
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Unequal Error Protection of memories in LDPC
decoders / Condo, Carlo; Masera, Guido; Montuschi, Paolo. - In: IEEE TRANSACTIONS ON COMPUTERS. - ISSN
0018-9340. - STAMPA. - 64:10(2015), pp. 2981-2993. [10.1109/TC.2014.2378271]

Original

Unequal Error Protection of memories in LDPC
decoders

Publisher:

Published
DOI:10.1109/TC.2014.2378271

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2577757 since: 2015-10-08T07:59:40Z

IEEE - INST ELECTRICAL ELECTRONICS ENGINEERS INC

1

Unequal Error Protection of memories in LDPC
decoders

Carlo Condo, Guido Masera, Senior Member IEEE, Paolo Montuschi, Fellow IEEE

Abstract—Memories are one of the most critical components of
many systems: due to exposure to energetic particles, fabrication
defects and aging they are subject to various kinds of permanent
and transient errors. In this scenario, Unequal Error Protection
(UEP) techniques have been proposed in the past to encode
stored information, allowing to detect and possibly recover from
errors during load operations, while offering different levels
of protection to partitions of codewords according to their
importance. Low-Density Parity-Check (LDPC) codes are used in
many communication standards to encode the transmitted infor-
mation: at reception, LDPC decoders heavily rely on memories
to store and correct the received information. To ensure efficient
and reliable decoding of information, the need to protect the
memories used in LDPC decoders is of primary importance.
In this paper we present a study on how to efficiently design
UEP techniques for LDPC decoder memories. The devised UEP
method is divided in four adjustable levels, each one offering a
different degree of protection. The full UEP, along with simplified
versions, has been implemented within an existing decoder and its
area occupation and power consumption evaluated. Comparison
with the literature on the subject shows an unmatched level of
protection from errors at a small complexity and energy cost.

Index Terms—Unequal Error Protection, LDPC, decoder

I. INTRODUCTION

CMOS technology scaling has reached deep sub-micron
level: such a degree of integration has been shown to rise
reliability problems that cannot be overlooked. In fact, the
achieved degree of control on the fabrication process of the
latest nodes is much lower than before [1]: this leads to process
variations and less reliable components. Moreover, deeply
scaled integrated circuits are very sensitive to external influ-
ences even in presence of ideal components. Consequently,
depending on the application, it is necessary to apply error
protection techniques to memories and logic.

Memories are particularly critical devices, that are subject
to various types of faults. Soft errors are faults in the stored
data that are not caused by permanent hardware damage.
They can be induced by different kinds of energetic particles
hitting memory cells. The subsequent voltage rise can cause
bit flipping and consequent faulty data [2]. The downscaling
of both cell dimensions and operating voltage has increased
the sensitivity of memories to such events, since a lower
amount of energy is required to change logic states [1],
even affecting multiple cells at the same time. Opposite to
soft-errors, permanent or hard errors are caused by hardware
damages, that can be the result of fabrication defects or aging:
stuck-at bits, i.e. bits which value cannot be modified, are a
common permanent error.

Low Density Parity Check (LDPC) codes [3] are block
error correcting codes employed in a variety of communication

standards, like WiMAX, WiFi, DVB-S2, CMMB and DTMB.
LDPC decoders rely on decoding algorithms that iteratively
update bit error probabilities: these are stored, in between iter-
ations, in dedicated memories, whose implementation requires
the largest amount of area and at the same time accounting for
most of the power consumption [4], [5]. The quantities stored
in memories during LDPC decoding are soft amounts (usually
represented as Logarithmic Likelihood Ratios or LLRs) that
express both the value of codeword bits (sign) and their
reliability (magnitude). The values of these parameters evolve
as the decoding proceeds, ideally towards correct decoded bits.
A property of LDPC decoders is to be moderately resistant
to hardware errors: this characteristic has been exploited in
past error fault tolerant designs [6]. On the other hand, since
in LDPC codes each LLR is correlated with many others,
an error during a read operation can be propagated, possibly
compromising the whole decoding process.

This paper focuses on providing error resilience to LDPC
decoders, to ensure correct functionality also in presence of
permanent and transient memory error conditions under which
current decoders cannot work. Our approach starts from the
analysis of the impact of memory errors on the decoding
performance, in order to determine the specific effect of each
bit of an LLR on the decoding process. To be able to sustain
high soft error probabilities and large numbers of permanent
errors, different degrees of protection are proposed, leading
to the development of an Unequal Error Protection (UEP)
methodology [7]. The idea behind UEPs is that each bit is
protected proportionally to its relevance, i.e. the higher the
importance the higher the degree of protection. UEP tech-
niques have been designed in the past targeting applications
like image transmission and storage [8]–[11] and are usually
based on error correcting codes. However, LDPC decoders
are characterized by deep, narrow memories (usually < 8 bits)
which have convoluted access address patterns. It turns out that
in these conditions, protection techniques based on information
encoding have unsatisfying performance or cause very large
overheads, since the access patterns do not allow LLRs to be
grouped together. In this paper we present a special purpose
UEP scheme that is, as we will see throughout the paper,
particularly suitable for LDPC decoders and applications that
use narrow memories with frequent accesses and complex
address patterns.

The rest of the paper is organized as follows. Section II
introduces LDPC decoding. Then, Section III provides an
overview on previous works on UEP and error protection
in LDPC decoders and Section IV analyzes the impact of
errors on the performance of a generic decoder. Subsequently,
Section V describes the proposed method. The UEP’s im-

plementation is presented in Section VI, while performance
results are reported in Section VII. Comparison with the state
of the art is performed in Section VIII and conclusions are
drawn in Section IX. Finally, in the Appendix (separate
file) interested readers can find the zoomed version of all
the graphs shown in the paper, for an even better visual
understanding of the details of our test.

II. LDPC DECODING

LDPC codes are characterized by a binary parity check
matrix H [3] with M rows and N columns. The H matrix
is sparse and identifies the set of valid codewords related to a
particular LDPC code; all codewords x satisfying H · x′ = 0,
where x′ is the transposed of x, are considered valid.

LDPC decoding is usually handled via Belief Propagation
(BP) algorithm or one of its approximations, following one of
two scheduling approaches: the two-phase scheduling and the
layered scheduling [12]. In the following we will focus on the
layered scheduling technique, which has been shown to be
more performing, nearly doubling the convergence speed of
the decoding process with respect to two-phase scheduling.
In layered decoders the H matrix is subdivided into sets
of consecutive, non-communicating parity-check constraints,
called layers: these can be decoded in sequence, with the
extrinsic information being propagated from one layer to the
following ones [12].

Let us denote with λ[c] the LLR of symbol c; the bit LLR
λk[c] is initialized, for column k in H, to the corresponding
received soft value. The sign of an LLR is associated to the
value of an LDPC codeword bit, while its magnitude is a
measure of how reliable the information is. A low magnitude
expresses little confidence on the current bit value: its weight
on the overall decoding is low, and it is more likely to be
influenced by other, more reliable LLRs.

