
A Deadline-Floor Inheritance Protocol
for EDF Scheduled Embedded Real-Time

Systems with Resource Sharing
Alan Burns, Fellow, IEEE, Marina Guti�errez, Mario Aldea Rivas, and

Michael Gonz�alez Harbour,Member, IEEE

Abstract—Earliest Deadline First (EDF) is the most widely studied optimal dynamic scheduling algorithm for uniprocessor real-time

systems. For realistic programs, tasks must be allowed to exchange data and use other forms of resources that must be accessed

under mutual exclusion. With EDF scheduled systems, access to such resources is usually controlled by the use of Baker’s Stack

Resource Protocol (SRP). In this paper we propose an alternative scheme based on deadline inheritance. Shared resources are

assigned a relative deadline equal to the minimum (floor) of the relative deadlines of all tasks that use the resource. On entry to the

resource a task’s current absolute deadline is subject to an immediately reduction to reflect the resource’s deadline floor. On exit the

original deadline for the task is restored. We show that the worst-case behaviour of the new protocol (termed DFP—Deadline Floor

inheritance Protocol) is the same as SRP. Indeed it leads to the same blocking term in the scheduling analysis. We argue that the new

scheme is however more intuitive, removes the need to support preemption levels and we demonstrate that it can be implemented

more efficiently.

Index Terms—Real-time systems, embedded systems, concurrency control
Ç

1 INTRODUCTION

THE correctness of an embedded real-time system
depends not only on the system’s outputs but also on

the time at which these outputs are produced. The comple-
tion of a request after its timing deadline is considered to be
of no value, and could even lead to a failure of the whole
system. Therefore, the most important characteristic of
real-time systems is that they have strict timing require-
ments that must be guaranteed and satisfied. Schedulability
analysis plays a crucial role in enabling these guarantees to
be provided.

A real-time system comprises a set of real-time tasks;
each task consists of a potentially unbounded stream of
jobs. The task set can be scheduled by a number of policies
including dynamic priority or fixed priority (FP) algorithms.
The success of a real-time system depends on whether all
jobs of all the tasks can be guaranteed to complete their exe-
cutions before their timing deadlines. If they can then we
say the task set is schedulable.

The Earliest Deadline First (EDF) algorithm is one of the
most widely studied dynamic priority scheduling policies
for real-time systems. It has been proved [14] to be optimal
among all scheduling algorithms for a uniprocessor; in the
sense that if a real-time task set cannot be scheduled by
EDF, then it cannot be scheduled by any other algorithm.

Although many forms of analysis (including that
reported in the above citation) assume tasks are indepen-
dent of each other, in realistic systems the tasks need to
make use of shared resources that must be accessed under
mutual exclusion. These resources are typically protected
by semaphores or mutexes provided by an real-time
operating system (RTOS). If a high-priority task is sus-
pended waiting for a lower-priority task to complete its
use of a non-preemptable resource, then priority inver-
sion occurs [17]. The task is said to be blocked by the
lower priority task.

For uniprocessor fixed priority scheduled systems, block-
ing time can be minimised by the use of a Priority Ceiling
inheritance Protocol (PCP). With this, accesses to resources
are serialised, mutual exclusion is furnished without the
use of locks and multiple resources can be used in a manner
that is guaranteed to be deadlock free. For systems sched-
uled by the EDF scheme, Baker [3], [2] generalised PCP to
define a Stack Resource Policy (SRP). This protocol has
become the defacto policy to use with EDF to gain effective
control over the use of shared resources.1

In this paper we propose an alternative protocol for
EDF scheduled systems. Rather than assigning a preemp-
tion ceiling to each shared resource (as SRP does), a dead-
line floor is computed. And rather than raise the priority of
a task to the ceiling level when it accesses a resource (as
SRP does), the task reduces its current deadline to reflect
the floor value of the resource. We show that this Deadline
Floor inheritance Protocol (DFP) has all the key properties of
SRP, and leads to the same worst-case blocking [7]. How-
ever, DFP is arguably much easier to understand and
more efficient to implement. It is, at the very least, an

� A. Burns is with the Computer Science Department, University of York,
UK. E-mail: alan.burns@york.ac.uk.

� M. Guti�errez, M.A. Rivas, and M.G. Harbour are with the Universidad de
Cantabria, Spain. E-mail: {gutierrezlm, aldeam, mgh}@unican.es.

Manuscript received 22 Apr. 2013; revised 1 Mar. 2014; accepted 17 Apr.
2014. Date of publication 7 May 2014; date of current version 8 Apr. 2015.
Recommended for acceptance by A.K. Somani.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2014.2322619

1. Over 1,000 citations for these two papers are recorded in Google
Scholar.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 5, MAY 2015 1241

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

alternative scheme that implementors should evaluate
when supporting EDF in real-time operating systems or
languages.

In the remainder of this paper we first introduce a
system model in Section 2, resource sharing policies are
reviewed in Section 3 and a review of scheduling analy-
sis is included in Section 4. DFP is defined, and its key
properties explored, in Section 5. Section 6 then
addresses the implementation of DFP. Conclusions are
contained in Section 7.

2 SYSTEM MODEL

A hard real-time system comprises a set of n real-time tasks
{ti; t2; . . . ; tn} executing on a uniprocessor, each task con-
sists of a potentially unbounded stream of jobs which must
be completed before their deadlines. Let ti indicate any
given task of the system, and let ji indicate any given job of
ti. Each task can be periodic or sporadic. We initially
assume that tasks do not suffer release jitter. The issue of
release jitter is returned to in Section 5.8.

All jobs of a periodic task have a regular inter-arrival
time Ti, we call Ti the period of ti. If a job for a periodic task
arrives at time t, then the next job of ti must arrive at tþ Ti.

The jobs of a sporadic task arrive irregularly, but they
have a minimum inter-arrival time also denoted as Ti, we
again call Ti the period of ti. If a job of the sporadic task ti
arrives at time t, then the next job of ti can arrive at any
time at or after tþ Ti.

Each job of task ti requires up to the same worst-case
execution time which equals the task’s worst-case execution
time Ci. Each job of ti has the same relative deadline which
equals the task’s relative deadline Di; each Di could be less
than, equal to, or greater than Ti. These three cases being
referred to as constrained deadlines, implicit deadlines and
arbitrary deadlines. For arbitrary deadline tasks (and hence
all tasks) it is assumed that no two jobs from the same task
are ever active (i.e., executable) at the same time. For this
reason the term task will also be used to refer to the current
job from that task.

The smallest relative deadline in the system is denoted
by Dmin; the largest by Dmax. If a job of ti arrives at time t,
the required worst-case execution time Ci must be com-
pleted within Di time units, and the absolute deadline of
this job (referred to by lower case di) is tþDi. The term
deadline refers to an absolute deadline of some job in the
system.

Let Ui denote the utilization of ti (i.e., Ui ¼ Ci=Ti), and
define U to be the total utilization of the task set, computed
by U ¼Pn

i¼1 Ui.
Contained within the system are m shared resources

(r1; . . . ; rm). Tasks may access (under mutual exclusion)
these resources, but we make no assumption as to when
each job accesses these shared resources during its execu-
tion. We do assume however that tasks do not self-sus-
pend whilst accessing a resource. The worst-case
execution time of task ti when using resource rj is denoted
as Cj

i . Note that Cj
i ¼ 0 implies that the task does not

access the resource. The worst case execution time for
each task includes the time it takes executing with the
resources it accesses (so the quantity

Pm
j¼1 v

j
iC

j
i is included

in the parameter Ci; where vji is the maximum number of
times any job from ti uses resource rj).

The set of tasks that may access resource rj is denoted by
AðrjÞ. When a task has access to a resource, the resource is
said to be held, otherwise it is free.2 In contexts where there
is only a single resource the symbol r (without a super-
script) will be used.

The inclusion of shared resources in the system model
implies that tasks may suffer blocking, which must be taken
into account in the scheduling analysis.

According to the EDF scheduling algorithm, in the
absence of blocking, the job with the earliest absolute dead-
line has the highest priority and will be executed on the pro-
cessor. If more than one job has the same deadline then they
are scheduled in FIFO order; the one that has been in the
system the longest time will execute first. At any time, a
released job with an earlier absolute deadline will preempt
the execution of a job with a later absolute deadline. When a
job completes the system chooses, for execution, the oldest
pending (released) job with the earliest deadline.

