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Abstract—SPICE is the de facto standard for circuit simulation. However, accurate SPICE simulations of today’s sub-micron circuits
can often take days or weeks on conventional processors. A SPICE simulation is an iterative process that consists of two phases
per iteration: model evaluation followed by a matrix solution. The model evaluation phase has been found to be easily parallelizable,
unlike the subsequent phase, which involves the solution of highly sparse and asymmetric matrices. In this paper, we present an FPGA
implementation of a sparse matrix solver, geared towards matrices that arise in SPICE circuit simulations. Our approach combines static
pivoting with symbolic analysis to compute an accurate task flow-graph which efficiently exploits parallelism at multiple granularities and
sustains high floating-point data rates. We also present a quantitative comparison between the performance of our hardware prototype
and state-of-the-art software packages running on a general-purpose PC. We report average speed-ups of 9.65x, 11.83x, and 17.21 x
against UMFPACK, KLU, and Kundert Sparse matrix packages, respectively.

Index Terms—Hardware acceleration, sparse matrices, SPICE, FPGA arithmetic, pipeline and parallel arithmetic and logic structures.

1 INTRODUCTION

SPICE is the de facto standard for circuit simulation.
With decreasing feature sizes, the need for detailed
simulations of circuits has grown in recent years. Despite
the increasing performance of standard processors, there
is a “verification gap” between the needs of designers
and the power of simulators. Essentially, this gap has
arisen because SPICE is extremely difficult to parallelize.
There are two main phases within each iteration in a
SPICE simulation: device evaluation and matrix solution.
Device evaluation is trivially parallel; matrix solution
is not, and, moreover, there are barriers between the
two phases. The work described here is concerned with
accelerating the matrix solution phase, by using FPGA
technology.

Non-linear circuit analysis in the time domain typi-
cally requires several thousand repeated solutions of the
matrix at different iterations and time-steps. Moreover,
the Newton-Raphson method typically needs three to
four iterations to produce the solution of each system
of non-linear equations [1]. Thus, the efficient solution
of the linear equations plays a critical role in the total
computation time.

Extensive research has been conducted on accelerat-
ing sparse LU decomposition on general-purpose PCs
and HPCs [2, 3, 4, 5, 6]. With the advent of the FPGA su-
percomputing paradigm, a number of researchers have
investigated FPGA acceleration for LU decomposition.
Most of these implementations [7, 8, 9, 10] are generally
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tailored towards a specific scientific problem, where
the matrix to be solved is structurally symmetric and
diagonally dominant. Such matrices are relatively easy to
solve and parallelize, compared to asymmetric ones. In
[9], Johnson et al presented a right-looking (i.e. sub-matrix
based) LU sparse matrix decomposition on FPGAs for
the symmetric Jacobian matrices that arise in power
flow computations. Fine-grained parallelism is achieved
by the use of a special cache designed to improve the
utilization of multiple floating-point units. For matrix
package UMFPACK, the authors report an order of
magnitude speed-up for LU decomposition compared to
a 3.2 GHz Pentium 4. Accelerating the front and back
substitutions was not considered in their work.

In [7, 8, 10], Wang et al presented a parallel sparse
LU decomposition that has been implemented using
an FPGA-based shared-memory multiprocessor architec-
ture, known as MPoPC. Each processing element (PE)
consists of an Altera Nios processor attached to a single-
precision floating-point unit. Coarse-grained paralleliza-
tion is achieved using node tearing to partition sparse
matrices into small diagonal sub-problems that can be
solved in parallel. They report a considerable speed-
up for power flow analysis compared to a single Nios
implementation. Their results, however, were not com-
pared to existing FPGA or software implementations.
Moreover, their comparison was not made with modern
and highly-optimized LU matrix kernels such as KLU
and UMFPAK.

In [11], Kapre et al proposed an FPGA accelerator
geared towards parallelizing the sparse matrix solution
phase of the Spice3f5 open-source simulator. Using a 250
MHz Xilinx Virtex-5 FPGA, the authors reported speed-
ups of 1.2-64 times over a KLU direct solver running on
an Intel Core i7 965 processor. The KLU direct solver
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reorganizes matrices into sub-blocks, using the Block
Triangular Form (BTF) technique, and then factorizes
them using the Gilbert-Peierls Algorithm. KLU has been
written specifically to target SPICE circuit matrices that
arise in the Newton-Raphson iteration. The acceleration,
reported by Kapre et al, is achieved by leveraging the
standalone symbolic analysis capabilities of the KLU
solver to generate a data flow graph of the required fine-
grained floating-point operations. The data flow graph
is then mapped to a network of PEs interconnected by
a packet-switched Bidirectional Mesh routing network.
The proposed architecture, however, focuses mainly on
exploiting the fine-grained data flow parallelism avail-
able in KLU, potentially overlooking the coarser-grained
parallelism inherently present in sparse matrices.

More recently, Wu et al [12] presented a 16-PE FPGA
implementation of the Gilbert-Peierls Algorithm, on an
Altera Stratix III EP3SL340. Fine-grained parallelism
is harnessed by sharing the computation burden to
compute a given column over a number of PEs. No
other levels of parallelism were explicitly considered.
The reported speed-ups varied in the range 0.5-5.36x
when compared to KLU runtimes on an Intel i7 930
microprocessor. However, the benchmark matrices used
are relatively small in terms of their size, and also have a
small number of non-zeros. The latter is the main factor
that dictates the number of FLOPs needed to factorize
a given matrix. Moreover results were not compared to
previous FPGA implementations.

Both approaches detailed in [11, 12] employ a par-
allel implementation of the Gilbert-Peierls matrix fac-
torization algorithm. They specifically apply the sym-
bolic analysis stage of the algorithm to compute which
additional matrix elements will become non-zero after
the actual factorization. Using the predicated non-zero
structure, a dataflow graph is generated. The approach
detailed in [11] parallelizes the resulting dataflow opera-
tions by mapping them to a network of spatial floating-
point operators. On the other hand, the approach fol-
lowed in [12] maps the ensuing dataflow graph to a
multi-PE shared-memory system. It is clear that both ap-
proaches primarily focus on extracting the fine-grained
dataflow parallelism, whereas the approach we propose
in this paper favors harnessing the medium-grained col-
umn parallelism without overlooking the finer-grained
data operation parallelism. In effect, our approach relies
on constructing a column dependency graph, which
we use to parallelize column operations, rather than
dataflow operations. Nevertheless, our approach also
maximizes the fine-grained parallelism potential as it
implicitly translates column operations into dataflow
graphs, which we use to control the deep pipelines of
our processing elements.

