is to automatically search for stress bench-
marks as demonstrated in our previous work [8] [7] [20] to aid
in processor design. In Ganesan and John [7], power viruses

Fig. 1. Machine configurations used: Machine-A for
SPEC CPU2006 and Machine-B for ImplantBench work-
loads

0	

0.5	

1	

1.5	

2	

2.5	

3	

40
0.
pe

rl
be

nc
h	

40
1.
bz
ip
2	

41
0.
bw

av
es
	

43
3.
m
ilc
	

43
4.
ze
us
m
p	

43
5.
gr
om

ac
s	

43
6.
ca
ct
us
A
D
M
	

43
7.
le
sl
ie
3d

	

44
4.
na
m
d	

44
5.
go
bm

k	

45
0.
so
pl
ex
	

45
6.
hm

m
er
	

45
8.
sj
en

g	

45
9.
G
em

sF
D
TD

	

46
2.
lib
qu

an
tu
m
	

46
4.
h2

64
re
f	

47
1.
om

ne
tp
p	

47
3.
as
ta
r	

48
2.
sp
hi
nx
3	

48
3.
xa
la
nc
bm

k	

42
9.
m
cf
	

40
3.
gc
c	

IP
C	

CPU2006	

Orig	

MLP	 aware	
synth	

MLP	
unaware	
synth	

(a) SPEC CPU2006

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

A
I_
A
da
lin
e	

Se
c_
KH

A
ZA

D
	

Se
c_
sh
a2
	

Bi
oi
nf
_E
LO

	

Bi
oi
nf
_L
M
G
C	

H
rt
A
ct
_p

N
N
x	

Ph
y_
A
FV

P	

Ph
y_
EC
G
SY
N
	

A
I_
BP

N
	

G
en

_N
J	

Re
l_
re
ed

_s
ol
	

G
en

_H
M
M
	

A
I_
G
A
	

Se
c_
ha
va
l	

Re
l_
cr
c	

IP
C	

ImplantBench	

Orig	

MLP	 aware	
synth	

MLP	
unaware	
synth	

(b) ImplantBench

Fig. 2. Comparison of IPC between the synthetic and the
original workloads on single-core system configurations
for Alpha ISA

are automatically generated for a given microarchitecture
design for a single core system and are compared to other
industry grade power viruses. We extended this work further to
automatically generate power viruses [8] for multicore systems
and compared their power consumption with other state-of-the-
art power viruses and realistic user workloads like PARSEC
and SPECjbb. In this prior work [8], we leverage the code
generation framework with the help of a machine learning
technique to search for stress benchmarks to maximize the
power consumption for a given microarchitecture design of a
multicore processor. On the other hand, to be able to clone
parallel workloads that target multicore systems, the synthetic
benchmark generation framework has to be more robust than
what was previously proposed by us in [8]. Amongst the var-
ious applications that target Multicore systems, multithreaded
applications are becoming increasingly common and these
applications have a varied set of characteristics in terms of the

3

sharing patterns etc. that have an impact in the performance
of the shared caches, the interconnection network, coherence
logic and DRAM. In this paper, we propose an automatic
synthetic benchmark generation framework, which is robust
enough to clone multithreaded parallel applications to solve
the problems due to large simulation time and unavailability
of proprietary applications. The cloning methodology consists
of a profiler that is used to get the characteristics of the
long running original applications, and these characteristics
are fed to the synthetic benchmark generation framework to
generate proxies. These proxies are compared with the original
applications based on both micro-architecture dependent and
independent characteristics to evaluate their representativeness
to their original counterparts.

To show the efficacy of the proposed synthetic benchmark
generation in cloning multithreaded applications, proxies are
generated for the benchmarks of the PARSEC suite [21].
The PARSEC benchmark suite is a collection of applica-
tions targeting shared memory multicore systems. Most of
these applications are representative of the workloads that
will be running on multicore desktop and server systems.
The PARSEC suite also includes many emerging workloads
that are expected to be more commonly used in the future.
The benchmarks in the suite are not restricted to any single
application domain, rather they are quite varied in terms
of that usage. For example, PARSEC includes applications
from the finance domain namely Blackscholes and Swaptions,
that target option pricing using partial differential equations
and a portfolio of swaptions respectively. The suite includes
data mining applications like Streamcluster, Freqmine and
Ferret targeting data clustering algorithms, itemset mining and
content similarity search server respectively. The suite includes
a workload Canneal that is used extensively in the chip design
industry for optimizing routing cost of a chip design using
simulated annealing. Compression algorithms like Dedup are
also included. Image processing, video encoding and real time
ray tracing algorithms are included, which are Vips, X264
and Raytrace respectively in the suite. A few applications
from the physics domain like fluid dynamics for animation
(Fluidanimate), body tracking of a person (Bodytrack) and
simulation of face movements as in Facesim are also included.

In Section 2, we discuss the workload cloning methodology.
First we elaborate on the metrics that are profiled out of
the original applications and then we discuss how we use
this information to automatically generate synthetic proxies.
In Section 3, a characterization of the PARSEC workloads
that is used for proxy generation is presented. In Section 4,
we elaborate on the results in terms of the fidelity of the
synthetic workloads in estimating the performance and power
consumption of original workloads. Section 5 discusses the
limitations and we summarize in Section 6.

2 WORKLOAD CLONING METHODOLOGY

The cloning methodology consists of two steps, (1) Character-
ize the original application based on a range of microarchitec-
ture independent metrics as per our abstract workload model
(2) Translate these characteristics with the help of a code

Fig. 3. Overall workload cloning methodology

generator to a real synthetic program, which will be a clone
in terms of performance and power consumption to that of the
original application. This final synthetic is compared with the
original and the accuracies are reported for various machine
configurations. Figure 3 shows the cloning methodology that
is used.

In the process of workload cloning, the effectiveness of
the synthetic benchmark generation framework lies in the
efficacy of the abstract workload model that is formulated to
characterize the original applications. The dimensions of this
abstract workload space should be as much microarchitecture
independent as possible to enable this framework to be able to
generate synthetic benchmarks for different types of microar-
chitectures for the purposes of design space exploration. These
dimensions should also be robust enough to be able to vary the
execution behavior of the generated workload in every part of
a multicore system. In earlier approaches for synthetic bench-
mark generation at core-level for uniprocessors, researchers
came up with metrics to characterize the execution behavior of
programs on single core processors [17] [22] [23] [16]. In this
research, we come up with similar metrics for the generation
of system-level synthetics and for multicore systems. We first
begin by explaining the intuition behind the design of this
abstract workload space in terms of our memory access model,
branching model and shared data access patterns.

2.1 Data Sharing Patterns

Investigation in previous research [24][25][26][27][28] about
the communication characteristics of the parallel applications
has showed that there are four significant data sharing patterns
that happen, namely,

1) Producer-consumer sharing pattern: One or more
producer threads write to a shared data item and one

4

!

!"#$ %&'()*$ +,'&-"(.$
"! #$%&'(%!)'*+,!)-.,/!*+0%!
1! 2&'3,4!5&'3*+5+.3!&'5%!!

6.35&.-!7-.8!
9&%:+,5')+-+5;!

<! =>?!#@A!9&.9.&5+.3!
B! =>?!CA@!9&.9.&5+.3!
D! =>?!E=F!9&.9.&5+.3!
G! HI!#EE!9&.9.&5+.3!
J! HI!CA@!9&.9.&5+.3!
K! HI!E=F!9&.9.&5+.3!
L! HI!CMF!9&.9.&5+.3!
"N! HI!OPQ?!9&.9.&5+.3!
""! @M#E!9&.9.&5+.3!
"1! O?MQR!9&.9.&5+.3!

=3*5&S,5+.3!T+U!

"<! E%9%3:%3,;!:+*5'3,%!:+*5&+)S5+.3!!
9%&!+3*5&S,5+.3!5;9%!