3 RESOURCE SHARING POLICIES

There are a number of protocols existing for accessing
shared resources under the EDF scheduling policy, for
example: Stack Resource Policy [3], [2], Dynamic Priority
Ceiling [9], Dynamic Priority Inheritance (DPI) [20], and
Dynamic Deadline Modification (DDM) [11]. This last
approach is closest to the one proposed in this paper as it
also involves changing the deadlines of jobs that access
resources. A comparison of DDM and DFP is given later in
the paper (see Section 5.4).

As indicated above, the SRP was proposed for accessing
shared resources as a generalisation of the Priority Inheri-
tance Protocol (PIP) [18], the Priority Ceiling Protocol (PCP)
[18] and the Immediate Priority Ceiling Protocol (IPCP)
[12]. It has the advantage that it can be integrated into the
EDF scheduling framework. Under PIP a task is blocked at
the time when it attempts to enter a critical section, while
under IPCP and SRP a task is blocked at the time when it is
released and attempts to preempt a lower priority task. This
property of SRP reduces context switches and stack usage
(hence the name of the protocol).

As SRP is the most popular protocol to use with EDF we
now describe in more detail SRP for EDF-based systems.
An example of the use of the protocol is also provided.
Note that SRP, as introduced by Baker, is a more general
protocol that can deal with other forms of dispatching
urgency and resources with alternative synchronisation
constraints. Here we are only concerned with its use for
EDF scheduled systems and resources requiring mutual
exclusion synchronisation.

3.1 The SRP Algorithm

Under SRP each job ji of task ti is assigned a preemption
level pðtiÞ. Under EDF scheduling, the preemption level of
a job correlates inversely to its relative deadline, i.e.,
pðtiÞ < pðtjÞ , Di > Dj.

2. We do not use the terms locked and unlocked as actual operating
system locks are not necessary to ensure mutual exclusive access.

1242 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 5, MAY 2015

Define r1; r2; . . . ; rm to be the non-preemptable shared
resources in the system. Each resource, rj, is assigned a ceil-
ing preemption level denoted as PðrjÞ which is set equal to
the maximum preemption level of any job that may access
it. Let p̂ denote the highest ceiling of all the resources which
are held by some job at any time t, that is

p̂ ¼ maxfPðrjÞ k rj is held at time tg:

Baker [3], [2] showed that the Stack Resource Policy has the
following properties (expressed as a theorem).

Theorem 1 ([2], [3]). If no job ji is permitted to start execution
until pðtiÞ > p̂, then:

1) no job can be blocked after it starts;
2) there can be no transitive blocking or deadlock;
3) no job can be blocked for longer than the execution time

of one outermost critical section of a lower priority job;
4) if the oldest highest-priority (i.e., shortest deadline) job

is blocked, it will become unblocked no later than the
first instant when the currently executing job is not
holding any non-preemptable resource.

As a result of these properties, a job ji released at time t
can start execution only if:

� the absolute deadline of this job (tþDi) is the earli-
est deadline of the active requests in the task set; and

� the preemption level of ji is higher than the ceiling of
any resource that is held at the current time (i.e.,
pðtiÞ > p̂).

This two stage test is in contrast to the single test
required in DFP (see later discussions).

3.2 Example Usage of SRP

Consider a three task (t1; t2; t3), one resource (r) system,
defined in the table below. Note the ‘Access Time’ in the
table refers to the time each task takes in accessing the
resource r (it is the duration of its critical section). Note t1
does not access the resource. The ‘Arrival Time’ is when the
current job of each task is released for execution.

As D1 < D2 < D3, the preemption levels are related as
follows: pðt1Þ > pðt2Þ > pðt3Þ. Since only t2 and t3 access r,
the ceiling preemption level of this resource is given by
PðrÞ pðt2Þ.

Assume the job of t3 arrives at t ¼ 0 and holds the
resource r at time t ¼ 1. The highest ceiling of a held
resource at this time is now given by: p̂ ¼ PðrÞ ¼ pðt2Þ. Let
the job of t2 be released at time, t ¼ 2 (while the resource is
still held). This job is not allowed to preempt t3 as its pre-
emption level is not high enough. At time t ¼ 3, t1 is
released and does preempt t3 as its preemption level is high

enough (pðt1Þ > PðrÞ) and its deadline is earlier than that of
t3 (13 < 30) and t2 (13 < 22).

The job of t1 will execute from t ¼ 3 to, say, t ¼ 6 when it
completes. Now t3 can resume execution. It will execute
until t ¼ 8 at which point it frees the resource and as a result
t2 can preempt and continue its execution. At some point it
will access r but it is now guaranteed to be available. When
the job of t2 terminates, t3 can continue. See Fig. 1 for a sim-
ple representation of the execution timeline of these three
jobs. Note the darker shared boxes represent the execution
of a job while holding the resource.

In this example execution, t2 suffers blocking of dura-
tion 3 (i.e., this is the interval during which a task with a
later deadline is executing). The worst-case occurs when
this task is released just after t3 accesses the resource. In this
situation the blocking time would be 4.

4 REVIEW OF EDF SCHEDULABILITY ANALYSIS

This section3 describes the previous research results on
exact schedulability analysis for EDF scheduling with
arbitrary relative deadlines (i.e., D unrelated to T). In
1980, Leung and Merrill [13] noted that a set of periodic
tasks is schedulable if and only if all absolute deadlines
in the interval [0, maxfsig þ 2H] are met, where si is the
start time of task ti, minfsig ¼ 0 and H is the least com-
mon multiple of the task periods. In 1990, Baruah et al.
[5] extended this condition for sporadic task systems,
and showed that the task set is schedulable if and only
if: 8t > 0; hðtÞ � t, where hðtÞ is the processor demand
function given by

hðtÞ ¼
Xn
i¼1

max 0; 1þ t�Di

Ti

� �� �
Ci: (1)

Using the above necessary and sufficient schedulability
test, the value of t can be bounded by a certain value, we
refer to this value as the upper bound for task schedulability.
The following theorem introduces one of these upper
bounds (note the total utilisation of the task set has to be
strictly less than 1).

Theorem 2 ([23]). An arbitrary deadline task set with U < 1 is
schedulable if and only if

8t < La; hðtÞ � t;

where

La ¼ max ðD1 � T1Þ; . . . ; ðDn � TnÞ;
Pn

i¼1 ðTi �DiÞUi

1� U

� �
: (2)

As the processor demand function can only change at the
absolute deadlines of the tasks, only the absolute deadlines
require to be checked in the upper bounded interval.

In 1996, Spuri [19] and Ripoll et al. [15] derived
another upper bound (Lb) for the time interval which
guarantees we can find an overflow (i.e., deadline miss) if
the task set is not schedulable. This interval is called the
synchronous busy period (the length of the first processor

Fig. 1. Example of SRP.

3. The review material presented in this paper is adapted from [25].

BURNS ET AL.: A DEADLINE-FLOOR INHERITANCE PROTOCOL FOR EDF SCHEDULED EMBEDDED REAL-TIME SYSTEMSWITH RESOURCE... 1243

busy period when all tasks are released simultaneously at
the beginning of the period). However, Ripoll et al. [15]
only considered the situation where Di � Ti. The length
of the synchronous busy period can be computed by the
following process [19], [15]:

w0 ¼
Xn
i¼1

Ci; (3)

wmþ1 ¼
Xn
i¼1

wm

Ti

� �
Ci; (4)

the recurrence stops when wmþ1 ¼ wm, and then Lb ¼ wmþ1.
Since the calculation of Lb has an iterative form, com-

pared with the low complexity (OðnÞ) of the calculation of
La, we should avoid using Lb, whenever U 6¼ 1. Moreover,
in extensive simulation studies [23], [24] it was nearly
always the case that La < Lb.

4.1 Processor Demand Analysis for EDFþSRP
Baker [3], [2] provided a sufficient schedulability condition
for EDFþSRP; a system is schedulable if

8k¼1;...;n
Xk
i¼1

Ci

Di
þ Bk

Dk

 !
� 1;

where Bk is the maximum blocking time of tk; note for this
equation the tasks are indexed according to their relative
deadline parameter.

This sufficient test requires that Di � Ti for all tasks,
and it is utilization based; a set of experiments [24]
showed that nearly all task sets which are randomly gen-
erated cannot be accurately evaluated by such a test.
Hence, an exact schedulability analysis which is based
on the processor demand analysis is needed by the
EDFþSRP scheduling framework.