The structure of this paper is as follows: Section 2
describes previous work that has been done to factorize
sparse matrices into LU form on parallel hardware, in
particular the Gilbert-Peierls algorithm. In section 3,
we show how this algorithm can be expressed as a

scheduling algorithm. We describe how we implemented
this approach on an FPGA in section 4. In section 5, we
describe our experimental setup, and give our results in
section 6. We conclude in section 7.

2 PARALLELIZING SPARSE LU FACTORIZA-
TION

One of the most important aspects of designing any
parallel algorithm is identifying the appropriate level of
granularity, which can be then adequately mapped to the
targeted processing architecture [13]. For instance, fine-
grain parallelism (i.e. at the level of individual floating
point operations) is available in either dense or sparse
linear systems. It can be exploited effectively by using
a stream-like processing architecture, such as a vector
processor or a systolic array. Medium-grain parallelism
arises from the fact that many column operations can be
computed concurrently across a number of processing
elements. An elimination tree-like graph can be used to
characterize this type of parallelism, such that columns
at the same graph level can be evaluated in parallel. This
level of granularity is an extremely important source of
parallelism for sparse matrix factorization, as sparsity
increases the number of columns that can be operated on
in parallel. This may, however, cause a load imbalance in
the case where an entire column operation only requires
a few floating point operations.

Large-grain parallelism for sparse matrices can be
also identified by means of a tree-like elimination graph.
Therefore, if T; and T are disjoint sections of the elim-
ination graph, then all of the columns corresponding to
nodes in T; can be computed completely independently
of the columns corresponding to nodes in 7}, and vice
versa. Thus, these computations can be done concur-
rently on separate processing elements with no commu-
nication between them. Roughly speaking, sparsity and
parallelism are largely compatible, since the large-grain
parallelism is due to sparsity in the first place. As such,
an ordering that increases sparsity can also increase the
potential parallelism.

Many parallel sparse system solvers employ a tech-
nique called the “the multifrontal scheme” [14] to par-
allelize computations by rewriting the original prob-
lem into a collection of “frontal matrices” . In effect,
multifrontal solvers [15, 16] rely on a Directed Acyclic
Graph (DAG) to extract and organize the parallel work.
Each node (i.e. frontal matrix) of the DAG represents
a given computation. All leaf nodes of the DAG (i.e
nodes without an offspring) can be evaluated in parallel,
while internal nodes can only be computed once their
children have been computed. This method involves
relatively significant amounts of data exchange between
the tree nodes, requiring a considerable communication
bandwidth. Therefore, multifrontal solvers work best in
shared memory environments.

Another approach to parallel sparse solvers revolves
around evaluating many pivots in parallel [17, 18]. These
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solvers typically concentrate on the medium and fine
grain parallelism, and tend to be most efficient on a
moderate number of processors with fairly tight synchro-
nization [19]. An important part of any sparse solver is
the algorithm controlling the number of fill-ins that are
generated during the solution process. Another aspect of
pivot selection is the maintenance of stability. Typically,
this is done by choosing a pivot element that is within
a specified multiple of the largest element in the pivot
row or pivot column or the active part of the matrix,
depending on the efficiency of these tests and given the
assumed data structures.

The stability and sparsity requirements for pivot se-
lection are often contradictory and most strategies in-
volve compromise. Selecting pivots for parallelism adds
a third constraint. For the medium and fine grained
algorithms mentioned above, these three constraints can
be considered in a reasonably straightforward way, po-
tentially with respect to the entire active portion of the
matrix. The exploitation of larger grained parallelism,
however, often imposes a static decomposition on the
structure of the matrix which further constrains pivot
selection. The effect of these constraints, for asymmet-
ric problems, can be seen by considering tearing tech-
niques or nested bisection. These techniques have been
proposed to expose large-grain structures, suitable for
parallel execution, by reordering the matrix into a form
such as the Bordered Diagonal Block (BDB) form [20].

2.1

The aim of a sparse LU algorithm is to solve the linear
system Az = b in time and space proportional to O(n) +
O(nnz), for a matrix A of order n with nnz nonzeros
[21]. In practice, this is much harder to achieve as the
underlying non-zero structure of the matrix may change
dramatically in the course of factorization. To tackle
this issue, Gilbert and Peierls [22] proposed a left-looking
sparse LU algorithm that achieves an LU decomposition
with partial pivoting, in a time proportional to the
number of floating-point operations, i.e. O(flops(LU)).
It is called a left-looking algorithm because it computes
the k' column of L and U only by using the already
computed columns 1 to (k — 1).

Gilbert-Peierls’ Algorithm

Algorithm 1 Gilbert-Peierls LU factorization of a n-by-n
asymmetric matrix A
1. L=1
2: for k=1ton do
: b=(A:k)

3
4:  solve the lower triangular system Lz =b
5. do partial pivoting on x

6: UQ:kk)=xz(l:k)

7. L(k:n,k)=x(k:n)/U(k,k)

8: end for

The core of the Gilbert-Peierls factorization algorithm
is solving a lower triangular system Lz = b, where L is a

sparse lower triangular matrix, « and b are sparse vectors
[23]. It consists of a symbolic step to determine the non-
zero pattern of x and a numerical step to compute the
values of z. This lower triangular solution is repeated
n times during the entire factorization (where n is the
size of the matrix) and each solution step computes
a column of the L and U matrices. The entire left-
looking algorithm is described in Algorithm 1. The lower
triangular solution (i.e. line 4) is the most expensive
portion of the Gilbert-Peierls algorithm and includes a
symbolic and a numeric factorization step.

2.1.1  Symbolic Analysis

The Gilbert-Peierls Algorithm revolves around the effi-
cient solution of Liyx = b to compute the k" column,
where Lj is a unit diagonal representing the already
computed (k—1) columns, and where the column vector
b is sparse. We create a list X' of j indices for which
we know z; will a be non-zero, X = {j | z; # 0}, in
ascending order. This gives a computation time of O(f)
for Algorithm 2, where f is the number of floating-point
operations required to solve the underlying triangular
system.

