
1

Minimum Cost Blocking Problem in Multi-path
Wireless Routing Protocols

Qi Duan, Mohit Virendra, Shambhu Upadhyaya, Senior Member, IEEE , Ameya Sanzgiri

Abstract—We present a class of Minimum Cost Blocking (MCB) problems in Wireless Mesh Networks (WMNs) with multi-path
wireless routing protocols. We establish the provable superiority of multi-path routing protocols over conventional protocols against
blocking, node-isolation and network-partitioning type attacks. In our attack model, an adversary is considered successful if he is able
to capture/isolate a subset of nodes such that no more than a certain amount of traffic from source nodes reaches the gateways.
Two scenarios, viz. (a) low mobility for network nodes, and (b) high degree of node mobility, are evaluated. Scenario (a) is proven to
be NP-hard and scenario (b) is proven to be #P-hard for the adversary to realize the goal. Further, several approximation algorithms
are presented which show that even in the best case scenario it is at least exponentially hard for the adversary to optimally succeed
in such blocking-type attacks. These results are verified through simulations which demonstrate the robustness of multi-path routing
protocols against such attacks. To the best of our knowledge, this is the first work that theoretically evaluates the attack-resiliency and
performance of multi-path protocols with network node mobility.

Index Terms—Attacks, Blocking, Multi-path routing, Max SNP problems (MAXSNP), Wireless networks, #P-Hardness

F

1 INTRODUCTION

MULTI-PATH traffic scheduling and routing proto-
cols in wired networks are deemed superior over

conventional single path protocols in terms of both
enhanced throughput and robustness. In wireless net-
works, even though the dynamic nature of networks and
resource constraints entail additional overhead in main-
taining and reconfiguring multiple routes, which could
offset the benefits seen in wired networks, research has
proven that multi-path routing provides better Quality
of Service (QoS) guarantees. This paper adopts a unique
approach to further assay their utility by investigating
the security and robustness offered by such protocols.
Specifically, we study the feasibility and impact of block-
ing type attacks on these protocols. In our study, Wire-
less Mesh Networks (WMNs) [1] are considered as the
underlying representative network model. WMNs have
a unique system architecture where they have nodes
communicating wirelessly over multiple hops to a back-
bone network through multiple available network gate-
ways. Primary traffic in WMNs is between the backbone
network and stationary/mobile nodes. This architecture
has led to WMNs emerging as a key component in the
networking and communications domain due to their
design which allow numerous diverse commercial and
military applications [2], [3], [4], [5]. This uniqueness of
WMNs has resulted in significant research effort being
placed on designing various protocols for it. The main
focus, however, is on multi-path routing schemes since

• Authors Q. Duan, M. Virendra, were with the Department of Computer
Science and Engineering, University at Buffalo, Buffalo, NY, 14260 at the
time of doing this research and authors S. Upadhyaya and A. Sanzgiri are
currently with the University at Buffalo.
E-mail: {qiduan, virendra, shambhu, ams76}buffalo.edu

efficient multi-path traffic scheduling schemes can split a
node’s traffic into multiple flows along several accessible
gateways and eventually reassemble this traffic at the
backbone network at low costs. This makes WMNs ideal
candidates for applying the full scope of any wireless
multi-path protocols and study the impact of these
attack scenarios. Though the underlying representative
network model considered for this study is WMN, the at-
tack scenarios and results in this paper are fully portable
to other types of wireless data networks which use multi-
path routing protocols [6], [7], [8].

1.1 Scope, Impact and Relevance
The scope of this paper is the dependability of intercon-
nection networks, their performance, and fault tolerance
under various attack scenarios. The research reported
here is largely theoretical1 and establishes the superiority
of multi-path routing protocols in the face of malicious
attacks. The impact and relevance pertain to building
confidence on existing schemes which primarily rely on
the robustness of multi-path protocols. The impacted
areas would include load balancing [9], network cod-
ing [10], [11], [12] and threshold cryptography [13], [14],
in the wireless domain.

(a) Active Attack Scenarios for Recovery and Resiliency:
This work is highly relevant for scenarios where it may
be easier (or harder) for the adversary to compromise
some nodes in the network, as compared to compromis-
ing the rest of the nodes. For example, it would usually
be more difficult (in terms of cost) to block nodes closer
to the gateways or Base Stations (BS) due to reasons
of physical proximity (physically better guarded), or

1. A wireless mesh network is represented by an undirected graph
and all analyses are based on graph theory.

2

signal strength (nodes closer to BS may have better
received signal strength). Similarly, it is highly desirable
for protocols to continue to execute correctly without
information compromise, even in the presence of a few
malicious nodes. Currently, most security protocols do
not address recovery from malicious behavior. Protocols
simply abort execution and restart if any malicious
behavior is detected. This is detrimental especially in
applications where real-time response and high level
security are important as information may have already
been lost in the partial execution and frequent restart of
the protocols.

(b) Relevance and Impact on Existing Protocols: Multi-
path routing protocols can naturally extend threshold
cryptography concepts to the wireless domain. Demon-
strated robustness of multi-path protocols against such
blocking-type attacks would increase confidence in uti-
lizing threshold cryptography schemes [15], [16]. In
threshold cryptography, a node splits a secret into sev-
eral shares, routes them along independent paths, and a
threshold number of shares have to be compromised (at
least) for an adversary to recover the secret. Our results
imply that it would be at least exponentially hard for
an adversary to optimally compromise or block certain
threshold number of shares such that either the adver-
sary recovers the secret, or equivalently, the secret is not
recovered properly at the destination. Network coding,
where nodes intelligently send redundant information
along multiple paths to ensure security and reliability
and to detect any problems with a route would also
benefit from such demonstrated robustness of multi-path
routing. Again, it would be at least exponentially hard
for the adversary to optimally compromise more than a
threshold number of these paths to render such network
coding schemes ineffective.

1.2 Contributions

While there has been some work on integrating the
benefits provided by multi-path routing protocols with
security mechanisms [17], [18], [19], there exists a gap
in analyzing multi-path routing attacks. Specifically two
areas that need to be analyzed are: (a) The performance
in terms of security and resiliency of mobile wireless
networks multi-path protocols under different attack sce-
narios, and (b) Comparison with traditional single-path
protocols under such circumstances. This paper attempts
to achieve the above two desirable goals. To the best of
our knowledge, this is the first paper to theoretically
evaluate the performance of wireless network multi-
path protocols considering node mobility under attack
scenarios. The technical contributions of this paper are:

• The identification of the Minimum Cost Blocking
(MCB) problem. Though we consider MCB in the
WMN setting, the problem is applicable to other
wireless or wired networks.

• Evaluating the hardness of the problem. MCB is NP-
hard for the low/no node mobility scenario and

#P -hard for networks with patterned node mobil-
ity. The reduction for no-mobility is derived from
the basic Set Cover problem [20] and for mobility
scenario, from the 3SAT [21] and #SAT [22]
problems.

• Development of approximation algorithms for the
best case scenario and the performance testing of
these algorithms in different settings through ran-
dom graphs based experiments.

• Laying direction for future research to evaluate the
performance of multi-path protocols against sophis-
ticated attacks in mobile wireless networks.

1.3 Paper Organization
The rest of this paper is organized as follows. Section 2
discusses motivation and related work. Section 3 illus-
trates our attack model and the MCB problem. Section 4
introduces a particular case of multi-node MCB problem
and analyzes its complexity. Section 5 presents the main
results on the MCB problem by proving its NP-hardness.
Section 6 provides two approximation algorithms for
the MCB problem. Section 7 presents simulation results
for the algorithms for stationary MCB. Section 8 intro-
duces the #P -hard Blocking problem for WMNs with
patterned node mobility. Section 9 concludes the paper
with a discussion on future research directions.

2 MOTIVATION AND RELATED WORK

Multi-path routing protocols unlike standard routing
protocols intend to discover multiple paths between
a source and a destination node. Their utility lies in
compensating for the dynamic and unpredictable nature
of networks. Specifically, the multiple paths provide
load balancing, fault tolerance and higher aggregate
bandwidth. It has been proven that using multi-path
routing in dense networks enhances performance and
result in better throughput than unipath routing [23].
Traditionally, multi-path routing has been in the context
of WMNs. But recently, there has been progress in adapt-
ing these protocols to other types of networks such as
WSNs (Wireless Sensor Networks) [24], [25], [26], [8].

The two main components of multi-path routing are
discovering routes and then maintaining these routes
based on certain metrics. Examples of such metrics
include Estimated Transmission Count (ETX) [27], Ex-
pected Transmission Time (ETT) [28], etc. The authors
of [29] present a new multi-path routing protocol for
heterogeneous networks where they choose QoS as a
routing metric. However, it is important to note that
unlike unipath routing, multi-path routing metrics are
aggregate in nature, i.e., paths at each hop are chosen
to maximize/minimize the sum of the individual paths
at each hop and not choose the best path each hop. To
reiterate, since multi-path routing protocols are intended
to increase (decrease) say aggregate bandwidth (end to
end delay, for instance), the routes selected by these
protocols need to facilitate it. This implies that such

3

routes need to be disjoint (not have any common nodes
or links) to increase fault tolerance, since the failure of a
single node/link can cripple the entire network and be
detrimental to the multi-path routing philosophy. How-
ever, the cost for discovering such routes is expensive in
terms of both time and resources. Further, because of the
nature of networks, non-disjoint routes are more abun-
dant [23]. Additionally, node-disjointness (no common
node between two paths) is a stricter requirement than
even link-disjointness (no common link between two
paths), making them least abundant and thus, hardest to
find. Due to these practical considerations, in most multi-
path routing, more often than not non-disjoint routes
are selected. This causes a huge security risk, since the
compromise of such paths could effectively partition the
network. While such a problem does arise with even uni-
path routing because of the aggregate nature of metrics
in multi-path routing, it is more severe in multi-path
routing. Another interesting point of multi-path rout-
ing is that while it might ensure failure independence,
nodes belonging to different paths might still be in the
transmission range of each other causing interference
with each other. Such routes would then cause more
harm than benefit as they would have to wait for the
transmission medium to be free and thus be unable
to perform concurrent transmissions. This presents a
unique opportunity to an attacker who can use such
nodes to partition a network. Even though most routing
protocols try to choose paths that are as transmission
independent as possible to ensure the least interference
between routes, it is not always possible to do so due
to network topologies and mobility. Thus, despite their
inherent advantages, the innate natural disadvantages
make multi-path routing protocols an attractive target
for attacks. This has led to a focus on security in multi-
path routing protocols. Much of this focus is on either
information eavesdropping or optimizing security mech-
anisms for multi-path routing. Some of these attacks
can be prevented or countered through cryptographic
techniques. For example, OSPF [30], [31] uses MD5 [32]
to guard against false packet injection. Digitally signed
statements can also be used in OSPF to prevent false
advertisement by legitimate users. In the wireless net-
work domain, such cryptographic schemes for secure
broadcast and false data injection prevention are de-
scribed in [33], [34], [35]. Recently, frameworks have
been designed to insulate against information eaves-
dropping in routing protocols, without compromising on
performance [19]. This work presents a formulation of a
game that integrates metrics of multi-path routing with
security, based on which a system administration can
incorporate one or more metrics of multi-path routing
protocols. Other works such as [36] present routing
protocol based on secret sharing over multiple paths. The
authors of [18] present a routing protocol that is designed
to prevent adversaries from overhearing information and
focuses on node-anonymity to prevent identification of
end nodes, by forwarding nodes. However, there are

