PUBSUB: An Efficient Publish/Subscribe System *

Tania Banerjee Mishra, Sartaj Sahni
Department of Computer and Information Science and Engineering,
University of Florida, Gainesville, FL 32611
{tmishra, sahni}@cise.ufl.edu

ABSTRACT

PuBsusis a versatile, efficient, and scalable publish/subsciyise s
tem. This paper describes the architecture oB&uB together
with some of its current capabilities. A version ot/BPsuB op-
timized for event processing was benchmarked against the p

lish/subscribe systems BE-Tree and Siena, which also aie op
mized for event processing.UBSUB processes events faster than

Siena and BE-tree. On our tests, the speedup of the fastsative

of PuBsuBrelative to Siena was 98% on an average. The speedup

range relative to BE-Tree was from 1.23 to 1.48 and averadgil 1
on the uniform tests andUBsuB was comparable to BE-tree on
the Zipf tests. The faster times iruBsuB were a result of very
efficient data structures used iwPsUB to store the subscriptions,
and the fast matching algorithms developed to match eversisti-
scriptions.

Keywords

Content based publish/subscribe, Boolean expressiditsert sub-
scription matching

1. INTRODUCTION

A publish/subscribe (pub/sub) system maintains a databise
subscriptions, where each subscription is a Boolean esiores-or
example, each subscription in the pub/sub system of a @ivars
line vendor may describe the conditions under which a custom
may purchase a product. A customer interested in acquirgagra
era may post his/her requirement as a subscription to theovisn
pub/sub system by providing the Boolean expression:

item = “camera” A price < $300 A
manufacturer € {Sony, Nikon, Panasonic} A zoom > 4x

This subscription uses four attributes of a product, nametyn,
price, manufacturer and zoom. An attribute is also referred

*This research was supported, in part, by the US Air Force Re-

search Laboratory, under grant FA8750-11-1-0245.

Permission to make digital or hard copies of all or part o tvork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

to as a dimension. A predicate consists of an attribute, @m-op
ator and attribute value(s). For each permissible valuencéta
tribute, the predicate evaluates to true or false. In the@kaam-
ple,price < $300 is a predicate that is true whenever the attribute

u price has a value below $300 and false otherwise. A subscrip-

tion is the conjunction of predicates. Our example subsiornp

is the conjunction of 4 predicates. An event specifies thaegl
of some attributes. For example the availability of a new3%19
5x zoom camera from “Sony" or a price change in an existing
5x zoom “Sony" camera to $199 may be specified by the event:

item = “camera” Acolor = “red” Nweight = 8oz Apixels =
14M Aprice = $199Amanufacturer = “Sony” Azoom = 5x

The above event matches the example subscription as altl4 pre
cates in the subscription evaluate to true when the atathused in
the subscription are assigned the values specified in the.eliee
example subscription, however, is not matched by the fafigw
events:

item = “camera” N pixels = 14M A price =
$399 A manufacturer = “Sony” A zoom = 5X
item = “camera” Aprice = $129 Amanu facturer = “Sony”

The first of these events fails to match the subscription lmza
the price is too high and the second fails because it doeppoifg
the value of an attribute (zoom) that occurs in the subsoript

When an event occurs, the pub/sub system reports all spbscri
tions in its database that are matched (or satisfied by thet)eve
Customers who posted these matching subscriptions maybihen
notified.

Pub/sub systems are used in diverse applications withd/pee
formance requirements. For example, in some applicatioests
occur at a much higher rate than the posting/removal of siihsc
tions while in other applications the subscription rate roaynuch
higher than the event rate and in yet other applications e t
rates may be comparable. Optimal performance in each oéthes
scenarios may result from deploying a different data stmecfor
the subscriptions or a different tuning of the same stractitany
commercial applications of pub/sub systems have thousainats
tributes and millions of subscriptions. So, scalabilitytémms of
number of attributes and number of subscriptions is clitica