Let bðtÞ be a function representing the maximum time
a job jk with relative deadline Dk � t may be blocked by
job ja with relative deadline Da > t in any given time
interval [0, t].

Spuri [19] showed that a condition for the schedulability
of a task set is that for any absolute deadline di in a synchro-
nous busy period:

hðdiÞ þ bðdiÞ � di:

The definition of bðtÞ given by Baruah [4] is more intui-
tive. Let Ca;k denote the maximum length of time for which
task ta needs to hold some resource thatmay also be needed
by task tk. Then bðtÞ can be defined and calculated by

bðtÞ ¼ maxfCa;k k Da > t;Dk � tg: (5)

Note that if t is greater than the maximum relative dead-
line (i.e., t � Dmax) then the blocking term, bðtÞ, is zero.

The maximum interval that must be considered for
schedulability can again be derived from the minimum
of the two methods of obtaining the upper bound; i.e.,
L ¼ minðLb; L

�
aÞ where the La term has been modified as

a result of the blocking that can occur in the interval up
to Dmax [25]:

L�a ¼ max

�
ðD1 � T1Þ; . . . ; ðDn � TnÞ;

maxdi <DmaxfbðdiÞg þ
Pn

i¼1 ðTi �DiÞUi

1� U

�
:

(6)

In a given interval (e.g., between 0 and L), there can be a
very large number of absolute deadlines that need to be
checked. This level of computation has been a serious disin-
centive to the adoption of EDF scheduling in practice. Fortu-
nately a much less computation-intensive test known as
Quick convergence Processor-demand Analysis (QPA) [23]
has recently been proposed. Extensive experiments [24]
reported that the required volume of calculations needed to
perform an exact schedulability analysis can be exponen-
tially decreased by the use of QPA.

5 DEFINITION OF THE DEADLINE FLOOR

PROTOCOL

For ease of presentation we first define the Deadline
Floor inheritance Protocol for systems that do not have
nested resource usage. This restriction is then removed
in Section 5.5.

5.1 Initial Definition of DFP

Given an application defined by a set of tasks (ti; t2; . . . ; tn),
a set of resources (r1; r2; . . . ; rm) and the task-resource access
relation, A, the Deadline Floor Protocol is defined as
follows:

1) Each resource, ri, has a relative deadlineDi given by

Di ¼ minfDj : tj 2 AðriÞg:

2) When a task tj released at time s accesses resource
ri at time t (so s < t) its active absolute deadline
is (potentially) reduced; that is dj minft þ
Di; sþDjg.

3) When this task frees the resource its deadline
immediately returns to its original value, that is
dj sþDj.

Note that a task accessing a resource close to its deadline
may not have its deadline reduced. For example, a task
released at time 42 with an absolute deadline of 84, that
accesses a resource with a deadline floor value of eight will
have its deadline reduced to 60 if it accesses the resource at
time 52, but will stay with its deadline of 84 if it accesses the
resource at time 80.

The static absolute deadline of a job released at time t is
termed the job’s base deadline. A task also has a dynamic
active deadline. When accessing a resource the task’s active
deadline may be reduced to reflect the resource’s relative
deadline floor. When no resources are held, the active dead-
line of a job is the same as the base deadline. Tasks are
scheduled according to their active deadlines.

A comparison with the Immediate Priority Ceiling Proto-
col [12] for fixed priority scheduled systems shows that the
protocols are structurally equivalent. Under IPCP a resource

1244 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 5, MAY 2015

has a priority equal to the highest priority of any task that
uses it. On entry to the resource the task’s priority is raised
to the ceiling value, on exit its priority returns to its previ-
ous value. As dispatching urgency is reflected by higher pri-
ority under FP, and earlier deadline under EDF, the use of a
ceiling value for the former and a floor value for the latter is
to be expected.

5.2 An Example of the Use of DFP

Before proving the significant properties of DFP, the exam-
ple used earlier to illustrate SRP (see Table 1) will be re-
interpreted for DFP.

First the resource r must be given a deadline floor. It is
used by t2 and t3, so its relative deadline is given by
Dr minð20; 30Þ ¼ 20. At t ¼ 1, t3 (which was released at
t ¼ 0) accesses r and as a result its active deadline is
reduced from 30 to 21. At t ¼ 2, t2 is released with dead-
line 22, it will not preempt as its deadline is later than t3’s
current active deadline. Again at time t ¼ 3, t1 is released
with deadline 13, it will preempt (as 13 < 21). This job will
execute until it completes at which point t3 will continue
until it releases the resource; its active deadline will then
change from 21 to 30 and as a result t2 will preempt (as
22 < 30).

In this example, the same order of execution of the
tasks occurs for DFP and SRP, however DFP only manipu-
lates deadlines, SRP requires preemption levels as well.
Under DFP, like SRP, t2 suffers its blocking at its release
before it actually starts executing. Note however that, in
general, the two protocols do not give rise to the same
execution sequences. If the relative deadline of the first
task is changed to 18 (i.e., D1 ¼ 18) rather than 10. The
execution sequence of SRP remains the same (as depicted
in Fig. 1). But under DFP, t1 will not preempt t3 as its
deadline (21 ¼ 3 þ 18) is not strictly less that the current
inherited deadline of t3 which is also 21. Nevertheless t3
will still complete before its deadline.

5.3 Initial Properties of DFP

First we show that the protocol itself ensures mutual exclu-
sive access to any resource. And that a task/job is never
blocked once it starts executing.

Lemma 1. Whilst accessing a resource, a task cannot be pre-
empted by any other task that could access the same resource.

Proof. Assume task tj accesses resource r (with deadline
ceiling Dr) at time t. Assume, to construct a contradic-
tion, that task tk preempts tj (either directly or preempts
some other task that has preempted tj etc.) at time t0 and
then attempts to access r.

To preempt, dk < dj and t0 > t. At t0, tj holds r and
hence dj ¼ tþDr. If tk 2 AðrÞ then Dr � Dk. Hence

dk < tþDr � tþDk < t0 þDk ¼ dk, which provides
the contradiction. tu

Lemma 2. No task can be blocked after it starts executing.

Proof. Assume task tj is released at time t, starts executing
and will subsequently access resource r. Assume, to con-
struct a contradiction, that task tk released before t holds
r. As tasks cannot self-suspend, tk must be runnable.

As both tasks access the resource, Dr � minfDj;Dkg.
Let tk access the resource at time t0; t0 < t. As tk 2 AðrÞ
then dk ¼ t0 þDr. To preempt tk, tj must have an earlier
deadline, dj < dk. Hence dj ¼ tþDj < t0 þDr. But
t0 þDr � t0 þDj < tþDj ¼ dj; so dj < dj which pro-
vides the contradiction. tu
Next we note that when released at most one resource

can be held.

Lemma 3. When released for execution at most one resource
needed by the released task (tj) will be held by another task
with a longer deadline than tj.

Proof. Assume task tj is released at time t. Let a resource (r)
be held by task tk with access time t0 and t0 < t. For a
second resource to be accessed by another task, tp,
released at time t00, it must preempt tk; so t0 < t00 < t.

To preempt, dp ¼ t00 þDp < t0 þDr < t0 þDj < t þ
Dj ¼ dj. So any task that preempts another task that
holds a resource needed by tj cannot have a deadline
greater than tj. This is a stronger property than that
required by the Lemma. tu
It is now possible to state, in the form of a theorem, the

basic property of DFP.

Theorem 3. When any task ti is released for execution at most
one other task with a base deadline greater than that of ti will
have an active deadline less than that of ti.

Proof. Follows from the proof of the previous Lemma. tu
Finally in this section we consider the number of pre-

emptions required by DFP when compared with SRP. The
example at the end of the previous section showed that
there are situations in which SRP will cause a preemption
(when a newly released job arrives for execution) whereas
DFP does not. In the following we show that the inverse
is not possible, and hence we can conclude that DFP will
lead to less preemptions and therefore more efficient
implementation.

Lemma 4. If under DFP a newly released job preempts the cur-
rently executing job, then SRP would also result in preemption.

Proof. If no resource is in use the Lemma is obviously true.
Therefore, assume task ta, released at time f , accesses
resource r (with deadline ceiling Dr, so Dr � Da) at time
t. Its deadline is reduced to tþDr (if its deadline is not
reduced the Lemma is again obviously true), so
tþDr < f þDa.