other attacks that cannot be countered through crypto-
graphic techniques. Link cut attacks in wired networks,
first investigated in detail in [37], are one such type of
attack. In wireless networks, link cuts can be achieved
through jamming or interference [38]. In reality, block-
ing a certain link in a wireless network usually means
blocking all signals from a certain node or compromising
the node completely. As mentioned above this may be
relatively easy to achieve for wireless nodes deployed in
automated, unattended or hostile scenarios, accentuating
the need for research on blocking attacks – an aspect
that has been ignored by the aforementioned works. We
adopt some computation complexity related techniques
to analyze this particular aspect in multi-path routing
security. Specifically, we use techniques related to the
basic set cover and partial set cover problems. The basic
set cover problem is NP-hard and extensive research has
been done on its approximation algorithms [39], [40].
A generalization of the set cover problem is the partial
set cover problem detailed in [41], [42]. The complexity
class #P was first introduced in [43]. Sociological orbits
in wireless networks utilized in describing the node-
mobility scenario were introduced in [44].

3 ASSUMPTIONS AND THREAT MODEL

3.1 Assumptions
The network and the threat model in this paper conform
with the following conditions:

1) We consider managed networks where each node
has a unique identity. In other words, the map-
ping between network nodes and their identities
remains one-to-one, a property that can be verified
in any managed network. This will preclude node
replication attacks.

2) The attacker while having the resources cannot
deploy his own devices (nodes) to the network.

3) The adversary is a global adversary in the sense
that the adversary wants to severe the network and
can choose the way the network is to be severed. By
this we mean that he is not limited to any particular
localized area in the network.

4) Physical capture of nodes is allowed; there exists a
cost for each capture/compromise of nodes which
is assumed to be computable for the sake of sim-
plicity.

5) An attacker can also compromise nodes, however,
he does not control certain elements such as mo-
bility of the nodes or modification/addition of the
hardware of the captured nodes. This assumption
is perfectly legitimate since our model considers
that the attacker does not know all the details of
the network and it will exponentially increase the
cost of gathering these details.

6) Although the attacker may have a fair knowledge
of the workings of any system especially in wire-
less mesh networks, we do not explicitly consider
insider attacks. Insider attacks are possible in any

4

organization’s system or networks. However, they
are also complex in the sense that there are possibly
many ways an insider attack can be staged. Con-
sideration of insider attacks and its analysis will
be quite involved, since there will be too many
parameters to consider and hence is outside the
scope of this paper.

3.2 Threat Model
Blocking, node-isolation and network-partitioning type
attacks are easy to launch and are effective in the wire-
less networks domain due to channel constraints and
dynamic network topologies. We emulate adversarial
behavior by attacking the multi-path schemes through
intelligent blocking and node-isolation type attacks and
study the impact. We also try to design best-case scenar-
ios for these attacks to succeed. Both low node-mobility
and high node-mobility scenarios are considered. For
comparison purposes, we also launch similar attacks
on conventional single-path protocols and measure their
impact. The minimum cost blocking (MCB) problem can
be stated as a special case of node blocking in a network
at minimum cost to the attacker. Here the attacker wants
to partition the network, thus ceasing flow of data, by
either capturing and blocking a key node or by routing
all data through a particular node. As we consider multi-
path routing protocols, the attacker has to consider the
operation of multi-path routing since multiple paths will
exist from the source to the destination. While a non-
trivial but easy solution is to launch a blackhole [45]
or wormhole [46] attack, this would force the attacker
to deploy his own nodes or capture a node close to
the destination/source which would increase his attack
cost due to the nodes’ close proximity to base stations.
In a blackhole attack, a particular node in a network
falsely advertises a route (based on metrics specific to the
protocol) to the destination node so as to force the route
discovery algorithm to choose a route through it. The
actual blackhole attack occurs when the malicious node
drops packets and hence blocks paths to the destination.
Similarly, in a wormhole attack, an attacker records pack-
ets (or bits) at one location in the network, tunnels them
(possibly selectively) to another location, and retransmits
them into the network. However, it has to be also noted
that multi-path routing is not necessarily affected by
wormhole attacks [47]. For these reasons and for stated
assumptions in Sec. 3.1, we do not consider blackhole
and wormhole attacks explicitly in this paper. Further,
sybil attack [48], [49] where a node can be assigned
multiple identities is precluded from our threat model
since the focus of this paper is primarily the blocking
attack.

4 A MULTI-NODE MCB CASE IN WIRELESS
NETWORKS

The general problem of blocking possible traffic flow
between a pair of vertices in a connected graph is known

as the max-flow min-cut problem [22], which can be
solved in polynomial time for both cases of minimum
edge cut and minimum node cut. In this section, we first
consider a particular case of blocking between a pair of
nodes in wireless networks. This, if viable, is a simple
attack that could bring down the network. Consider a
situation where the adversary has already compromised
a set of nodes in the network.2 The adversary can now
stage an attack by blocking some nodes in the network
such that all traffic between a certain pair of nodes will
pass through at least one of the compromised nodes.
Though this is conceivable, we show that it is NP-hard
to find the minimum cost set of nodes so that all traffic
between the source destination pair will pass through
one of the compromised nodes. In the most simple case,
we have a source destination pair s1 and t. Another node
(called C) is compromised which is only connected to the
destination node t and another node s2. We need to find
a minimum node cut to separate s1 and t in the graph
with the node C removed. The minimum cut has the
following property: it will separate node t from nodes s1
and s2, at the same time, keep nodes s1 and s2 connected.
In this case, the cut will cause all traffic flow from s1 to
t to pass through C. The formal problem definition is as
follows (decision version):

Definition 4.1: (3-node Induced Flow MCB). Suppose
we have an undirected graph G = (V,E), where |V | = n,
and every node vi ∈ V , 1 ≤ i ≤ n, has an associated
positive integer cost ci.3 Given three nodes s1, s2, t, and
an integer b can we find a set of nodes in V , such that the
total cost of nodes in V is no more than b, and removal
of all nodes in this set will separate t from s2 and s1, at
the same time, keep s2 and s1 connected?

Next we show that even in the case where every node
has unit cost, the problem is NP-complete.

Theorem 4.2: The 3-node Induced Flow MCB is NP-
complete even if every node has a unit cost.

Proof: We prove this result by reducing the
MAX2SAT problem to this problem. Given an instance
of MAX2SAT with m variables, r clauses, and integer
value k, we can construct a two-layer graph as follows:
the first layer has two end points s1 and s2, between
which are pairs of variable nodes (see Figure 1). In
the second layer, node t is connected to all intermediate
nodes. All the nodes represented in thick dots in the
figure are cliques. In the first layer, every thick node is
a clique of size (m+ r). In the second layer, every thick
node is a clique of size (m + r)2, and any neighboring
node of the thick node is connected to every node in
the clique. The two layers are connected as follows: the
two variable nodes corresponding to a variable and its
negation in another layer are connected, and for every
clause in the MAX2SAT instance, we connect the first
variable in the first layer to the second variable in the

2. By compromise we mean that the adversary is in control of the
node.

3. There is always a cost associated with compromising a node which
we denote as cost of compromise.

5

s

x

xx
 _ _

 1
x 2

 2

s

 1 1

s
 1

2

Fig. 1. The first layer of the constructed instance

s

x

xx
 _ _

 1

 1

x 2

 2

t

x x

x

 1

 2

x 1

 2

 _ _

s
 1

2

Fig. 2. The constructed instance of 3-node Induced Flow
MCB

second layer through an intermediate node (we call the
resulting edges as clause edges). Figure 2 is the graph
constructed for the instance (x1 ∨ x2) ∧ (x1 ∨ x2).

We set b to be m(m+ r)2 +m(m+ r) + r − k.
We have the following observations:
1) Since s1 and s2 must be connected, for every vari-

able node pair in the first layer, a variable and its
negation cannot be chosen in the cut simultane-
ously.

2) Since s1 and s2 must be separated from t, one of
the two appearances (in the two layers) of every
variable must be chosen in the cut.

3) Since the variable node in the second layer has
clique size (m + r)2, then for every variable and
its negation in the second layer, only one of them
can be chosen in the cut.

From the observations, we can conclude that for every
variable, one must choose it or its negation (but not both)
in both layers. So, the cost of the chosen variable nodes
will be m(m+ r)2 +m(m+ r). If the original MAX2SAT
has an assignment that can satisfy k clauses, then we can
choose the intermediate node of the unsatisfied clause
edges, and the variables in the truth assignment (in both
layers). We can then find a cut no more than m(m+r)2+

m(m+ r) + r − k, such that the conditions are satisfied.
Conversely, if a cut of no more than m(m+ r)2+m(m+
r)+r−k can be found, then an assignment can be found
(according to the cut) to satisfy at least k clauses.

Similarly, we can define a multi-node induced
flow MCB, in which we have u + v nodes
A1, . . . , Au, B1, . . . , Bv in the graph, and we would
like to find the minimum cut that can separate
A1, . . . , Au from B1, . . . , Bv , and at the same time, keep
A1, . . . , Au connected and B1, . . . , Bv also connected.
Obviously, the 3-node Induced Flow MCB is a special
case of the multi-node Induced Flow MCB.

We can show that multi-node Induced Flow MCB
(where the number of nodes is not fixed) is MAXSNP-
hard.

Theorem 4.3: Multi-node Induced Flow MCB is
MAXSNP-hard.