In this paper, we describe the architecture oBBUB, which is a
versatile and scalable pub/sub system that may be tunedvapr
high performance for diverse application environmentsiB fUB
is versatile because its architecture supports a variepyetficate
types (e.g., ranges, regular expressions, string regtaswell as a
heterogeneous collection of data structures for the reptaon of
subscriptions in order to achieve high throughput. Theqrarance

of a version of RBsuB that was tuned for applications in which
events occur far more frequently than subscription po&liigtion
(hence, high-speed event processing coupled with reakosap-

port for subscription posting/deletion is required) is gared with

the performance of the pub/sub systems BE-Tree [1] devdlbge
Sadoghi and Jacobsen and Siena [2, 3], developed by Caazanig
and Wolf. Both of these benchmark systems also are tunethdor t
same application environment. Our extensive experimemg/s
that RuBSUB processes events up to 95% faster than does BE-Tree
and up to 97% faster than Siena.

We have organized the paper as follows. Section 2 descties t
related work in this area. We present thes8uB architecture in
Section 3 and the results of extensive experimental evatuat
Section 4. We conclude in Section 5.

2. RELATED WORK

The problem of rapidly evaluating a large number of predisat
against specified events has been studied extensively iitehe
ture. Yan and Garcia-Molina proposed the use of indexesaedsp
the evaluation of a collection of Boolean expressions analde
oped SIFT [10], which is a system based on indexing. Later var
ous researchers proposed decision trees and index sasifbathis
problem. The proposed approaches can be divided into two mai
categories. The first category is counting based while therge
category is based on partitioning subscriptions into sish€sount-
ing based pub/sub systems build an inverted index struétone
the subscriptions and minimize the number of predicataiet@ins
while partitioning-based systems minimize evaluationsrédayur-
sively eliminating the subscriptions that cannot be saiikfiThe
propagation algorithm proposed by Fabret et al. [8], thechiay
algorithm proposed by Carzaniga et al. [2, 3], and the ie¢klist
construction by Whang et al. [9] all result in pub/sub systdéhat
are counting based. Gryphon, developed by Aguilera et harjd
BE-tree [1] developed by Sadoghi and Jacobsen are examples o
partitioning-based systems. Our pub/sub systeugdB, also is
partitioning based.

BE-tree [1] partitions subscriptions defined on a high dimen
sional space using two phase space cutting technique, gaace
titioning and space clustering, to group the expressionh vé-
spect to the range of values for the various attributes. Exaatal
results reported in [1] indicate that the BE-tree outpenf®istate-
of-the-art pub/sub systems such as SCAN [5], SIFT [10], 8rop
gation [8], Gryphon [7], and-index [9]. BE-Tree, however, is
limited to attributes whose values are discrete and for litie
range in discrete attribute values is pre-specified. SoirB&dis
unable to cope with real-valued attributes, string-valagdbutes,
and discrete-valued attributes with unknown range. Addilly,
BE-tree employs a clustering policy that is ineffective wheany
subscriptions have a range predicate suckvas < a; < high,
whereaq; is an attribute and the clustering criteriprthat is used
lies betweerlow andhigh. In this case, all such subscriptions fall
into the same cluster and event processing is considerkviyed
as shown in our experiments of Section 4.

Siena [2, 3] is a pub/sub system that uses a counting algorith
to find matching subscriptions. It maintains an index ofiladiie
names and types. This index is implemented using ternarglsea
tries. Unlike BE-Tree, Siena is not limited to discrete ‘ealuat-
tributes from a pre-specified finite domain. Further, Sienalile
to work with attributes of typetring and supports operators such
as prefix, suffix, and substring on this datatype. Siena, hexye
does not support incremental updates (i.e., subscriptisting and

Level 3

datatype, its architecture is sufficiently versatile toanmodate
this datatype with the inclusion of additional data struesuas de-
scribed in Section 3.

3. PUBSUB

Section 3.1 describes howBsuBorganizes its database of sub-
scriptions. In Section 3.2 the data structures and algostased in
PuBsuB are presented.

3.1 Database Organization

Figure 1 gives the organization of the subscription databasd
in PuBsuB. This database comprises a collection of levedt-
tribute structuresty, . . ., A, wherem is the number of attributes.
We assume that the allowable attributes have been numbered 1
throughm and that the attributes in a subscription are ordered us-
ing this numbering of attributes. The attribute structdrestores
all subscriptions that include a predicate on attribubeit not on
any attributej < i. We say that the attributeis associated with
the structured;. With our assumptions on attribute ordering within
subscriptions A; contains all subscriptions whose first attribute is
1. In practice, many of thel;s will be empty and only non-empty
attribute structures are stored inBsuB.