Algorithm 2 Sparse forward substitution

1. x=5b

2: for each j € X do

3:  for each i > j for which I;; # 0 do
4: T =X; — lijxj

5 end for

6: end for

Symbolic analysis is the process whereby the set X is
defined. From the pseudo code in Algorithm 2, it can be
seen that entries in 2 can become non-zero in only two
places, namely, lines 1 and 4. If numerical cancellation
is ignored, these two statements can be written as two
logical implications, Equations (1) and (2), respectively.

linel:[b; 20 = x; # 0] 1)
lined:[z; Z0ANTi(l;; #0) = x; #0] (2

These two implications can be expressed as a graph
traversal problem. Let G, be the directed graph of
Lj such that Gy, = (V,E) with nodes V = {1...n}
and edges E = {(j,i) | l;; # 0}. Thus, Equation (1) is
equivalent to marking all the nodes of G, that are non-
zeros in the vector b, whereas Equation (2) implies that
if a node j is marked and it has an edge to a node i,
then the latter must be also marked. Figure 1 graphically
highlights these two relationships.

Therefore, if we have a set B = {i | b; # 0} that
denotes the non-zeros of b, the non-zero pattern X' can be
computed by determining the vertices that are reachable
from the vertices of the set B i.e. X = Reachg, (B).
The reachability problem can be solved using a classical
depth-first search in G, from the vertices of the set
B. The depth-first search takes a time proportional to
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Fig. 1: Nonzero pattern for a sparse triangular solve

the number of vertices examined plus the number of
edges traversed. The depth-first search does not sort the
set X, however, it computes its topological order. This
topological ordering is useful to maintain the precedence
relationship in the elimination process of the numerical
factorization step. The computation of X and z both
take times proportional to their floating-point operation
counts [24].

2.1.2 Numerical factorization

Normally, this step consists of numerically performing
the sparse triangular solution for each column % of L and
U in the increasing order of the row index. The non-zero
pattern computed by the symbolic analysis is, however,
in a topological order. Sorting the indices would increase
the time needed for the solutions. Nevertheless, the topo-
logical order is sufficient as it gives the order in which
elements of the current column are dependent on each
other. For instance, the depth first search would have
finished traversing vertex i before it finishes traversing
vertices j. Therefore, in the topological order j would
appear before i.

2.1.3 Symmetric Pruning

Symmetric pruning is a technique whereby structural
symmetry in matrices is exploited to reduce the time
taken by the symbolic analysis [25]. The basic idea of
the technique revolves around decreasing the time taken
by the depth-first search by pruning unnecessary edges
in the graph of a matrix (i.e. G). In effect, G can be
replaced by a reduced graph, H, that has fewer edges
but preserves the path structure. In fact, any graph H
can be used in lieu of G if it preserves the paths between
vertices of the original graph. In other words, if an edge
i — j exists in G, it should also exist in H. In our work
we use symmetric pruning to speed up the depth-first
search in the symbolic factorization stage of the Gilbert-
Peierls Algorithm.

3 DEPENDENCY-AWARE MATRIX OPERA-
TIONS SCHEDULING
In this section, we explain one of the main contributions

of this paper, which revolves around the construction

of a deterministic and accurate task model for parallel

LU factorization. The scheduling algorithm leverages

the graph representation of a matrix, computed using

symbolic factorization, to create an operation schedule
that takes into account column-level dependencies. The
generated static schedule can then be used to parallelize
and control the dataflow of LU matrix operations on the

FPGA. The main steps of the algorithm are as follows:

1. Pre-order matrix A to minimize fill-in (e.g. Approxi-
mate Minimum Degree (AMD)) and to ensure a zero-
free diagonal (e.g. maximum traversal).

2. Perform symbolic factorization and determine the
structure of the lower triangular matrix L and upper
triangular matrix U.

3. Determine column dependencies using the structure
of upper triangular matrix U.

4. Build a Directed Acyclic Graph (DAG) that repre-
sents the computed column-level dependencies.

5. Annotate nodes of the Column-Dependency DAG
(CD-DAG) with their corresponding level of paral-
lelism.

6. Derive the ASAP (As Soon As Possible) schedule for
the required column operations.

7. Refine the ASAP schedule using modulo i scheduling,
where i is the maximum number of columns that can
reside at any level of the CD-DAG.

1 [ ]
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o 3 ®
4 [ ] [ ]
[ ] ® 5 [ ]
®|6
[ ] (] |7
8
[ ] 9
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Fig. 2: Matrix A with an asymmetric nonzero pattern

To illustrate how our algorithm works, consider the
matrix A shown in Figure 2. For the sake of simplicity,
it is assumed that the matrix has a zero-free diagonal
and it has been already pre-ordered with some fill-in
minimizing heuristic. First of all, we need to carry out
the Gilbert-Peierls factorization symbolically, using the
principles given in Section 2.1.

For instance, to compute the nonzero pattern of col-
umn 2, we need to construct the graph of the lower
components of columns to its left (ie. Column 1 in
Figure 3). The columns required at any step of the fac-
torization process are represented by the shaded portion
of the matrix in all subsequent figures of this section.
The resulting graph is shown on the right-hand side of
Figure 3. In column 2, there are two nonzeros at indices
{2, 5}. Therefore, Reach(2) = {2}, Reach(5) = {5} and
hence Reach(2,5) = {2,5}. We can see that the reach-
ability function has returned the input set itself. This
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Fig. 3: Symbolic Gilbert-Peierls factorization example: step 1.

implies that column 2 structure remains unchanged and
it will not suffer from any fill-in during the numerical
factorization process. The structures of columns 3, 4, 5
also remain unchanged.

Starting from column 6, however, we start to see the
impact of fill-ins on the nonzero structure of the matrix.
As in the previous steps, we first need to construct the
graph of the lower components of columns to the left
of column 6. We then perform a depth-search (i.e. the
reachability test) using the nonzero structure of column
6. As can be seen in Figure 4, column 6 has four nonzero
elements at indices {3, 4, 6, 7}. The new nonzero pattern
of column 6, including fill-ins, is given by Equations 3-5:

Reach(3,4,6,7) = Reach(3) U Reach(4)

U Reach(6) U Reach(7) ©)]
={3,7}U{4,5,6,9} U{6}U{7} (4
= {3,7,4,5,6,9} (5)
Fillin(Colg) = Reach(3,4,6,7) — {3,4,6,7} (6)
— (3,7,4,5,6,9) — {3,4,6,7} @)
= {5,9} ®)

From Equations 6-8, on the other hand, we can see that
we can also expect the appearance of two fill-in elements
at indices {5,9} in the new nonzero structure of the
column 6. Fillin(Coly) is a function that returns the row
indices of the new fill-ins in column k. Figure 5 shows
the remaining steps of the symbolic factorization.