As time s (s > t) let tb be released. Assume under
DFP tb preempts ta. It follows that sþDb < tþDr.
Hence sþDb < f þDa, and soDb < Da.

Under SRP, the system preemption level at time s is
given by p̂ ¼ PðrÞ � pðtaÞ. If preemption levels are
assigned in inverse relative deadline order then

TABLE 1
Example Task Set

Task C D T Access
Time

Arrival
Time

t1 3 10 20 0 3
t2 9 20 30 1 2
t3 10 30 40 4 0

BURNS ET AL.: A DEADLINE-FLOOR INHERITANCE PROTOCOL FOR EDF SCHEDULED EMBEDDED REAL-TIME SYSTEMSWITH RESOURCE... 1245

pðtbÞ > pðtaÞ. If PðrÞ ¼ pðtaÞ then pðtbÞ > p̂ and the
rules of SRP will lead to preemption. If PðrÞ > pðtaÞ
then there must exist another task, tx with relative dead-
line Dx < Da that accesses the resource, r. If DFP gives
preemption then sþDb < tþDx; it follows that
PðrÞ ¼ pðtxÞ, and pðtbÞ > pðtxÞ and again the precondi-
tions for preemption are true . tu

5.4 Comparing DFP and DDM

Having introduced DFP it is now possible to compare it
with the protocol (DDM) introduced by Jeffay in 1992 [11].
The formulation of DDM is very different, but the effect for
non-nested resources is similar. Under DDM a job is split
into a number of phases. Each phase involves the use of at
most one resource. For each phase a phase-specific deadline
is computed based on the shortest deadline of all the other
jobs that use that phase’s resource. In effect this means that
a deadline floor value is computed for each resource. Under
DDM each phase of a job has a distinct deadline, under DFP
each resource access has a distinct deadline. In modeling
terms these are equivalent; but in terms of practice, DFP
by its association of a deadline with the resource, provides
an easy implementation scheme (see later discussion) and
allows complex program structures to be accommodated.
For example, branching structures where each branch
accesses a different resource. More significantly, DFP is
defined to work with nested resource accesses (see next sec-
tion), DDM does not support phases within phases. Also
the treatment of DFP in this paper:

� Uses a different formulation and proof structure; one
that is arguably more straightforward to follow (the
paper on DDM [11] does not include full details of
the proofs for multiple phased tasks).

� Shows an equivalence between DFP and the optimal
SRP.

� Shows how to compute the optimal blocking term
for schedulability analysis.

� Shows how the protocol can be extended to accom-
modate release jitter.

� Shows how the protocol can be implemented.

5.5 Nested Resource Usage

In a general system, resources can make use of other resour-
ces and hence nested relationships are possible. This could
lead to transient blocking and even deadlocks. Here we
show that DFP, like SRP, prevents these conditions from
arising. To achieve these useful properties, however, resour-
ces must be used in a strictly nested way. So, for resources A
and B:

access(A) access(B) ... release(B) release(A)

is acceptable, but

access(A) access(B) ... release(A) release(B)

is not.
To cater for nested resource usage the definition of the

protocol must be modified slightly.

1) Each resource, ri, has a relative deadlineDi given by

Di ¼ minfDj : tj 2 AðriÞg:

2) When a task tj accesses resource r
i at time t its active

absolute deadline is (potentially) reduced; that is
dj minftþDi; djg. Its current deadline (before
being reduced) is held in the variable dij.

3) When this task frees the resource its deadline imme-
diately returns to its previous value, that is dj dij.

An OS implementation could store the dij values as part
of the resource or on a per-task, or system-wide single, stack
(of maximum size equal to the depth of the resource nest-
ing, see Section 5.9).

5.6 Further Properties of DFP

First we note that Lemmas 1 and 2 hold for the extended defi-
nition of the protocol. Lemma 3 needs to be reformulated.
Where resource usage is nested we introduce, following
Baker, the term outermost resource to indicate the one that is
called directly by the task (not via another resource, or while
the task is holding another resource). Note the execution
time within an outermost resource includes the time spent
executingwithin the inner resources.

Lemma 5. When released for execution at most one outermost
resource needed by the released task (tj) will be held by another
task with a longer deadline than tj.

Proof. Assume task tj is released at time t. Let an outermost
resource (ro) be held by task tk with access time t0 with
t0 < t. For a further resource to be accessed by another
task, tp, released at time t00, tp must preempt tk; so
t0 < t00 < t.

To preempt, dp ¼ t00 þDp < t0 þDo < t0 þDj < t þ
Dj ¼ dj. So any task that preempts another task that
holds an outermost resource needed by tj cannot have a
deadline greater than tj. This is sufficient to prove the
Lemma. tu
Next we show the protocol leads to behaviour that is free

of transitive blocking and deadlocks.

Lemma 6. The DFP protocol is free from transitive blocking and
deadlocks.

Proof. In order to get transitive blocking or deadlock it must
be the case that a task gains access to a resource and then
attempts to access another resource but that resource is
held by another task. Lemmas 2 and 5 shows that this sit-
uation cannot occur . tu
The final property to note concerns a bound on the

blocking suffered by the most urgent task. The most
urgent job is the one with the shortest deadline. If two or
more jobs share the same deadline then the one that was
released first is the most urgent; it is termed the oldest ear-
liest deadline job. If two jobs also share the same arrival
time then a simple static tie-breaker (such as task index)
is used to define the oldest task.

Lemma 7. If the oldest earliest deadline job is blocked, it will
become unblocked no later than the first instant when the cur-
rently executing job is not holding any resource.

Proof. Assume task tj is released at time t. It is blocked
by task tk as tk is holding an outermost resource ro

that it accessed at time t0. So, t0 < t, dj < t0 þDk, but
dj > t0 þDo (as tk is blocking tj). Task tk may be

1246 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 5, MAY 2015

preempted by shorter deadline tasks (that by the action
of the protocol will not be accessing ro) but at some
time t00 it will free the resource. At this time the dead-
line of tk will return to its basic value (t0 þDk) and all
blocked tasks (including tj) will have deadlines earlier
than this value. The one with the shortest deadline will
execute next. If there are a number of tasks with the
same (earliest) deadline then the one that has been in
the system the longest time (i.e., the oldest job) will
execute (unless a shorter deadline job is released at the
same instant). tu
It is now possible to prove a theorem equivalent to the

one for SRP.

Theorem 4. The Deadline Floor inheritance Protocol has the fol-
lowing properties

1) no job can be blocked after it starts;
2) there can be no transitive blocking or deadlock;
3) no job can be blocked for longer than the execution time

of one outermost critical section;
4) if the oldest earliest deadline job is blocked, it will

become unblocked no later than the first instant when
the currently executing job is not holding any resource.

Proof. Follows directly from Lemmas 1, 2, 5, 6 and 7. tu

5.7 Feasibility Analysis for EDFþDFP
Here we derive schedulability analysis for EDFþDFP by
following the strategy employed by Baruah for EDFþSRP
[4]. The general approach is to postulate the circumstan-
ces in which a deadline is missed, and then use this situ-
ation to derive a worst-case bound for schedulability.
We will show that this bound for EDFþDFP is the same
as that of EDFþSRP.

In order to concentrate on the blocking term, assume
the task set under consideration is schedulable if resource
usage is ignored. That is, 8s : hðsÞ � s. Assume a first
deadline miss occurs at time t. So hðtÞ þ bðtÞ > t. The
function hðtÞ is defined by equation (1), we need a for-
mula for bðtÞ for DFP equivalent to the one given earlier
for SRP (Equation (5)).

Let t0 be the last time, before t, that there were no pend-
ing job executions with arrival times before t0 and deadlines
before or at t. So the processor is busy between t0 and t with
jobs that have deadlines at or before t. Without loss of gen-
erality assume t0 is time 0. The maximum load on the system
at time t assumes all tasks giving rise to jobs with deadlines
at or before t are released at time 0.

For bðtÞ > 0, a job released at or before 0 with a dead-
line after t must have accessed a resource before time 0
and inherited a deadline so that its deadline is reduced
to be at or before t. It follows from the properties of DFP
discussed earlier that there is at most one job with a
deadline after t that executes and accesses a resource at
or before time 0 and executes with the resource in the
interval [0, t). A formula for bðtÞ is therefore of the form:

bðtÞ ¼ max
�
Cr

j

	
;

where the max is taken over all tasks and all resources that
can give rise to blocking being experienced at the time (t) a
deadline is missed.