The BP algorithm involves some computationally intensive
operations, including the calculation of a hyperbolic tangent
[13]. Out of the several approximations present in the litera-
ture, we have considered the Self-Corrected-Min-Sum (SCMS)
[14] as it combines easiness of implementation with negligible
BER performance losses. For all parity-check constraints l in
a given layer, and for every iteration i up to a maximum of
Imax iterations, the following operations are executed:

Qi
lk[c] = λoldk [c]−Ri−1

lk (1)

δlk =
∏

n∈N(l),n6=k

sgn(Qln[c]) (2)

Ri
lk ≈ −δlk · min

n∈N(l),n6=k
{|Qln[c]|} , (3)

λnewk [c] = Qi
lk[c] +Ri

lk (4)

where λoldk [c] is the extrinsic information coming from one of
the previous layers and updated in (4), before being passed
to one of the subsequent layers. The term Ri−1

lk in (1) is
initialized to zero in the first iteration; the same term is
then updated in (3), obtaining Ri

lk, and stored until the next
iteration. In (2) N(l) is the set of bit indexes that contribute in
the lth parity check. At the end of each iteration, by observing

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8

F
E

R

SNR [dB]

N=2304 r=1/2, 10 iter, P(e)=0.0005, (7,0)-bit quantization

MSB1 error
MSB2 error
MSB3 error
MSB4 error
MSB5 error
MSB6 error
MSB7 error

No error

Figure 1. FER - errors on different MSBs

the sign of all λk[c], the corrected version of x is obtained.
Please observe that while Rlk and Qlk[c] are updated only
once per iteration, and are thus endowed with the iteration
indicator i, λk[c] is updated multiple times during each iter-
ation, and the apexes ‘old” and ‘new” are consequently used
to differentiate the values before and after each update. The
SCMS approximation adds a dynamic correction factor to (1).
When Qi

lk[c] is computed at the ith iteration, it is compared
with Qi−1

lk [c]. If their signs differ, then Qi
lk[c] is substituted

with zero for the current iteration, thus inducing a conservative
behavior when a sign changes.

III. PREVIOUS WORK

Several memory-protection techniques and algorithms have
been presented in the specialized literature over the years.
Certainly, one of the most popular frameworks is the encoding
of codewords and pages before storage in order to guarantee
error detection and recovery at load time [15]. Many types of
codes have been experimented with, from simple Hamming
and BCH [16] codes to more complex turbo codes and LDPC
codes themselves [17]–[19]. The concept of unequal error
protection of memories has been proposed for the first time
in [7]: codewords are subdivided in slots, to which different
degrees of protection are applied. From a practical point
of view, it has then been studied effectively for wireless
transmissions and storage of of images, where a certain degree
of unreliability can be tolerated [9], [20], [21]. For example, in
[22] UEP is applied to image transmission on mobile channels,
and a UEP SRAM coding scheme for multimedia applications
has been proposed in [10].

To the best of our knowledge only a few works in litera-
ture deal with resilient LDPC decoders. Stochastic decoders
[23], [24] implement an LDPC decoding approach based on
an alternative representation of the bit probabilities. While
inherently robust to hardware errors, in [25] statistical error
compensation is used to overcome the severe performance loss
brought by voltage overscaling. The work in [26] builds and
updates a list of cells that are probably faulty. This allows

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8

F
E

R

SNR [dB]

Errors on MSB3

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8

F
E

R

SNR [dB]

Errors on MSB7

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8

F
E

R

SNR [dB]

No Errors

10 iter, MSB3 error
15 iter, MSB3 error
20 iter, MSB3 error
10 iter, MSB7 error
15 iter, MSB7 error
20 iter, MSB7 error

10 iter, No error
15 iter, No error
20 iter, No error

Figure 2. FER - errors on different MSBs and variation of Imax for N=2304, r=1/2, P(e)=0.0005, (7,0)-bit quantization

parity check results to be cross-referenced and the faulty
cells to be replaced: at the same time, relative computation
errors are managed by ad-hoc bit flipping. The work presented
in [6] applies separate protection techniques to the different
functional blocks of an existing LDPC decoder architecture,
according to their level of exposure to failures and importance
for the correct operations of the system. Memories, as some of
the most critical modules, are protected according to their role
in the decoding process by doubling or tripling of the MSB
and dynamic corrections.

IV. ERROR ANALYSIS

We now study the impact of the errors on the performance
of a generic LDPC decoder.

Almost all practical implementations of LDPC decoders
make use of memories to store LLRs between iterations or,
in case of multi-core decoders, to exchange data information
between processing elements. The number of memory read
and write accesses can be extremely high both when we
consider the total lifetime of the decoder and each single
decoding process. For example, WiMAX LDPC codes require
from 7200 to 32800 memory accesses between read and write
operations for a single iteration, but this number can exceed

one million of accesses in case large codes are employed, like
in DVB-S2.

The two quantities usually stored in LDPC decoder mem-
ories are λk[c] and Rlk, that are read in (1) and updated in
(3) and (4). Depending on the involved quantities, errors in
read and write operations impact differently on the decoding
process. For example, a wrong Qi

lk[c] (1) does not necessarily
result in an incorrect Ri

lk. As (3) shows, only the first and
second minimum among the Qi

lk[c] involved in the check
node computation are considered for the selection of Ri

lk:
consequently, the error might not be propagated to other
λnewk [c]. Moreover, since the LDPC decoding process relies
on soft information, the performance degradation caused by
a flipped bit in λoldk [c] or Ri−1

lk depends on the position of
the error, as shown later in this section. In the following, for
sake of clarity but with no loss of generality, we will refer to
a practical case study. Assuming a quantization on b bits, let
us call MSB1 the Most Significant Bit, and MSBb the Least
Significant Bit. As a case of study, both λoldk [c] and Ri−1

lk have
been quantized with b = 7 (7 bits for the integer part and 0
for the fractional part) [27], [28].

In the following subsections we move to analyze the effect
of errors on different bits on the metrics stored in LDPC
decoder memories, and how they influence the decoding per-

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1.5 2 2.5 3 3.5 4 4.5

F
E

R

SNR [dB]

Errors on MSB3

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1.5 2 2.5 3 3.5 4 4.5

F
E

R

SNR [dB]

Errors on MSB7

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1.5 2 2.5 3 3.5 4 4.5

F
E

R

SNR [dB]

No Errors

N=2304, MSB3 error
N=1152, MSB3 error

N=576, MSB3 error
N=2304, MSB7 error
N=1152, MSB7 error

N=576, MSB7 error
N=2304, No error
N=1152, No error

N=576, No error

Figure 3. FER - errors on different MSBs and variation of code size for Imax=10, r=1/2, P(e)=0.0005, (7,0)-bit quantization

formance at the variation of different parameters. In particular,
we plot the Frame Error Rate (FER) while varying the MSB
of λoldk [c] and Ri−1

lk on which the error was injected, alone
and in combination with the following cases, where we are
varying:
• the maximum number of allowed iterations Imax;
• the code rate r;
• the code size N ;
• the quantization;
• the decoding algorithm.

Figures 1 to 5 have been obtained through simulations on a
bit-accurate software model. To better highlight the char-
acteristics of the results of our tests, in Fig. 2-4 we have
provided separate sub-figures for the different error cases.

The curves in Fig. 1 show the Frame Error Rate (FER) for
the WiMAX code of size N = 2304 and rate r = 1/2 in
case of transmission on an Additive White Gaussian Noise
(AWGN) channel. The decoding has been performed with the
SCMS approximation. The “no error” curve plots the FER
under ideal hardware conditions, i.e. without any error in the
read and write operations. The other curves have been obtained
by allowing errors on a single bit of λoldk [c] and Ri−1

lk with a
probability equal to P(e)=0.0005. Errors injected on the sign
bit (MSB1) are disruptive at every Signal-to-Noise Ratio value

(SNR), and cause unrecoverable errors. The criticalness of the
sign bit in LDPC decoding is well documented and protection
has been employed in the past [6]. The MSB2 and MSB3 error
curves show severe degradation with respect to the ideal one.
Both MSB2 and MSB3 account for a considerable percentage
of the total dynamic, and can cause strong variations in both
Ri

lk and λnewk [c]: particularly disruptive occurrences can easily
lead to sign bit flips. Less critical is the impact of MSB4 errors,
while errors injected in MSB5, MSB6 and MSB7 result in
similarly small performance degradations.