=3*5&S,5+.3!-%$%-!
9'&'--%-+*T!

"B! I&+$'5%!*5&+:%!$'-S%!9%&!*5'5+,!-.':V*5.&%!
"D! E'5'!H..59&+35!.7!54%!8.&/-.':! E'5'!-.,'-+5;!

"G! C%'3!'3:!*5'3:'&:!:%$+'5+.3!.7!54%!C@I!
"J! C@I!7&%WS%3,;!

C%T.&;!@%$%-!!
I'&'--%-+*T!XC@IY!

"K! >ST)%&!.7!54&%':*! ?4&%':!-%$%-!9'&'--%-+*T!
"L! ?4&%':!,-'**!'3:!9&.,%**.&!'**+(3T%35!
1N! I%&,%35'(%!-.':*!5.!9&+$'5%!:'5'!
1"! I%&,%35'(%!-.':*!5.!&%':Z.3-;!:'5'!
11! I%&,%35'(%!T+(&'5.&;!-.':*!
1<! I%&,%35'(%!,.3*ST%&!-.':*!
1B! I%&,%35'(%!+&&%(S-'&!-.':*!
1D! I%&,%35'(%!*5.&%*!5.!9&+$'5%!:'5'!
1G! I%&,%35'(%!9&.:S,%&!*5.&%*!
1J! I%&,%35'(%!+&&%(S-'&!*5.&%*!
1K! O4'&%:!*5&+:%!$'-S%!9%&!*5'5+,!-.':V*5.&%!
1L! E'5'!:+*5&+)S5+.3!)'*%:!.3!*4'&+3(!9'55%&3*!

O4'&%:!:'5'!',,%**!!
9'55%&3!'3:!
,.TTS3+,'5+.3!
,4'&',5%&+*5+,*!

<N! @.,/VS3-.,/!9'+&!7&%WS%3,;!
<"! 6.37-+,5!:%3*+5;!S*+3(!TS5%U!.)[%,5*!
<1! @.,/!5.!S3-.,/!:+*5'3,%!

O;3,4&.3+0'5+.3!
64'&',5%&+*5+,*!

Fig. 4. List of metrics to characterize the execution behav-
ior of workloads that significantly affect the performance
and power consumption

or more consumers read it. This kind of sharing pattern
can be observed in the SPLASH-2 benchmark Ocean.

2) Read-only sharing pattern: This pattern occurs when
the shared data is constantly being read and is not
updated. SPLASH-2 benchmark Raytrace is a good
example exhibiting this kind of a behavior.

3) Migratory sharing pattern: This pattern occurs when a
processor reads and writes to a shared data item within
a short period of time and this behavior is repeated
by many processors. A good example of this behavior
will be a global counter that is incremented by many
processors.

4) Irregular sharing: There is not any regular pattern into
which this access behavior can be classified into. A
good example will be a global task queue, which can
be enqueued or dequeued by any processor which does
not follow a particular order.

Though the above said patterns are the most commonly
occurring sharing patterns, parallel workloads may have a
combination of one or more of the aforementioned patterns. In
our framework, we use a generic memory access model, which
when parameterized accordingly, can yield any combination of
the above said sharing patterns.

2.2 Stride Based Memory Access Behavior
Capturing the data access pattern of the workload is critical
to replay the performance of the workload using a synthetic

# 
lo
ng
 la
te
nc
y 
m
is
se
s 

Time ‐> 

Original 

Prior synth  
approaches 

Fig. 5. Comparison of the MLP behavior of synthetics
generated by previous approaches to that of a real single-
threaded workload

benchmark. The data access pattern of a benchmark affects
the amount of locality that could be captured at various levels
of the memory hierarchy. Though locality is a global metric
characterizing the memory behavior of the whole program,
our memory access model is mainly based on a ’stride’ based
access pattern [17] in terms of static loads and stores in the
code. When profiling a modern workload, one can observe
that each of the static loads/stores access the memory like
in an arithmetic progression, where the difference between
the addresses of two successive accesses is called the stride.
It is known that the memory access pattern of most of the
SPEC CPU2006 workloads can be safely approximated to be
following a few dominant stride values as in our previous work
[6]. In our abstract workload model, the stride values of the
memory accesses to the private and shared data are handled
separately.

2.3 Model for the Memory Level Parallelism

Even for single-core systems, the previous synthetic bench-
mark generation efforts [17] [16] suffer from a major limi-
tation. Their methodologies characterize the memory access,
control flow and the instruction level parallelism information
of the workload, but do not characterize or use the burstiness
of memory accesses, which is the Memory Level Parallelism
(MLP) information. As shown in Figure 5, the execution
behavior and performance of the original and synthetic bench-
marks may vary significantly even when they have the same
miss rates in the caches. The original workloads can have a set
of bursty long-latency loads in one time interval of execution
and none of them at all for another interval of execution. These
two behaviors will have very different execution times for a
workload.

2.4 Transition Rate Based Branch Behavior

The branch predictability of the benchmark can be captured
independent of the microarchitecture by using the branch
transition rate [29]. The branch transition rate captures the
information about how quickly a branch transitions between
taken and not-taken paths. A branch with a lower transition
rate is easier to predict as it sides towards taken or not-taken
for a given period of time and rather a branch with a higher
transition rate is harder to predict. First, the branches that have
very low transition rates, can be generated as always taken
or always not taken as they are easily predictable. The rest
of the branches in the synthetic need to match the specified

5

distribution of transition rate, which is further explained in the
next Subsection.

2.5 Dimensions of the Abstract Workload Model

Our workload space consists of a set of 25 dimensions falling
under the categories of control flow predictability, instruction
mix, instruction level parallelism, data locality, memory level
parallelism, shared access patterns, synchronization as shown
in Figure 4. Further in this Subsection, each of these dimen-
sions or what we call as the ’knobs’ of our workload generator
in this framework are explained:

1) Number of threads: The number of threads knob
controls the amount of thread level parallelism of the
synthetic workload.

2) Thread class and processor assignment: This knob
controls how the threads are mapped to different pro-
cessors in the system. There are many thread classes
to which each thread gets assigned. The threads in the
same class share the same characteristics.

3) Number of basic blocks: The number of basic blocks
in the program combined with the basic block size
determines the instruction footprint of the application.
The number of basic blocks present in the program has
a significant impact on the usage of the instruction cache
affecting the performance and power consumption based
on the Instruction cache missrates.

4) Shared memory access stride values: This knob can
be used to provide a set of stride values that should be
followed by the loads and the stores that access shared
data.

5) Private memory access stride values: This knob can
be used to provide a set of stride values that should be
followed by the loads and the stores that access private
data.

6) Data footprint: This knob controls the data footprint
of the synthetic. The data footprint of the application
controls the number of cache lines that will be touched
by the different static loads and stores. Also, it has a
direct impact on the power consumption of the data
caches.

7) Memory Level Parallelism (MLP): This knob controls
the amount of Memory Level Parallelism (MLP) in the
workload, which is defined as the number of memory
operations that can happen in parallel and is typically
used to refer to the number of outstanding cache misses
at the last level of the cache. The number of memory
operations that can occur in parallel is controlled by
introducing dependency between memory operations.
The memory level parallelism of a workload also affects
the power consumption due to its impact on the DRAM
power and also the pipeline throughput.

8) MLP frequency: Though the MLP knob controls the
burstiness of the memory accesses, one needs one more
knob to control how frequently these bursty behaviors
happen.

9) Basic block size and execution frequency: Basic block
size refers to the average and standard deviation of

number of instructions in a basic block in the generated
embedded assembly based synthetic code. Execution fre-
quency of basic block is used when detailed instruction
pattern information has to be reproduced in the synthetic
while cloning.

10) Branch predictability: The branch predictability of a
workload is an important characteristic that also affects
the overall throughput of the pipeline. When a branch
is mispredicted, the pipeline has to be flushed and this
results in a reduced activity in the pipeline.