Let any job that can cause blocking come from task tj. If
tj is released before time 0 and actually accesses the
resource r just before time 0 then blocking could occur at
time t if Dj > t (otherwise, tj could not be a contributor to
the blocking time) and Dr � t (the deadline of tj will be
reduced to 0þDr when the resource is held).

However, this assumes that the resource is accessed at
time 0. If it is accessed earlier then its inherited deadline
could have a smaller value and hence blocking could occur
for values of t < Dr. For example, if Dr ¼ 10 and the
resource is accessed at time �6 then the active deadline of
tj would be 4. Nevertheless, we will now show that access-
ing the resource at time 0 is the worst-case, and that this
leads to the result that the worst-case blocking of
EDFþDFP is the same as that for EDFþSRP. The notion of
worst-case here means that if task tj when accessing
resource r can cause a deadline to be missed before timeDr

then it will also cause a deadline miss at Dr; hence poten-
tial blocking times beforeDr do not need to be considered.

Lemma 8. If a task tj accesses a resource r at time 0 and there is
no deadline miss at or after Dr then there will be no deadline
miss before Dr even if tj accesses r before time 0.

Proof. Assume that the size of the blocking factor, the dura-
tion of the critical section of resource r, is B, i.e., bðDrÞ ¼
B ¼ Cr

j . Also assume that the resource r is accessed at a
before time 0; i.e., at time �a. To construct a counter
example assume that there is a deadline miss at time
dmiss, with dmiss < Dr, but no deadline miss atDr.

The proof will be structured into three cases (the bet-
ter to illustrate the intuition behind the proof).

Case 1. Assume only tj executes between the resource
being accessed at time �a and time 0 (see Fig. 2 for a sim-
ple three task system that has this property, again the
darker shaded boxes implies that a task is executing
while holding the resource). Let B1 be the duration of
execution before time 0, and B2 after, so B1 þB2 ¼ B.

To cause blocking at time dmiss the inherited deadline
of tj must be less than or equal to dmiss. That is,
�aþDr � dmiss, implying �B1 þDr � dmiss and hence
dmiss þB1 � Dr.

To cause a deadline miss at time dmiss then

hðdmissÞ þB2 > dmiss;

Fig. 2. Case 1.

BURNS ET AL.: A DEADLINE-FLOOR INHERITANCE PROTOCOL FOR EDF SCHEDULED EMBEDDED REAL-TIME SYSTEMSWITH RESOURCE... 1247

hence

hðdmissÞ þB2 þB1 > dmiss þB1;

giving

hðdmissÞ þB > dmiss þB1 � Dr:

Now hðDrÞ � hðdmissÞ so
hðDrÞ þB > Dr:

which implies a deadline miss at Dr and provides the
contradiction.

Case 2. To bring the deadline miss even earlier, the
resource must be accessed earlier. This can only happen
if tj is preempted by a shorter deadline task (tk) after it
has accessed the resource (after �a). In Case 2 we assume
a single preempting job from task tk (see Fig. 3 for an
illustration of this possibility in which tk is released at
time �f with �f > �a).

If the releases of tj and tk are now postponed (moved
to the right in the figure) by the amount (Dr � dmiss),
which can occur asDr � dmiss � a, then the initial proces-
sor demand at time dmiss will be moved to timeDr. More-
over there will also be the additional demand coming
from the (partial) executions of tj and tk moving beyond
time 0: this is equal to the duration of the release post-
ponements (Dr � dmiss). It follows that

hðDrÞ þ bðDrÞ � hðdmissÞ þ bðdmissÞ þ ðDr � dmissÞ;
but as there is a deadline miss at dmiss, so

hðdmissÞ þ bðdmissÞ > dmiss;

hence

hðDrÞ þ bðDrÞ > dmiss þDr � dmiss;

implying

hðDrÞ þ bðDrÞ > Dr;

which implies a deadline miss at Dr and provides the
contradiction.

Case 3. Finally we now consider a number of jobs from
any number of tasks interfering with tj before time 0
while it has hold of the resource. By the same argument
used in Case 2 if all the job executions before time 0 are
postponed by (Dr � dmiss) then the deadline miss at dmiss

will move to a deadline miss atDr.
This completes the proof. tu

This Lemma shows that the assumption that the resource
is accessed by tj just before time 0 captures the worst-case.
Moreover, the interval over which this task can cause block-
ing is maximised by also assuming that tj is actually
released just before time 0. It can then cause blocking at any
point in the interval ½Dr;DjÞ. The magnitude of the blocking
term is determined by the action of tj whilst accessing
resource r. Let the blocking term identified as B in the above
proof be represented more precisely by Cr

j (the time task tj
is executing with resource r).

Returning to the deadline miss at time t. For this to occur
there must be a blocking value (bðtÞ > 0). To prevent a
deadline miss the maximum blocking term must be
bounded by t� hðtÞ, i.e., bðtÞ � t� hðtÞ. As only one task
can be causing blocking, the maximum blocking term at
time t is given by

bðtÞ ¼ max
�
Cr

j

Dj > t;Dr � t
	
; (7)

where themax is taken over all tasks and all resources.

Theorem 5. The following condition is sufficient for guarantee-
ing that all deadlines are met under EDFþDFP:

8t > 0 : bðtÞ þ
Xn
i¼1

max 0; 1þ t�Di

Ti

� �� �
Ci � t; (8)

where bðtÞ is computed by equation (7).

Proof. Follows directly from above. tu
It is now possible to show that the blocking term for

EDFþDFP is the same as that for EDFþSRP. The protocols
are therefore equivalent from the point of view of their
worst-case blocking.

Theorem 6. The worst-case processor demand for EDFþDFP is
the same as that computed by EDFþSRP.

Proof. Recall the definition of the blocking term for SRP
given in Section 4.1 (equation (5)).

bSRP ðtÞ ¼ maxfCa;kkDa > t;Dk � tg;
where Ca;k denote the maximum length of time for which
task ta needs to hold some resource that may also be
needed by task tk (withDk � t).

For DFP the blocking term (using the same task
names) is

bDFP ðtÞ ¼ max
�
Cr

a

Da > t;Dr � t
	
:

If in bSRP ðtÞ task tk may access a resource, r, then the
deadline floor of this resource (Dr) must have the prop-
erty: Dr � Dk � t. And hence bDFP ðtÞ would also con-
tain this term and Cr

a ¼ Ca;k. Similarly if a resource is
contained in the bDFP ðtÞ term then there will be a corre-
sponding task in bSRP ðtÞ. This completes the proof. tu
Note that the above shows that the two protocols (DFP

and SRP) are equivalent in terms of their worst-case block-
ing; but they are not identical. They can give rise to different
execution sequences at run-time as illustrated by the
extended example in Section 5.2.

Fig. 3. Case 2.

1248 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 5, MAY 2015

5.8 Adding Release Jitter to the Model

If a task should theoretically be released for execution at
time t, but is not actually released for execution until a later
time s, then the task is said to suffer release jitter of, in this
case, s� t. Consider a periodic task with period 9 that is
implemented on a RTOS that has a clock which only ticks in
even time. Starting at time 0 the task will be released at 0
but its next release will be at 10, not 9. The subsequent
release will then be 18 (followed by 28 etc.). The task has a
release jitter of 1. In general, the maximum release jitter of
task ti is denoted by the symbol Ji.

For DFP, release jitter has the potential to undermine the
safety of the protocol. Under the usual definition of EDF, a
task that should be released at time t (but is actually
released later at time s) is given the absolute deadline of
tþD (not sþD). Consider a simple example of a two task
system, where the tasks share a single resource. The first
task (t1) has period 10, deadline 10, computation time 5 and
jitter 4. The second task (t2) has period 22, deadline 20, com-
putation time 5 but no jitter. The shared resource therefore
has a deadline floor of 10. At time 20 t1 should be released,
it will have deadline 30 and will clearly run in preference to
t2 which, when released at time 22, will have deadline 42.
However if the release of t1 is delayed by four ticks the fol-
lowing might occur.

� Task t2 is released at time 22 and begins its execution.
� At time 23 t2 accessed the shared resource and its

deadline is reduced to 33.
� At time 24 t1 is released with deadline 30 (not 34)

and hence preempts t2.
� At time 25 t1 accessed the shared resource; breaking

mutual exclusion.