A. Variation of Imax

The bit-per-bit error analysis has been extended to different
choices of the maximum number of iterations Imax. The
increased correction capability brought by additional iterations
can in fact be dampened by the introduction of new errors. Fig.
2 plots the FER for three different error bits and three Imax

values. While the effect of errors is almost the same with
Imax=10 and Imax=15, the degradation caused by erroneous
bits is more consistent when Imax=20: in fact, we observe the
existence of a larger gap between the “no error” curve and the
MSB7 curve with respect to the two other cases, while the
MSB3 curve is proportionally shifted.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1.5 2 2.5 3 3.5 4 4.5 5

F
E

R

SNR [dB]

Errors on MSB3

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1.5 2 2.5 3 3.5 4 4.5 5

F
E

R

SNR [dB]

Errors on MSB7

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1.5 2 2.5 3 3.5 4 4.5 5

F
E

R

SNR [dB]

No Errors

r=1/2, MSB3 error
r=3/4, MSB3 error
r=5/6, MSB3 error
r=1/2, MSB7 error
r=3/4, MSB7 error
r=5/6, MSB7 error

r=1/2, No error
r=3/4, No error
r=5/6, No error

Figure 4. FER - errors on different MSBs and variation of code rate for Imax=10, N=2304, P(e)=0.0005, (7,0)-bit quantization

B. Variation of code rate r and size N

Code rate and code size play a major role in the overall im-
pact of errors. Fig. 3 considers three codes with different size
N and the same code rate r. The error injection probability
has been kept constant at P(e)=0.0005 for all the codes: this
means that codes with smaller N will lead to a lower number
of wrong bits per frame. However, it can be noticed how
smaller codes are more sensitive to faults, regardless of the
fewer injected errors. Taking as a reference point FER= 10−4,
MSB7 errors cause a loss of 0.05 dB to the N = 2304 code,
while 3.5 dB are lost with N = 576.

Fig. 4 is complementary to Fig. 3, with fixed code size
and varying rate. In the structure of WiMAX LDPC codes,
increasing the code rate, the total number of λoldk [c] and Ri−1

lk

is kept almost constant, since the rows of the H matrix increase
their weight. However, SCMS can often mask errors on Ri−1

lk :
increments in code rate consequently lead to a lower number
of potentially erroneous bits per frame. Fig. 4 shows that rate
and error injection variations do not scale proportionally, as
it has been already observed with changes in code size: high
rate codes are more sensitive to faults. The performance loss
caused by MSB7 errors at FER= 10−4 is 0.05 dB for code
rate 1/2, and 2.5 dB for code rate 5/6.

C. Variation of quantization and decoding algorithm

Fault tolerance of LDPC decoding has been analyzed in
terms of quantization too. The results meet our expectations
as errors affect the decoding performance proportionally to the
weight of the erroneous bit on the overall dynamic range, re-
gardless of the quantization. Obtained FER curves are similar
to what has been shown in Fig. 1.

A final practical test has been carried out by comparing
different decoding algorithms. The decoding performance of
the SCMS approximation is intrinsically more resistant to
hardware errors than more common approximations of the BP
algorithm like the Normalized-Min-Sum (NMS) [29]. Fig. 5
shows the the FER degradation due to P(e)= 0.0005 for a
code decoded with both NMS and SCMS, and the inherent
resilience of SCMS can be easily noted. This is due to
the puncturing of Qi

lk[c] in presence of a sign change, that
introduces an additional barrier to the propagation of disruptive
errors.

The previous analysis has clearly shown that errors on
MSBs always cause destructive effects, and therefore this issue
must be tackled accordingly. On the other hand, even if errors
on LSBs have a minor impact on the decoding performance,
they cannot be ignored either in the more critical cases, such
as in presence of high-rate codes and small-size codes.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8

F
E

R

SNR [dB]

N=2304 r=1/2, 10 iter, P(e)=0.0005, (7,0)-bit quantization

MSB1 error SCMS
MSB3 error SCMS
MSB7 error SCMS

No error SCMS
MSB1 error NMS
MSB3 error NMS
MSB7 error NMS

No error NMS

Figure 5. FER - errors on different MSBs and variation of decoding algorithm

V. UNEQUAL ERROR PROTECTION

The analysis on the impact of the different memory errors
carried out in Section IV highlighted that not all errors
on the LLR bits have the same influence on the FER of
LDPC decoders. This is an important result, as it identifies a
characteristic of LDPC decoders that can be used to increase
the reliability of the decoding process. In particular, based
on the study of Section IV, we observe that it is possible to
apply distinct error protection techniques to each bit or group
of bits stored in memories depending on their importance
and influence on the FER. The choice on the number and
type of error protection techniques is subject to a suitable
tradeoff. On one side, it should be guaranteed that the UEP
is granted sufficient granularity to effectively act upon errors
with different impacts on the decoding capability. On the
other side, as this number should be kept small to save area,
execution time and complexity of the decoder, bits with similar
significance should be protected with the same technique. In
this paper, after having analyzed different tradeoff alternatives,
we have opted for a UEP subdivided into four levels of
possible error protection.

A. Level 1 - towards full recovery

The highest level of protection is applied to bits which
reliability is mandatory for a correct decoding, i.e. the sign
bit and possibly the magnitude MSBs. In fact, as we have
seen in Section II, LDPC decoders base their hard decision on
bits (i.e., the selection if a codeword bit is zero or one) on the
sign of their respective LLRs. Errors on sign bits and on bits
representing a large part of the total dynamic will consequently
have catastrophic effects on the decoding; sign changes and
sudden increments or decrements in LLRs may cause an
avalanche of metrics to evolve towards misleading directions.
To provide a high level of reliability and recovery, our choice
has been that bits falling within the Level 1 protection level
are tripled during write operations: at load time, a majority
voter selects the most probable output.

B. Level 2 - tentative recovery from critical errors

An extensive simulation campaign has been performed to
observe the characteristics of λoldk [c] and λnewk [c] that are most
sensitive to memory errors and that can lead to unsuccessful
decoding. A very large percentage of cases in which a wrong
bit in λoldk [c] leads to an incorrect λnewk [c] (4) is characterized
by recognizable sequences of bits within the representation
of λnewk [c]. It is possible to observe the occurrence of these
bit patterns in case of errors and to determine their impact
on the overall decoding process. We have chosen to add a
parity bit to the Level 2 bits, and in case of discrepancy during
load operations the pattern recognition system is activated. If
λnewk [c] matches the critical bit pattern, recovery is possible
by observing how λnewk [c] varies with changes of the Level
2 bits in λoldk [c]. The distinctive bit pattern is dependent on
the total quantization of the LLRs and on the position of the
wrong bit, while the Level 2 bits must be chosen with care to
obtain the maximum effectiveness: thus, every case must be
analyzed separately.

Level 2 is not able to give the same level of protection as
Level 1, but gives a very good percentage of identification
and recovery of errors that have been observed to be the main
cause for LDPC decoder performance loss.