Proof: We can use a similar reduction as in the proof
of the NP-hardness of 3-node Induced Flow MCB. Given
an instance of MAX2SAT with m variables, we construct
an instance of multi-node Induced Flow MCB, which
is similar to the instance constructed in the proof of
the NP-hardness of 3-node Induced Flow MCB. In the
constructed instance of multi-node Induced Flow MCB,
we have nodes A1, . . . , Au, and B1, . . . , Bv , where we
need to find a cut to separate A1, . . . , Au from B1, . . . , Bv ,
at the same time, keep all nodes in A1, . . . , Au connected
and all nodes in B1, . . . , Bv connected. In the constructed
graph, we also have two layers, but every layer is similar
to the first layer in our construction in the proof of NP-
hardness of the 3-node Induced Flow MCB. Node Ai

(1 ≤ i ≤ u) is connected to the two variable nodes
xi and xi in the first layer. Node Bi (1 ≤ i ≤ v) is
connected to the two variable nodes xi and xi in the
second layer. For every clause, we also construct the
clause edges with an intermediate node (same as that in
the proof of NP-hardness of 3-node Induced Flow MCB).
In the constructed graph, every node has cost 1. We set
the bound b to be 2m + r − k. Figure 3 is the graph
constructed for the instance (x1 ∨ x2) ∧ (x1 ∨ x2).

It is easy to see, since we need to keep A1, . . . , Au

connected and B1, . . . , Bv connected, that for every
variable, one must choose to block the variable or
its negation (but not both) in both layers. So we can
see that the MAX2SAT instance (denoted as I) has an
assignment which satisfies at least k clauses if and
only if the constructed multi-node Induced Flow MCB
instance (denoted as I1) has a blocking cost at most
b. Suppose the optimal solution of the MAX2SAT in-
stance is OPT (2SAT). Then the optimal solution of
the corresponding multi-node Induced Flow MCB is
OPT (MCB). The cost of the solution found for the con-
structed multi-node Induced Flow MCB instance is c(I1).
The cost of the corresponding solution of the original
MAX2SAT instance is c(I) and we have OPT (2SAT) ≥
3r/4. We can also assume that every variable of the
MAX2SAT should appear in at least one of the clauses,

6

x

xx
 _ _

 1

 1

x 2

 2

x x
 1

x 1

 2

 _ _

x 2

A A

B

A

B

2
1

2

1

B 2 3

Fig. 3. The constructed instance of multi-node Induced
Flow MCB

then we have r ≥ m/2. Now we have

OPT (MCB) ≤ 2m+
r

4
≤ 17

3
OPT (2SAT)

c(I1)−OPT (MCB) ≤ OPT (2SAT)− c(I)

This means the reduction is an L-reduction [22],
and consequently, multi-node Induced Flow MCB is
MAXSNP-hard.

We also present an approximation algorithm for the
3-node Induced Flow MCB. The idea is to use linear
programming (LP) formulation.

Algorithm 4.4: Step 1: Solve the following LP L1:
Minimize

∑
u∈V

cuqu

subject to

∑
all neighbors v of u

fuv

=
∑

all neighbors v of u

fvu, ∀u ∈ V, u ̸= s1, s2 (1)

∑
all neighbors v of s1

fs1v = 1 (2)

∑
all neighbors v of s2

fvs2 = 1 (3)

0 ≤ fuv ≤ 1, ∀u, v ∈ V

ys1,u ≤ qu + ys1,v, ∀(u, v) ∈ E (4)

ys2,u ≤ qu + ys2,v, ∀(u, v) ∈ E (5)

qs2 = qs1 = qt = ys1,s1 = ys2,s2 = 0 (6)

ys1,t = ys2,t = 1 (7)

∑
all neighbors v of u

fuv + ys1,u ≤ 1u inV, u ̸= s1, s2 (8)

∑
all neighbors v of u

fuv + yt2,u ≤ 1u inV, u ̸= s1, s2 (9)

0 ≤ ys1,u ≤ 1, 0 ≤ ys2,u ≤ 1, 0 ≤ qu ≤ 1, ∀u ∈ V (10)

Here qu is a label we assign for every node u. Equation
(1) guarantees that every node has a balanced flow, and
the total flow from s1 to s2 is 1. Inequalities (4), (5), (6),
(7) guarantee that in every path from s1 (or s2) to t, the
summation of all labels qu along this path will be at least
1. Inequalities (8) and (9) mean that if a node is labeled,
then no flow should pass through it (if L1 has integer
solution, this can be guaranteed).

Step 2. Find a path from s1 to s2, which satisfies the
following condition: for every node u in the path, there
is a flow of size at least 1/(n−3) passing through u. This
can be done because in the above LP, we find a fractional
flow of size 1 from s1 to s2.

Step 3. Change the cost of all nodes in the identified
path in Step 2 to infinity, and add a new node s, which
is connected only to s1 and s2. Then, find a minimum
cut from s to t, and take this cut as the solution of the
problem.

Theorem 4.5: The algorithm described above achieves
a ratio of n− 3.

Proof: Suppose the solution of L1 (if one exists) is
C1. The optimal solution is OPT and the solution found
by the algorithm is C2. It is easy to see C1 ≤ OPT , and
every path P from s1 (or s2) to t must have a summation
of label values at least 1 so that we have∑

u:flow passes u=0

qu ≥
1

n− 3

Then

C2 ≤ (n− 3)
∑
u∈V

qu ≤ (n− 3)C1 ≤ (n− 3)OPT

If every node has unit cost, then we can modify
the above algorithm slightly to get a second algorithm,
where all the steps are unchanged except in the LP

7

formulation. The inequalities (8) and (9) are changed
respectively to∑

all neighbors v of u

fuv + 2ys1,u ≤ 1, u ∈ V, u ̸= s1, s2

∑
all neighbors v of u

fuv + 2yt2,u ≤ 1, u ∈ V, u ̸= s1, s2

We have the following result.
Theorem 4.6: The modified algorithm achieves a ratio

of d+1, where d = min(ds1 , dt) +min(ds2 , dt). Here ds1 ,
ds2 , and dt are degrees of s1, s2, and t, respectively.

Proof: First we consider the following LP (denoted
as L2).

Minimize
∑
u∈V

cuqu

subject to:

ys1,u ≤ qu + ys1,v, ∀(u, v) ∈ E

ys2,u ≤ qu + ys2,v, ∀(u, v) ∈ E

qs2 = qs1 = qt = ys1,s1 = ys2,s2 = 0

ys1,t = ys2,t = 1

0 ≤ ys1,u ≤ 1, 0 ≤ ys2,u ≤ 1, 0 ≤ qu ≤ 1/2, ∀u ∈ V

Suppose the solution of L2 is C3 and the solution
of the modified algorithm is C4. Then we can see that
C3 ≤ (d + 1)OPT/2 because for every node in the cut
of the optimum solution of the original problem, if we
label it as 1/2, then to guarantee that every path from s1
to t has total label value 1, we could label min(ds1 , dt)
more nodes with label 1/2. Similarly, to guarantee every
path from s2 to t has total lablel value 1, we can label
min(ds2 , dt) more nodes with label value 1/2. So we
have C3 ≤ (d+ 1)OPT/2. Then

C4 ≤ 2C3 ≤ (d+ 1)OPT

5 MULTI-PATH MCB PROBLEM

We now present the Multi-path MCB problem for the
stationary-nodes/low-mobility scenario. The network is
modeled as an undirected graph G, with vertex set V
and edge set E. Here, every vertex represents a node in
the network and a link between two vertices implies that
corresponding nodes are within each other’s radio range.
A directed graph may better represent the network for
real-world situations since nodes may have different
radio ranges, signal strength may be different in each
direction, and links may not be completely bidirectional.
However for simplifying the problem description we
assume an undirected graph, emphasizing that all our
results are equally applicable to the general case of
directed graphs.

5.1 Multi-path MCB Optimization Problem
Suppose that in the graph G(V,E), |V | = k. Every
node vi in V is associated with a cost ci which is the

cost of compromising the node. There are m =
k∑

i=1

ni

paths P11, . . . , P1n1 , . . . , Pk1, . . . , Pknk
. Here, Pi1, . . . , Pini

(i = 1, . . . , k), are paths originating from node i (or
equivalently, paths belonging to node i). What is the
minimum cost to compromise a subset of nodes such
that a certain percentage of paths belonging to a node
are compromised? That is, for every node i (i = 1, . . . , k
), what is the minimum cost to compromise at least Ri

(0 ≤ Ri ≤ ni) paths out of all paths belonging to this
node (i.e., paths Pi1, . . . , Pini). This is a typical optimiza-
tion problem. The corresponding decision problem is
described below.

5.2 Multi-path MCB Decision Problem
Given: Graph G(V,E), where every node vi in V has
a cost ci of compromise, the set of nodes in paths
P11, . . . , P1n1 , . . . , Pk1, . . . , Pknk

and integers C and Ri

(0 ≤ Ri ≤ ni).
Statement: Is there a subset V ′ of V such that compro-
mising V ′ will block at least Ri paths out of Pi1, . . . , Pini ,
for every node vi (i = 1, . . . , k), and the total cost of
nodes in V ′ is no greater than C?

In reality, the adversary may not need to block all the
nodes in a network. However, since our description and
algorithms apply to the general case of blocking traffic
from a subset of nodes, we can simply let all paths
related to nodes not in the target subset to be empty.
It is easy to show that the problem is NP-complete.

Theorem 5.1: The MCB decision problem is NP-
complete.

Proof: The problem is a general case of the partial set
cover problem [20], which is a well known NP-complete
problem. So multi-path MCB is NP-complete.

6 APPROXIMATION ALGORITHMS FOR MULTI-
PATH MCB, NO MOBILITY

In this section we present two algorithms for the MCB
problem with stationary nodes. The first one is a greedy
algorithm and the second one LP-based. We derive the
approximation ratio for both of them. We first define
the notion of “cover”which will be used frequently in
later discussions and then list some notations needed to
describe the algorithms.

Definition 6.1: When a node (or a node within a subset
of nodes) is on a path, we say that the node (or the subset
of nodes) covers that path. When Ri paths belonging to
a node i are covered, we say that node i is covered.

6.1 Notations
T : The set of nodes that have been chosen at the begin-
ning of an iteration (an iteration includes all sub-steps
of Step 2 in Algorithm 6.2).

8

Ei: Effective number of node i, or the number of
effective paths the node i will cover in the current
iteration of the algorithm. An effective path means that
the path has not been covered yet and the corresponding
target node to which that path belongs has not been
blocked yet.
Wij : Number of paths that belong to node j and are

covered by node i.
Yj : Number of already covered paths that belong to

node j.
αi: Cost-effective index of node i.
D: Set of nodes currently covered (used in Algorithm

6.4).
Oi: Number of paths belonging to node i covered by

the set of nodes returned by the function call SetCover
(used in Algorithm 6.4).

6.2 The Greedy Algorithm and Approximation Ratio
Our first algorithm, a greedy one, selects the most cost-
effective node iteratively and at the same time removes
the covered paths and the paths unusable in the future.
Unusable paths are those originating from a node i with
at least Ri paths already blocked, as covering these paths
would be inconsequential.