11) Instruction mix: The Instruction mix is decided based
on the proportions of each of the instruction types INT
ALU, INT MUL, INT DIV, FP ADD, FP MUL, FP
DIV, FP MOV and FP SQRT. Since the code generator
generates embedded assembly, we have direct control
over the instruction mix of the generated workload.
Some restrictions are placed on the instruction mix by
writing rules in the code generator like a minimum
number of INT ALU instructions should be present if
there are any memory operations in the code to be able
to perform the address calculation for these memory
operations.

12) Register dependency distance: This knob refers to the
average number of instructions between the producer
and consumer instruction for a register data. The propor-
tion of instructions that have an immediate operand is
also used along with this distribution. This distribution is
binned at a granularity of 1, 2, ... 20, 20-100 and greater
than 100. If the register dependency distance is high,
the Instruction Level Parallelism (ILP) in the synthetic
is high resulting in a high activity factor in the pipeline
of the core.

13) Random seed: This knob controls the random seed that
is used as an input to the statistical code generator, which
will generate different code for the same values for all
the other knobs. It mostly affects the alignment of the
code or the order in which the instructions are arranged.

14) Percentage loads to private data: This knob refers to
the proportion of load accesses that are to the private
data and the rest of the memory accesses are directed to
shared data.

15) Percentage loads to read-only data: This knob refers to
the percentage of loads that access read-only data. Since
this part of the data does not have any writes, they do
not cause any invalidation traffic in the interconnection
network. The main traffic that will be generated by this
kind of data will be capacity misses and data refills from
other caches.

16) Percentage migratory loads: This knob refers to the
percentage of loads that are coupled with stores to pro-
duce a migratory sharing pattern. We cannot separately
use a knob for migratory store percentage as it is co-
dependent on this knob. This migratory sharing pattern
can create huge amounts of traffic when a coherence
protocol like MESI is used where there is not a specific
state for a thread to own the data.

17) Percentage consumer loads: This knob refers to the
percentage of loads that access the producer consumer

6

data. The stores are configured to write to this producer
consumer data and some loads are configured to read
from them to reproduce the producer-consumer sharing
pattern.

18) Percentage irregular loads: This knob refers to the
percentage of loads that fall into the irregular sharing
pattern category and they just access the irregular data
pool based on the shared strides specified.

19) Percentage stores to private data: This knob controls
what proportion of stores access the private data and the
rest of the memory accesses are directed to shared data.

20) Percentage producer stores: This knob refers to the
percentage of stores that write to the producer consumer
data to replay the producer-consumer sharing pattern.

21) Percentage irregular stores: This knob refers to the
percentage of stores that fall into the irregular sharing
pattern category and they write to the irregular data pool.

22) Data pool distribution based on sharing patterns:
This knob controls how the spatial data is divided in
terms of the different sharing pattern access pools. It
determines the number of arrays that are assigned to
private, read-only, migratory, producer-consumer and the
irregular access pools for the synthetic.

23) Number of lock/unlock pairs: This knob refers to the
number of lock/unlock pairs present in the code for
every million instructions. This knob is very important to
make synthetics that are representative of multithreaded
programs that have threads synchronizing with each
other using locks.

24) Number of mutex objects: This knob controls the
number of objects that will be used by the locks in
the different threads. It controls the conflict density
between the threads when trying to acquire a lock. When
the number of mutex objects is increased, the conflict
density gets reduced and in turn the workload executes
much more efficiently resulting in a higher per-thread
IPC.

25) Number of Instructions between lock and unlock:
This knob controls the number of instructions in the
critical section of the workload. The bigger the critical
section, the longer will be the wait to acquire locks
by threads as it takes longer to finish executing all the
instructions in the critical section and release a lock.

2.6 Code Generation

This section elaborates on how the final code generation
happens based on the knob settings given in terms of the
abstract workload parameters. Figure 6 shows an overview
of code generation. The generated code consists of the main
function and a function for each thread that is spawned from
the main function using the pthread create() system call. The
required amount of shared data is declared and allocated in the
main function as a set of integer/floating point arrays and the
pointers to these arrays are available to each of the threads.
The private data that is supposed to be used by every thread
is declared and allocated within the function for each thread.
Each of the threads also bind themselves with the processor

number specified when the code was generated based on
the thread class and processor assignment knob. A barrier
synchronization is used to synchronize all the threads after
they finish their respective system calls for allocating their
private data arrays and binding themselves to the assigned
processor.

The body of each thread consists of two inner loops filled
with embedded assembly and one outer loop encompassing
these inner loops. As previously mentioned, our memory
model is a stride based access model, where the loads and
stores in the generated synthetic access the elements of the
private/shared arrays, each static load/store with a constant
stride. The address calculation for the next access of each
load/store is done by using other ALU instructions in the
generated code for each of the array pointers by using the
assigned stride value. When the specified data footprint is
covered, the pointers that are used are reset to the beginning of
the array. This pointer reset is done outside the inner loops and
inside the encompassing outer loop enabling us to control the
data footprint with the number of iterations of the inner loop
and the number of dynamic instructions with the number of
iterations of the outer loop. The embedded assembly contents
of the two inner loops are the same except the MLP behavior
of the second loop is different from that of the first loop based
on the MLP frequency. If an original workload has high MLP,
but if it occurs at a very low frequency, one will need at least
two loops to match that behavior.

Out of the total number of registers in the ISA, a set of
registers are allocated to hold the base addresses of these
allocated memory arrays and another set of registers are used
to implement the predictability of the branches. The structure
of our inner most loop is similar to that of the one proposed
by Bell, et al. [16], but with an improved memory access,
branching and ILP models. The required branch predictability
or the control flow behavior in the synthetic is achieved by
grouping branches into pools with each pool assigned to a
constantly incremented register and a modulo operation on
the register is used to decide if that branch is taken or not
taken. The only information that is required to generate the
main function is the biggest shared data footprint amongst
the different threads to be able to allocate the shared arrays
as shown in Figure 6. The following steps are followed to
generate the code for every thread based on the corresponding
knob settings for each:

1) Generate the code to allocate the required amount of
memory for private data accesses based on the percent
private accesses, proportion of memory operations in
instruction mix and the data footprint. The number of
1-D shared arrays are further subdivided into pools for
each of the sharing patterns based on the spatial shared
data access information.

2) Generate the processor bind() system call using the
assigned processor number and then a barrier synchro-
nization system call is generated as shown in Figure 6.

3) Generate the code for outer-loop based on the dynamic
number of instructions desired taking into account the
average basic block size and the number of basic blocks.

4) Fix the code spine for the first inner loop based on a

7

a,fm,a,m,m,ld,ld,ld ,a,a,a,Br

a,fm,a,m,m,ld,ld,ld ,a,a,a,Br

a,fm,a,m,m,ld,ld,ld ,a,a,a,Br

a,fm,a,m,m,ld,ld,ld ,a,a,a,Br
a,fm,a,m,m,ld,ld,ld ,a,a,a,Br

a,fm,a,m,m,ld,ld,ld ,a,a,a,Br

a,fm,a,m,m,ld,ld,ld ,a,a,a,Br

a,fm,a,m,m,ld,ld,ld ,a,a,a,Br

a,fa,m,m,a, ld,st ,Br

m,m,ld ,a,a,Br

m,m,ld ,a,a,Br
a,x,ld,ld,ld ,s,s,Br

a,x,ld,ld,ld ,s,s,Br

a,fa,a,a,a, ld,st ,Br

a,fa,a,a,a, ld,st ,Br

Inner
Loop 1

Inner
Loop 2

Outer
 Loop

Array 1

Array n
Array 3
Array 2

...
...
...
...