Now that we have computed the non-zero pattern of
resulting LU factors, we need to determine the column
dependencies that may arise during the numerical factor-
ization process. In the Gilbert-Peierls algorithm, the flow
of computation follows two steps, which are repeated
sequentially until the entire matrix is processed. The
first step is “the sparse triangular solution”, in which the
elements of the current column are factorized by solving
Lix = b for x, where L, represents the triangular matrix
of leftmost columns factorized so far, b is the current
column to be decomposed, and z is the decomposed
column. In the next step, the computed column is nor-
malized by dividing all its lower off-diagonal elements
by the pivot. As the column normalization operation is
self-contained (i.e. does not require any other column),
it is clear that any column dependencies in the overall
Gilbert-Peierls algorithm only arise from the underlying

dependencies in the “the sparse triangular solution” step.
However, when computing a column % using the sparse
triangular solution algorithm, not all the columns to its
left are needed, as it was illustrated in Section 2.1.1. In
effect, the factorization of column % only depends on the
columns that satisfy the following criterion:

Dependency(Coly) = {jlajs 0,5 <k} (9)

Definition 1: We define a Directed Acyclic Graph
(DAG) such that if column k depends on column i, then
a directed edge exist from node i to node k (ie. i — k)
where i < k.

Definition 2: We define the following type of nodes.
A “leaf node” is a node that has no incoming edges. In
contract, a “parent node” is a node that has incoming
edges. If a parent node has no outgoing edges, it is then
called a “a root node”. An “orphan node” is a node that
has no incoming or outgoing edges.

Definition 3: We define the level of each node as the
length of the longest critical path from any “leaf node” to
the node itself. In our implementation of the scheduling
algorithm, we use Liao and Wong’s algorithm [26] to find
the longest path.

A parent node cannot be eliminated unless all its
children have been processed. Two columns are said to
be independent if they belong to two different subgraph-
s/trees. Moreover, all nodes at the same level can be
evaluated in parallel.

Level 4

Level 3

Fig. 6: Unconstrained Schedule Graph for Matrix A.

Figure 6 illustrates the column dependencies that
will arise during the LU factorization of our example
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Fig. 5: Symbolic Gilbert-Peierls factorization example: step 6 - step 9.

matrix, A. The graph was computed using the predicted
non-zero structure of matrix U only. All the nodes at
same level can be computed independently. For instance,
columns 1, 2, 3, 4, 5, 7 can be evaluated in parallel, how-
ever, column 9 cannot be processed until columns 4, 5, 6
are computed. Column 10 is represented by an orphan
node, which implies that it can be placed at any given
level. Generally speaking, the sparser the matrix, the
fewer dependencies (i.e. fewer non-zeros) there are, and
hence the node count per level also increases. Thus, pre-
ordering a matrix for sparsity can dramatically increase
the parallelism potential. Figure 7 visually illustrates

that that pre-ordering a given matrix using the AMD
heuristic produces much sparser LU factors, that is, 70%
sparser for the matrix depicted. This also has the effect
of reducing the overall number of FLOPs required to
perform the sparse LU factorization.

Although our scheduling algorithm efficiently de-
rives a list of columns that can be evaluated in parallel
within a given time-slot, it assumes that the same time
is taken to compute each column. In reality, however,
columns have different non-zero structures and thus the
number of floating-point operations per column will
also differ, ultimately impacting the column computation
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Fig. 7: Impact of the AMD ordering on Sparse LU Factorization

time. Nonetheless, pre-ordering matrices for sparsity not
only reduces the overall FLOP count but also distributes
the computational effort more evenly across the columns
of a given matrix. Figure 8 illustrates the impact of
matrix ordering on the column FLOP count associated
with the Gilbert-Peierls factorization. (The properties of
the test matrices used are listed in Table 2, Section 6.) The
number of FLOPs associated with a given column index
was acquired by profiling a purpose-written MATLAB
script that performs left-looking LU decomposition with
no pivoting. All the input matrices were initially per-
muted using maximum traversal to ensure a zero-free
diagonal, and then ordered using the AMD algorithm.
The script also accounts for numerical cancellations that
may occur during the factorization process. These can-
cellations, even though very rare, lead to the appear-
ance of zeros on the diagonal and ultimately halt the
factorization algorithm during the normalization phase.
We can see that AMD-ordered matrices produce much
sparser LU factors, and also generate a more balanced
workload across the columns. In effect, from Figure 8(a)
and Figure 8(b), we can clearly see that the bulk of the
FLOPs were concentrated around the left-hand side of
the graph. Once the AMD ordering was applied, we
see that the FLOP count is more evenly shared across
the column indices. Furthermore, a lower FLOP count
per column reduces the amount of resources required
to compute a given column in parallel. For instance, in
Figure 8(a), the highest column FLOP count recorded has
dropped from almost 250,000 FLOPs to under 300 FLOPs
after the AMD ordering. This is particularly attractive in
a distributed computing architecture, where the columns
are spread over many processing elements.

Assuming it takes roughly the same time to compute
all the columns, the schedule is equivalent to the uncon-
strained As Soon As Possible (ASAP) schedule for the

Level 4

Level 2

Level 1

Fig. 9: Schedule Graph for Matrix A with modulo 3.

LU column operations [27]. The ASAP schedule unreal-
istically assumes that there will always be enough com-
putational resources to concurrently process all columns
within the same level. Therefore, in our algorithm, we
introduce a resource-constrained scheduling algorithm
we refer to as “modulo i scheduling”, where i refers to
maximum number of nodes within any given level. For
instance, a modulo 3 schedule assumes that there are only
3 computational units, each capable of independently
processing a column, and thus it limits the number of
nodes per level to a maximum of 3. Figure 9 defines
“the modulo 3 schedule” derived from the unconstrained
graph depicted in Figure 6. “Modulo i scheduling” is
particularly attractive if it is mapped to a pipelined
FPGA architecture, where area is traded for latency.

4 PARALLEL SPARSE LU FPGA ARCHITEC-
TURE

In Section 3, we demonstrated that that the seemingly
sequential flow of the Gilbert-Peierls LU factorization
algorithm can be effectively parallelized by explicitly ex-
posing column-level concurrency, by means of a schedul-
ing graph. This graph only depends on the nonzero
structure of the circuit matrix. The nonzero pattern of a
circuit matrix reflects the couplings and the connections
that exist in the underlying circuit, which do not change
during the course of a SPICE simulation. This means that
the matrix to be solved retains the same nonzero pattern
over the SPICE transient iterations, and it only has
changes in numerical values. Hence, the symbolic anal-
ysis cost is justifiable and is amortized over a number
of iterations. Therefore, the column-level dependency
graph can be cheaply computed offline (see Section 6.1)
before the actual numerical factorization takes place on
the FPGA accelerator.