The algorithm runs until the nodes in T have covered
the required paths for all the nodes in V , i.e., T covers
at least Ri paths for node i, where i = 1, . . . , k. This
condition is termed as “Done.”

Algorithm 6.2:
1. T ← ϕ, and mark all paths and nodes as uncovered;
2. While not Done, iterate the following sub-steps:

2.1. For every remaining node in V \T , say,
node i, in the current iteration, compute its effective
number Ei as follows:

Ei ← 0

2.1.1. For every node j that is not cov-
ered yet, compute min(max((Rj − Yj), 0),Wij). Update
Ei as follows:

Ei = Ei +min(max((Rj − Yj), 0),Wij)

2.2. Compute the cost-effective index αi as
follows:

αi =
ci
Ei

2.3. Choose node u with the lowest cost-
effective index (αu); Mark every path node u covers as
covered; For every effective path p that node u covers, set
the price of the effective path, i.e., price(p) = αu; Iterate
through all the currently uncovered nodes; Mark those
nodes that have been covered by node u in this iteration
as covered; Add node u to T, i.e.,

T ← T ∪ u

3. Output T ;
Note that in Step 2.1.1 of Algorithm 6.2, Wij is the
number of paths that belong to node j and are covered

by node i, Yj is the number of already covered paths that
belong to node j. Thus min(max((Rj − Yj), 0),Wij) is
essentially the number of effective (or useful) uncovered
paths that belong to node j and are covered by node i.

Next we show that Algorithm 6.2 achieves an approx-

imation ratio of lnR, where R =

k∑
i=1

Ri.

Theorem 6.3: Algorithm 6.2 achieves an approximation
ratio of lnR.

Proof: The proof is similar to the proof for the ratio
of the greedy algorithm for set cover problem in [50].
Suppose the optimum solution has a cost OPT . We
number the covered effective paths in the algorithm in
the order in which they are covered, and name them
as P1, . . . , PR. In every iteration in the algorithm, the
new optimal solution (selected from V \T) that covers
the remaining nodes (that are not covered yet) has a
cost at most OPT . Among them, there must be one node
that has cost-effective index at most OPT/U , where U is
the number of uncovered effective paths (otherwise the
optimum solution will have a cost greater than OPT). In
the iteration that covers path Pj , there are at least R−j+1
paths not yet covered. Because we choose the node with
lowest cost-effective index, we have price(Pj) ≤ OPT

R−j+1 .
The total cost of our algorithm will be

R∑
j=1

price(Pj) ≤ (1 +
1

2
+ . . .+

1

R
)×OPT

≤ OPT × lnR

If we adopt the algorithm SetCover for partial set
cover in [51], which is based on LP relaxation, then we
get a new algorithm which is described next.

6.3 The LP Algorithm and Approximation Ratio
The LP Algorithm uses a function
SetCover(P, V \T, c,Rj), where P is the set of all
uncovered paths belonging to node j, c is the array of
cost values for nodes in V \T (i.e., cj ,∀j ∈ V \T). The
function SetCover returns the selected sets (nodes) that
cover at least Rj paths in P .

Algorithm 6.4:
1. T ← ϕ, D ← ϕ
2. While D does not contain all nodes in the graph,

iterate the following sub-steps:
2.1. Choose node j with the highest Rj value;

Call SetCover(P, V \T, c,Rj);
2.2. D ← D ∪ j
2.3. For every node returned by the function,

T ← T ∪ i
2.4. Remove from P , every path that is covered

by the nodes returned by the function call SetCover;
P ← P\p

2.5. For every i ∈ V \D, adjust Ri as follows:
Ri = max(0, Ri − Oi) ; If Ri becomes 0 (it means that
node i is blocked); D ← D ∪ i

9

3. Output T .
Algorithm 6.4 repeatedly blocks a node in every it-

eration (Step 2), until all nodes are blocked. Note that
in Step 2.5 of Algorithm 6.4, Oi is the number of paths
belonging to node i that were covered by the set of nodes
returned by SetCover.

Theorem 6.5: Algorithm 6.4 achieves an approxima-
tion ratio of h × k, where h is the length (number of
nodes in the path) of the longest path.

Proof: The approximation ratio of algorithm Set-
Cover is h [51]. Obviously at every iteration the sum of
the cost of selected nodes < h×OPT , so the total cost of
the solution returned by Algorithm 6.4 is ≤ h×k×OPT .

6.4 Approximation Ratios: Practical Significance
The approximation ratios obtained above are coarse
performance measures for the algorithms. It is difficult
to compare the two, i.e., the values h× k and lnR, since
they depend on specific problem instances. Also, these
ratios are far from tight because precise analysis is very
difficult. It is an open research issue to determine if
any better algorithms (algorithms with guaranteed better
ratios) exist. We evaluate the performance of these algo-
rithms in the next section by conducting experiments on
randomly generated graphs.

In a practical setting, if the graph (network) is sparse
and the topology is known to the adversary, it would
be easier for the adversary to successfully launch such
blocking attacks. If the graph is dense, then launching
an effective attack would be more difficult. From a
protocol security and resiliency point of view, it would
be ideal if the network topology information is hidden
from the adversary, making it extremely hard to launch
such attacks. However, in practice, complete topology
obfuscation is not necessary. If the adversary has partial
topological information, the above algorithms cannot be
executed correctly. Thus, even partial topology obfusca-
tion can be a significant deterrent against the full scope
of such attacks. This provides motivation for introducing
network node mobility where exact network topology is
never accurately known. We extend our results to WMNs
with node mobility in Section 8.

7 EXPERIMENTAL VALIDATION

We evaluated the performance of the two low/no mo-
bility multi-path MCB algorithms using randomly gen-
erated graphs that represent arbitrary wireless mesh
networks. For convenience, we have denoted these al-
gorithms as Greedy Algorithm (Algorithm 6.2) and LP
Algorithm (Algorithm 6.4). For comparison purposes,
we also evaluated the performance of a greedy algo-
rithm for MCB in a single-path scheme. The single-path
algorithm is similar to the multi-path MCB except that
every node has only one path to the nearest (with the
fewest number of hops in the path) router. The random
graphs are generated in the following way: All nodes in

the graph are randomly distributed in a 500m × 500m
square region, and if the distance between two nodes
is in the radio range, then the two nodes are connected
in the graph. There are four gateways that are located
in the four corners of the square region. Every node has
four routes to the four gateways, and routing is based on
the Dijkstra algorithm [52]. The goal of the attacker is to
block the traffic of some target nodes. The experimental
validation was done by writing a simple C++ based
simulator, since the aim of these experiments is to verify
the theoretical results by analyzing the performance of
the algorithms from a graph theory perspective. No net-
work simulators were needed since no network related
properties are considered in our analyses. All tests were
run on a Linux OS powered computer, with 1Gb RAM
and an Intel Pentium III 1.33 GHz processor. For the
source code of the simulation experiment, the reader
may refer to Appendix.

We tested two scenarios. In the first scenario, each
node has cost 1, which means that the effort needed
to compromise different nodes is the same. In the sec-
ond scenario, every node has a base cost 10, plus an
additional cost inversely proportional to the distance
between the node and the center of the whole square
region; the maximum value of additional cost is 10.
This scenario is based on the assumption that it is more
difficult to compromise those nodes which are closer to
the gateways, and this assumption is quite practical. The
total number of nodes in the region is denoted by n, the
radio range of a single node is r and the possibility that
a node is selected as target node is denoted by u. All
selected target nodes are at least one hop away from all
gateways (which we denote as non-G1 nodes). Here n, r
and u are adjustable parameters. When at least 3 out
of the 4 paths to the gateways (here the path does not
include the node itself and the gateway) of a node are
locked, we consider that the node is blocked. We use our
algorithms to find the subset of nodes with minimum
total cost in order to block paths from some randomly
selected nodes in the square region. The experimental
results from the direct implementation of our algorithms
are shown in figures 4 through 9. In all these figures,
x-axis represents the r values of a single node, y-axis
denotes the total cost of the subset of nodes found by
the algorithms. All data points are the average of 100
runs. The value of r ranges from 100 to 180.

Figure 4 through Figure 7 are results for the scenario
where every node has cost value 1. Figure 4 corresponds
to u = 1/20 and n = 120. Figure 5 shows the results of u =
1/10 and n =120. Figure 6 shows the results of u = 1/20
and n = 100. Figure 7 shows the results of u = 1/10 and
n = 100. The graphs in Figure 8 and Figure 9 show the
results when the second scenario to generate cost value
of nodes is used. Figure 8 shows the results for u = 1/20
and n = 120, while Figure 9 shows the results for u =
1/20 and n = 100.

The following conclusions can be drawn from these
experimental results.

10

Fig. 4. Cost of Blocking: Scenario 1, u = 1/20 and n = 120

Fig. 5. Cost of Blocking: Scenario 1, u = 1/10 and n =120

• The performance of Greedy Algorithm is better than
that of LP Algorithm in most of the cases we tested.
Intuitively, this is because the first algorithm is more
like a “global” algorithm, and the second algorithm
considers every node separately.

• In all the test cases, the cost of the single-path-
blocking greedy algorithm is lower than the two
multi-path algorithms. This is obvious and reason-
able since it requires more effort to block more
paths. But when the number of target nodes in-
creases, the difference between the cost of single
path blocking and multi-path blocking decreases.
This is because in this case there will be more
paths in the graph, and some nodes may become
a bottleneck for several paths. These nodes would
be easy targets for attacks.

Fig. 6. Cost of Blocking: Scenario 1, u = 1/20 and n = 100

Fig. 7. Cost of Blocking: Scenario 1, u = 1/10 and n = 100

• When the number of nodes increases, the cost
for both single path blocking and multi-path
blocking increases. This is also reasonable since in
this situation, the graph become denser, and the
targeted paths will become more disjointed.

• When the radio range of a single node increases, the
trend of blocking-cost for target paths is not very
obvious. In some cases, increasing the radio range
results in a “peak” for the blocking cost. Intuitively,
increase in radio range also increases the number of
edges in the graph, making the target paths more
disjoint. But when the number of edges reaches a
threshold, it ceases to have a significant effect in the
disjointedness of the paths.

11

Fig. 8. Cost of Blocking: Scenario 2, u = 1/20 and n = 120

Fig. 9. Cost of Blocking: Scenario 2, u = 1/20 and n = 100

8 EXTENSION TO MESH NETWORKS WITH
PATTERNED MOBILITY

In the previous sections, we considered only limited
or no network node mobility. If network nodes are
mobile then the analysis of the MCB problem becomes
more complicated. We first briefly review graph theoretic
modeling of node mobility and the concept of stochastic
blocking to address the MCB problem for networks with
mobile nodes.