Al

th
aw

agujiisys
Dﬁ 7
L, o

ayslii=ysg
uflm zﬁ

Figure 1: Organization of PUBSUB subscription database

ay=
s

l<~— Attribute structures

Level-1

B1

Level-2

Buckets

A level-k, k£ > 0, attribute structured; comprises 0 or more
buckets that contain subscriptions. The distribution dissuip-
tions across these buckets is determined by the attribptedi-
cates in these subscriptions and the data strudiutessed to keep
track of the buckets. The data structupe when given a value;
for attributes, is able to efficiently locate the buckets that contain
all subscriptions (and possibly others) whose predicatativibute
1 is satisfied by;. Different attribute structures may use different
data structure® to keep track of their buckets. Individual buckets
of a level« attribute structure may have higher level (i.e., larger
k) attribute structures associated with them. The attrilagtoci-
ated with a level attribute structure is thith attribute of the sub-
scriptions stored in that structure. For uniformity, letehttribute
structures are associated with a header bucket that is sevapty.

deletion) and so updates must be done in batch mode. Although To provide a better understanding of the organization obthe

the present implementation ofUBsuB does not support the string

scription database, we describe how events are processedl as

Algorithm: search(Event e, Bucket b)

Input:

e: event having attributes; , e, ..., e

b: current bucket, initially the header bucket
Output:

list of matching subscriptions

1 foreache;, 1 <i <y

2 Il Ae, is the attribute structure fer; associated witlh
3 if (Ae, exists)then

4: B = buckets inA., determined byD and

5: e; to possibly have matching subscriptions

6: foreach b € B

7: add matching subscriptions #rto output list
10: searchd, b);

11: endfor

12: endif

13: endfor

Figure2: Search algorithm

how subscriptions are posted and deleted.

Figure 2 gives a high level description of the algorithm toqass
an event. To search for all subscriptions that match an etant
specifies a value for the attributes < e2 < ... < e;, we search
the level-1 attribute structured.,, 1 < ¢ < j. Note that the re-
maining attribute structures contain subscriptions tlagetat least
one attribute (i.e, the first attribute) whose value is netciied by
the event and so these subscriptions are not matched byehée ev
To searchA., for matching subscriptions, we use the associated
data structureD to locate the buckets that may possibly contain
matching subscriptions. The subscriptions stored in theskets
are examined to determine those that match the event. Addliti
ally, level-2 attribute structures associated with thesekbts and
whose associated attribute has a value specified in the éwent
the associated attribute is one of #ys) are recursively searched
for matching subscriptions. Note that only those attribstteic-
tures (regardless of level) whose associated attributadsod the
e;S may be examined when processing an event;Qtstructures
determine which of these are actually examined.

A high level description of the algorithm to post/insert &-su
scription is given in Figure 3. Using the attributes in thé-su
scription, the attributes associated with attribute $tmes, and the
D structures, we follow a path that begins at the level-1lattg
structure for the first attribute in the subscription, goes$hie ap-
propriate level-2 structure for the second attribute, andrs If no
non-empty attribute structure is encountered, then a nesi-leat-
tribute structure with a single bucket is created for thisssuiption.
The attribute associated with this newly created strudtuitee first
attribute of the new subscription. If non-empty attributeistures
are encountered, létbe the lowest level at which this happens and
let Z; be the attribute structure encountered at this level. Terins
into a level% attribute structureZ;, the data structuré for this
structure is used to determine the appropriate butkef Z; for
insertion. If this bucket is full its subscriptions alongtlwvthe new
subscription are splitinto 2 or more buckets in accordaritie tive
data structuré. In case such a split is not possible (this happens
whenD is unable to distinguish among the attributgredicates of
the subscriptions in the bucket), the next attribute in tew sub-
scription is used to create a new attribute structure tltdtdes the
new subscription and all subscriptions in the full bucket thave a
predicate on this attribute. When the new subscriptionmiobave
a next attribute, we use instead a subscription in the fulkbtithat
has a next attribute. When no subscription has a next atrive
expand the full bucket beyond its designed maximum capacity