B
R
A
N
C
HE
S

a,fa,m,m,a, ld,st ,Br
C
O
N
D
I
T
I

O
NA
L

D
E
P
E
N
D
E
N
C
Y

pthread_barrier_t barr;
void** shared_array_ptrs;
main_function()
{
 shared_array_ptrs =
 allocate_arrays(sizes[]);
 //Barrier synchronization
 init_barrier(barr,
 number_of_threads);
 for every thread i in N; do
 create_pthread(thr_function_i);
 done
 join_pthreads (num_threads);
}

void thr_function_i()
{
 private_array_ptrs =
 allocate_arrays(sizes[]);
 processor_bind(My_threadID,
 prscr_number);

pthread_barrier_wait(&barr);

 while(out_cntr <= loop_count)
 {
 out_cntr++;

 /*....EMBEDDED...
 ASSEMBLY...
 ..INNER LOOPS..*/

 Reset_array_pointers();
 }
 }

:

Fig. 6. Multithreaded synthetic workload generation

fixed number of basic blocks and the average basic block
size knob.

5) For each of the basic block in the first inner loop,
configure the instruction type of each instruction by
stochastically choosing from the instruction mix infor-
mation. Based on the percentage migratory loads, a few
load instructions are made to be followed by a store and
these couple load-stores are forced to access the same
address.

6) The basic blocks are bound together by using conditional
branches at the end of each of the basic block. The
number of branch groups and the modulo operation are
fixed based on the required average branch predictability.
The modulo operation for each of the branch groups are
generated at the beginning of the inner loop based on
the loop count and a register is set/unset to decide if
those branches for this particular group are going to be
taken or not taken for this loop iteration. Branches are
generated to fall through or take the target to another
basic block based on their assigned register value.

7) Using the average dependency distance knob, each of the
operands of every instruction is assigned with a previous
producer instruction. Some rules are used to check the
compatibility between producer and the consumer in
terms of the data that is produced by the producer
instruction and that consumed by the consumer. If two
instructions are found to be not compatible, the depen-
dency distance is incremented or decremented until a
matching producer is found for every instruction. The
memory level parallelism information is also used to
assign load-load dependencies in this process.

8) Based on the percent private accesses knob, each of
the memory operations are classified into the ones that

access shared data and the ones that access private data.
Based on the stride value of the corresponding memory
operation (shared or private and based on the assigned
bin), their corresponding address calculation instructions
are given the stride values as immediate operands. If a
load, store is classified to access shared data, the sharing
pattern pool that they should access is determined by
rolling a dice and using the shared data access pattern
information.

9) Register assignment happens by first assigning the des-
tination registers in a round robin fashion. The source
register for each operand of an instruction is assigned as
the destination register of the producer instruction based
on the corresponding dependency assignment.

10) The loop counters for the inner loops are set based on the
specified data footprint and the compare instructions for
loop termination are generated by choosing an integer
ALU instruction in the code.

11) The second inner loop is also generated which is a copy
of the first loop, except with different MLP behavior by
altering the load-load dependencies.

12) Outside each of these inner loops, the memory base
registers are reset to the first element of the memory
arrays to enable temporal locality for the next loop or
the next iteration of the outer wrapper loop.

13) Based on the number of locks, instructions between
lock/unlock pairs provided as input to the code gen-
erator, the pthread lock and pthread unlock function
calls are inserted in between the embedded assembly
instructions. The mutex object to be used is determined
by rolling a dice and choosing from the number of mutex
objects specified.

During the synthesis of the workload, the desired MLP in

8

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Bl
ac

ks
ch

ol
es

Bo
dy

tra
ck

C
an

ne
al

D
ed

up

Fa
ce

si
m

Fe
rre

t

Fl
ui

da
ni

m
at

e

Fr
eq

m
in

e

R
ay

tra
ce

St
re

am
cl

us
te

r

Sw
ap

tio
ns

Vi
ps

X2
64

In
st

ru
ct

io
ns

store
load
branch
fltmov
fltsqrt
fltdiv
fltmul
fltadd
intdiv
intmul
intalu

(a)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

B
la

ck
sc

ho
le

s

B
od

yt
ra

ck

C
an

ne
al

D
ed

up

Fa
ce

si
m

Fe
rr

et

Fl
ui

da
ni

m
at

e

Fr
eq

m
in

e

R
ay

tra
ce

S
tre

am
cl

us
te

r

S
w

ap
tio

ns

Vi
ps

X
26

4

A
dd

re
ss

es

Irregular high
comm
Irregular low
comm
Producer
Consumer
Migratory

Read-only

Private

(b)

Fig. 7. (a) Instruction mix distribution of various PARSEC workloads (b) Spatial distribution of the accessed memory
addresses into sharing patterns of various PARSEC workloads

the synthetic is incorporated by having control over the load-
load dependencies in the code. When a load is dependent on
another load, these dependent load instructions cannot be sent
out to the memory at the same time and thus controlling the
amount of MLP in the synthetic.

3 BENCHMARK CHARACTERIZATION

This subsection elaborates on how each of the different metrics
of the abstract workload model are captured and also provide
some of the characterized data for the PARSEC workloads.
For PARSEC workloads, we use the input set provided for
detailed microarchitectural simulations called simsmall. The
full system simulator Windriver Simics is used along with
the processor, memory and interconnection network simulation
model called GEMS [30] from the University of Wisconsin-
Madison for profiling the workloads. An instruction trace and a
memory access address trace are captured and post-processed
on the fly to record most of the significant characteristics. The
instruction mix, register dependency distance distribution and
the various synchronization characteristics are recorded based
on the instruction trace. Figure 7(a) shows the distribution
of the instruction into various categories of instruction types
for the PARSEC workloads. It can be noted that most of the
PARSEC applications are quite compute intensive in terms of

the integer operations. Only a few workloads have a consider-
able amount of floating point operations namely Blackscholes,
Bodytrack and Canneal. Most of the Parsec workloads have
20% to 25% load operations and mostly less than 10% store
operations. It can be noted that Raytrace is the only application
that has a considerable amount of stores of 29%, which is
even greater than the percentage load operations in Raytrace.
Most of these workloads have a high percentage of branch
instructions. The basic block sizes vary between 4 instructions
to at most 18 instructions, showing that these workloads will
be quite sensitive to the branch predictability of a machine
configuration.

For the synchronization characteristics, the calls
to the system call functions pthread mutex lock and
pthread mutex unlock are recorded using the instruction
trace. The number of instructions between the lock and
unlock calls is recorded for the size of the critical section.
Inside the lock and unlock function calls, the mutex object
address to which the exclusive locks and unlocks happen are
also recorded. Based on the number of such unique addresses
accessed, one can quantify the conflict density in terms of
the synchronization events happening across various threads
of the workload. All the synchronization metrics are recorded
relative to the dynamic number of instructions to be able to
replay it in the synthetic to clone these workloads.

9

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Bl
ac

ks
ch

ol
es

Ca
nn

ea
l

Bo
dy

tra
ck

De
du

p

Fa
ce

sim

Fe
rre

t

Fl
ui

da
ni

m
at

e

Fr
eq

m
in

e

Ra
yt

ra
ce

Vi
ps

St
re

am
clu

st
er

Sw
ap

tio
ns

X2
64

Re
ad

 A
cc

es
se

s

Irregular high
comm

Irregular low
comm

Producer
Consumer

Migratory

Read-only

Private

(a)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Bl
ac

ks
ch

ol
es

Ca
nn

ea
l

Bo
dy

tra
ck

De
du

p

Fa
ce

sim

Fe
rre

t

Fl
ui

da
ni

m
at

e

Fr
eq

m
in

e

Ra
yt

ra
ce

Vi
ps

St
re

am
clu

st
er

Sw
ap

tio
ns

X2
64

W
rit

e A
cc

es
se

s

Irregular high
comm

Irregular low
comm

Producer
Consumer

Migratory

Private

(b)

Fig. 8. Temporal distribution of the various memory accesses in the PARSEC workloads into different sharing patterns
for (a) Reads (b) Writes