C. Level 3 - bounding of error impact

As we have said in Section II, the magnitude of an LLR is a
measure the information reliability. We have chosen to apply
the same concept to the third level of protection, designed
for bits of medium-to-low significance. A parity bit is added
to the protected bits during write operations. When the LLR
is loaded, parity is recomputed and in case of discrepancy
the contribution of all the bits falling within Level 3 is
nulled or reduced. With a two’s complement representation bit
puncturing can require bits to be flipped among Level 2 and
Level 1 bits as well: to avoid complex operations, depending
on Level 2 and Level 1 values, a partial puncturing can be
employed.

Level 3 protection does not allow to recover from errors, but
reduces their impact by decreasing the LLR magnitude, that
in turn induces a conservative behavior in the decoder. This
method can not be applied to bits expressing large percentages
of the total dynamic, since the LLR magnitude change would
be too large and cause errors.

D. Level 4 - no protection zone

As shown in Section IV, errors on the least significant bits
seldom affect the overall decoding performance. For Level 4,
our choice for this set of low-importance bits has been to
leave them unprotected, as possibly this will not incur in any
impacting degradation.

E. UEP - full design

The partition of memory bits among the four levels of
the proposed UEP has been carried out through extensive
simulations. We have considered an LLR quantization with
b = 7 and Imax = 10, a common enough choice that allows

good decoding performance without excessive overheads [30],
[31]. We have then simulated a large set of codes with a wide
range of possible combinations of UEP levels. The design
choices reported here were selected among those simulated for
their very good error protection performances (shown in detail
in Section VII), granting good results regardless of strong
variations in code size and rate.

In our scheme. Level 1 protection provides the highest
degree of reliability, but requires two additional bits for each
protected bit: therefore, its usage should be limited to the
most critical sets of bits only. We are well aware, thanks to
previous works like [6], that the correctness of the sign bit
is the minimum and necessary requirement for a decoder to
correctly operate. For this reason, Level 1 protection has been
applied on both Rlk and λk[c] sign bits, resulting in a 28.6%
increase in memory bits (i.e 7 bits + 2 bits). It has also been
observed that errors on Rlk are less critical than those on
λk[c] and less prone to propagating, thanks to the local nature
of Rlk and the masking capabilities of the min-sum algorithm
already addressed in Section IV. Consequently, Level 1 is the
only UEP level applied to Rlk values, while the complete UEP
is applied to λk[c] values.

As mentioned in Section V-B, the pattern recognition and
error recovery involved in Level 2 protection must be evaluated
according to the LLR quantization and to the number and
position of bits assigned to Level 2. With b = 7 and Level 1
protecting MSB1, Level 2 has been chosen to include MSB2
and MSB3. In fact, the set of simulations that allowed us to
select the number and type of UEP levels has revealed that the
precision of the identification of critical errors through output
bit patterns shows a decreasing trend when we increase the
number of protected bits, while the complexity of the error
recovery system increases. This means that the smaller the
number of bits at Level 2, the more accurate the identification
of errors based on pattern analysis, and the simpler the error
correction. However, as shown later in this section, a minimum
of two bits must be included in Level 2 to be able to recover
from errors. Let us define as λnewk [c]C the correct result
of (4) (i.e. the one obtained when no errors are present in
Level 2 of λoldk [c]), and λnewk [c]I the incorrect one (obtained
when an error is detected among the Level 2 bits of λoldk [c]).
The simulation campaign performed for Level 2 revealed that
regardless of the channel conditions, the majority of cases
in which errors on MSB2 or MSB3 result in uncorrectable
codewords are characterized by λnewk [c]C and λnewk [c]I with
small magnitude and opposite signs, meaning that

MSB1 = MSB2 = MSB3 (5)

for both λnewk [c]C and λnewk [c]I , whereas

MSB1(λnewk [c]C) 6= MSB1(λnewk [c]I) (6)

where k is the same also for the erroneous λoldk [c] in (1). This
pattern is observed either in case a single error is introduced in
MSB2 or MSB3 of λoldk [c], or in case both MSB2 and MSB3
are incorrect: this characteristic is exploited to recover from
the error.

1) A parity bit considering MSB2 and MSB3 is added to
λk[c] at storage time.

2) When λoldk [c] is loaded from the memory, MSB2-3 are
XORed: if the result is different from the parity bit, an
error alert is raised.

3) In case of error, three different versions of λoldk [c] are
produced: λoldk [c]1 is the one read from the memory,
while in λoldk [c]2 and λoldk [c]3 the MSB2 and MSB3 are
respectively flipped. Two of them are wrong (one has
a single erroneous bit, the other has two incorrect bits)
and one is correct, but it is not possible to determine
which is which at this stage.

4) Eq. (1)-(4) are evaluated with λoldk [c]1, λoldk [c]2 and
λoldk [c]3 separately. Three sets of results are produced,
containing λnewk [c]1, λnewk [c]2 and λnewk [c]3 respectively,
with the awareness that two of them are λnewk [c]I and
one is λnewk [c]C .

5) If at least one among λnewk [c]1, λnewk [c]2 and λnewk [c]3
does not follow (5), then there is a high probability that
the error is not critical or that the wrong bit was the
parity bit: in this case the set containing λnewk [c]1 is
selected.

6) If λnewk [c]1, λnewk [c]2 and λnewk [c]3 follow (5) then two
of them (λnewk [c]I) will have the same sign and the other
(λnewk [c]C) will have an opposite sign (6). The set of
results containing the λnewk [c] with the discordant MSB1
is the correct one, and is consequently selected.

This proposed technique can handle a single Level 2 memory
error in every parity check computation, that usually involves
between five and a few tens of LLRs depending on the LDPC
code. Even though the probability of two Level 2 errors within
the LLRs under consideration is very low, it can be further
reduced by protecting memories against burst errors as we
will describe later in this section. Together with Level 1, the
additional cost in memory requirements increases to 42.9%.

To bind the impact of errors on the least significant bits of
the representation of λk[c], the remaining four bits have been
divided between Level 3 and Level 4. Our choice has been
to consider MSB4-5 for error protection and include them in
Level 3, while not to provide any protection for the two least
significant bits MSB6-7 by leaving them in Level 4. With this
choice, we do not mean that they do not contribute to the
decoding, but, as we have observed in our tests, occasional
error events on these bits do not affect the overall performance.
The additional memory cost of the complete UEP is 57.1%,
i.e. the same as applying Level 1 to MSB1-2, but in this case
shielding from errors five bits instead of two: the impact on
the decoder architecture and the additional logic required are
discussed in Section VI.

F. Remarks on Burst Errors

With the level of current integration the problem of burst
or multi-cell errors has gathered increased interest [17], [32].
All levels of the proposed UEP are able to detect and possibly
recover from single-bit errors, and do not take in account burst
errors. However, it is possible to greatly limit the impact of
burst errors by scrambling the bits of LLRs before storage,
and rearranging them at load time. Scrambling is a technique
widely used in communications and data storage, where the

Level 1 Level 2 Level 3 Level 4 Level 3 Level 1 Level 2 Level 4 Level 3 Level 2 Level 1

MSB LSB

Figure 6. Example of LLR rearranged bits for burst error protection

probability of burst errors is larger than the probability of
single errors, as it allows, under certain conditions, to avoid
long error correcting codes to recover from burst errors [32].
For our design an example of possible scrambling is shown
in Fig. 6. By interleaving the bits belonging to the same level
with those from other levels, multiple errors are spread over the
different protection techniques and can still be handled. Every
bit is placed as far as possible from those belonging to the
same level, with priority being Level 1 > Level 2 > Level 3 >
Level 4. According to this priority sorting, Level 1 can sustain
up to 9-bit burst errors depending on the involved bits, while it
guarantees immunity to burst errors as large as 5-bit. Level 2
has a maximum resiliency of 8-bit burst errors, and guaranteed
immunity to 3-bit bursts, while Level 3 sustains up to 6-
bit bursts and guarantees protection from 2-bit bursts. Burst
errors can affect various LLRs concurrently: to avoid multiple
wrong LLRs within the same parity check computation (1), it
is sufficient to store the various λk[c] sorted from the MSB
of the LDPC frame to the LSB. In fact, the sparse structure
of the parity check matrix acts as an interleaver and does not
require loading consecutive LLRs.