The column-level dependency graph can be then
loaded onto the FPGA and used to dictate a parallel ex-
ecution flow of LU column operations. However, it may
not be possible to fit the entire graph for a large matrix
onto the FPGA, in which case, the column-dependency
information can be also used to pre-compute a column
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Fig. 8: The Effect of Matrix Ordering on

loading order. The latter can be then used to dynamically
load columns to the FPGA such that computations and
memory loads are overlapped, effectively hiding the
latency associated with the external memory interface.
To illustrate this concept, consider the scheduling graph
shown in Figure 9 as an example. Here, columns 1, 2,
3,4, 5,7 can be loaded to the FPGA first. In the second
stage, columns 6, 10 can be loaded in lieu of column 2,
3, 5 while columns 1, 4, 7 are being normalized. In the
last stage, columns 8, 9 are loaded to replace columns
1, 7 while columns 6, 10 are being normalized. For the
examples presented below, however, the built-in RAM
was large enough and we did not implement dynamic
loading.

4.1 Resolving Dataflow Dependencies

So far, we have established that the Gilbert-Peierls se-
quential column factorization process can be altered to

the LU Factorization Column FLOP Count.

expose column-level parallelism. Despite this exposed
column-evaluation concurrency, dataflow dependencies
may still exist within column-level updates themselves.
In order to illustrate this, consider Figure 10, in which
we show all the dataflow dependencies and operations
needed to compute the LU factorization of the example
matrix A, depicted in Figure 2, according to its un-
constrained schedule. We note two types of dataflow
dependencies: inter-column and intra-column data de-
pendencies.

The inter-column data dependencies represent the
inherent column-level dependencies that exist in the
Gilbert-Peierls algorithm. This type of dependency can
be naturally resolved by simply following the execu-
tion order determined by the corresponding schedule,
factorizing columns in level 1 first, then columns in
level 2, and so forth. The intra-column dependencies
relate to the order at which the current column ele-
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ment updates, in the sparse triangular solution, should
be calculated. Nevertheless, in Section 2.1.1, we have
established that Gilbert-Peierls’ symbolic analysis of a
particular column effectively computes a topological
order that maintains the precedence relationship in the
numerical factorization step. In effect, this computed
topological order can be used to sustain a dataflow
stream to the pipelined floating-point operations on the
FPGA. Studying the dataflow graph more closely, we
can also see that division operations associated with the
column normalization stage (e.g. columns 1, 2, 3, and 5)
can be performed concurrently, creating another source
of parallelism that can be exploited at the hardware level.

4.2 Design Flow

Our work implements the Gilbert-Peierls LU factoriza-
tion in conjunction with the static pivoting algorithm
introduced by Li and Demmel in [28], which they showed
to be as accurate as partial pivoting algorithms for a
number of problems including circuit simulations. The
main advantage of static pivoting is that it permits a
priori optimization of static data structures and the com-
munication pattern, effectively decoupling the symbolic
and numerical factorization steps. This makes sparse
LU factorization more scalable on a distributed memory
architecture. The overall implemented algorithm can be
summarized as follows:

1 First, we find diagonal matrices D,, D, and a row
permutation P, such that P.D, AD, is more diagonally
dominant to decrease the probability of encountering
small pivots during the LU factorization. To achieve
this, we use the HSL MC64 routine, [29], with option
4. The latter computes a permutation of the matrix so
that the sum of the diagonal entries of the permuted
matrix is maximized.

2 We find a permutation P, such that the resulting
matrix in step (1) incurs less fill-in in the course of
the LU factorization. We can use many heuristics such
as nested dissection or minimum degree on the graph
of A+ AT or AAT. However, we shall use the ap-
proximate minimum degree (AMD) as it produces the
best results for circuit matrices. In order to preserve
the diagonal computed in step (1), any ordering used
should be applied symmetrically.

3 We perform symbolic analysis to identify the non-zero
entries of L and U. We also compute the associated
task-flow graph by performing a symbolic LU decom-
position, i.e. using the predicted non-zero structure.

4 In this step, we perform left-looking LU factorization
on the FPGA and replace any tiny pivots (i.e. |a;| <
Ve | Al ) by v/e.]|All, where ¢ is the machine precision
(e.g. 2724, 2753 for single and double precision IEEE
754 formats, respectively), and || A]| is the matrix norm.
This is acceptable in practical terms as the SPICE linear
system solution is used as part of Newton-Raphson
iteration, and an occasional small error during the
iterative process does not affect the integrity of the

final solution [28]. We calculate the matrix norm at
the symbolic factorization phase, using the SuiteSparse
API [30]. The use of the HSL MC64 routine in step (1)
decreases the likelihood of encountering tiny pivots.
Furthermore, selecting the diagonal as the pivot entry
ensures the fill-reducing ordering from the symbolic
phase is maintained.

Steps 1 to 3 form the “matrix preconditioning phase”,
and they are conducted as part of our scheduling al-
gorithm implementation. The scheduler takes a sparse
matrix as input, applies the AMD ordering, and then
symbolically generates the column-level dependencies
as well as the nonzero pattern of the LU factors. For
step 4, we implement the parallelized version of the
Gilbert-Peierls factorization algorithm on the FPGA, us-
ing a multi-PE distributed architecture. Since we do not
consider dynamic pivoting in our design, all possible fill-
ins as well as column and dataflow dependencies are
determined at the matrix preconditioning phase.

4.3 Top Level Design

Our parallel FPGA architecture features multiple PEs
interconnected by a switch network. Figure 11 shows
the top level diagram of the our sparse LU hardware
implementation. Essentially, our design consists of a
controller connected to n PEs. In each PE, there is a
multiplier, a subtractor, a divider, and a local Block
Random Access Memory (BRAM) with a reconfigurable
datapath.

The maximum number of PEs, and their local mem-
ory size are limited by the available resources of the
FPGA. We use the information gathered from symbolic
analysis to instantiate PEs accordingly. The PEs are
interconnected by high speed switches to minimize the
communication overhead while increasing concurrency.