To delete a subscription, we use a procedure that is thesaver

Algorithm: insert(Subscription s, Attribute sy, Bucket b)
Input:

s: subscription with ordered attributes < s2 < ...
sk current attribute, initiallys;

b: current bucket, initially the header

<85

1: if (b has no associated attribute structatgefor s) then
2 create an attribute structugg for s, associated witth
3 move subscriptions (if any), with attributg in b, to Z;
4: in accordance with data structufe

5 adds in Z; in accordance with data structuf

6: ese

7 UseD and predicate og to find an

8: appropriate bucké in Z; for s.

9: if b’ has spacéhen

10: adds to v’

11: dse

12: splitd’ ands into 2 or more buckets as pér.

13: if such a split is not possittleen

14: if (k < j)then

15: inserté, si41,b');

16: ese

17: if there is a subscriptiosf in b’ with a
18: k + 1st attributea’ then

19: replaces’ by s in ¥’;

20: insert¢’, a’, v');

21: else

22: expand’ to includes

23: endif

24: endif

25: endif

26: endif

27: endif

Figure3: Insert algorithm

of that used to insert a subscription.

3.2 PUBSUB Data Structures
3.2.1 Global Hash Table

A single global hash table is used to keep track of all attebu
structures regardless of their level and which bucket thay be
associated with. The use of a hash table enables fasternimgnc
to a next level bucket than when each bucket stores linksxb ne
level buckets. The hash key for an attribute structtirassociated
with bucketb is the pair(b, 7). EachZ; is kept track of using some
characteristic ofZ; such as the header (if any) of the data structure
D used inZ;.

3.2.2 Bucket

A bucket is used to store subscriptions. The organizatioa of
bucket is application dependent and we describe exempanor
zations for small and large buckets. Small buckets storesfaw
scriptions, while large ones may store over a thousand spbsc
tions. Small buckets are useful in applications where the ah
which subscriptions are posted/deleted is high while |larges are
useful when we are concerned primarily with the time to pssce
an event.

Subscriptions in a small bucket may be stored as an unordered
list. Subscriptions in a large bucket are sorted on the fitsbate
not associated with the attribute structures on the patim fitoe
header to the current bucket. Each group of subscriptiotis tive
same first unused attribute is further sorted based on tlkcptes
of this common attribute. For example, consider a subsoripghat
has a predicaté < a < 10. Then, the predicate range of attribute
a is [0, 10]. Subscriptions in a group are sorted by the stggwint
of the predicate range for the common attribute.

Figure 4 describes the algorithm to find matching subsaonsti

Algorithm: Bucket::match(Event ¢)
Input:

e: event

Output:

matching subscriptions

1: j=0;

2: for i // iterate over the subscription groups, increment i by 2
3: attr = groupli];

4: groupEndIindex = group[i+1];

5: if (attr exists ine) then

6: endindex = binarySearch(attr, j, groupEndindex);
7: for j up to endindex, incremented by 1

8: match jth subscription in bucket with event

9: if (matchedthen

10: append jth subscription to output list

11: endif

12: endfor

13: ese

14: j = groupEndindex + 1;

15: endif

16: endfor

Figure4: Search algorithm for alarge bucket

in a large bucket. In this algorithm, we check if the common at
tribute, which is the first unused attribute for a group ofsulp-
tions in a bucket, is present in the event (line 5). If the canm
attribute is not present in the event, then the whole grougubf
scriptions is skipped (line 14). If the common attribute iegent,

we match subscriptions from the beginning of the group up to a
certain subscription given by endindex (lines 6-7) in theugr,
thereby skipping the rest of the subscriptions (from enekrd up

to groupEndindex) in that group.

The processed subscriptions have the start points of @tedic
ranges to the left of the event value, whereas those thakinees!
have their start points to the right, which completely eliates the
possibility that the event value will be included in the poade
ranges of the skipped subscriptions. Figure 5 shows a grbép o
predicate ranges and an event value corresponding to thexgom
attribute. The three subscriptions with predicate rangasked
as 1, 2, 3 are matched with the event, whereas those withsange
marked as 4 and 5 are skipped, since the start point of ranged 4
5 are to the right of the event value.