G. Additional schemes

As will be shown in Section VII, the described UEP is
able to guarantee a very high degree of error protection.
However, such a high degree of confidence is not always
necessary. As a matter of example, here we have reported two
cases where, assuming that a lower protection is sufficient, a
simplified version of the UEP is designed. This is achieved
by including only some of the previous protection levels and
has the advantage to guarantee the required lower level of
protection by using a reduced overhead. Table I summarizes
the previously designed UEP case of study together with the
two new ones, with details being given on the protection of
λk[c]. In all three cases, Rlk is protected with Level 1 on
MSB1. UEPfull refers to the case of study detailed previously
in this section. The second scheme UEPsim1 applies Level 2
protection to MSB1 and MSB2, while MSB3-7 are left in
Level 4. Finally, in UEPsim2, MSB1 falls within Level 1,
while all the other bits are in Level 4. The performance of
UEPsim1 and UEPsim2 is evaluated along with that of UEPfull

in Section VII.

VI. HARDWARE IMPLEMENTATION ARCHITECTURE AND
EVALUATION

A. Architecture

The logic flow of the operations needed by UEP in the
conditions portrayed in Section V for UEPfull is shown in Fig.

Table I
UEP ALTERNATIVE SCHEMES

Level 1 Level 2 Level 3 Level 4
UEPfull MSB1 MSB2-3 MSB4-5 MSB6-7
UEPsim1 – MSB1-2 – MSB3-7
UEPsim2 MSB1 – – MSB2-7

7; UEPsim1 and UEPsim2 can be derived from it considering
only the employed levels. After reading the LLR from the
memory, the tripled MSB1 value is obtained through majority
voting. The parity of Level 3 bits is then computed and
compared to the parity bit from memory. In case of mismatch,
total or partial puncturing is applied to obtain MSB4-5. Three
datapaths are necessary to implement the Level 2 operations:
the parity comparison is performed on the Level 2 bits, and if
an error occurred, each datapath receives a different version of
the LLR (λk[c]1, λk[c]2 and λk[c]3). The outputs are checked
according to (5)-(6) to identify whether the error is critical
or not and to select the correct λnewk [c]. However, if no error
is detected by the parity comparison, all datapaths work with
the same set of data. The three outputs can be used to recover
from possible errors in the datapath logic, and the value of
every LLR is decided with a majority voter.

Based on the logic flow of Fig. 7, the hardware structure
depicted in Fig. 8 has been designed. The light gray blocks
identify functions pertaining to the different UEP levels,
whereas LLR bits subdivided in the different levels are shown
at the top of the picture. The L1 bit and its tripled versions
TR enter the Level 1 block, that implements a simple
majority voting to decide on MSB1. The output of Level
1 block is used, along with the rest of the LLR as read from
memory, within the Level 3 block to decide on what kind
of puncturing to apply, if any. The OR operation is applied
to bits belonging to the same level to identify the relative
positions of 1s within the LLR. MSB4-5 are either cleared
or set, depending on MSB1, the ORed bits, and the parity
bit comparison. The dark gray Datapath blocks implement
the serial datapath detailed in [30]. The computed MSB1 and
MSB4-5 are given as inputs to the standard Datapath and
to the Level 2 block, that comprises the two additional
Datapath blocks. If no discrepancy is detected in the parity
comparison among L2 bits, the three datapaths run the same
calculations: at the output, majority voters add another layer
of reliability to the system against errors within the logic. Two
inverters flip MSB2-3, that are fed to the additional datapaths
in case the parity comparison presents a mismatch: the output
majority voters are cut off, and the pattern recognition system

Flip MSB3Flip MSB2

Datapath 1 output

Select

Discrodant output

Select

No

No

Datapath 2 Datapath 3 Datapath 1

Decode Decode Decode

Puncture

MSB4-5

Yes

Yes

Read LLR

Majority

Vote

Output

Vote MSB1

Yes No

Parity discrepancy?

Parity discrepancy?

MSB1=MSB2=MSB3 ?

Level 3

Level 2

Figure 7. UEPfull logic flow

chooses the correct output.

B. Implementation evaluation

The described architecture for UEP has been implemented
in 90 nm CMOS technology with a target frequency of
200 MHz. Table II reports the area occupation of the logic
necessary for the different levels and for a single datapath. It
can be seen that while the complexity of Level 1 and Level 3
is negligible, Level 2 introduces a consistent overhead due to
the two additional datapaths, that dominate the UEP logic area
overhead. The total power consumption and area occupation
introduced by UEP over a complete decoder architecture for
UEPfull, UEPsim1 and UEPsim2 has been reported in the last
part of Table II. The considered decoder is the one presented
in [30] as A, after adaptation to support only LDPC codes
and to use the SCMS decoding algorithm; quantization of
LLRs is b = 7. This version of the A implementation has
been named AREF and has been used as a reference in the
following comparisons. It relies on 22 Processing Elements
(PEs) connected by means of a Kautz [33] network-on-chip,

P PL2 L2L1 L3 L3TR TR L4 L4

1100

DATAPATHDATAPATH DATAPATH

Pattern

recognition

control

λnewk [c]

Level 3

L
e
v
e
l

1

Level 2

Level 3

Figure 8. UEPfull hardware structure

with routing elements of degree three. The decoder supports all
LDPC codes in WiMAX and WiFi standards, with N ranging
between 576 and 2304, and r between 1/2 and 5/6. To help a
fair evaluation of the overhead introduced by UEP with respect
to alternative schemes, a straightforward “brute force” error
protection technique has been applied in ABF, where MSB1-4
of both λk[c] and Rlk are tripled and voted. The additional
memory bits result in +78.7% area occupation and +92.8%
power consumption.

Between additional logic and extra memory bits, the imple-
mentation of UEPfull in Afull leads to a 36.3% area overhead
with respect to AREF, while a 43.9% increment is noticed in
power consumption. Both area and power overheads are less
than half than those shown by ABF, even though their error
correction capabilities are comparable. Compared to AREF,
both Asim1 and Asim2 show similar area increments (22.8%
and 19.6% respectively), mainly due to the additional Level 2
datapaths in Asim1 and to Level 1 extra memory bits in Asim2.
The difference in power consumption increments (24.9% and
23.3%) is even smaller, since the Level 1 memory bits in
Asim2 contribute to a higher percentage of the total power
consumption.