Data Bus
Memmory

Col_buffer j«>| Col_map <> Controller Controller Control Bus

>
R
JAN JAN JAN JAN
| | [ [
\V4 \V4 \V4 \V4

Time-multiplexed Switched Network
FPGA

Fig. 11: Top Level Design for the LU Decomposition FPGA
Hardware

The controller implements a four stage pipeline. Stage
1 consists in loading the matrix data from the off-chip
DRAM to the PEs on-chip BRAM. The PEs’ local BRAMs
can be also preloaded with matrix data at the FPGA
programming phase such that the matrix data is in-
cluded in the “bitstream”. Stage 2 performs a triangular
sparse solve on the current column of A to compute
the current columns of L and U. Stage 3 normalizes the
component of L with the diagonal entry. Stages 2 and 3
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Fig. 10: Dataflow of a Gilbert-Peierls LU factorization. Columns 7 and 10 do not appear because they do not need to be processed.

are executed iteratively until all columns are evaluated.
At any given time, PEs collectively perform either the
sparse triangular solve or the column normalization.

In the sparse solve phase, the “Col_map” unit first
performs a burst read across all PEs to form a column-
wise representation of the pivot column and saves it
to the column buffer. Then, elements of the column
buffer are broadcast to the PEs one at a time to perform
the bulk computation of the sparse triangular solution.
In the normalization phase, the controller fetches the
pivot entry from its corresponding PE and broadcasts
it to all PEs to perform all the divisions in parallel.
To fill the deep pipelines of our floating-point units,
the controller uses the column-dependency graph as a
task flow-graph. Data are streamed from the memory,
through the arithmetic units for computation, and stored
back to the memory in each stage.

5 EXPERIMENTAL SETUP

In this section, we explain the experimental setup used
to build and test our LU decomposition FPGA hardware

prototype. To implement a prototype for our design, we
targeted the Xilinx XUPV5-LX110T development board,
which features a Virtex 5 LX110T FPGA. As mentioned
in Section 4.3, the controller of our design utilises the
column-dependency graph of a matrix as a task flow-
graph to stream data from the memory, through the
arithmetic units for computation, and stores the results
back to the memory in each stage. As such, the relative
placement between the memory blocks and the compu-
tational blocks is important and can significantly impact
performance. The Virtex-5 FPGA benefits from the phys-
ical proximity of these blocks as they are arranged close
to each other in special lanes within the fabric (i.e. BRAM
and DSP48 blocks).

Therefore, in our implementation, we used the
floating-point subtract, multiply/divide (DSP48 blocks),
and compare units from the Xilinx Floating-Point li-
brary. The latter is readily available from Xilinx’s Core-
Gen [31]. These units can be customized with regards
to their wordlength, latency, and resource utilization.
We also use Xilinx’s FIFO Generator to implement
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the “Col_buffer”, which works in concert with the
“Col_Map” unit. We used Synplify Pro 9 and Xilinx
ISE 10.1 to implement our prototype on a Xilinx Virtex-
5 LX100T FPGA. We limited our implementations to
fit on a single FPGA and use off-chip DRAM memory
resources for storing the matrix data before it is loaded
onto the on-chip BRAM for processing.

Table 1 gives the resource cost for the different
blocks present in our design. We can only fit a system
of 8 double-precision PEs on a Virtex-5 LX110T with
88% of logic resources being used, whereas 16 single-
precision PEs can be easily accommodated. Although
SPICE uses double-precision arithmetic, we found that
single-precision was sufficient for the examples pre-
sented here.

TABLE 1: Sparse LU Hardware Prototype Resource Utilisation
on a Virtex-5 LX110T

% of 69120 LUTs Latency BRAM DSP48 Clocks (MHz)

Precision SP* Dp** SP | DP || SP | DP || SP | DP || SP DP

Adder 245 734 1 | 14 0 0 2 3 || 410 355

Multiplier 89 309(1%) 8 | 16 0 0 3 | 11 || 493 410

Divider 769 3206(4%) || 28 | 57 0 0 0 0 || 438 410

2 PEs 2822 (7%) 16% - - 10 | 18 6 | 22 || 150 150

4 PEs 6232 (14%) 40% - - 20 | 46 || 12 | 33 || 150 150

8 PEs 14493 (32%) 88% - - 40 - 24 - 150 150
16 PEs (71%) - - - 64 | - 48 | - 150 -

*Single-precision *Double-precision

6 PERFORMANCE ANALYSIS

In order to evaluate the performance of our hardware de-
sign, we tested our parallel architecture with circuit sim-
ulation matrices from the University of Florida Sparse
Matrix Collection (UFMC). The performance measure-
ments are then compared to the state-of-the-art UMF-
PACK, KLU, and Kundert sparse LU decomposition
matrix packages. In our performance evaluation, we
use the CPU time reported by UMFPACK 5.4, Kundert
Sparse 1.3, and KLU 1.2 on a 64-bit Linux system running
on a 6-core Intel Xeon 2.6 GHz processor with 6 GB
RAM, as a benchmark.

o« UMFPACK [32] implements a right-looking mul-
tifrontal algorithm tuned for asymmetric matrices
that makes extensive use of BLAS kernels. In our
tests, we used UMFPACK’s default parameters.

o Kundert Sparse [33], implements a right-looking LU
factorization algorithm that preforms dynamic piv-
oting on the active sub-matrix using the Markowitz
ordering algorithm. It is also the sparse solver used
in Spice3f5, the latest version of the open-source
SPICE simulator.

o KLU [23] is an LU matrix solver written in C that
employs the left-looking Gilbert-Peierls LU factor-
ization algorithm. KLU has been written specifically
to target circuit simulations.

To gauge the time taken by our FPGA-based LU de-
composition architecture, we used Xilinx’s ChipScope
Integrated Logic Analyser (ILA) to count the number of

clock cycles required to perform the LU decomposition.
We used the same the pre-ordering (i.e. AMD) for LU
matrix packages and our Sparse LU Hardware. Table 2
contains the relevant properties of the test matrices used
and the corresponding LU decomposition runtimes re-
ported by UMFPACK, KLU, and Kundert Sparse. Table 2
also shows the execution time of LU FPGA hardware
as reported by ChipScope, and the FPGA acceleration
achieved using 16 single-precision PEs running at 150
MHz. The acceleration is calculated as a ratio of the CPU
time taken by a given LU matrix package over the time
spent by the sparse LU hardware on the same circuit
matrix.