The memory access trace is post processed to record
the memory access strides for each of the static load store
instructions. The same memory access trace is then post
processed and a memory map is built. If an address is not
accessed by more than one thread, the address is classified as a
private memory location. Further each shared address is further
examined to classify them into producer-consumer, migratory
and read-only sharing patterns. If an address does not show
any conceivable pattern, they are classified to be following an
irregular access pattern. Based on the spatial distribution of
this data, i.e, the number of addresses that belong to each of
the sharing pattern classes, the data footprint of the synthetic
will also be distributed. The category irregular is once again
broken into two classes, one which has a high communication
overhead and the one that has low communication overhead
based on the fact whether the data is accessed by more
than one processor within a given number of accesses. The
Figure 7(b) shows this spatial distribution of the accesses
in terms of various sharing patterns. Based on this data,
we can see that the private data footprint of applications
like Blacksholes, Facesim, Fluidanimate, Freqmine, Vips and
X264 are considerably high compared to the shared data
footprint. The workloads Canneal, Bodytrack, Raytrace and
Streamcluster are the only workloads where the shared data
footprint is higher than the private data footprint. In the cases

of Canneal and Bodytrack, the read-only shared data content
is considerably high compared to other workloads. Bodytrack
also has a considerable amount of data that are classified into
migratory pattern.

Then, based on the number of accesses to each of these
addresses, the proportion of load accesses and store accesses to
each of these sharing patterns is determined. This information
is much more important than the spatial distribution of the
data into different sharing patterns. Many workloads may
not have a huge shared data footprint, but can have more
shared data accesses than private data accesses. The Figures
8(a) and 8(b) show this temporal distribution of the accesses
into various sharing patterns. Good examples of workloads
with a low shared data footprint, but with a high amount of
accesses to shared data are Facesim, Freqmine and Vips. The
memory level parallelism, control flow predictability metrics
are recorded using the information provided by the processor
and memory models in the GEMS infrastructure.

4 RESULTS AND ANALYSIS

The characterized data for the PARSEC applications are fed
to the synthetic benchmark generation framework to generate
proxies for the different PARSEC applications. Total dynamic
instructions in the synthetic vary between three to ten million

10

0	
0.05	
0.1	

0.15	
0.2	

0.25	
0.3	

0.35	
0.4	

0.45	
0.5	

1	 2	 3	 4	 5	 6	 7	 8	

IP
C	

Thread	 Id	

PARSEC	 Blackscholes	

Orig	

Synth	

(a)

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

Bla
ck
sch
ole
s	

Bo
dy
tra
ck
	

Ca
nn
ea
l	

De
du
p	

Fa
ce
sim
	

Fe
rre
t	

Flu
ida
nim

ate
	

Fre
qm
ine
	

Ra
ytr
ac
e	

Str
ea
mc
lus
te
r	

Sw
ap
Bo
ns
	

Vip
s	

X2
64
	

IP
C	

Orig	

Synth	

(b)

Fig. 9. (a) Comparison of IPC between original and
synthetic for various threads of benchmark Blackscholes
in the PARSEC suite (b) Comparison of IPC between
original and synthetic for various PARSEC benchmarks

for the results provided in this paper. To be able to determine
the efficacy of the cloning methodology for multithreaded
applications, the next step is to assess the representativeness of
the generated proxies to that of their original counterparts. This
is accomplished by comparing the performance and power
characteristics of the proxies to the original applications.

4.1 Simulation Infrastructure for Evaluation

For all our performance and power estimation simulations,
we use the Wisconsin GEMS [30] infrastructure with the
Windriver Simics full system simulator. We use the detailed
our-of-order processor model Opal with the power model
Wattch [31] to model the cores. We use the Ruby tool provided
by GEMS to model the memory hierarchy in terms of the
caches and the DRAMsim [32] simulator from Maryland
to model the DRAM. To model the power consumption of
caches, we use the CACTI tool from HP. For modeling the
performance of the interconnection network, we use the Garnet
simulation model and for modeling the power consumption,
we use the Orion [33] power model from Princeton. All our
power estimations are done using a 90nm technology. We use
the precompiled binaries with gcc-hooks for the SPARC ISA
provided by the PARSEC authors at Princeton on Solaris 10
operating system.

4.2 Accuracy in Assessing Performance

A typical 8-core modern system configuration is used for the
comparison of various metrics between the synthetic and the
original. The machine configuration that is used has an 8GB

0	

0.005	

0.01	

0.015	

0.02	

0.025	

0.03	

0.035	

Bla
ck
sc
ho
les
	

Bo
dy
tra
ck
	

Ca
nn
ea
l	

De
du
p	

Fa
ce
sim
	

Fe
rre
t	

Flu
ida
nim

ate
	

Fre
qm
ine
	

Ra
ytr
ac
e	

Str
ea
mc
lus
te
r	

Sw
ap
Ao
ns
	

Vip
s	

X2
64
	

L1
	 m

is
s	
ra
te
	

Orig	

Synth	

(a)

90	
91	
92	
93	
94	
95	
96	
97	
98	
99	

100	

Bla
ck
sch
ole
s	

Bo
dy
tra
ck
	

Ca
nn
ea
l	

De
du
p	

Fa
ce
sim

	

Fe
rre
t	

Flu
ida
nim

ate
	

Fre
qm
ine
	

Ra
ytr
ac
e	

Str
ea
mc
lus
ter
	

Sw
ap
Eo
ns
	

Vip
s	

X2
64
	

Br
an

ch
	 p
re
di
c,
on

	 ra
te
	

Orig	

Synth	

(b)

Fig. 10. (a)Comparison of L1 missrate between the
synthetic proxies and that of the original PARSEC work-
loads (b) Comparison of branch prediction rate between
the synthetic proxies and that of the original PARSEC
workloads

DRAM, 32KB, 4-way, 1 cycle latency L1 cache, a 4MB, 8-
way 8-banked L2 cache, 32 MSHRS, 64 entry reorder buffer
with a machine width of 4 instructions per cycle. The branch
predictor used is a YAGS branch predictor with a 11 bit
addressable Pattern History Table (PHT). The configuration
has a 512 entry Branch Target Buffer (BTB), 3 integer ALUs
with one integer divide, 2 floating point ALUs with one FP
multiply and one FP divide units. The topology that is used
to connect the various memory components is a hierarchical
switch. The original and the synthetic workloads are run on
this configuration and the execution time in terms of number
of cycles is recorded. We do not require any warmup for the
caches when running the synthetic workload as the caches tend
to get warmed up pretty quickly due to the relatively smaller
data footprint used in the synthetic. Based on the number of
instructions executed, the Instruction-Per-Cycle is computed
for each of the threads. Figure 9(a) shows the comparison of
IPC between the synthetic and the original for various threads
of a randomly chosen PARSEC benchmark Blackscholes.
The average error when considering all the threads is 2.9%
for Blackscholes. Figure 9(b) shows the comparison of IPC
between original and synthetic averaged over all the threads
for the various benchmarks in the PARSEC suite. The error in
the IPC when averaged over all the 13 benchmarks is 4.87%
with a maximum error of 10.8% for the workload Raytrace. It
should be noted that Raytrace is unique in terms of the number
of writes that it does to memory as previously discussed about
the instruction mix of Raytrace.