In the following, we use the teriucket size to mean the maxi-
mum number of subscriptions permitted in a bucket. The &stza
(both the number of subscriptions currently in a bucket al age
the number of subscription slots presently available intiheket;
when all subscription slots are occupied, an implemematiay
expand the bucket using a technique such as array doublify [1
of a bucket may vary dynamically.

e value

Figure5: Predicaterangesare ordered by starting points

3.2.3 D Structures

Priority Search Trees [6], Interval Trees [11], Suffix Tr§&8],
and Aho-Corasick Tries [17] are all examples of structutest t
can be used foD, depending on the type of attribute being par-
titioned by D and the operators being supported in the predicates

on this attribute. For example, priority search trees arnerval
trees could be good choices for attributes whose predisptasfy
a range of values while suffix trees could be good choicegifioigs
attributes whose predicates use the substring and suffbatmps.
Our current implementation ofdBsuBsincludes Red-Black Prior-
ity Search Trees (RBPST) and Interval Trees (IT). Thesestata-
tures are well suited to determine which of a set of rangeipages
are satisfied by a specified attribute value. The currentdmphta-
tion of PuBsus is readily extended to support additional attribute
data structures such as red-black trees for exact matdhuiéts
and suffix trees and Aho-Corasick tries for string attrisute

An RBPST helps us perform exact-match searches, inseds, an
deletes inO(log n) time and rectangle searchesdi(s + logn)
time, wheren is the number of points in the RBPST. RBPSTs place
no restriction on the domain or the keys.

With an IT, a pointv in a range[L, R) may be found inD(s +
logK) time, whereK is the cardinality of the rangd, R).

3.3 Comparison with BE-Tree

BE-Tree [1] and BBSuUB have many similarities. For example
both use clustering on a set of subscriptions that have a comm
attribute. This is a standard approach for multidimendialeda
with common attributes and has been used earlier in rangs tre
[20] and multidimensional tries [19], for example. Like Bee,
both range trees and multidimensional tries use the sanséeciu
ing strategy at all levels and for all attributes (range srase the
median attribute value while multidimensional tries usét@tthe
attribute to cluster). 8sus, on the other hand, allows for a het-
erogeneous selection of clustering strategies (i.e.,dteestructure
D). Both BE-Tree and @8suB partition a set of subscriptions into
subsets that have a common attribute so that clustering map-b
plied to these subsets. BE-Tree selects the partitionimgpate by
analyzing the subscriptions in the bucket to be partitiombile
PussuB does this using a pre-specified attribute ordering.

Besides superior performance (see Section 4B offers
the following advantages relative to BE-Tree:

1. BE-Tree uses the same clustering strategy for all ategbu
resulting in a homogeneous systemusRuB, which is a
heterogeneous system, offers a variety of data structares t
keep track of the buckets in an attribute structure enabling
the user to select data structures best suited for eadhuaétri

. The clustering strategy employed in BE-Tree limits ustto a
tributes whose values are discrete and for which the range
of values is known in advance (i.e., at the time the attribute
is created). So, for example, a non-negative integer valued
attribute can be used only if we know, in advance, what its
maximum value is. Because ofUBSUB's heterogeneity in
data structures for each attributepydsuB permits all at-
tribute data types. So, for example, we may set the attribute
data structureD to RBPST for all attributes whose values
are ordered (i.e., two attribute values may be compared to
determine whether one is less than the other or whether both
are equal), to IT for discrete valued attributes whose range
is known in advance, to suffix tree or Aho-Corasick trie for
attributes of string type (although the current implemtata
of PuBsuB doesn'’t support these structures, they are easily
added to BBSUB).