For the test matrices used, we can see that our 16-
PE LU hardware outperforms KLU, UMFPACK, and
Kundert Sparse on average by factors of 9.65, 11.83,
17.21, respectively. Furthermore, we note a correlation
between the matrix sparsity and speedup ratio of our
design. We also remark that the best acceleration results
were achieved when the matrix is very sparse and has
a symmetric or near-symmetric pattern (e.g. Rajatl3,
add32, meg4). In effect, high sparsity implies that fewer
column-level dependencies will exist during the course
of Gilbert-Peierls LU factorization, and thus increases
the parallelism potential, as shown in Section 3. On the
other hand, higher structural symmetry implies a more
balanced elimination graph, which translates into a more
balanced workload which minimizes the idle time of the
different PEs, leading to a busier computational pipeline.

6.1 Cost of the pre-processing stage

As we mentioned earlier, KLU and our FPGA design
rely on information computed in the symbolic stage to
speedup subsequent factorizations. In effect, during the
symbolic stage, KLU performs a one-off partial pivoting
numerical factorization to determine the nonzero struc-
ture of the LU factors. In the subsequent iterations, KLU
reuses the previously-computed nonzero pattern to re-
duce the factorization runtimes. In our work, we use the
pre-processing steps described in Section 3 to perform
symbolic analysis and to compute the scheduling graph.
The latter is used to parallelize the actual numerical
factorization on the FPGA. Therefore, we demonstrate
how the cost of this symbolic stage can be amortized
over a number of SPICE iterations. Table 3 tabulates the
CPU runtimes for the symbolic stage of KLU as well
the time taken by our pre-processing stage. From the
runtime figures, we note that our pre-processing stage
is on average 20% faster than KLU’s symbolic analysis
stage. This reflects the fact that KLU performs a one-
time numerical factorization during this stage, whereas
in our symbolic analysis step we only rely on the graph
representation of the underlying matrix. We can also see
that the time taken by the KLU symbolic stage is on
average 5.1x the KLU factorization runtime on a CPU.
On the other hand, the time taken by our pre-processing
stage is on average 36x the factorization time on the
FPGA, but which is amortized over all iterations.
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TABLE 2: LU decomposition hardware acceleration achieved versus UMFPACK, Kundert Sparse, and KLU

Matrix Matrix properties CPU runtimes for FPGA FPGA speedup® (x) achieved versus
Name Order | NNZ' | Sparsity (%) | Str Sym?> | Num Sym® || UMFPACK (ms) | Kundert Sparse (ms) | KLU (ms) || Latency? (Cycles) | Time® (ms) || UMFPACK | Kundert Sparse | KLU
Rajat11l 135 665 3.600 89.10% 63% 0.003 0.002 0.019 249 0.002 2.05 1.44 11.14
Rajat14 180 1,475 0.040 100% 2% 0.020 0.011 0.029 370 0.002 8.10 4.53 11.75
oscil_dcop_11 430 1,544 0.800 97.60% 69.80% 0.583 0.793 0.329 3,397 0.023 25.74 35.02 14.54
circuit204 1,020 | 5,883 5.600 43.80% 37.30% 0.243 0.909 0.482 9,103 0.061 4.00 14.97 7.94
Rajat04 1,041 8,725 0.800 100% 4% 0.035 0.021 0.033 1,049 0.007 5.00 297 4.72
Rajat19 1,157 3,699 0.298 91% 92% 0.217 0.333 0.202 3,047 0.020 10.68 16.41 9.96
fpga_dcop_50 1,220 | 5,892 0.400 81.80% 33.20% 1.093 1.200 0.685 9,960 0.066 16.47 18.07 10.31
fpga_trans_01 1,220 7,382 0.500 100% 21% 0.030 0.011 0.043 1,100 0.007 4.09 1.46 5.86
fpga_trans_02 1,220 7,382 0.500 100% 21% 0.032 0.010 0.051 1,007 0.007 476 1.56 7.59
fpga_dcop_01 1,813 | 5,892 0.179 65% 1.60% 0.547 1.087 0.511 7,055 0.047 11.62 23.11 10.87
init_adderl 1,813 | 11,156 0.300 65.40% 1.60% 0.567 1.035 0.480 5479 0.037 15.52 28.33 13.13
adder_ dcop_57 || 1,813 | 11,246 0.300 64.80% 0.80% 0.464 1.464 0.363 7,981 0.053 8.71 27.51 6.82
adder_trans_01 1,814 | 14,579 0.440 100% 3% 0.024 0.044 0.039 1,221 0.008 2.95 5.40 4.79
adder_trans_02 1,814 | 14,579 0.440 100% 3% 0.023 0.048 0.041 1,116 0.007 3.09 6.45 5.51
Rajat12 1,879 | 12,818 0.360 100% 45% 0.119 0.121 0.118 2,023 0.013 8.82 8.97 8.77
Rajat02 1,960 | 11,187 0.300 100% 100% 1.034 1.028 0.921 17,866 0.119 8.68 8.63 7.74
add20 2,395 | 13,151 0.230 100% 53% 0.861 1.021 0.460 9,710 0.065 13.30 15.77 7.11
bomhofl 2,624 | 35,823 0.520 100% 21% 4.550 7.181 2.675 68,651 0.458 9.94 15.69 5.84
bomhof2 4,510 | 21,199 0.104 81% 41% 3.944 5.974 1.950 37,081 0.247 15.95 2417 7.89
add32 4,960 | 19,848 0.080 100% 31% 1.740 3.088 1.412 13,320 0.089 19.59 34.77 15.90
meg4 5,860 | 25,258 0.070 100% 100% 0.723 0.923 0.514 3,694 0.025 29.35 37.48 20.85
hamrle2 5952 | 22,162 0.600 0.10% 0% 0.693 2.075 0.551 16,670 0.111 6.23 18.67 4.96
Rajat01 6,833 | 43,520 0.093 99.60% 99% 1.910 1.981 1.181 10,219 0.068 28.04 29.08 17.34
Rajat13 7,598 | 48,762 0.080 100% 30% 1.941 3.150 1.014 15,126 0.101 19.25 31.24 10.05
Rajat03 7,602 | 32,653 0.060 100% 40% 1.096 2.113 0.935 20,405 0.136 8.06 15.53 6.87
Rajat06 10,922 | 46,983 0.040 100% 100% 1.096 1.246 0.972 10,344 0.069 15.89 18.06 14.10
bomhof3 12,127 | 48,137 0.300 77% 30% 5.428 7.764 3.306 60,266 0.402 13.51 19.33 8.23
Average T - 1 -] E - E i - - - | E E [ 18 17.21 [ 965 ]

L Number of nonzero elements.
Numerical Symmetry is the fraction of nonzeros matched by equal values in symmetric locations.
3 Structural Symmetry is the fraction of nonzeros matched by nonzeros in symmetric locations.
4 Number of the FPGA clock cycles taken to compute the LU factorization.
Time taken to complete the LU factorization on an FPGA accelerator running at 150 MHz.
6 Using 16 single-precision PEs running at 150 MHz.