This is illustrated in Fig. 4. Fortunately this potential prob-
lem is easily nullified by a simple modification to the
protocol.

The key property of DFP as given in Lemma 1 is that
once a task is running it cannot be preempted by any other
task that might use the same shared resources. DFP achieves
this by giving the running task (when it accesses a resource)
a deadline shorter than any such task. With release jitter
this can be undermined. The deadline floor value needs to
reflect the real relative deadlines of any user task that expe-
riences release jitter.

Consider again the example. Task t1 is released at time 24
and has a deadline of 30. In practice its relative deadline is
really 6 (not 10). Hence the deadline floor value for the
shared resources should be 6. Now when t2 accesses the
resources at time 23 its deadline will be reduced to 29. So
when t1 is released for execution at time 24 and is given a
deadline of 30 it will not preempt.

To cater for release jitter, the first element of the defini-
tion of DFP must become:

1) Each resource, ri, has a relative deadlineDi given by

Di ¼ minfDj � Jj : tj 2 AðriÞg:

All results given earlier for DFP are easily reasserted for this
extended definition. Note that SRP must also be modified to
cater for jitter; preemption levels must be assigned accord-
ing to each task’sD� J value.

It must be emphasised that ignoring release jitter, which
for fixed priority scheduling can undermine schedulability,
can with DFP also lead to mutual exclusion being broken
unless a run-time check is made. As all implementations
have some jitter over the implementation of the clock it is
important that a jitter term is included in all calculations
that are used to give the deadline floor values for any
shared resource.

5.9 Implementation Issues for Programming
Languages and RTOSs

To implement EDF scheduling, the associated language
run-time support system or RTOS must keep a ready
queue, ordered by absolute deadline, of all the runnable
tasks. When a task is released for execution (for example
when a delay statement expires) its absolute deadline
must be computed and the task is then inserted at the
appropriate place in the ready queue. The task at the head
of the queue has the earliest deadline and is therefore cho-
sen for execution.

To extend this implementation scheme to incorporate
DFP is straightforward. Each resource access requires a pre
and post protocol that manipulates the deadline of the cli-
ent task. The primitive to change the task’s deadline is
already present in the RTOS (if it supports EDF at all). On
exiting a resource the post protocol must return the task’s
deadline to the value stored during the pre protocol. This
simple scheme clearly deals with nested resource usage as
long as the relationship between the resources is one of
strict nesting. The following gives pseudo code (using
Ada) that would need to be executed in the RTOS kernel
for these pre and post protocols:

– – pre protocol:

D := Get_Deadline; –– read the absolute deadline

of the task

New_Deadline := Clock + Deadline_Floor;

if New_Deadline < D then

Set_Deadline(New_Deadline);

– – set new absolute deadline

end if;

– – code for accessing the resource

– –post protocol:

Set_Deadline(D); – re-set old absolute deadline

The constant Deadline_Floor holds the deadline floor
value for the resource (it would be initialised at the begin-
ning of the program). The subprograms Get_Deadline,
Clock and Set_ Deadline deliver the behaviours implied
by their names.

Fig. 4. Jitter example.

BURNS ET AL.: A DEADLINE-FLOOR INHERITANCE PROTOCOL FOR EDF SCHEDULED EMBEDDED REAL-TIME SYSTEMSWITH RESOURCE... 1249

The overheads of the protocols are simply the cost of
reading the local real-time clock plus the cost of two dead-
line changes to the executing task. Note the first deadline
change, as it is to the executing task and is a deadline reduc-
tion, cannot lead to a context switch. Only the re-setting of
the old deadline could result in a task switch (if a more
urgent task had been released during the execution of the
resource’s code) and this is a task switch that would occur
anyway. An evaluation of an actual implementation of DFP
is given in the next section.

Any implementation of DFP is no more complex than
the immediate priority ceiling protocol for fixed priority
scheduling which is available via many RTOSs (e.g., it is
specified in real-time POSIX) and programming languages
such as Java andAda. By comparison, under SRP a taskmust
have a deadline and a consistent preemption level. The Ada
programming language has implemented SRP as part of its
support for EDF scheduling [8]. To give a complete imple-
mentation for SRP a programming language must specify
what happens to tasks that are released butwhich do not pre-
empt the currently executing task. For example, a task could
chain through a set of nested resources, during this time a
number of other tasks could be released with different pre-
emption levels and deadlines. To ensure that the right order
of execution is maintained Ada uses ready queues at each
preemption level. The protocol is not intuitive; indeed an
early version of the protocol was shown to be incorrect [22].
Moreover, an initial implementation of the run-time was
shown to be inconsistent with the language rules [10].

The correct rule for preemption is defined by the follow-
ing text in the reference manual for Ada [6]: A task T is
placed on the ready queue for priority level P (note a
resource is represented by a protected object in Ada), where
P is defined by

the highest priority P, if any, less than the base priority
of T such that one or more tasks are executing within a
protected object with ceiling priority P and task T has an
earlier deadline than all such tasks and all other tasks on
ready queues with priorities strictly less than P.

Of course this quote is without its context, nevertheless it
illustrates the complexity of embedding SRP into the seman-
tics of a programming language. By comparison the priority
ceiling protocol (for fixed priority scheduling) is straightfor-
ward to define.4

6 IMPLEMENTATION AND EVALUATION OF DFP
IN MARTE OS

MaRTE OS [16] is a real-time operating system developed
by the computers and real-time group at the University of
Cantabria. Most of its code is written in Ada with some C
and assembler parts. MaRTE OS provides support for Ada
and C/C++ concurrent applications. In the case of C/C++
applications, they can make use of the POSIX/C interface
provided by MaRTE OS [1].

MaRTE OS supports many advanced real-time fea-
tures not present in the POSIX standard. In particular, it
implements the EDF scheduling policy along with the
Stack Resource Protocol.

In this section we describe two implementations of
EDFþDFP and one implementation of EDFþSRP. The imple-
mentations differ in the data structures used to implement
the ready queue:

� SRP&Queue+Stack. SRP implementation based on a
queue and a stack.

� DFP&Queue+Stack. DFP implementation based on a
queue and a stack.

� DFP&Queue. DFP implementation based only on a
queue.

These three alternative implementations are compared in
terms of performance, complexity and code size.

6.1 Basic EDF Implementation

MaRTE OS uses a hierarchical scheduler with two levels.
The base scheduler uses fixed priorities as defined in the
POSIX standard. Each task (called thread in POSIX) is
assigned an integer called the priority that is used as the
primary criterion for scheduling. A higher priority task
will always preempt a lower priority task. Within each
priority level POSIX allows different behaviours (such as
FIFO or round-robin ordering). MaRTE OS adds a fur-
ther secondary scheduler that uses the EDF policy for
tasks of the same priority.

The main data structure managed by the MaRTE sched-
uler is the ready queue. Originally, the MaRTE ready queue
is an array of queues implemented with doubly-linked lists,
a queue for each system priority.

When a task becomes ready, it must be added to the queue
that corresponds to its priority. At each activation, an EDF
task is assigned a new absolute deadline. EDF tasks are placed
in the queue that corresponds to its priority according to their
absolute deadlines (and preemption levels if SRP is in use).

The original structure of the ready queue has been
modified to include a deadline sorted queue to support
the DFP&Queue implementation and a deadline sorted
queue and a stack to support the SRP&QueueþStack and
DFP&Queue+Stack implementations.

The deadline sorted queues have been implemented
using a “binary heap”. A binary heap is a binary tree
with two additional constraints: all levels of the tree,
except possibly the last one (deepest) are fully filled, and
each node is less than or equal to each of its children
according to a total order relation. This data structure is an
efficient implementation of a sorted queue. Both inserting
an element in the heap and removing the element at the
head take OðlogðnÞÞ time, while peeking the head takes
constant time Oð1Þ.

6.2 SRP Implementation Based on Stack and Queue

In [3], [2] Baker proposed an efficient implementation of the
ready queue for a system using the SRP protocol. In this
proposal, the ready queue is composed by two data struc-
tures: a stack and a queue.

4. The replacement of SRP by DFP for the Ada language was dis-
cussed at the 2013 International Real-Time Ada Workshop (IRTAW);
the workshop recommended that DFP is adopted and SRP depre-
cated[21].