. The clustering strategy employed in BE-Tree results in pe
formance degradation when many subscriptions specifygeran
for the clustering attribute that spans the clusteringedon
p. So, for example, if we are clustering on attribute 6 and us-

Experiment

Parameter 41 42 43

Size M 100K-5M M
Number of Dimensions 1000 400 100-1500
Average Sub Size 7 7 7
Average Event Size 15 15 15

% Equality Predicates 30 30 30
Matching Probability % 0.01-15 | 1 1

Figure 6: Parameters used with BEGen for generating datasets

ing the criterionp = 30, then all subscriptions with a pred-
icate on attribute 6 that is satisfied by the value 30 are as-

signed to the same cluster. Suppose that many of these pred-

icates are range predicates of the fdem; < as < high;.

To determine which of these actually match the event value
(say) 20, we must examine each of theranges in the clus-
ter. This takes time linear in the cluster size, which could
be fairly large. RBsuB overcomes this type of performance
degradation by using data structud®@sthat can quickly ex-
tract matching subscriptions even from large clusters.

4. EXPERIMENTS

The current version of BBsuBis implemented in C++ and sun-
ports, for D, the data structures interval tree (IT), and red-b
priority search tree (RBPST). For our experiments, we megql
PuBsuBto use the same data structupefor every attribute struc
ture. As mentioned earlier, users may specify which datecktre
D should be used for which attribute and, in general, we e
the use of a heterogeneous set of data structures. The t&15
and PS-RBPST refer touBsus with all data structure® set tc
IT, and RBPST, respectively. For our experiments, we cozd
our code on a 64 bit Linux box with a 1.2GHz CPU. We bei
marked the performance ofuBsuB against the pub/sub syste
BE-Tree [1] (July 28, 2012 release) and Siena [2, 3]. The BE-
tree release used by us has improved search times over ¢fireabri
version used in [1]. On our platform we got about 10x improve-
ment in search performance of BE-tree with respect to thebeusn
reported in [1]. We note that the times reported in [1] are ih m
liseconds while those reported in this paper are in microsgs.
Our experiments, like those of Sadoghi and Jacobsen [1]focare
an application environment where the event rate far excéesls
rate at which subscriptions are inserted/deleted. Hereottus is
on event processing time. As a result, the experiments fiitsl
ize the subscription database and then measure the timedezd
process events. For the application environment congidarthis
section, Sadoghi and Jacobsen [1] have established theaitge
of BE-Tree over other Pub/sub systems such-asdex [9], Propa-
gation [8], Gryphon [7], SIFT [10], and SCAN [5]. So, we didtno
include these other systems in our experiments.

The test data (synthetic as well as real) for our experimeate
generated usin@@ EGen [1] and our experiments were modeled
after those reported in [1]. As in [1], we used two kinds oftigis
butions, namely, uniform and Zipf, for selecting the prediés of a
subscription.

For our experiments, the attributes in a subscription wetered
based on the frequency of occurrence of the attributes iertkiee
set of subscriptions in the system. The ordering was froniethst
frequent attribute to the most frequent one. This ordemmgroved
Pussus performance, particularly for tests on Zipf distribution.

We first ran an experiment (Section 4.1) to determine an appro
priate bucket size for ®8suB. This experiment was followed by
several experiments to compare the event processing pexfae
of PS-IT, PS-RBPST, BE-Tree, and Siena. The various pammet

N

i
o
©

™~

-

Search Time Per Event (us)
= =
o o

=
o
©

used to generate the test data used in each of sections Ik6>h
IV-J are shown in Figure 6. The parameters are those suppoyte
BEGen [1] and have the following meaning:

Number of Dimensions: The total number of attributes in the sys-
tem.

Average Sub Sze: Average number of attributes in a subscription
Average Event Sze: Average number of attributes in an event

% Equality Predicates: Total number of predicates in the subscrip-
tion that involve the equality operator.

Matching Probability %: Probability that an event will match a sub-
scription.

In the following, the reported event processing time is thera
age time (microseconds per event) to process an event. dbas d
not include the time needed to process the subscriptionsraade
the data structure in which the subscriptions are stored for ex-
ample, the time to create the collection of attribute strrest used
by PuBsuB).

4.1 Determining maximum bucket size

Figure 7 shows how the event processing time varies with-maxi
mum bucket size and matching probability.