Nodes in real wireless networks have some form of
patterned mobility (demonstrated in [44] and the ref-
erences therein). In WMNs, the mobility pattern of the
nodes is predictable [44], [1]. The nodes move within
mobility orbits and the position of a given node has a
probability distribution over the positions of the orbit.

Our analysis of the node-mobility blocking problem as-
sumes that movement of the WMN nodes follows such a
probabilistic patterned mobility model. We introduce the
concept of Node-based Stochastic Graphs to characterize
such patterned node mobility.

Definition 8.1: Node-based Stochastic Graph: It is an
undirected graph with a subset of nodes that are
dynamic, i.e., every such node is associated with a
probability of existence. Formally, let G = (V,E)
be an undirected graph with n nodes, where V =
{v11, . . . , v1t1 , v21, . . . , v2t2 , vh1, . . . , vhth , vh+1, . . . , vn}. V
contains two types of nodes: fixed nodes and dynamic
nodes (our definition of Node-based Stochastic Graphs
is in line with the WMN architecture. WMN routers have
no/low mobility and WMN nodes are mobile).

Nodes vh+1, . . . , vn are fixed nodes. Nodes vi1, . . . , viti ,
1 ≤ i ≤ h are possible positions of node vi, 1 ≤ i ≤
h. There is an associated probability pij for every vij ,
1 ≤ i ≤ h, 1 ≤ j ≤ ti, which means that node vi has
probability pij to be in position vij of G.

8.1 The Stochastic Blocking Problem

Since the network is dynamic, the adversarial goal
would be to choose such a set of target nodes, whereby
blocking them would result in the blocking probability
being higher than some desired value. The formal de-
scription of the Stochastic Blocking is as follows.

Given: (1) A Stochastic Graph S(V,E), where every
node vi in V has a cost ci of compromise.

(2) The set of nodes in m =
k∑

i=1

ni paths

(P11, P12, . . . , P1n1), (P21, P22, . . . , P2n2),

. . . , (Pk1, Pk2, . . . , Pknk
).

All source and destination nodes in these paths are
fixed nodes.

(3) Integers Ri, 0 ≤ Ri ≤ ni, and a value p, 0 ≤ p ≤ 1.
Statement 1 (Optimization): Is there a subset V ′ of V

such that compromising V ′ will block, with a probability
p, at least Ri paths out of Pi1, Pi2, . . . , Pini , (1 ≤ i ≤ k),
for every node vi, i = 1, 2, . . . , k, and the total cost of
nodes in V ′ is minimized? This is an optimization prob-
lem; the corresponding decision problem (with same
conditions) is stated below.

Statement 2 (Decision): Is there a subset V ′ of V such
that, compromising V ′ will block, with a probability p,
at least Ri paths out of Pi1, Pi2, . . . , Pini , (1 ≤ i ≤ k), for
every node vi, i = 1, 2, . . . , k, and the total cost of nodes
in V ′ is no greater than C? Here C is some pre-specified
number.

Next we demonstrate that even determining the block-
ing probability of a given dynamic graph is #P -hard.
For that we first define a problem called #Blocking,
evaluate the hardness of #Blocking, and show that
Stochastic Blocking is harder than #Blocking.

12

x x x x x x
1

1

2

2

3 3 4 4

x
_

x
_ _ _

s s1 2

t t1 2

Fig. 10. An instance of #SAT

8.2 #Blocking : Evaluating Hardness of Stochastic
Blocking

Definition 8.2: #Blocking : Given the above graph
model, the computational problem #Blocking is to de-
termine the probability that at least Ri paths out of
Pi1, Pi2, . . . , Pini , (1 ≤ i ≤ k) will be blocked.

It is evident that an efficient solution of #Blocking
is a necessary precursor to solving Stochastic Blocking
efficiently; it is required to determine the blocking prob-
ability before finding the optimal subset of nodes for
blocking. That is, stochastic MCB should be at least as
hard as #Blocking. Next we show that #Blocking is
#P − hard using the reduction of #SAT to #Blocking.

Theorem 8.3: #Blocking is #P − hard.
Proof: We can reduce #SAT to #Blocking. Suppose

that we have a 3SAT instance. We can create a stochastic
graph as follows. Given the 3SAT instance, we create a
dynamic node for every variable, which has two possible
positions in the stochastic graph, and every position has
probability 1/2. We also create a source and destination
node for every clause, where the source and destination
nodes are connected with 3 paths through the 3 dynamic
nodes corresponding to the three variables in the clause.
Now we require that at least one of these 3 paths is
blocked for every such source destination pair. Then it
is easy to see that the blocking probability is exactly
the probability that the 3SAT instance is satisfied, which
means #Blocking is #P -hard. Figure 10 shows the
#Blocking instance we constructed through this proce-
dure for the #SAT following the #SAT instance.

This result demonstrates that even determining the
blocking probability is very hard in the patterned mobil-
ity model (the actual position of #P in the complexity
hierarchy is unknown, but it is generally assumed to be
harder than NP). So, the task of blocking would be even

harder for the adversary. Additionally, the adversary
may not know the actual mobility patterns and the
possible orbits of the network nodes, further enhancing
the degree of hardness. Thus, it would be extremely hard
for the adversary to efficiently launch such blocking-type
attacks against multi-path protocols with node mobility.
The degree of hardness prevents the design of approx-
imation algorithms for efficient blocking in the node
mobility scenario and this is an open research problem.
Our ongoing research focuses on further investigation
of the blocking attacks for various mobility models and
efficiency evaluation through simulation.

9 CONCLUSIONS
This paper demonstrates the superiority of multi-path
protocols over traditional single-path protocols in terms
of resiliency against blocking and node isolation-type
attacks, especially in the wireless networks domain.
Multi-path protocols for WMNs make it extremely hard
for an adversary to efficiently launch such attacks. This
paper is an attempt to model the theoretical hardness of
attacks on multi-path routing protocols for mobile nodes
and quantify it in mathematical terms. At this point,
it is also worthwhile to mention about the impact of
this study. We believe that the results of our research
will impact a number of areas including the security
and robustness of routing protocols in mesh networks,
threshold cryptography and network coding. Moreover,
even though we do not necessarily consider insider
attacks, we would like to point out that our analysis does
allow for an attacker to possess topological information
of the network, which is the case of an insider attack.
Even in this case, our analysis shows that staging a
blocking attack is hard for the attacker, in a network of
reasonable size.

As a part of our ongoing research, we plan to further
investigate the approximation algorithms for the MCB
problem. We also plan to investigate the problem in the
settings related to ID-based key update protocols, which
is very promising in wireless networks. In our discus-
sions we assumed that the adversary has topological
information of the network. It would be an interesting
problem to study the additional difficulty associated
with blocking when the topological information is ef-
fectively hidden from the adversary. Further, we would
also like to evaluate our algorithms by running them on
a real wireless mesh network and validate the results
obtained by the C++ based experiments on random
graphs. This paper also brings forth some interesting
related problems. For example, if link-cut and node-
compromising are combined together (i.e., one can either
cut some links or compromise some nodes), then what
is the minimum total cost to block traffic from specific
nodes.

REFERENCES
[1] I. F. Akyildiz, X. Wang, and W. Wang, “Wireless mesh networks:

A survey,” Computer Networks Journal, vol. 47, pp. 445–487, 2005.

13

[2] “http://wire.less.dk/wiki/index.php/meshlinks.”
[3] “http://www.communitywireless.org/.”
[4] “http://www.open-mesh.com/.”
[5] “http://pdos.csail.mit.edu/roofnet/design/.”
[6] C.-K. Chau, R. Gibbens, R. Hancock, and D. Towsley, “Robust

multipath routing in large wireless networks,” in INFOCOM, 2011
Proceedings IEEE, April 2011, pp. 271 –275.

[7] Y. Kato and F. Ono, “Node centrality on disjoint multipath rout-
ing,” in Vehicular Technology Conference (VTC Spring), 2011 IEEE
73rd, May 2011, pp. 1 –5.

[8] M. Razzaque and C. Hong, “Analysis of energy-tax for multipath
routing in wireless sensor networks,” Annals of Telecommunica-
tions, vol. 65, pp. 117–127, 2010.

[9] J. So and N. H. Vaidya, “Load balancing routing in multi-channel
hybrid wireless networks with single network interface,” in Sec-
ond International Conference on Quality of Service in Heterogeneous
Wired/Wireless Networks (QSHINE’05), Washington, DC, USA, Au-
gust 2005.

[10] C. Fragouli, J.-Y. Le Boudec, and J. Widmer, “Network coding: an
instant primer,” SIGCOMM Comput. Commun. Rev., vol. 36, no. 1,
pp. 63–68, Jan. 2006.

[11] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network
information flow,” IEEE Trans. on Information Theory, vol. 46, pp.
1204–1216, 2000.

[12] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,”
IEEE Transactions on Information Theory, vol. 49, pp. 371–381, 2003.

[13] I. Damgård and M. Jurik, “A generalisation, a simplification and
some applications of Paillier’s probabilistic public-key system,”
in Public Key Cryptography 2001, 2001, pp. 119–136.

[14] ——, “A length-flexible threshold cryptosystem with applica-
tions,” in Proceedings of the 8th Australasian conference on Infor-
mation security and privacy, ser. ACISP’03. Berlin, Heidelberg:
Springer-Verlag, 2003, pp. 350–364.

[15] L. Ertaul and W. Lu, “ECC based threshold cryptography for
secure data forwarding and secure key exchange in MANET (i),”
2005, pp. 102–113.

[16] L. Ertaul and N. Chavan, “Security of ad hoc networks and
threshold cryptography,” in Wireless Networks, Communications and
Mobile Computing, 2005 International Conference on, vol. 1, June
2005, pp. 69 – 74.

[17] M. Wu, S. Chen, and J. Liao, “Data security in MANETs by
integrating multipath routing and secret sharing,” in Informatics
in Control, Automation and Robotics (CAR), 2010 2nd International
Asia Conference on, vol. 1, March 2010, pp. 72 –75.

[18] S. Yu, H. Li, H. Zhu, and C. Wang, “Improving network security
and performance by multipath routing in ad hoc networks,” in
Computational Aspects of Social Networks (CASoN), 2010 Interna-
tional Conference on, September 2010, pp. 78 –81.

[19] S. Chen and M. Wu, “Game theoretic approach in multipath
routing for tradeoff between routing security and performance,”
in Computer Supported Cooperative Work in Design (CSCWD), 2010
14th International Conference on, April 2010, pp. 717 –722.

[20] V. Chvatal, “A greedy heuristic for the set-covering problem,”
Math. of Oper. Res., vol. 4, pp. 233–235, 1979.