Other microarchitecture metrics like the miss rates in L1
and the branch prediction rates are also compared between the

11

0
10
20
30
40
50
60
70
80
90

100

Bl
ac

ks
ch

ole
s

Sy
nth

eti
c

Bo
dy

tra
ck

Sy

nth
eti

c

Ca
nn

ea
l

Sy
nth

eti
c

De
du

p
Sy

nth
eti

c

Fa
ce

sim

Sy
nth

eti
c

Fe
rre

t
Sy

nth
eti

c

Flu
ida

nim
ate

Sy

nth
eti

c

Fr
eq

mi
ne

Sy

nth
eti

c

Ra
ytr

ac
e

Sy
nth

eti
c

St
re

am
clu

ste
r

Sy
nth

eti
c

Sw
ap

tio
ns

Sy

nth
eti

c

Vi
ps

Sy

nth
eti

c

X2
64

Sy

nth
eti

c

 P
ow

er
 (W

att
sl)

DRAM power

ICN power

Dir power

L2 power

CPU power

Fig. 11. Power-per-cycle for various PARSEC workloads along with a breakdown of the power consumption in various
components on a 8-core system

original and synthetic workloads for various PARSEC applica-
tions. The Figure 10(a) shows the comparison of the L1 cache
missrate between the original and the synthetic applications.
Since the L1 missrates for many of the applications are quite
small, the average in the L1 hit rate is computed to assess the
representativeness. The average error in the L1 hit rate across
all the PARSEC workloads is 0.67% with a maximum of
1.83% for the application Facesim. The Figure 10(b) shows the
comparison of the branch prediction rate between the original
and the synthetic applications. The average error in the branch
prediction rate is 0.52%.

4.3 Accuracy in Assessing Power Consumption

To see how effectively the synthetic benchmarks can be used
as proxies for the original PARSEC workloads for power
modeling, the power consumption of various workloads is
compared to that of their synthetic proxies. Figure 11 shows
the comparison of the total system power consumption be-
tween the original and synthetic workloads. To show how
effectively the synthetic models the execution behavior in
each of the system components, the same figure is also
annotated with the breakdown of the power consumption in
the different system components for the synthetics and the
originals. The average error in the total power consumption
between the synthetic and the original workloads is 2.73%
with a maximum error of 5.5% for the application Raytrace.
It should be noted that Raytrace is the application that also
has a maximum error in performance and in most of the cases
the power consumption of workloads are quite proportional to
their performance.

4.4 Accuracy in Assessing Sensitivity to Design
Changes

In computer architecture, estimating the performance of a
workload on one machine configuration is less important
comparing to the ability to estimate the sensitivity of a
workload’s performance to various design changes. Thus, it is
important to evaluate the representativeness of the synthetic
workloads to their original counterparts in terms of their
sensitivity to design changes. To accomplish this, we use

!"#"$%&%#' ()*&%$'+',' ()*&%$'+'-' ()*&%$'+'.'
!"#$"%$&"'()$ *$ *$ *$
+,-.$ /0$12$ *12 3$12$
4/$&5&6($ 03$728$3$95:8$;$&:&<()$ =;$728$3$95:8$/$&:&<($ /0$728$;$95:8$/$&:&<($
4;$&5&6($ *$.28$/0$95:8$/0$>5?@)$ 3$.28$*$95:8$*$>5?@)$;$.28$*$95:8$*$>5?@)$
4/8$4;$.AB,)$ 3*$ =;$;3$
,C2$ /;*$ 03$ =;$
.5&6D9EFG6$ *$ 3$;$
2'5?&6$H'(F#$ I-1A8$/;$>EGJBK I-1A8$//$>EGJBK I-1A8$/L$>EGJBK
2K2$)EM($ /L;3$ N/;$;N0$
O?G$-4P)$ 3-4P8$;$O?GFEQ $=$-4P8$/$O?GFEQ $;$-4P8$/$O?G$FEQ$$
K"H"<"R:$ S'"))>5'$ BE('5'&6E&5<$)9EG&6$ BE('5'&6E&5<$)9EG&6$
TJ$-4P)$;$-4P8$;$.U<8$;FEQ ;$-4P8$/$.U<8$/FEQ /$-4P8$/$.U<8$/FEQ
$

Fig. 12. Multicore machine configurations used to eval-
uate the accuracy in assessing the impact of design
changes by the synthetic in comparison to original PAR-
SEC workloads

three system configurations as shown in Figure 12 to analyze
performance variations for design changes. The three system
configurations have varying microarchitecture settings in terms
of cache sizes, machine width, branch predictor, topology of
the interconnection network etc. To make more design points,
the system configuration B was mutated as following to form
nine more configurations: 0.5X L1 cache size, 2X DRAM
size, 2X L2 cache size, 2X machine width and ROB size,
2X PHT size for branch predictor, more ALUS, ICN crossbar
and 0.5X L2 cache size. The performance of the workloads on
each of these configurations were recorded for both original
and synthetic workloads using the metric IPC. The correlation
between the trends followed by original and the synthetic is
determined by finding the correlation coefficient.

The Figure 13 shows the correlation coefficient between the
trends followed by the synthetic and the original workloads
for the various design changes. The higher the correlation
coefficient, the better is the correlation between the trends.
The average of the correlation coefficient for all the workloads
in the PARSEC suite is 0.92. The Figures 14(b) and 14(a)
show the comparison of sensitivity to design changes using
various multicore machine configurations by mutating system
configuration B for the randomly chosen workloads Raytrace
and Streamcluster in PARSEC suite respectively. This brings
out the utility value of the synthetics to be used as proxies for
the PARSEC workloads for the most invasive design space

12

0.75	

0.8	

0.85	

0.9	

0.95	

1	

bla
ck
sc
ho
les
	

bo
dy
tra
ck
	

ca
nn
ea
l	

de
du
p	

fac
es
im
	

fer
re
t	

flu
ida
nim

ate
	

fre
qm
ine
	

ray
tra
ce
	

str
ea
mc
lus
te
r	

sw
ap
?o
ns
	

vip
s	

x2
64
	

Av
er
ag
e	

Co
rr
el
a'

on
	 c
oe

ffi
ci
en

t	

PARSEC	 Workloads	

Fig. 13. Correlation coefficients for the sensitivity to
design changes between the synthetic and the original
using various multicore machine configurations for the
workloads in the PARSEC suite

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	
1.4	
1.6	

Sy
st
em

-‐A
	

Sy
st
em

-‐C
	

Sy
st
em

-‐B
	

B	
-‐	 2

X	
DR

AM
	

B	
-‐	 0

.5
X	
L2
	

B	
-‐	 0

.5
X	
L1
	

B	
-‐	 2

X	
O
O
	 R
es
	

B	
-‐	 2

X	
Bp

re
d	

B	
-‐	 M

or
e	
AL
U
s	

B	
-‐	 I
CN

	 C
ro
ss
ba
r	

B	
-‐	 2

X	
L2
	

IP
C	

Design	 points	

Streamcluster	

Synth	

Orig	

(a)

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	
1.4	

Sy
st
em

-‐A
	

Sy
st
em

-‐C
	

Sy
st
em

-‐B
	

B	
-‐	 2

X	
D
RA

M
	

B	
-‐	 2

X	
L2
	

B	
-‐	 0

.5
X	
L1
	

B	
-‐	 2

X	
O
O
	 R
es
	

B	
-‐	 2

X	
Bp

re
d	

B	
-‐	 M

or
e	
A
LU

s	

B	
-‐	 I
CN

	
Cr
os
sb
ar
	

B	
-‐	 0

.5
X	
L2
	

IP
C	

Design	 points	

Raytrace	

Synth	

Orig	

(b)

Fig. 14. Comparison of sensitivity to design changes
using various multicore machine configurations for the
workloads (a) Streamcluster and (b) Raytrace in PARSEC
suite

exploration studies.

4.5 Speedup Achieved in Using the Synthetics

The most important advantage of using the synthetic proxies
over the long running original PARSEC applications is the
speedup achieved in simulations when using these minia-
turized proxies. The table in Figure 15 shows the speedup
achieved in terms of reduction in the number of instructions
when using the synthetic proxies over the original PARSEC
applications. The synthetic benchmarks generally have three
to eight million instructions, when the original workloads have
a few thousand million instructions. The speedup achieved is
at least four orders of magnitude to a maximum of about five
orders of magnitude for the application Facesim.