(a) Interval Tree B (b) RBPST

_10
0
2
£ I 500
& I 1000
5 [3000
a10
e [_Is000
[[6000
s I 10000
g
U)l 0

001 01 1 5 10 15 00101 1 5 10 15

Matching Probability Percent Matching Probability Percent

Figure 7: How search time depends (microseconds/event) on
bucket size

Bucket sizes> 5000 result in the best performance for the dif-
ferent matching probabilities as well as for both choicethefdata
structureD. So, for the remaining experiments, we set the maxi-
mum bucket size to 5000. We note that in application enviremis
where the subscription insert/delete rate is not low, a kemialicket
size will, most likely, result in overall best performance.

4.2 How search time varies with the number
of subscriptions

Figure 8 gives the variation in event processing time as we in
crease the number of subscriptions. For the uniform testseh
duction in event processing time using any of theBBuB schemes
compared to BE-Tree is between 19 to 31%. The improvement in
search time compared to Siena is between 97 to 99% for the uni-
form tests. The results for the Zipf tests is comparable vagipect
to BE-Tree. The performance speedup ofgBuB with respect to
Siena is between 38 to 147 for the Zipf tests. The subscrigtio
Zipf tests have a large number of common attributes, whishlte
in deep trees for both PS-RBPST and PS-IT. The search perfor-
mance of BBsuB degrades as a results, since a large number of
buckets are visited and the subscriptions stored in thedestsiare
all compared with the event.

The relative performance of the twaJBSuB schemes is com-
parable. The performance of PS-RBPST is slightly bettar that
of PS-IT especially when the number of subscriptions exeged
million and the degree of overlap between subscriptiongis fas

in the Zipf tests).

s Unif: dataset size s Zipf: dataset size
~ 10 7 .10
E) g
g 10° £
i 2 10° -+ = PS-IT
w o 10
5 . 5 PS-RBPST
% 10 % —%*— BE-Tree
£ =T E Siena
E s /*/*/ £ 10 e
510 g * * 5 ¥

/

g a7 SR
R T B 7

S N R NN Narvareureas

IVXOEORON

A SRES SR

Dataset Size Dataset Size

Figure 8: Search time with varying dataset size (microsec-
onds/event)

4.3 How search time varies with the number
of dimensions (or attributes) in the system

Unif: dimensions Zipf: dimensions

. 10° .10

(%) (%)

2 2

IS c .6

o 10° ¢ 10 -+ — PS-IT
ULI LI: PS-RBPST]
& & 10° —%— - BE-Tree
3] 3] -

£ £ Siena

£ 10% ¥ - i T) =

5 ' ' 5 10

g g P e = e e K

(%] 2 n 3

400 800 1200 1500
Number of dimensions

10 10
50 400 800 1200 1500 50

Number of dimensions

Figure 9: Search time with varying number of dimensions (mi-
croseconds/event)

All of the pub/sub systems being studied display the sanmeltre
in search time as the number of attributes is increased. dérels
time decreased slightly with an increase in the number ofedim
sions. As the dimensions in a system are increased, theedefjre
overlap among subscriptions tend to decrease if the avenage
ber of attributes in subscriptions remain the same. Thisstedes
into the observed reduction in search times. On the testdbas
uniform distribution, RBsuBis faster than BE-Tree by 24 to 30%,
while on the Zipf tests BBsuBis 6.2 to 7.5% faster than BE-tree.
BE-Tree is faster than Siena for the uniform and Zipf tests.

5. CONCLUSION

PuBsuB s a versatile, scalable, and efficient publish/subscribe
system. Although the present implementation includes 2ialyoices
(interval tree, and red black priority search tree) for theadstruc-
ture D that is used to partition subscriptions based on the prestica
of a single attribute, the set of available data structucesr is
readily extendable to include structures such as Aho-GQikazes
[17] and suffix trees [18] for string type attributes and @pers.
Our selection for the initial data structures was motivdigdheir
suitability for predicates that specify a range of values.