[21] S. A. Cook, “The complexity of theorem proving procedures,” in
Third Annual ACM Symposium on the Theory of Computing, New
York, 1971, pp. 151–158.

[22] C. Papadimitriou, Computational Complexity. Addison Wesley,
1993.

[23] S. Mueller, R. Tsang, and D. Ghosal, “Multipath routing in mo-
bile ad hoc networks: Issues and challenges,” in In Performance
Tools and Applications to Networked Systems, volume 2965 of LNCS.
Springer-Verlag, 2004, pp. 209–234.

[24] M. A. Moustafa, M. A. Youssef, and M. N. El-Derini, “MSR: A
multipath secure reliable routing protocol for WSNs,” in Computer
Systems and Applications (AICCSA), 2011 9th IEEE/ACS Interna-
tional Conference on, December 2011, pp. 54 –59.

[25] Y. Zhang, J. Yang, H. Vu, and Y. Wu, “The design and evaluation
of interleaved authentication for filtering false reports in multi-
path routing WSNs,” Wireless Networks, vol. 16, pp. 125–140, 2010.

[26] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin, “Highly-
resilient, energy-efficient multipath routing in wireless sensor
networks,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 5, pp.
11–25, October 2001.

[27] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A
high-throughput path metric for multi-hop wireless routing,”
in Proceedings of the 9th ACM International Conference on Mobile

Computing and Networking (MobiCom ’03), San Diego, California,
September 2003.

[28] R. Draves, J. Padhye, and B. Zill, “Routing in multi-radio, multi-
hop wireless mesh networks,” in In ACM MobiCom. ACM Press,
2004, pp. 114–128.

[29] K. Yang, Y. Wu, and H.-H. Chen, “Qos-aware routing in emerging
heterogeneous wireless networks[quality-of-service-based routing
algorithms for heterogeneous networks],” Communications Maga-
zine, IEEE, vol. 45, no. 2, pp. 74 –80, February 2007.

[30] R. Coltun, D. Ferguson, and J. Moy, “Ospf for ipv6,” Tech. Rep.,
1999.

[31] S. Murphy, M. Badger, and B. Wellington, “OSPF with Digital
Signatures,” RFC 2154 (Experimental), Internet Engineering Task
Force, Jun. 1997.

[32] R. Rivest, “The MD5 Message-Digest Algorithm,” RFC 1321 (In-
formational), Internet Engineering Task Force, Apr. 1992.

[33] L. Zhou and Z. J. Haas, “Securing ad hoc networks,” IEEE
NETWORK MAGAZINE, vol. 13, pp. 24–30, 1999.

[34] S. Zhu, S. Setia, S. Jajodia, and P. Ning, “An interleaved hop-
by-hop authentication scheme for filtering of injected false data
in sensor networks,” in IEEE Symposium on Security and Privacy,
2004, pp. 259–271.

[35] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler,
“SPINS: Security protocols for sensor networks,” vol. 8, no. 5.
Hingham, MA, USA: Kluwer Academic Publishers, Sep. 2002, pp.
521–534.

[36] S. Chen and M. Wu, “Anonymous multipath routing protocol
based on secret sharing in mobile ad hoc networks,” Systems
Engineering and Electronics, Journal of, vol. 22, no. 3, pp. 519 –527,
June 2011.

[37] S. M. Bellovin and E. R. Gansner, “Using link cuts to attack in-
ternet routing,” in Tech. Rep., ATT Research, 2004, Work in Progress
2003 USENIX, 2003.

[38] “IEEE Standard for Information Technology: Wireless LAN
Medium Access Control (MAC) and physical layer (PHY) Speci-
fications,” IEEE Std 802.11-2007 - Revision of IEEE Std 802.11-1999,
2007.

[39] D. S. Johnson, “Approximation algorithms for combinatorial
problems,” in STOC ’73: Proceedings of the fifth annual ACM
symposium on Theory of computing. New York, NY, USA: ACM,
1973, pp. 38–49.

[40] L. Lovasz, “On the ratio of optimal integral and fractional covers,”
Discrete Math., vol. 13, pp. 383–390, 1975.

[41] M. J. Kearns, Computational complexity of machine learning, ser.
ACM distinguished dissertations. MIT Press, 1990.

[42] E. Petrank, “The hardness of approximation: Gap location,” in
Computational Complexity, vol. 4, 1994, pp. 133–157.

[43] L. G. Valiant, “The complexity of computing the permanent,”
Theoretical Computer Science, vol. 8, no. 2, pp. 189–201, 1979.

[44] J. Ghosh, S. J. Philip, and C. Qiao, “Sociological orbit aware
location approximation and routing (solar) in MANET,” Ad Hoc
Netw., vol. 5, no. 2, pp. 189–209, Mar. 2007.

[45] H. Deng, W. Li, and D. Agrawal, “Routing security in wireless ad
hoc networks,” Communications Magazine, IEEE, vol. 40, no. 10, pp.
70 – 75, October 2002.

[46] Y.-C. Hu, A. Perrig, and D. Johnson, “Packet leashes: a defense
against wormhole attacks in wireless networks,” in INFOCOM
2003. Twenty-Second Annual Joint Conference of the IEEE Computer
and Communications. IEEE Societies, vol. 3, March-3 April 2003, pp.
1976 – 1986.

[47] L. Qian, N. Song, and X. Li, “Detection of wormhole attacks in
multi-path routed wireless ad hoc networks: A statistical analysis
approach,” J. Network and Computer Applications, vol. 30, no. 1, pp.
308–330, 2007.

[48] J. R. Douceur, “The sybil attack,” in Peer-to-Peer Systems, First
International Workshop, IPTPS 2002, Cambridge, MA, USA, March
7-8, 2002, Revised Papers. Springer, 2002, pp. 251–260.

[49] C. Karlof and D. Wagner, “Secure routing in wireless sensor net-
works: attacks and countermeasures,” in Sensor Network Protocols
and Applications, 2003. Proceedings of the First IEEE. 2003 IEEE
International Workshop on, May 2003, pp. 113 – 127.

[50] V. V. Vazirani, Approximation algorithms. Springer, 2004.
[51] R. Gandhi, S. Khuller, and A. Srinivasan, “Approximation al-

gorithms for partial covering problems,” Journal of Algorithms,
vol. 53, pp. 55–84, 2004.

[52] E. W. Dijkstra, “A note on two problems in connexion with
graphs,” Numerische Mathematik. 1, pp. 269–271, 1959.

Appendix

Source Code of the Simulation Experiment

1) Header Files –

a. Graph.h

/*
The code can be used by researchers with due acknowledgment to the authors
Qi Duan, Mohit Virendra, Shambhu Upadhyaya and Ameya Sanzgiri,
Univeristy at Buffalo, NY
*/
// graph.h: interface for the graph class.
//
//

#if !defined(AFX_GRAPH_H__2418F5C9_2FD6_430F_A8D3_FFD17F7CCD2F__INCLUDED_)
#define AFX_GRAPH_H__2418F5C9_2FD6_430F_A8D3_FFD17F7CCD2F__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include <iostream>
#include "time.h"
#include "queue.h"

class graph
{
public:
 graph(int size = 2, int fraction = 1);
 virtual ~graph();
 bool isConnected(int x, int y);
 void addEdge(int x, int y, int weight=1);

 // performs a Breadth First Search starting with node x
 int BFS(int x);

 // searches for the minimum length path
 // between the start and target vertices

 void minPath(int start, int target);
 void graph::Dijkstra(int source);
 int graph::randomPosition(int radioRange);
 int** graph::getMinDist();
 double* graph::getReturnValue() ;
 int graph::greedy();
 int graph::update(int node);
 int graph::checkGain(int node);
 int graph::greedy_singlePath();
 int graph::update_singlePath(int node);
 int graph::checkGain_singlePath(int node);
 int graph::selectNode(int node);
 int graph::backupSelectNode();
 int graph::resumeSelectNode();
 int graph::genIncident(int fraction);
 int graph::perNode();
 int graph::checkAll();
 int graph::perNodeGreedy();
 int graph::reset();

private :
 double returnValue[2];
 int n;
 int **A;
 int **minPathDist;
 int **position;
 int *weight;
 int *selected;
 int *shortest;
 int *shortestLen;
 int *isGoal;
 int *isCovered;
 int *isCoveredPath;
 int *selected_bk;
 int **inci;
};

#endif // !defined(AFX_GRAPH_H__2418F5C9_2FD6_430F_A8D3_FFD17F7CCD2F__INCLUDED_)

b. Queue.h

/*
The code can be used by researchers with due acknowledgment to the authors
Qi Duan, Mohit Virendra, Shambhu Upadhyaya and Ameya Sanzgiri,
Univeristy at Buffalo, NY
*/
// queue.h: interface for the queue class.
//
//

#if !defined(AFX_QUEUE_H__08368E77_6622_4B92_8091_B2A41A59BFE3__INCLUDED_)
#define AFX_QUEUE_H__08368E77_6622_4B92_8091_B2A41A59BFE3__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include <cstdlib>
struct node {
 int info;
 node *next;
};

class queue
{
public:
 queue();
 virtual ~queue();
 bool isEmpty();
 void add(int);
 int get();
private:
 node *first, *last;

};

#endif // !defined(AFX_QUEUE_H__08368E77_6622_4B92_8091_B2A41A59BFE3__INCLUDED_)

2) Cpp Files-

a. Graph.cpp

/*
The code can be used by researchers with due acknowledgment to the authors
Qi Duan, Mohit Virendra, Shambhu Upadhyaya and Ameya Sanzgiri,
Univeristy at Buffalo, NY
*/
// graph.cpp: implementation of the graph class.