To prove that the devised UEP does not influence the
performance of the decoder in terms of throughput and max-
imum frequency, Table III reports the delay introduced by
each UEP level and by the whole architecture for different
target frequencies in 90 nm CMOS technology. The synthesis
process has been carried out with exact mapping and low
mapping effort. Regardless, timing requirements have been
met for frequencies as high as 1 GHz, much higher than those
commonly used in current LDPC decoders, thus showing that
the critical path of the complete system is not affected by the

Table II
UEP - AREA OCCUPATION, POWER CONSUMPTION (90 NM CMOS, 200

MHZ)

Area Power
Level 1 unit 8 µm2 102.0 nW
Level 2 unit 13655 µm2 503.5 µW
Level 3 unit 102 µm2 12.7 µW

Single Datapath 6667 µm2 278.1 µW
AREF 2.59 mm2 97.1 mW
ABF 4.63 mm2 187.5 mW
Afull 3.53 mm2 139.8 mW
Asim1 3.18 mm2 121.3 mW
Asim2 3.10 mm2 119.7 mW

Table III
UEP - ACHIEVABLE FREQUENCY AND DELAY (90 NM CMOS)

Target Frequency Delay [ns]
L1 L2 L3 UEPfull

200 MHz 0.06 3.25 0.34 3.59
500 MHz 0.06 1.75 0.33 1.93

1 GHz 0.06 0.93 0.29 0.93

proposed UEP.

VII. UEP PERFORMANCE

This section presents the performance evaluation of the
proposed UEP under the same conditions of Section IV and
Section V, showing the impact of each level of UEP as
described in UEPfull. Both Rlk and λk[c] are represented in
two’s complement and quantized with b = 7, where all bits are
used to represent the integer part. In our evaluations we have
considered SCMS algorithm, because of its enhanced error
resiliency w.r.t. other min-sum approximations. Fig. 9-13 are
referred to a WiMAX N = 2304, r = 1/2 LDPC code, with
a maximum of 10 iterations per frame.

The decoders in [31] and [30] present similarities with many
other decoders in the state of the art (serial core, min-sum-
based layered decoding, partial parallelism, shared or dedi-
cated memories, either high-throughput or flexible design). We
have decided to consider them for our performance evaluation,
as they are representative examples of the current literature
on the subject. Before entering the details of our discussion,
we wish to highlight that the effect of errors in an LDPC
decoder is strongly dependent on the speed of the decoder.
Usually, in literature errors in memories and logic are mostly
identified by the Mean Time Between Failures (MTBF, [s])
or Failure In Time (FIT, number of errors in 109 hours). This
turns out that, for example, a small MTBF will have little effect
on the performance of a fast decoder like [31]: on the other
hand, the same MTBF could be disruptive for [30], as it works
at less than 1/5 of the frequency and has a lower degree of
parallelism, thus requiring a higher number of clock cycles to
complete an iteration. A fair error measure can consequently
be the average number of errors encountered by the decoder
during each iteration, here defined as Average Failures Per
Iteration (AFPI). The frequencies and memory structure of
[31] and [30] have been used to provide three error scenarios

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8

F
E

R

SNR [dB]

FER - WiMAX N=2304, R=1/2, SCMS algorithm, 10 iterations max, No error protection

AFPI=248.9
AFPI=24.9

AFPI=2.5
AFPI=8.7
AFPI=0.9
AFPI=0.1

Figure 9. FER with different Average Failures Per Iteration (AFPI) - No error
protection

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8

F
E

R

SNR [dB]

FER - WiMAX N=2304, R=1/2, SCMS, 10 iterations max, Level 1 on MSB1

AFPI=248.9
AFPI=24.9

AFPI=2.5
AFPI=8.7
AFPI=0.9
AFPI=0.1

Figure 10. FER with different AFPI - Level 1 on MSB1

each (low, medium and high error probability), resulting in six
AFPI values, i.e. 248.9, 24.9 and 2.5 for [30], and 8.7, 0.9 and
0.1 for [31].

Fig. 9 shows the FER of the considered code under the
influence of the aforementioned six AFPI values: each bit of
the stored Rlk and λk[c] has an equal probability of being
flipped in presence of a soft error. From Fig. 9 we observe
that, as it is reasonable, high values of AFPI highly degrade
the FER well beyond any possibility of recovering. We also
notice that even low AFPI values greatly affect the decoder.

Fig. 10 has been obtained by applying only Level 1 protec-
tion of UEPfull. A relevant improvement can be noticed for
all the AFPI values except the largest (i.e. AFPI=248.9), while
no degradation is observed for the smallest AFPI=0.09 case.

The curves plotted in Fig. 11 have been obtained by
considering both Level 1 and Level 2 of UEPfull. Error
protection is complete for AFPI=(0.1, 0.9, 2.5), and consistent
improvements are observed for AFPI=(8.7, 24.9) with respect
to Fig. 10. At the reference point of FER=10−4, for AFPI=8.7
there is a 0.1 dB performance loss, whereas values slightly less

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8

F
E

R

SNR [dB]

FER - WiMAX N=2304, R=1/2, SCMS, 10 iterations max, Level 1 on MSB1, Level 2 on MSB2-3

AFPI=248.9
AFPI=24.9

AFPI=2.5
AFPI=8.7
AFPI=0.9
AFPI=0.1

Figure 11. FER with different AFPI - Level 1 on MSB1, Level 2 on MSB2-3

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8

F
E

R

SNR [dB]

FER - WiMAX N=2304, R=1/2, SCMS, 10 iterations max, UEP

AFPI=248.9
AFPI=24.9

AFPI=2.5
AFPI=8.7
AFPI=0.9
AFPI=0.1

Figure 12. FER with different AFPI - Complete UEP

than 0.2 dB are observed for AFPI=24.9. Degradation is still
strong for AFPI=248.9.

The complete UEPfull has been employed to obtain the
curves in Fig. 12. In this case, UEPfull is able to bind the
performance degradation caused by low AFPIs to very small
values (e.g. 0.1 dB loss for AFPI=24.9 at FER=10−4), with
positive effects also on AFPI=248.9, which impact is highly
reduced.

Let us move to the evaluation of another characteristic of
the proposed protection technique: stuck at bits errors. In Fig.
13 and Table IV we have reported the results. In particular,
the resilience of UEPfull against permanent memory errors is
shown in Fig. 13, where each curve is affected by 45 stuck-
at bits affecting different groups of bits. Level 1 gives total
protection from single stuck-at bits, and Level 3 is sufficient
to protect relatively critical MSB4 and MSB5. As with soft
errors, MSB6 and MSB7 can be left without protection without
any noticeable performance degradation. 45 stuck-at bits,
however, are equivalent to a minimum of AFPI=45, a rate of
failures that can not be afforded by the single Level 2 when

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8

F
E

R

SNR [dB]

FER - WiMAX N=2304, R=1/2, SCMS, 10 iterations max, UEP

45 MSB1 stuck-at
45 MSB2 stuck-at
45 MSB4 stuck-at
45 MSB6 stuck-at

Figure 13. UEP performance in presence of stuck-at bits

Table IV
UEP - SINGLE STUCK-AT BITS THAT CAN BE RECOVERED

Code MSB MSB2-3 MSB4-5 MSB6-7
N , r Level 1 Level 2 Level 3 Level 4

2304, 1/2 ∞ 24 190 256
1152, 1/2 ∞ 21 175 223
576, 1/2 ∞ 19 152 206

2304, 5/6 ∞ 17 138 191
1152 5/6 ∞ 15 119 152
576, 5/6 ∞ 12 107 136

all errors are on MSB2. This is reflected also in the results
presented in Table IV, where the number of stuck-at bits that
can be withstood without performance degradation by different
codes on every bit is shown. It can be noticed how the number
of stuck-at bits that can be recovered is influenced not only
by UEP, but also by the inherent characteristics of the code.