No. of Instructions (Millions) Benchmarks
Synthetic Original

Speedup

Blackscholes 3.80 13028 3429
Bodytrack 5.96 56918 9552
Canneal 8.29 10484 1264
Dedup 4.41 8428 1912
Facesim 7.45 1151026 154450
Ferret 4.42 58398 13227
Fluidanimate 7.81 72669 9300
Freqmine 6.93 5588 807
Raytrace 4.02 223560 55585
Streamcluster 4.51 52527 11641
Swaptions 7.01 11020 1572
Vips 7.50 37135 4952
X264 3.75 13001 3465
!

Fig. 15. Speedup achieved by using the synthetic proxies
over the full run of the PARSEC workloads on a 8-core
system configuration

4.6 Proxies for Proprietary Applications
As described before, one of the applications of our cloning
methodology is to disseminate proprietary applications to
processor architects for better performance analysis of target
workloads. The most important feature about our synthetic
benchmark generation is that they cannot be reverse engi-
neered to find any information about the original applications.
There has been a lot of research in code obfuscation techniques
[34] [35] [36], where one tries to obfuscate the code to hide the
intellectual property in applications when distributing software
binaries to make it harder to reverse engineer. Though these
techniques have been researched a lot, most of them suffer
from increasing the execution time of the program or code
size in some way. In our synthetic benchmark generation case,
it is to be noted that only the performance characteristics
of the workloads are distilled into a synthetic benchmark
that does not have any functional meaning, making any kind
of reverse engineering quite meaningless. We also obfuscate
the organization of the data in the original applications, by
converting all the data structures into a single one dimensional
array. This removes the information like the presence of a
class (in C++ or Java) and the presence of a structure in
C. This final piece of code is independent of most of the
higher level constructs of loops, function calls and other
possible organization in the code. Thus, the proposed synthetic
benchmark cloning is quite robust to disseminate proprietary
applications without the need to worry about being reverse
engineered for information about the original applications.

5 LIMITATIONS

The synthetic proxies generated using our methodology are
intended to be used by designers, who want to explore the de-
sign space in early design stage of a processor. After narrowing
down the design space, we recommend using other methods to
more accurately estimate the absolute performance for a given
design. The synthetic proxies of standard benchmarks should
not be used as a sole method to publish final performance
numbers. When compiling the synthetic proxies, one should
bear in mind that they are not meant to be optimized by
the compiler as the characteristics incorporated into them

13

using embedded assembly should not be altered to be able
to reproduce the behavior of the original workload. Thus, the
synthetic proxies should not be used for any performance study
aiming to evaluate the efficacy of a compiler optimization [37]
[38]. And, another limitation of these multithreaded synthetic
proxies is that they are generated for a specific number of
cores and they need to be regenerated when the number
of cores are changed in the design. So, these multithreaded
proxies cannot be used to quantify performance differences
for studies involving changing the number of cores. When
the phase change behavior in a program is critical to a study,
these multithreaded synthetics should not be used, because
the proposed synthetic benchmark methodology is built upon
statistical simulation, where the characteristics of a workload
are averaged over the period of execution and this averaged
behavior is replayed statistically in the most representative
manner. But, please note that it is still possible to profile
the various phases (like simulation points) of a workload
separately and generate individual synthetic proxies for each of
these phases. With minmal effort, the code generated for each
of these individual synthetic proxies can all be tied together (as
function calls) for replaying phase changes for single threaded
workloads.

6 SUMMARY

A characterization of the PARSEC workloads have been
provided and miniaturized proxies for these workloads have
been generated and provided aiming at solving the problems
related to prohibitive runtime and unavailability of proprietary
target applications in processor design. These proxies have
been validated by assessing their performance in comparison
to the original applications on a 8-core typical modern system
configuration. The average error in the IPC for these work-
loads is 4.87% and maximum error is 10.8% for Raytrace in
comparison to the original workloads. Similarly, the average
errors in the L1 cache hitrates and branch prediction rates
are 0.67% and 0.53% respectively. It is also shown that
the generated synthetic proxies also have very similar power
consumption to that of the original workloads, opening the
doors for using these synthetic clones for power modeling. The
average error in the power-per-cycle metric is 2.73% with a
maximum of 5.5% when compared to original workloads. To
further show how faithfully the synthetic benchmark follows
the execution behavior of the original workloads in various
system components, the breakdown of the power consump-
tion of the synthetic is compared with that of the original
workloads. The representativeness of the synthetic proxies to
that of the original workloads in terms of their sensitivity to
design changes is also shown to be quite good by finding
the correlation coefficient as 0.92 between the trends followed
by the synthetic and the original for design changes. Finally,
the speedup achieved by using the synthetic proxies over
the original workloads is shown to be around 4 orders of
magnitude and up to 6 orders of magnitude for some specific
workloads.

ACKNOWLEDGMENTS

This work has been supported and partially funded by SRC
under Task ID 1797.001, National Science Foundation un-
der grant numbers 0702694, 0751112, 0750847, 0750851,
0750852, 0750860, 0750868, 0750884, 1117895 and 0751091,
Lockheed Martin, Sun Microsystems, IBM and AMD. Any
opinions, findings, conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation or other
sponsors.

REFERENCES

[1] K. Ganesan, D. Panwar, and L. K. John, “Generation,Validation and
Analysis of SPEC CPU2006 Simulation Points Based on Branch,
Memory, and TLB Characteristics,” SPEC Benchmark Workshop 2009,
Austin, TX, Lecture Notes in Computer Science 5419 Springer pages
121-137, January 2009.

[2] G. Hamerly, E. Perelman, and B. Calder, “How to Use SimPoint to
Pick Simulation Points,” ACM SIGMETRICS Performance Evaluation
Review, March 2004.

[3] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “SMARTS:
Accelerating microarchitecture simulation via rigorous statistical sam-
pling,” Proceedings of the International Symposium on Computer Ar-
chitecture, (ISCA 2003), p. 84 - 95.

[4] M. V. Biesbrouck, T. Sherwood, and B. Calder, “A co-phase matrix
to guide simultaneous multithreading simulation,” In Proceedings of
the 2004 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS04), March 2004.

[5] A. Phansalkar, A. Joshi, and L. K. John, “Analysis of Redundancy and
Application Balance in the SPEC CPU2006 Benchmark Suite,” The 34th
International Symposium on Computer Architecture (ISCA 2007), June
2007.

[6] K. Ganesan, J. Jo, and L. K. John, “Synthesizing Memory-Level
Parallelism Aware Miniature Clones for SPEC CPU2006 and Implant-
Bench Workloads,” International Symposium on Performance Analysis
of Systems and Software (ISPASS), March 2010.

[7] K. Ganesan, J. Jo, W. L. Bircher, D. Kaseridis, Z. Yu, and L. K.
John., “System-level Max Power (SYMPO) - A systematic approach
for escalating system-level power consumption using synthetic bench-
marks,” In the 19th International Conference on Parallel Architectures
and Compilation Techniques (PACT), Vienna, Austria, September 2010.

[8] K. Ganesan and L. K. John, “MAximum Multicore POwer (MAMPO) -
An Automatic Multithreaded Synthetic Power Virus Generation Frame-
work for Multicore Systems,” In the SuperComputing Conference (SC
2011), Seattle, WA, November 2011.

[9] L. John, J. Jo, and K. Ganesan, “Workload Synthesis for a Commu-
nications SoC,” In Workshop on SoC Architecture, Accelerators and
Workloads, held in conjunction with HPCA-17, San Antonio, Texas,
February 2011.

[10] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “SimPoint 3.0:
Faster and More Flexible Program Analysis,” Workshop on Modeling,
Benchmarking and Simulation, June 2005.

[11] M. Oskin, F. T. Chong, and M. Farrens, “HLS: Combining Statistical and
Symbolic Simulation to Guide Microprocessor Design,” In Proceedings
of the International Symposium on Computer Architecture (ISCA 2000),
2000.

[12] S. Nussbaum and J. E. Smith, “Modeling Superscalar Processors via Sta-
tistical Simulation,” International Conference on Parallel Architectures
and Compilation Techniques (PACT 2001), 2001.