//

//

#include "math.h"
#include "graph.h"

#define EMPTY -10000
#define INFI 100000
#define WIDTH 500
#define BRIDGENUM 4
#define BANDWIDTH 200
#define COST 1
#define RANGE 80
#define THRESH 3
#define COEFF 3
#define NOTFOUND -1
#define MAX_DIST 3000

//

// Construction/Destruction

//

graph::graph(int size, int fraction)
{
 int i, j;

 if (size < 2) n = 2;
 else n = size;
 A = new int*[n];

 for (i = 0; i < n; ++i)
 A[i] = new int[n];

 for (i = 0; i < n; ++i)
 for (j = 0; j < n; ++j)
 A[i][j] = 0;

 for(i=0;i<n;i++)
 A[i][i] = 0;

 minPathDist = new int*[n];

 for (i = 0; i < n; ++i)
 minPathDist[i] = new int[2*n];

 for (i = 0; i < n ; i++)
 for (j= 0;j<n;j++)
 minPathDist[i][2*j] = minPathDist[i][2*j+1] = -1;

 //initialize random generator
 srand (time(NULL));

 position = new int*[n];
 for (i = 0; i < n; ++i)
 position[i] = new int[2];
 weight = new int[n];
 for (i = 0; i < n; ++i)
 weight[i] = 1 ; // + (rand() % 5) ;
 isGoal = new int[n];
 for (i = 0; i < n; ++i)
 isGoal[i] = 0;
 selected = new int[n];
 for (i = 0; i < n; ++i)
 selected[i] = 0;
 selected_bk = new int[n];
 for (i = 0; i < n; ++i)
 selected_bk[i] = 0;

 int pathNum = BRIDGENUM*(n-BRIDGENUM);
 isCoveredPath = new int[pathNum];
 for (i = 0; i < pathNum; ++i)
 isCoveredPath[i] = 0;

 isCovered = new int[n-BRIDGENUM];
 for (i = 0; i < n-BRIDGENUM; ++i)
 isCovered[i] = 0;

 shortest = new int[n-BRIDGENUM];
 for (i = 0; i < n-BRIDGENUM; ++i)
 shortest[i] = 0;

 shortestLen = new int[n-BRIDGENUM];
 for (i = 0; i < n-BRIDGENUM; ++i)
 shortestLen[i] = 0;

 inci = new int*[pathNum];

 for (i = 0; i < pathNum; ++i)
 inci[i] = new int[n-BRIDGENUM];

 for (i = 0; i < pathNum ; i++)
 for (j= 0;j<n-BRIDGENUM;j++)
 inci[i][j] = 0;
}

graph::~graph()
{
 int i;

 for (i = 0; i < n; ++i)
 delete [] A[i];
 delete [] A;
 for (i = 0; i < n; ++i)

 delete [] minPathDist[i];
 delete [] minPathDist;
 for (i = 0; i < BRIDGENUM*(n-BRIDGENUM); ++i)
 delete [] inci[i];
 delete [] inci;
 for (i = 0; i < n; ++i)
 delete [] position[i];
 delete [] position;
 delete [] weight;
 delete [] selected;
 delete [] selected_bk;
 delete [] isCovered;
 delete [] isCoveredPath;
}

bool graph::isConnected(int x, int y)
{
 return (A[x][y] > 0);
}

void graph::addEdge(int x, int y, int weight)
{
 A[x][y] = A[y][x] = weight;
}

int graph::BFS(int x)
{
 queue Q;
 bool *visited = new bool[n];
 int i;

 for (i = 0; i < n; ++i)
 visited[i] = false;
 Q.add(x);
 visited[x] = true;
 //printf("Breadth First Search starting from vertex %d : \n",x);
 while (!Q.isEmpty()) {
 int k = Q.get();
 for (i = 0; i < n; ++i)
 if (isConnected(k, i) && !visited[i]) {
 Q.add(i);
 visited[i] = true;
 }
 }
 //printf("\n");
 for (i = 0; i < n; i++)
 if (!visited[i]) {
 return 0;
 }
 //delete [] visited;
 return 1;
}

void graph::minPath(int start,int target)
{
 queue Q;
 int i, p, q;

 bool found;
 struct aux { int current, prev; };
 aux *X = new aux[n+1];
 int *Y = new int[n+1];
 bool *visited = new bool[n+1];

 for (i = 1; i <= n; ++i)
 visited[i] = false;
 Q.add(start);
 visited[start] = true;
 found = false;
 p = q = 0;
 X[0].current = start;
 X[0].prev = 0;
 while (!Q.isEmpty() && !found) {
 int k = Q.get();
 for (i = 1; i <= n && !found; ++i)
 if (isConnected(k, i) && !visited[i]) {
 Q.add(i);
 ++q;
 X[q].current = i;
 X[q].prev = p;
 visited[i] = true;
 if (i == target) found = true;
 }
 ++p;
 }
 printf("The minimum length path from %d to %d is:\n", start, target);
 p = 0;
 while (q) {
 Y[p] = X[q].current;
 q = X[q].prev;
 ++p;
 }
 Y[p] = X[0].current;
 for (q = 0; q <= p/2; ++q) {
 int temp = Y[q];
 Y[q] = Y[p-q];
 Y[p-q] = temp;
 }
 for (q = 0; q <= p; ++q)
 printf("%d \n",Y[q]);
 printf("Length = %d\n" , q-1);
 delete [] visited;
 delete [] X;
 delete [] Y;
}

void graph::Dijkstra(int source)
{
 int i,j,minDistNode;
 int nodeCount = 0;
 int *dist,*prev,*isAdded;
 int minDist;
 dist = new int[n];
 prev = new int[n];
 isAdded = new int[n];
 minPathDist[source][2*source] = minPathDist[source][2*source+1]= -1;
 for (i = 0; i < n; i++) {
 if (i == source)
 dist[i] = 0;

 else
 dist[i] = INFI;
 prev[i] = EMPTY;
 isAdded[i] = 0;
 }
 while (nodeCount < n) {
 minDistNode = 0;
 minDist = INFI;
 for (i = 0; i < n; i++) {
 if (!isAdded[i] && dist[i] < minDist) {
 minDist = dist[i];
 minDistNode = i;
 }
 }
 if (minDist == INFI) {
 //printf("no path any more! node count is %d \n",nodeCount);
 break;
 }
 isAdded[minDistNode] = 1;
 nodeCount ++;
 minPathDist[source][minDistNode*2] = dist[minDistNode];
 minPathDist[source][minDistNode*2 + 1] = prev[minDistNode];
 if (minDistNode==source) prev[minDistNode] = source;
 for (j = 0; j < n; j++) {
 if (A[minDistNode][j] > 0)
 if(dist[minDistNode] + A[minDistNode][j] < dist[j]) {
 dist[j] = dist[minDistNode] + A[minDistNode][j];
 prev[j] = minDistNode;
 }
 }
 }
 return;
}

int graph::randomPosition(int radioRange)
{
 int i,j,dist;
 int diaDist[4], minDiaDist;

 for (i = 0; i < n; i++) {
 selected[i] = 0;
 for (j= 0; j < n; j++)
 A[i][j] = 0;
 }

 //generate random weight
 //for (i = 0; i < n; ++i)
 // weight[i] = 1 + (rand() % 10) ;

 // fix four corners
 position[0][0] = 0;
 position[0][1] = 0;
 position[1][0] = 0;
 position[1][1] = WIDTH - 1;
 position[2][0] = WIDTH - 1;
 position[2][1] = 0;
 position[3][0] = WIDTH - 1;
 position[3][1] = WIDTH - 1;

 for (i = BRIDGENUM; i < n ; i++) {
 //printf(" node i = %d", i);

 int find = 0;
 while (!find) {
 position[i][0] = (rand() % (WIDTH - 2)) ;
 position[i][1] = (rand() % (WIDTH - 2)) ;
 find = 1;
 for (j= BRIDGENUM; j < i; j++) {
 if (abs (position[i][0] - position[j][0])
 + abs (position[i][1] - position[j][1]) < 10) {
 find = 0;
 break;
 }
 }
 }
 }

 for (i = BRIDGENUM; i < n; i++) {

 //compute distance
 for (j= 0; j < n; j++) {
 if (i!= j) {
 double L1 = position[i][0] - position[j][0];
 double L2 = position[i][1] - position[j][1];
 double L = sqrt(L1*L1 + L2*L2);
 dist = (int) L ;
 if (dist <= radioRange) {

 A[i][j] =A[j][i] = dist;
 }
 else
 A[i][j] =A[j][i] = 0;
 }
 if (j < BRIDGENUM)
 diaDist[j] = dist;
 }
 minDiaDist = MAX_DIST;
 for (j= 0; j < BRIDGENUM; j++)
 if (diaDist[j] < minDiaDist)
 minDiaDist = diaDist[j];
 weight[i] = 10 + 10 - floor ((float) minDiaDist*20/(float)(sqrt(2)*WIDTH)
);
 }

 /*for (i = 0; i < n; i++) {
 printf("\npos %d is %d %d \n",i,position[i][0],position[i][1]);
 for (j= 0; j < n; j++)
 if (A[i][j])
 printf(" dist[%d][%d] = %d ",i,j,A[i][j]);
 } */
 // check if the graph is connected
 if (BFS(0)) {
 //printf (" get a connected graph!\n");
 return 1;
 }
 else {
 //printf (" get an unconnected graph!\n");
 return 0;
 }
}

/* generate incident matrix */

int graph::genIncident(int fraction)
{
 int i,j,k,next,current,index_X,index_Y,shortestIndex,shortestLength,length;

 //printf("enter genInci \n");
 int pathNum = BRIDGENUM*(n-BRIDGENUM);
 for (i = 0; i < pathNum ; i++)
 for (j= 0;j<n-BRIDGENUM;j++)
 inci[i][j] = 0;

 for(i = BRIDGENUM; i < n; i++)
 Dijkstra(i);
 for (i = BRIDGENUM; i < n; i++) {
 //printf("enter loop1 %d \n",i);
 shortestIndex = -1;
 shortestLength = MAX_DIST;
 for (j = 0; j < BRIDGENUM; j++) {
 length = 0;
 next = current = j;
 while (next != EMPTY) {
 length ++;
 next = minPathDist[i][2*current+1];
 if (next !=EMPTY && next >= BRIDGENUM && next!= i) {
 index_X = BRIDGENUM*(i-BRIDGENUM) + j;
 index_Y = next-BRIDGENUM;
 if (index_X < BRIDGENUM*(n-BRIDGENUM) && index_Y < n-
BRIDGENUM)
 inci[index_X][index_Y] = 1;
 else printf("out of boundry! \n");
 current = next;
 }
 else if (next == i)
 next = EMPTY;
 }
 if (length < shortestLength) {
 shortestLength = length;
 shortestIndex = j;
 }
 }
 shortest[i-BRIDGENUM] = shortestIndex ;
 shortestLen[i-BRIDGENUM] = shortestLength ;
 //printf("shortest for %d is %d length %d \n ",i,
 // shortest[i-BRIDGENUM],shortestLen[i-BRIDGENUM]);
 }
 for (i = BRIDGENUM; i < n; ++i) {
 if (shortestLen[i-BRIDGENUM] > 1) {
 isGoal[i] = ((rand() % fraction) >0 ? 0:1) ;
 //printf (" goal is %d \n", i);
 //break;
 }
 else
 isGoal[i] = 0;

 }

 //printf("goal count is %d \n",count);
 return 0;
}

/* greedy alogrithm for single path MCB*/
int graph::greedy_singlePath()