The error protection capability of UEPsim1 and UEPsim1

with respect to UEPfull can be measured by observing the
AFPI value for which a 0.1 dB loss is observed at FER=10−4.
For UEPfull the 0.1 dB loss is encountered with AFPI=24.9,
while UEPsim1 is able to sustain up to AFPI=1.8. Finally,
UEPsim2 can stand an even lower AFPI=0.3.

VIII. COMPARISON

The resilient LDPC decoder designed in [6] protects both
memories and logic from errors. The decoder works at a
frequency of 400 MHz, obtaining a throughput of 333 Mb/s
with 30 iterations and the WiMAX code with N=2304 and
r=1/2, and implements the λ-min algorithm, that gives better
performance than traditional min-sum approximations, since
more than two minimums are considered. A dedicated 9-bit
RAM is used to store λk[c] values, and it is protected with
MSB1 tripling (+22% memory increment), while the initial
LLRs received from the channel are stored in a 6-bit RAM and
protected with MSB1 duplication and puncturing in case of
discrepancy (+23% memory increment). The 6-bit Rlk values
are not protected. The maximum memory error resiliency
obtained with this method is MTBF=2 ms, corresponding to

AFPI=0.0017. Our UEPfull proposal is more expensive in
terms of memory (+57% for 7-bit λk[c] and +28% for 7-
bit Rlk), and the tripling of the whole datapath foreseen by
Level 2 adds more complexity than the MSB1 duplication
with algorithmic puncturing employed for the datapath in [6].
On the other hand, the proposed UEP targets much more
degraded environments, since total error protection is achieved
in presence of AFPI four orders of magnitude greater than
those in [6]: moreover, this work tackles permanent errors as
well, together with burst errors, both neglected in [6]. If we
take in account the less expensive UEPsim1 and UEPsim2,
we have memory increments that are comparable to those
observed in [6]: for λk[c], +14.2% in UEPsim1 and +28.4% in
UEPsim2, while +28% for Rlk in both UEPsim1 and UEPsim2.
Still, the sustained AFPI is much larger than that of [6]. We
can also observe how the achieved frequency is lower than that
that can be reached by the proposed UEP implementation, as
shown in Table III.

The two-level UEP devised in [32] splits each codeword
in two partitions: in the most important one burst errors can
be corrected, while in the less important partition only single
errors can be corrected. Assuming to fit our case of study
into [32], MSB1-3 are assigned to the important part, while
MSB4-7 are left in the other. The number of redundancy bits
required by the encoding is linked to the size of the sustained
bursts: five bits (a +71% memory increment in our case) are
necessary to correct 2-bit bursts, while much larger bursts
are considered in our case. The work in [32] can potentially
reach performance similar to this work’s, but at a much higher
complexity cost.

The statistical error correction scheme devised in [25] is
built around a concept different from the proposed UEP:
voltage overscaling is introduced in the decoder to save energy,
and the performance loss brought by the timing errors caused
by this technique must be compensated. Regardless of the
different target, a fair comparison with this work is difficult,
since the system performance in [25] has been evaluated with
random regular codes, which characteristics and performance
are far from those used in practical communication systems
and in this paper. The obtained results in terms of error
resiliency are promising, being comparable to those presented
in this paper. The error estimator/detector circuit introduces
a small power consumption overhead, and requires a consid-
erable level of precision to guarantee acceptable BER levels.
To these overheads must be added those linked with the the
calculation of the statistic itself, that requires non negligible
computational power.

IX. CONCLUSION

This paper proposes a novel Unequal Error Protection
technique for memories used in LDPC decoders. It is divided
in four levels, that can be adjusted and applied according to
the decoder parameters and desired degree of protection. A
complete design is presented, together with results for other
two alternative schemes, showing a high level of resilience
to transient and permanent errors, both single-bit and multi-
bit. The design of an hardware architecture implementing the

UEP is proposed, and applied to an existing LDPC decoder to
evaluate area and power consumption overheads. Comparison
with the state of the art shows superior error resiliency even
at comparable complexity overheads.

ACKNOWLEDGMENT

The authors would like to thank Eyuel Zewdu Teferi for his
valuable contribution in the VHDL description and validation
of UEP.

REFERENCES

[1] “Process integration, devices and structures,” International Technology
Roadmap for Semiconductors (ITRS), 2011. [Online]. Available:
http://www.itrs.net/Links/2011ITRS/2011Chapters/2011PIDS.pdf

[2] S. Srinivasan, A. Gayasen, N. Vijaykrishnan, M. Kandemir, Y. Xie, and
M. Irwin, “Improving soft-error tolerance of FPGA configuration bits,”
in Computer Aided Design, 2004. ICCAD-2004. IEEE/ACM Interna-
tional Conference on, 2004, pp. 107–110.

[3] R. G. Gallager, “Low density parity check codes,” IRE Trans. on
Information Theory, vol. IT-8, no. 1, pp. 21–28, Jan 1962.

[4] C.-H. Liu, S.-W. Yen, C.-L. Chen, H.-C. Chang, C.-Y. Lee, Y.-S. Hsu,
and S.-J. Jou, “An LDPC decoder chip based on self-routing network for
IEEE 802.16e applications,” IEEE Jour. of Solid-State Circuits, vol. 43,
no. 3, pp. 684 –694, 2008.

[5] T.-C. Kuo and A. Willson, “A flexible decoder IC for WiMAX QC-
LDPC codes,” in Custom Integrated Circuits Conference, 2008. CICC
2008. IEEE, 2008, pp. 527 –530.

[6] M. May, M. Alles, and N. Wehn, “A case study in reliability-aware
design: A resilient LDPC code decoder,” in Design, Automation and
Test in Europe, 2008. DATE ’08, 2008, pp. 456–461.

[7] B. Masnick and J. Wolf, “On linear unequal error protection codes,”
Information Theory, IEEE Transactions on, vol. 13, no. 4, pp. 600–607,
1967.

[8] K. Namba and F. Lombardi, “Parallel decodable multi-level unequal
burst error correcting codes for approximate computing,” Northeastern
University, MA, Tech. Rep., 2014.

[9] C. W. Yung, H. F. Fu, C. Y. Tsui, R. Cheng, and D. George, “Unequal
error protection for wireless transmission of MPEG audio,” in Circuits
and Systems, 1999. ISCAS ’99. Proceedings of the 1999 IEEE Interna-
tional Symposium on, vol. 6, 1999, pp. 342–345 vol.6.

[10] X. Yang and K. Mohanram, “Unequal-error-protection codes in SRAMs
for mobile multimedia applications,” in Computer-Aided Design (IC-
CAD), 2011 IEEE/ACM International Conference on, 2011, pp. 21–27.

[11] M. Chen and M. Murthi, “Optimized unequal error protection for voice
over IP,” in Proc. of Acoustics, Speech, and Signal Processing (ICASSP)
Conference, vol. 5, 2004, pp. V–865–8 vol.5.

[12] D. Hocevar, “A reduced complexity decoder architecture via layered
decoding of LDPC codes,” in IEEE Workshop on Signal Processing
Systems, 2004, pp. 107 – 112.

[13] M. Martina, G. Masera, S. Papaharalabos, P. T. Mathiopoulos, and
F. Gioulekas, “On practical implementation and generalizations of
max* operator for turbo and LDPC decoders,” IEEE Transactions on
Instrumentation and Measurement, vol. 61, no. 4, pp. 888–895, Apr
2012.

[14] V. Savin, “Self-corrected Min-Sum decoding of LDPC codes,” in Proc.
of IEEE International Symposium on Information Theory, jul. 2008, pp.
146 –150.