TABLE 3: Cost of the symbolic analysis in KLU and our FPGA
approach

[ KLU I FPGA I

‘ Matrix [| Symbolic stage (ms) [ LU (ms) || Symbolic stage (ms)* | LU (ms)** ||
Rajatl1l 0.081 0.019 0.089 0.002
Rajat14 0.103 0.029 0.124 0.002
oscil_dcop_11 1.542 0.329 1.314 0.023
circuit204 1.562 0.482 1.125 0.061
Rajat04 0.158 0.033 0.147 0.007
Rajat19 1.070 0.202 0.747 0.020
fpga_dcop_50 2425 0.685 2.724 0.066
fpga_trans_01 0.209 0.043 0.170 0.007
fpga_trans_02 0.255 0.051 0.192 0.007
fpga_dcop_01 2.559 0.511 2.150 0.047
init_adderl 2.586 0.480 1.725 0.037
adder_ dcop_57 4.642 0.363 1.376 0.053
adder_trans_01 0.212 0.039 0.150 0.008
adder_trans_02 0.190 0.041 0.161 0.007
Rajat12 0.559 0.118 0.446 0.013
Rajat02 4.275 0.921 4.018 0.119
add20 2.332 0.460 1.937 0.065
bomhof1 16.193 2.675 9.979 0.458
bomhof2 9.685 1.950 7.881 0.247
add32 7.475 1.412 5.945 0.089
meg4 2.515 0.514 0.860 0.025
hamrle2 2.983 0.551 2419 0.111
Rajat01 5.493 1.181 4.611 0.068
Rajat13 5.098 1.014 3.918 0.101
Rajat03 4.222 0.935 3.782 0.136
Rajat06 5.745 0.972 4.027 0.069
bomhof3 24.180 3.306 12914 0.402

* Time taken to complete the LU factorization on an FPGA accelerator running at 150 MHz.
** Using 16 single-precision PEs running at 150 MHz.

6.2 Scalability

In order to study the scalability trends of our design, we
gauge the performance of our design with 2, 4, 8, and 16
PEs configurations. We use the KLU runtimes, reported
in Table 2, as a benchmark to calculate the speedups

achieved per design configuration. The FPGA LU factor-
ization runtimes per PE count and their corresponding
speedups are illustrated in Figure 12. In most cases, we
can see that the acceleration grows almost linearly with
the number of PEs, with an average 60% acceleration
boost as we double the PE count. The exception to
this observation are the following matrices: init_adder1,
add20, and Rajatl3. In effect, the maximum achievable
speedup for any matrix depends on the number of
columns that can be processed at once. This is deter-
mined by the number of nodes that can reside at a given
level of the ASAP schedule as well as the number of PEs
at our disposal. For instance, if a given matrix A has
100 ASAP schedule levels and 90 of those have 8 nodes,
using 8 processors would deliver an optimal speedup-to-
PE ratio. Increasing the number of PEs beyond 8 could
result into a marginal speedup increase only if at least
one of the remaining 10 levels has a node count higher
than 8. Therefore, if we draw the ASAP schedule for the
three matrices, we will most likely find that the majority
of the their schedule levels are slightly higher than 8.
Hence, the speedup ratios for these matrices do not scale
as well when we increase the number of PEs from 8 to
16.

The acceleration potential of our design can be further
improved by increasing the frequency of the overall
design clock. Table 4 shows the resource utilization of
our design if a Virtex-7 XC7V200T were used. As we
can see, synthesis results indicate that the overall design
frequency has increased from 150 MHz to 250MHz. This
is mainly due to customizing the CoreGen floating-point
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Fig. 12: Sparse LU FPGA acceleration scaling trends in terms of PEs

divider latency to 1 clock cycle as compared to 28 cycles
for the same operator on the Virtex 5. This higher overall
frequency indicates that we can now expect that our
acceleration ratios on the Virtex 7 to increase at same
rate (i.e 1.6x), as illustrated by Equation 11. In other
words, changing the target FPGA from Virtex 5 to Virtex
7 improves the average 16 PEs speedup ratio from 9.65x
to 15.44x (i.e 9.65 x1.6). The overall predicted speedup
that can be achieved by using a 32-PE configuration on
the more modern Virtex 7 is shown in Equation 12.

Speedup®*FFs = (1.6) - Speedup'®FF* (10)
JTequirtext
Speedupyy iy = Speeduplil Ly - T (11)
fre(IvirteIS
requy;
= (1.6) - SpeedupSPEs. . Jreguirteat 12)

freQUirtez5

TABLE 4: Sparse LU Hardware Prototype Resource Utilization
on a Virtex-7 XC7V200T

I [ Usage of 1,954,560 LUTs || Latency | BRAM [ DSP48 [ Clocks (MHz) ||
| Precision || SP* I DP** |sP]DP | sP[DP|SP]DP [ SP ] DP |
Adder 407 794 8] 8 00 o] o [[4a2] 43
Multiplier 103 279 6 |16 ] 0 | 0 || 3] 11 |[463] 403
Divider 1,106 3,412 1] 1 0] o o] o 42| 375
1 PEs 4,931 16,080 -] - 5 |10 ] 3] 11 [[250] 250
16 PEs 17,2121 (8%) | 590576 (30%) || - | - | 64 [ 136 || 48 [ 176 || 250 | 250
32 PEs || 467342 (24%) | 1456950 (74%) || - | - || 142|283 ][ 96 | 352 || 250 | 250

*Single-precision *Double-precision

7 CONCLUSIONS

In this paper, we have demonstrated an FPGA imple-
mentation of Sparse LU factorization, a key computa-
tional kernel of the SPICE matrix solution phase, that
harnesses the parallelism of circuit matrices exposed at

the pre-processing stage using specialized techniques.
Using benchmark matrices from the UFMC repository,
we empirically demonstrated that our 16-PE LU Vir-
tex 5 implementation outperforms modern LU matrix
software packages, running on a 6-core 12-thread Intel
Xeon X5650 microprocessor, by many times. In effect, we
showed that our LU FPGA implementation is on average
9.65x%, 11.83%, 17.21x faster than KLU, UMFPACK, and
Kundert Sparse matrix packages respectively.
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