{
 int i,j, maxIndex, count, cost = 0;
 float gain, maxGain;

 reset();
 while (!checkAll()) {
 //printf(" enter loop \n");
 maxGain = 0;
 maxIndex = -1;
 for (i = BRIDGENUM; i< n; i++) {
 gain = (float)checkGain_singlePath(i)/(float)weight[i];
 if (gain > maxGain) {
 maxGain = gain;
 maxIndex = i;
 }
 }
 //printf (" max index for single path is %d \n", maxIndex);
 if (maxIndex >= BRIDGENUM)
 update_singlePath (maxIndex);
 }
 for (i = BRIDGENUM; i< n; i++)
 if (selected[i])
 cost += weight[i];

 return cost;
}

/* greedy alogrithm for MCB*/
int graph::greedy()
{
 int i,j, maxIndex, count, cost = 0;
 float gain, maxGain;

 reset();
 while (!checkAll()) {

 maxGain = 0;
 maxIndex = -1;
 for (i = BRIDGENUM; i< n; i++) {
 gain = (float)checkGain(i)/(float)weight[i];
 if (gain > maxGain) {
 maxGain = gain;
 maxIndex = i;
 }
 }
 if (maxIndex >= BRIDGENUM)
 update (maxIndex);
 }
 for (i = BRIDGENUM; i< n; i++)
 if (selected[i])
 cost += weight[i];

 return cost;
}

int graph::perNodeGreedy()
{
 int i,j,k,gain,index,count,maxIndex,cost=0;
 float weightedGain,maxGain;

 reset();

 for (i = BRIDGENUM; i< n; i++) {
 while (!isCovered[i-BRIDGENUM] && isGoal[i]) {
 maxGain = 0;
 maxIndex = -1;
 for (j = BRIDGENUM; j< n; j++) {
 if (selected[j] == 1)
 gain = 0;
 else {
 gain = 0;
 count = 0;
 for (k = 0; k < BRIDGENUM; k++) {
 index = (i-BRIDGENUM)*BRIDGENUM + k;
 count += isCoveredPath[index] ;
 if (!isCoveredPath[index] && inci[index][j-
BRIDGENUM])
 gain++;
 }
 if (count >= THRESH)
 gain = 0;
 else if (gain >= THRESH - count)
 gain = THRESH - count;
 }
 weightedGain = (float) gain/ (float)weight[j];
 if (weightedGain > maxGain) {
 maxGain = weightedGain;
 maxIndex = j;
 }
 }
 update(maxIndex);
 }
 }

 for (i = BRIDGENUM; i< n; i++)
 if (selected[i])
 cost += weight[i];

 return cost;
}

int graph::checkGain(int node)
{
 int i,j, totalGain=0, gain = 0, count, index;

 if (node < 0 || node > n) {
 printf ("node index out of boundry !\n");
 return -1 ;
 }
 if (selected[node] == 1)
 return 0;
 for (i = BRIDGENUM; i< n; i++) {
 gain = 0;
 if (!isCovered[i-BRIDGENUM] && isGoal[i]) {

 count = 0;
 for (j= 0; j< BRIDGENUM; j++) {
 index = (i-BRIDGENUM)*BRIDGENUM + j;
 count += isCoveredPath[index];
 if (!isCoveredPath[index] && inci[index][node-BRIDGENUM])
 gain ++;
 }
 if (count >= THRESH)

 gain = 0;
 else if (gain >= THRESH - count)
 gain = THRESH - count;
 }
 totalGain = totalGain + gain;
 }

 return totalGain;
}

int graph::checkGain_singlePath(int node)
{
 int i,j, totalGain=0, gain = 0, count, index;

 if (node < 0 || node > n) {
 printf ("node index out of boundry !\n");
 return -1 ;
 }
 if (selected[node] == 1)
 return 0;
 //printf(" enter check gain \n");
 for (i = BRIDGENUM; i< n; i++) {
 gain = 0;
 if (!isCovered[i-BRIDGENUM] && isGoal[i]) {
 index = (i-BRIDGENUM)*BRIDGENUM + shortest[i-BRIDGENUM];
 if (inci[index][node-BRIDGENUM])
 gain ++;
 }
 totalGain = totalGain + gain;
 }

 return totalGain;
}

int graph::update(int node)
{
 int i,j, index, count ;

 if (node < 0 || node > n) {
 printf ("node index out of boundry !\n");
 return -1 ;
 }
 for (i = BRIDGENUM; i< n; i++) {
 count = 0;
 for (j= 0; j< BRIDGENUM; j++) {
 index = (i-BRIDGENUM)*BRIDGENUM + j;
 if (inci[index][node-BRIDGENUM])
 isCoveredPath[index] = 1;
 if (isCoveredPath[index])
 count ++ ;
 }
 if (count >= THRESH)
 isCovered[i-BRIDGENUM] = 1;
 }
 selected[node] = 1;
 return 0;
}

int graph::update_singlePath(int node)
{
 int i,j, index, count ;

 if (node < 0 || node > n) {
 printf ("node index out of boundry !\n");
 return -1 ;
 }
 for (i = BRIDGENUM; i< n; i++) {
 index = (i-BRIDGENUM)*BRIDGENUM + shortest[i-BRIDGENUM];
 if (inci[index][node-BRIDGENUM])
 isCovered[i-BRIDGENUM] = 1;
 }
 selected[node] = 1;
 return 0;
}

int graph::checkAll()
{
 int i,j,done;

 done = 1;
 for (i = BRIDGENUM; i< n; i++) {
 if (!isCovered[i-BRIDGENUM] && isGoal[i]) {
 done = 0;
 break;
 }
 }
 return done;
}

int** graph::getMinDist()
{
 return minPathDist;
}

double* graph::getReturnValue()
{
 return returnValue;
}

int graph::selectNode(int node)
{
 if (node < 0 || node >= n) {
 printf (" index out of bound!\n");
 return -1;
 }
 else if (selected[node] == 1) return 0;
 selected[node] = 1;
 return 1;
}

int graph::backupSelectNode()
{
 int i;
 for (i = 0; i <n ; i++)
 selected_bk[i] = selected[i];
 return 0;
}

int graph::resumeSelectNode()
{
 int i;

 for (i = 0; i <n ; i++)
 selected[i] = selected_bk[i];
 return 0;
}

int graph::reset()
{
 int i;
 for (i = 0; i <n ; i++)
 selected[i] = 0;

 int pathNum = BRIDGENUM*(n-BRIDGENUM);
 for (i = 0; i < pathNum; ++i)
 isCoveredPath[i] = 0;
 for (i = 0; i < n-BRIDGENUM; ++i)
 isCovered[i] = 0;
 return 0;
}

b. Queue.cpp

/*
The code can be used by researchers with due acknowledgment to the authors
Qi Duan, Mohit Virendra, Shambhu Upadhyaya and Ameya Sanzgiri,
Univeristy at Buffalo, NY
*/
// queue.cpp: implementation of the queue class.
//
//

#include "queue.h"

//
// Construction/Destruction
//

queue::queue()
{
 first = new node;
 first->next = NULL;
 last = first;

}

queue::~queue()
{
 delete first;
}

bool queue::isEmpty() {
 return (first->next == NULL);
}

void queue::add(int x) {
 node *aux = new node;
 aux->info = x;
 aux->next = NULL;
 last->next = aux;

 last = aux;
}

int queue::get() {
 node *aux = first->next;
 int value = aux->info;
 first->next = aux->next;
 if (last == aux) last = first;
 delete aux;
 return value;
}

3) Main Test File

/*
The code can be used by researchers with due acknowledgment to the authors
Qi Duan, Mohit Virendra, Shambhu Upadhyaya and Ameya Sanzgiri,
Univeristy at Buffalo, NY
*/
#include "graph.h"
#include <iostream>

void Traversal()
{
 graph g(5);
 g.addEdge(1, 2); g.addEdge(1, 3); g.addEdge(2, 4);
 g.addEdge(3, 5); g.addEdge(4, 5);
 g.BFS(3);
}

void Maze()
{
 graph f(15);
 f.addEdge(1, 2); f.addEdge(1, 3); f.addEdge(2, 4);
 f.addEdge(3, 14); f.addEdge(4, 5); f.addEdge(4, 6);
 f.addEdge(5, 7); f.addEdge(6, 13); f.addEdge(7, 8);
 f.addEdge(7, 9); f.addEdge(8, 11); f.addEdge(9, 10);
 f.addEdge(10, 12); f.addEdge(10, 15); f.addEdge(11, 12);
 f.addEdge(13, 14); f.addEdge(14, 15);
 f.minPath(1, 10);
}

void mPath()
{
 graph f(6);
 f.addEdge(0,1,2);
 f.addEdge(0,2,1);
 f.addEdge(2,3,1);
 f.addEdge(1,4,3); f.addEdge(1,5,5);
 if (f.BFS(0))
 printf("the graph is connected!\n");
 else
 printf("the graph is not connected!\n");
 f.Dijkstra(0);

 for (int i = 0 ; i< 12 ; i++) {
 int **mDist = f.getMinDist();
 printf(" %d ", mDist[0][i]);
 }
 printf ("\n");
}

void conTest1()
{
 int i,j;

 graph f(6);

 f.addEdge(0,1,2);f.addEdge(1,2,1);f.addEdge(1,3,1);f.addEdge(2,4,1);

 f.addEdge(3,4,1);f.addEdge(4,5,2); f.selectNode(0);f.selectNode(5);
 f.selectNode(2);f.selectNode(3);

}

void conTest2()
{
 int i,j;

 graph f(6);

 f.addEdge(0,2,1);f.addEdge(0,3,1);f.addEdge(0,4,1);f.addEdge(4,5,1);
 f.addEdge(1,2,1);f.addEdge(1,3,1);f.addEdge(1,4,1);f.addEdge(1,5,1);
 f.addEdge(0,1,2);
 f.selectNode(0);
 f.selectNode(2);f.selectNode(3);f.selectNode(4);f.selectNode(5);

}

void rPos()
{

}

int main(void) {
 int cost,cost1,cost2,i,j;

 float aveCost,aveCost1, aveCost2;
 //conTest2();
 //rPos();
 int round = 20;

 //graph f(120, 15);
 //while (!f.randomPosition(180));
 for (i = 100; i < 200; i+= 20) {

 //printf(" \n ");
 cost1 = 0;
 cost2 = 0;
 cost = 0;
 for (j = 0; j < round; j++) {
 graph f(100, 20);
 while (!f.randomPosition(i));

 f.genIncident(20);

 cost1 += f.greedy();
 cost2 += f.perNodeGreedy();
 cost += f.greedy_singlePath();

 }
 aveCost = (float)cost / (float) round;
 aveCost1 = (float)cost1 / (float) round;
 aveCost2 = (float)cost2 / (float) round;
 printf(" %f %f %f \n",aveCost,aveCost1,aveCost2);
 //printf(" %f %f \n",aveCost1,aveCost2);
 }
 return 0;

}