[15] W. Liu, J. Rho, and W. Sung, “Low-power high-throughput BCH error
correction VLSI design for multi-level cell NAND flash memories,” in
Signal Processing Systems Design and Implementation. IEEE Workshop
on, 2006, pp. 303–308.

[16] R. C. Bose and D. K. Ray-Chaudhuri, Information and Control, 1960.
[17] C. Argyrides, H.-R. Zarandi, and D. Pradhan, “Multiple upsets tolerance

in SRAM memory,” in Circuits and Systems, 2007. ISCAS 2007. IEEE
International Symposium on, 2007, pp. 365–368.

[18] T. Miller, R. Thomas, J. Dinan, B. Adcock, and R. Teodorescu,
“Parichute: Generalized turbocode-based error correction for near-
threshold caches,” in Microarchitecture (MICRO), 2010 43rd Annual
IEEE/ACM International Symposium on, 2010, pp. 351–362.

[19] R. Motwani and C. Ong, “Design of LDPC coding schemes for
exploitation of bit error rate diversity across dies in NAND flash
memory,” in Computing, Networking and Communications (ICNC), 2013
International Conference on, 2013, pp. 950–954.

[20] A. Naghdinezhad, M. Hashemi, and O. Fatemi, “A novel adaptive
unequal error protection method for scalable video over wireless net-
works,” in Consumer Electronics, 2007. ISCE 2007. IEEE International
Symposium on, 2007, pp. 1–6.

[21] Y. C. Chang, S.-W. Lee, and R. Komiya, “An efficient FEC allocation
algorithm for unequal error protection of wireless video transmission,”
in Advanced Information Networking and Applications, 2009. AINA ’09.
International Conference on, 2009, pp. 175–181.

[22] D.-F. Yuan, Z.-W. Li, A.-F. Sui, and J.-M. Ning, “Research on unequal
error protection with punctured convolutional codes in image transmis-
sion system over mobile channels,” in Wireless Communications and
Networking Confernce, 2000. WCNC. 2000 IEEE, vol. 3, 2000, pp.
1253–1257 vol.3.

[23] S. Tehrani, S. Mannor, and W. Gross, “Fully parallel stochastic LDPC
decoders,” Signal Processing, IEEE Transactions on, vol. 56, no. 11, pp.
5692–5703, 2008.

[24] A. Naderi, S. Mannor, M. Sawan, and W. Gross, “Delayed stochastic
decoding of LDPC codes,” Signal Processing, IEEE Transactions on,
vol. 59, no. 11, pp. 5617–5626, 2011.

[25] E. Kim and N. Shanbhag, “Energy-efficient LDPC decoders based
on error-resiliency,” in Signal Processing Systems (SiPS), 2012 IEEE
Workshop on, 2012, pp. 149–154.

[26] C. Huang, Y. Li, and L. Dolecek, “Gallager B LDPC decoder with
transient and permanent errors,” Communications, IEEE Transactions
on, vol. PP, no. 99, pp. 1–14, 2013.

[27] G. Gentile, M. Rovini, and L. Fanucci, “A multi-standard flexible
turbo/LDPC decoder via ASIC design,” in International Symposium on
Turbo Codes & Iterative Information Processing, 2010, pp. 294–298.

[28] M. Alles, T. Vogt, and N. Wehn, “FlexiChaP: A reconfigurable ASIP
for convolutional, turbo, and LDPC code decoding,” in International
Symposium on Turbo Codes and Related Topics, 2008, pp. 84 –89.

[29] M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative
decoding of low-density parity check codes based on belief propagation,”
IEEE Trans. on Comm., vol. 47, no. 5, pp. 673 –680, May 1999.

[30] C. Condo, M. Martina, and G. Masera, “VLSI implementation of a
multi-mode turbo/LDPC decoder architecture,” IEEE Trans. on Circuits
and Systems I, vol. 60, no. 6, pp. 1441–1454, 2013.

[31] K. Zhang, X. Huang, and Z. Wang, “A high-throughput LDPC decoder
architecture with rate compatibility,” Circuits and Systems I: Regular
Papers, IEEE Transactions on, vol. 58, no. 4, pp. 839–847, 2011.

[32] K. Namba and E. Fujiwara, “Unequal error protection codes with two-
level burst and capabilities,” in Defect and Fault Tolerance in VLSI
Systems, 2001. Proceedings. 2001 IEEE International Symposium on,
2001, pp. 299–307.

[33] M. Imase, M.; Itoh, “A design for directed graphs with minimum
diameter,” IEEE Trans. on Computers, vol. C-32, no. 8, pp. 782–784,
Aug. 1983.

Carlo Condo obtained the M.Sc. in Electrical and Computer
Engineering from Politecnico di Torino, Italy, and the Univer-
sity of Illinois at Chicago, USA, in 2010. He obtained the
Ph.D. in Electronic and Telecommunication Engineering from
Politecnico di Torino and Telecom Bretagne, France, in 2014.
His research interests include design and implementation of
architectures for channel coding and digital signal processing.

Guido Masera (SM07) received the Dr. Ing. Degree (summa
cum laude) in 1986 and the Ph.D. degree in electronic en-
gineering from the Politecnico di Torino, Torino, Italy, in
1992. From 1986 to 1988, he was a Researcher with the
Centro Studi e Laboratori in Telecomunicazioni (CSELT),
Torino, Italy, involved in the standardization activities for the
GSM system. Since 1992, he has been an Assistant Professor
and then Associate Professor with the Electronic Department,
where he is member of the VLSI-Lab group. His research
interests include several aspects in the design of digital inte-
grated circuits and systems, with special emphasis on high-
performance architecture development (especially for wireless
communications and multimedia applications) and on-chip
interconnect modeling and optimization. He has co-authored
230 journal and conference papers in the areas of ASIC-SoC
development, architectural synthesis, VLSI circuit modeling
and optimization. In the frame of competitive National and
European research projects, he has been co-designer of several
ASIC and FPGA implementations in the fields of Artificial
Intelligence, Computer Networks, Digital Signal Processing,
Transmission and Coding. He is an associate editor of the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II.

Paolo Montuschi (M90-SM07-F14) is a Professor of Com-
puter Engineering at Politecnico di Torino, Italy, where he

served as Chair of Department from 2003 to 2011, and as
Chair or Member of several Boards, including the Board of
Governors. He is currently serving as Associate Editor-in-
Chief of the IEEE Transactions on Computers, as a member
of the steering committee and Associate Editor of the IEEE
Transactions on Emerging Topics in Computing and as a
Member of the Advisory Board of Computing Now. He he is
also serving as Member of the IEEE Publication Services and
Products Board. Previously, he served as Chair of the Maga-
zine Operations, of the Electronic Products and Services and of
the Digital Library Operations Committees, Member-at-Large
of the Computer Societys Publications Board, and Member
of the Board of Governors of the IEEE Computer Society. He
served as Guest and Associate editor of the IEEE Transactions
on Computers from 2000 to 2004 and from 2009 to 2012, and
co-chair, program and steering committee member of several
conferences. His current main research interests and scientific
achievements are in computer arithmetic, computer architec-
tures, computer graphics, electronic publications, semantics
& education, and new frameworks for the dissemination of
scientific knowledge. Montuschi is a Fellow of the IEEE and a
Computer Society Golden Core Member. In April 2014 he has
been inducted into the International Academy of Sciences of
Turin. In June 2014 he has been appointed to serve as Editor-
in-Chief of the IEEE Transactions on Computers for the term
2015-16. Montuschi obtained a PhD in computer engineering
in 1989, and since 2000 he has been full Professor.