1250 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 5, MAY 2015

The queue contains all the tasks that have not been yet able
to execute in their current activation. They are sorted accord-
ing to their absolute deadlines, more urgent deadlines first.

The top of the stack contains the running task (the task
that is currently executing). Also on the stack, and below
the running task, is the task that was preempted when the
running task was activated and so on.

All the tasks holding resources are on the stack. Each task
has an Effective Preemption Level (EPL) which is the maxi-
mum of the task’s preemption level and the preemption lev-
els of the resources held by the task.

When a task becomes ready, if its deadline is not more
urgent than any other task in the queue, it is inserted in the
queue and no scheduling decision is necessary. A decision
is needed when:

1) A task becomes ready and has a more urgent dead-
line than any other task in the queue.

2) The running task suspends.
3) The running task frees a resource.

In situation #1 the candidate to become the new run-
ning task is the new task, while in the other two situations
it is the task at the head of the queue. This candidate task
is then compared with the task at the top of the stack. The
candidate task will become the running task if its absolute
deadline is more urgent than the deadline of the task at
the top of the stack and its preemption level is strictly
higher than the EPL of the task at the top of the stack. In
such cases the candidate task is pushed into the top of the
stack (and removed from the head of the queue in situa-
tions #2 and #3). Otherwise, in situation #1 the candidate
task is inserted in the queue.

6.3 DFP Implementation Based on Stack and Queue

The DFP can also be implemented as explained above for
SRP using a stack and a queue. The DFP implementation is
simpler because there is no need for any parameter equiva-
lent to the effective preemption level required by SRP. In
the DFP implementation the comparison between the candi-
date and the task at the top of the stack is simply based on
their absolute deadlines.

The implication of this fact on the performance of the sys-
tem is discussed in Section 6.6.

6.4 DFP Implementation Based on a Queue

The definition of DFP does not introduce any new schedul-
ing rule to an EDF scheduled system. In consequence, the
ready queue in an EDFþDFP system can be implemented
directly using just a queue sorted by deadline. This queue
can be efficiently implemented using a binary heap.

It is important to note that this approach cannot be
applied to an EDFþSRP system in an efficient way: As
explained in Section 3.1 a new scheduling restriction is
added by SRP to the basic EDF scheduling: “a task is chosen
to execute if it has the earliest deadline and if its preemption
level is strictly higher than the ceiling of any resource that is cur-
rently held in the system”.

This restriction forces a deep change in the ordering crite-
rion of the queue. While in plain EDF (and in EDFþDFP),
tasks are ordered according to their absolute deadlines,
when using SRP the order relation must also take into
account the preemption levels of the tasks: when a new task
is added to the ready queue it must be placed after all the
tasks that are more urgent or have an EPL equal or higher
than the new task.

The described order criterion produces a non-total order
that prevents the use of efficient implementations of sorted
queues such as the binary heap, forcing the use of linear
structures with linear time queue and dequeue operations.

6.5 Complexity of the Implementation

To measure the complexity of implementing the SRP and
DFP protocols we have counted the number of specific
attributes and operations needed for their implementation.
Attributes and operations that are common to both proto-
cols are not taken into account.

The implementation of both protocols requires two
specific mutex fields. In the case of the DFP these fields are
the original deadline of the task holding the mutex (see
Section 5.9) and the mutex deadline floor. The specific fields
required for the implementation of the SRP are the original
preemption level of the task holding the mutex and the ceil-
ing preemption level of the mutex.

For the DFP implementation, two operations have been
added to the POSIX operating system interface in order to
set and get the deadline floor parameter in the attribute
object (pthread_mutex_attr_t) used at mutex creation.
Two other operations have been added to dynamically set
and get the deadline floor of an already created mutex. The
implementation of SRP also requires adding four equivalent
operations to manage the ceiling preemption level instead
of the deadline floor.

The difference in favour of DFP arises when consider-
ing the number of specific task fields required. While for
the DFP implementation no extra fields are needed, in
SRP it is necessary to add the preemption level of the
tasks and the corresponding four operations to set and
get this parameter either dynamically or in the thread’s
attribute object (pthread_attr_t).

We have also counted the number of lines of code
required to implement the protocols. We only consider the
lines that are specific to the implementation of each proto-
col, not including the lines of code related to the basic

TABLE 2
SRP and DFP Implementation Summary

SRP DFP

Mutex Fields 2 2
Mutex Operations 4 4
Task Fields 1 0
Task Operations 4 0
Code Lines 54 34

TABLE 3
SRP and DFP Efficient Data Structures

SRP DFP

Efficient implementation based on queue+stak Yes Yes
Efficient implementation based on queue NO Yes

BURNS ET AL.: A DEADLINE-FLOOR INHERITANCE PROTOCOL FOR EDF SCHEDULED EMBEDDED REAL-TIME SYSTEMSWITH RESOURCE... 1251

operation of the locks in MaRTE, nor the lines of code of
the data structures used to implement the ready queue in
each particular protocol implementation.

In Table 2 we can the see a summary of those implemen-
tation metrics. The implementation of DFP is clearly simpler
than the implementation of SRP.

Another aspect in which the DFP is simpler than SRP is
in the data structure required for the ready queue: while the
DFP can be implemented using just a queue, an efficient
implementation of the SRP requires a queue and a stack as
shown in Table 3.

For our performance analysis, the queue has been imple-
mented using a binary heap and the stack with a chain of
singly-linked cells. Both data structures have been imple-
mented with abstract data types using Ada generic
packages, with each data structure operation provided via
a subprogram.

6.6 Performance Analysis

The performance of SRP and DFP has been analysed in four
different situations: lock a mutex, unlock a mutex, thread
activation and thread suspension. In order to simplify the
presentation of the results, the four situations have been
grouped in two representative experiments:5

� Time required by a thread to lock and immediately
unlock a mutex (Fig. 5).

� The sum of the times required by the operating sys-
tem to activate and suspend a thread (Fig. 6).

The figures show the performance of each experiment
with different numbers of threads in the system. Measure-
ments have been performed in the worst case system config-
uration for each situation, that is, the system configuration
that involves the most complex operations on the ready
queue. In particular, they always include enqueue and
dequeue operations that affect all the levels of the heap.

All the graphs present a logarithmic behaviour since the
most time-consuming operations involved on each mea-
surement are the enqueue or dequeue operations on the
binary heap.

Measured times for SRP&QueueþStack and DFP&
QueueþStack are almost identical in both experiments. The
small difference in Fig. 5 in favour of SRP& QueueþStack is
due to the necessity of reading the clock in the DFP lock
operation. On the other hand, in Fig. 6 DFP&Queueþstack
behaves slightly better than SRP&QueueþStack due to the
fact that in DFP the comparison between the tasks at the
head of the queue and at the top of the stack is simpler than
in SRP (in SRP not only the deadlines have to be compared,
but also the preemption levels).

In both experiments DFP&Queue performs better than
SRP&QueueþStack and DFP&QueueþStack. This is
because, besides the heap queue or dequeue operations,
the implementations that use the stack require, in the
worst case scenario, the comparison between the the head
of the queue and the top of the stack and a push or pop
operation on the stack.

7 CONCLUSION

In this paper we have introduced a new protocol for control-
ling access to shared resources within the EDF scheduling
framework. We have shown that this protocol is equivalent
to the Stack Resource Protocol which is the defacto protocol
to use with EDF. The new protocol requires all shared
resources to have a relative deadline defined; this is the
minimum (floor) of the relative deadlines of all tasks that
use the resource. We have also shown that when tasks suffer
release jitter it is necessary to decrease all the deadline floors
by the release jitter value. When a task accesses a resource at
time t its absolute deadline is immediately reduced to the
value tþDF (if it is not already less than this value); where
DF is the deadline floor of the resource. The resulting imme-
diate deadline floor inheritance protocol is identified here by the
shorter title: Deadline Floor Protocol, DFP. It has an identi-
cal form to the immediate priority ceiling inheritance protocol
(usually shortened to IPCP) that is the standard approach to
use within the fixed priority scheduling framework.

The Deadline Floor Protocol has all the effective proper-
ties of the Stack Resource Protocol. On a uniprocessor this
means that tasks suffer at most one block from a longer
deadline task, this block occurs before the task actually
starts executing, all resources are accessed under mutual

Fig. 5. Time required for a thread to lock and immediately unlock a
mutex.