[13] L. Eeckhout, R. H. B. Jr., B. Stougie, K. D. Bosschere, and L. K.
John, “Control Flow Modeling in Statistical Simulation for Accurate
and Efficient Processor Design Studies,” Proceedings. 31st Annual
International Symposium on Computer Architecture, (ISCA 2004), 2004.

[14] W. S. Wong and R. J. T. Morris, “Benchmark Synthesis Using the LRU
Cache Hit Function,” IEEE Transactions on Computers, 1988.

[15] G. Balakrishnan and Y. Solihin, “WEST: Cloning data cache behavior
using Stochastic Traces,” IEEE 18th International Symposium on High
Performance Computer Architecture (HPCA), February 2012.

14

[16] J. Robert H. Bell, R. R. Bhatia, L. K. John, J. Stuecheli, J. Griswell,
P. Tu, L. Capps, A. Blanchard, and R. Thai., “Automatic Testcase
Synthesis and Performance Model Validation for High Performance
PowerPC Processors,” IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS 2006), March 2006.

[17] A. Joshi, L. Eeckhout, R. H. B. Jr., and L. K. John, “Performance
Cloning: A Technique for Disseminating Proprietary Applications as
Benchmarks,” International Symposium on Workload Characterization,
October 2006.

[18] K. Ganesan, “Automatic Generation of Synthetic Workloads for Mul-
ticore Systems,” Department of Electrical and Computer Engineering,
The University of Texas at Austin,, December 2011.

[19] Z. Jin and A. C. Cheng, “ImplantBench: Characterizing and Projecting
Representative Benchmarks for Emerging Bio-Implantable Computing,”
IEEE Micro (IEEE Micro), 28(4):71-91, July/August 2008.

[20] A. Joshi, L. Eeckhout, L. K. John, and C. Isen, “Automated microproces-
sor stressmark generation,” The 14th International Symposium on High
Performance Computer Architecture (HPCA), February 2008.

[21] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques, October 2008.

[22] A. Joshi, L. Eeckhout, J. Robert H. Bell, and L. K. John, “Distilling
the essence of proprietary workloads into miniature benchmarks,” ACM
Transactions on Architecture and Code Optimization (TACO 2008),
August 2008.

[23] R. H. Bell and L. K. John, “Improved Automatic Test Case Synthesis
For Performance Model Validation,” Proceedings of the International
Conference on Supercomputing 111-120, 2005.

[24] N. Barrow-Williams, C. Fensch, and S. Moore, “A communication Char-
acterization of Splash-2 and Parsec,” IEEE International Symposium on
Workload Characterization, October 2009.

[25] M. C. H. Hemayet Hossain, Sandhya Dwarkadas, “Improving support
for Locality and fine-grain sharing in chip multiprocessors,” Proceedings
of the 17th international conference on Parallel architectures and
compilation techniques, October 2008.

[26] L. Cheng, J. B. Carter, and D. Dai, “An Adaptive Cache Coherence
Protocol Optimized for Producer-Consumer Sharing,” IEEE 13th Inter-
national Symposium on High Performance Computer Architecture, 2007.
HPCA 2007, February 2007.

[27] U. Ramachandran, G. Shah, A. Sivasubramaniam, A. Singla, and
I. Yanasak, “Architectural Mechanisms for Explicit Communication
in Shared Memory Multiprocessors,” Proceedings of the IEEE/ACM
Supercomputing Conference, 1995.

[28] G. Viswanathan and J. R. Larus, “Compiler-directed Shared-Memory
Communication for Iterative Parallel Applications,” Proceedings of the
ACM/IEEE Conference on Supercomputing, 1996.

[29] H. M, S. P, and F. M, “Branch transition rate: a new metric for improved
branchclassification analysis,” Sixth International Symposium on High-
Performance Computer Architecture (HPCA 2000), Volume , Issue , 2000
Page(s):241 - 25, January 2000.

[30] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, , and D. A. Wood, “Multifacet’s
General Execution-driven Multiprocessor Simulator (GEMS) Toolset,”
Computer Architecture News (CAN),, September 2005.

[31] M. Martonosi, V. Tiwari, and D. Brooks, “Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations,” isca, pp.83,
27th Annual International Symposium on Computer Architecture (ISCA
2000).

[32] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel, and
B. Jacob, “DRAMsim: A memory-system simulator,” Computer Arch.
News, vol. 33, no. 4, pp. 100-107, Sep 2005.

[33] H. Wang, X. Zhu, L.-S. Peh, and S. Malik, “Orion: A Power-
Performance Simulator for Interconnection Networks,” In Proceedings
of MICRO 35, Istanbul, Turkey, November 2002.

[34] E. Jokipii, “Jobe - The Java obfuscator - http://www.primenet.com/∼ej/
index.html,” 1996.

[35] J. J. Marciniak, “Encyclopedia of Software Engineering,” chapter Re-
verse Engineering, pp 1077-1084. John Wiley & Sons, Inc, 1994. ISBN
0-471-54004-8.

[36] A. Herzberg and S. S. Pinter, “Public protection of software,” ACM
Transactions on Computer Systems, vol. 5, no. 4, pp 371-393, November
1987.

[37] K. Ganesan, L. K. John, J. Sexton, and V. Salapura, “A Performance
Counter Based Workload Characterization on BlueGene/P,” In 37th
International Conference on Parallel Processing (ICPP), Portland, Ore-
gon, September 2008.

[38] V. Salapura, K. Ganesan, A. Gara, M. G. J. C. Sexton, and R. E. Walkup,
“Next-Generation Performance Counters: Monitoring Over Thousand
Concurrent Events,” Performance Analysis of Systems and software,
2008. ISPASS 2008. IEEE International Symposium, pages 139-146,
April 2008.

Karthik Ganesan received his PhD in Com-
puter Engineering from the University of Texas
at Austin in 2011. He received his Master of
Science in Computer Engineering from the Uni-
versity of Texas at Austin in 2008 and Bachelor
of Engineering in Computer Science and En-
gineering from Anna University, India in 2006.
Karthik Ganesan is currently a senior member
at Oracle America Inc, and his research focuses
on the performance evaluation of Oracle server
systems. Karthik has internship experiences in

the BlueGene design team at IBM T. J. Watson labs working with the
then world’s fastest supercomputer. He also has internship experiences
in the Performance Inspector tool development team at IBM Austin and
Cortex processor design team at ARM Inc. During his PhD, he was work-
ing as a research assistant in the Laboratory for Computer Architecture
directed by Prof. Lizy K John. His research interests include multicore
system architectures, performance evaluation, benchmarking and Java
performance. During his undergraduate study, he was also working as a
part time research trainee at Waran Research Foundation, India. He has
authored several papers published in top tier international conferences
and journals. He also actively serves as a technical reviewer for many
such conferences and journals. Karthik Ganesan is a member of the
IEEE and the Association for Computing Machinery (ACM).

Lizy Kurian John is the B. N. Gafford Professor
in Electrical Engineering in the ECE Depart-
ment at UT Austin. She received her Ph. D in
Computer Engineering from the Pennsylvania
State University in 1993. Her research inter-
ests include high performance processor and
memory architectures, low power design, recon-
figurable architectures, rapid prototyping, Field
Programmable Gate Arrays, workload character-
ization, etc. She is recipient of NSF CAREER
award, UT Austin Engineering Foundation Fac-

ulty Award (2001), Halliburton, Brown and Root Engineering Foundation
Young Faculty Award (1999), University of Texas Alumni Association
(Texas Exes) Teaching Award (2004), The Pennsylvania State University
Outstanding Engineering Alumnus (2011) etc. She has coauthored a
book on Digital Systems Design using VHDL (Thomson Publishers,
2007) and has edited 4 books including a book on Computer Perfor-
mance Evaluation and Benchmarking. She holds 7 US patents and is a
Fellow of IEEE.