We compared, experimentally, the performance 0gBuB with
that of BE-Tree [1] and Siena [2, 3] in an environment wherenev
processing dominates subscription insert/delete. The sattings
were used to generate our datasets as were used in [1]. éwditi
ally, we used very large data sets containing over a milligior s
scriptions. In general, there were two different types dgasdats —
those based on predicates selected from the attributes'usow

uniform distribution, and those based on predicate seleaising
Zipf distribution. RuBsuB performed the best on the uniform tests,
while on the Zipf tests, the performance af®suBis comparable

to BE-Tree. On our tests, the speedup, in event processirige o
fastest version of @8suB relative to Siena ranged from a low of
38 to a high of 330 and averaged 201 for the uniform and the Zipf
tests. The speedup range relative to BE-Tree was betwe8nd..2
1.48 and averaged 1.36 for the uniform tests and was comparab
to BE-tree on the Zipf tests.

It should be emphasized that although our experiments tnged t
same data structure for all attribute structures, we exfhettin
real-world applications optimal performance will be acfeig with
a heterogeneous selection of data structures with intee@s be-
ing used in some attribute structures, red black priorityce trees
in others, and so on. The architecture efd3uB readily supports
this heterogeneity.

6. REFERENCES

[1] M. Sadoghi and H.-A. Jacobsen, BE-Tree: An Index Stmecto
Efficiently Match Boolean Expressions over High-dimension
Discrete SpaceslGMOD 2011.

[2] A. Carzaniga, D. Rosenblum, and A. Wolf, Design and extiin of
wide-area event notification servickCM Trans. on Computer
SYystems, 19, 3, 2001, 332—-383.

[3] A. Carzaniga and A. L. Wolf, Forwarding in a Content-Bdse

Network, ACM S GCOMM 2003.

H. Luand S. Sahni, O(log n) Dynamic Router-Tables forfiRes

and RangedEEE Transactions of Computers Vol. 53, No. 10, 2004,

1217-1230.

[5] T.W. Yan and H. Garcia-Molina, Index Structures for Sxilee

Dissemination of Information Under the Boolean Mod&CM

TODS 1994.

E. M. McCreight, Priority Search TreeSiam J. Comput. Vol. 14,

No. 2, May 1985, 257-276.

M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and.

Chandra, Matching events in a content-based subscripf&terms,

PODC 1999.

F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. AsR and D.

Shasha, Filtering algorithms and implementation for fast/gub

systemsS GMOD 2001.

S. Whang, C. Brower, J. Shanmugasundaram, S. VasgilyiEs

Vee, R. Yerneni, and H. Garcia-Molina, Indexing Boolean

ExpressionsyLDB, 2009.

T. W. Yan and H. Garcia-Molina, The SIFT Information

Dissemination SystenACM TODS, 1999.

D. Mehta and S. Sahni, Handbook of Data Structures and

Applications,Chapman & Hall/CRC, 2005.

A. Mitra, M. Maheswaran and J. A. Rueda, Wide-Area

Content-based Routing MechanistRDPS, 2003.

W. Rao, L. Chen, A. W-C. Fu, H. Chen and F. Zou, On Efficient

Content Matching in Distributed Pub/Sub SystehiN;OCOM,

20009.

F. Cao and J. P. Singh, Efficient Event Routing in Conteged

Publish-Subscribe Service NetworkslFOCOM, 2004.

M. Petrovic, |. Burcea and H-A. Jacobsen, S-ToPSS: $¢ma

Toronto Publish/Subscribe Systewi,DB, 2003.

A. Yu, P. K. Agarwal and J. Yang, Generating Wide-Area

Content-Based Publish/Subscribe WorkloaxdstDB, 2009.

A. V. Aho and M. J. Corasick, Efficient String MatchingnAid to

Bibliographic SearchCommunications of the ACM, Volume 18, No.

6, June 1975, 333-340.

E. M. McCreight, A Space-Economical Suffix Tree Constian

Algorithm, Journal of the ACM, Volume 23, No. 2, 1973, 262-272.

W. Lu and S. Sahni, Efficient two-dimensional multibies for

packet classification EEE Transactions on Computers Volume 58,

No. 12, 2009, 1695-1709.

J. L. Bentley, Decomposable searching probleimf&rmation

Processing Letters, Volume 8, No. 5, 1979, 244-201.

(4

(6]
(7]

(8]

El

[20]
[11]
[12]

[13]

[14]
[15]
[16]

[17]

(18]

[19]

[20]