Fig. 6. Sum of the times required by the operating system to activate and
suspend a thread.

5. The experiments were performed on a 800 MHz Pentium III.

1252 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 5, MAY 2015

exclusion without the need for further locks, and the proto-
col itself ensures deadlock free execution.

The motivation for defining DFP is that it leads to a
straightforward and efficient means of implementation. The
single notion of a task’s deadline is all that is needed to
define and support the protocol. By comparison, the Stack
Resource Protocol requires deadlines and preemption lev-
els, and these preemption levels must be assigned in a man-
ner consistent with the deadlines. The implementation must
then keep track of both deadlines (for EDF scheduling) and
the maximum system preemption level (for SRP control).
We have demonstrated the advantage of the DFP rules
using the MaRTE real-time operating system.

This paper has not considered multiprocessor systems. It
is however possible to envisage multiprocessor versions of
the protocol in the same way that IPCP has given rise to a
number of such multiprocessor protocols. The development
of these protocols for DFP is part of future work.

ACKNOWLEDGMENTS

The authors would like to thank Sanjoy Baruah for a num-
ber of very useful discussions on the topic of this paper. We
would also like to thank the anonymous reviewers for rec-
ommendations concerning the implementation of the SRP.
This work has been funded in part by the Spanish Govern-
ment and FEDER funds under Grant TIN2011-28567-C03-02
(HI-PARTES).

REFERENCES

[1] IEEE Standard for Information Technology - Portable Operating System
Interface (POSIX) Base Specifications, Issue 7, POSIX: IEEE 1003.1-
2008, 2008.

[2] T. P. Baker, “A stack-based resource allocation policy for realtime
processes,” in Proc. IEEE Real-Time Syst. Symp., 1990, pp. 191–200.

[3] T. P. Baker, “Stack-based scheduling of realtime processes,” J.
Real-Time Syst., vol. 31, pp. 67–99, Mar. 1991.

[4] S. K. Baruah, “Resource sharing in EDF-scheduled systems: A
closer look,” in Proc. IEEE Real-Time Syst. Symp., 2006, pp. 379–
387.

[5] S. K. Baruah, A. K. Mok, and L. E. Rosier, “Preemptive scheduling
of hard real-time sporadic tasks on one processor,” in Proc. IEEE
Real-Time Syst. Symp., 1990, pp. 182–190.

[6] R. Brukardt, ed., “Ada 2005 reference manual,” Tech. Rep.
ISO/IEC 8526, ISO, 2006.

[7] A. Burns, “A deadline-floor inheritance protocol for EDF sched-
uled real-time systems with resource sharing,” Dept. Comput.
Sci., Univ. York, Heslington, U.K., Tech. Rep. YCS-2012-476, 2012.

[8] A. Burns, A. J. Wellings, and T. Taft, “Supporting deadlines and
EDF scheduling in Ada,” in Proc. Ada Eur. Conf. Rel. Softw. Tech-
nol., 2004, pp. 156–165.

[9] M. Chen and K. Lin, “Dynamic priority ceilings: A concurrency
control protocol for real-time systems,” J. Real Time Syst., vol. 2,
no. 4, pp. 325–346, 1990

[10] M. L. Fairbairn and A. Burns, “Implementing and validating EDF
preemption-level resource control,” in Proc. 17th Ada Eur Int. Conf.
Rel. Softw. Technol., 2012, pp. 193–206.

[11] K. Jeffay, “Scheduling sporadic tasks with shared resources in
hard-real-time systems,” in Proc. IEEE Real-Time Syst. Symp., 1992,
pp. 89–99.

[12] B. W. Lampson and D. Redell, “Experience with processes and
monitors in Mesa,” Commun. ACM, vol. 23 no. 2, pp. 105–117,
1980.

[13] J. Y. T. Leung and M. L. Merrill, “A note on preemptive schedul-
ing of periodic real-time tasks,” Inform. Process. Lett., vol. 11, no. 3,
pp. 115–118, 1980.

[14] C. L. Liu and J. W. Layland, “Scheduling algorithms for multipro-
gramming in a hard real-time environment,” J. ACM, vol. 20,
no. 1, pp. 46–61, 1973.

[15] I. Ripoll, A. Crespo, and A. K. Mok, “Improvement in feasibility
testing for real-time tasks,” J. Real-Time Syst., vol. 11, no. 1, pp. 19–
39, 1996.

[16] M. A. Rivas and M. G. Harbour, “MaRTE OS: An Ada kernel for
real-time embedded applications,” in Proc. 6th Ada Eur. Int. Conf.
Rel. Softw. Technol., 2001, pp. 305–316.

[17] L. Sha, R. Rajkumar, S. Son, and C.-H. Chang, “A real-time locking
protocol,” IEEE Trans. Comput., vol. 40, no. 7, pp. 793–800,
Jul. 1991.

[18] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance pro-
tocols: An approach to real-time synchronisation,” IEEE Trans.
Comput., vol. 39, no. 9, pp. 1175–1185, Sept. 1990.

[19] M. Spuri, “Analysis of deadline schedule real-time systems,”
INRIA, Valbonne, France, Tech. Rep. 2772, 1996.

[20] J. A. Stankovic, K. Ramamritham, M. Spuri, and G. Buttazzo,
Deadline Scheduling for Real-Time Systems, Norwell, MA, USA:
Kluwer, 1998.

[21] A. J. Wellings, “Session summary: Locking protocols,” ACM
SIGAda Ada Letters, vol. 33, no. 2, pp. 123–125, 2013.

[22] A. Zerzelidis, A. Burns, and A. J. Wellings, “Correcting the EDF
protocol in Ada 2005,” in Proc. 13th Int. Workshop Real-Time Ada
2007, vol. XXVII, no. 2, pp. 18–22.

[23] F. Zhang and A. Burns, “Schedulability analysis for real-time sys-
tems with EDF scheduling,” IEEE Trans. Comput., vol. 58, no. 9,
pp. 1250–1258, Sept. 2008.

[24] F. Zhang and A. Burns, “Schedulability analysis for real-time sys-
tems with EDF scheduling,” Univ. York, Heslington, U.K., Tech.
Rep. YCS 426, Sept. 2009.

[25] F. Zhang and A. Burns, “Schedulability analysis of EDF scheduled
embedded real-time systems with resource sharing,” ACM Trans.
Embedded Syst., vol. 12, no. 3, pp. 67.1–67.18, 2013.

Alan Burns is a professor of real-time systems in the Department of
Computer Science at the University of York, United Kingdom. He has
served as a chair of the IEEE Technical Committee on Real-Time Sys-
tems and has published widely more than 450 papers and articles, and
10 books. His successful book (co-authored by Andy Wellings), Real-
Time Systems and Programming Languages, has been published in its
fourth edition. In 2009, he was elected a fellow of the Royal Academy
of Engineering, United Kingdom. In 2011, he was elected a fellow of
the IEEE.

Marina Guti�errez received the physics degree and a master’s degree
in computer science by the University of Cantabria. She is a former
researcher at the University of Cantabria. Now she works in a private
company developing real-time applications for embedded systems.
The implementation and testing of DFP in MaRTE OS was part of her
master thesis.

Mario Aldea Rivas is an associate professor in the Department of
Mathematics, Statistics, and Computer Science at the Universidad de
Cantabria. His main research interests include the real-time systems,
with special focus on flexible scheduling, real-time operating systems,
and real-time languages. He has been involved in several industrial
projects to build real-time controllers for robots. He is the main devel-
oper of MaRTE OS an operating system that has served as platform to
provide support for advanced real-time services.

Michael Gonz�alez Harbour is a professor in the Department of Mathe-
matics, Statistics, and Computer Science at the University of Cantabria.
He works in software engineering for real-time systems, and particu-
larly in modelling and schedulability analysis of distributed real-time
systems, real-time operating systems, and real-time languages. He is a
co-author of A Practitioner’s Handbook on Real-Time Analysis. He has
been involved in several industrial projects using Ada to build real-time
controllers for robots. He has participated in the real-time working
group of the POSIX standard for portable operating system interfaces.
He is one of the principal authors of the MAST suite for modelling and
analysing real-time systems. He is a member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BURNS ET AL.: A DEADLINE-FLOOR INHERITANCE PROTOCOL FOR EDF SCHEDULED EMBEDDED REAL-TIME SYSTEMSWITH RESOURCE... 1253

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

