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Abstract—Particle filters constitute themselves a highly powerful estimation tool, especially when dealing with non-linear non-Gaussian 
systems. However, traditional approaches present several limitations, which reduce significantly their performance. Evolutionary 
algorithms, and more specifically their optimization capabilities, may be used in order to overcome particle-filtering weaknesses. 
In this paper, a novel FPGA-based particle filter that takes advantage of evolutionary computation in order to estimate motion 
patterns is presented. The evolutionary algorithm, which has been included inside the resampling stage, mitigates the known sample 
impoverishment phenomenon, very common in particle-filtering systems. In addition, a hybrid mutation technique using two different 
mutation operators, each of them with a specific purpose, is proposed in order to enhance estimation results and make a more robust 
system. Moreover, implementing the proposed Evolutionary Particle Filter as a hardware accelerator has led to faster processing times 
than different software implementations of the same algorithm. 

Index Terms—Embedded systems, evolutionary computing, FPGAs, particle filtering. 
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1 INTRODUCTION 

STATE estimation and prediction are considered major 
concerns in the field of real-world system analysis. A 

large number of studies regarding these two hot topics 
can be found throughout the literature, ranging from the 
basic filtering approaches to more developed alternatives 
that make use of complex mathematical concepts. 

In 1960, a new filtering algorithm was proposed: the 
Kalman Filter [1]. This algorithm estimates unknown 
states using noisy measurements in two stages: predic­
tion and correction. In the former, the system predicts 
new states, which are then corrected in the latter us­
ing the measurements. The results obtained with this 
double-staged approach are more precise than those 
obtained from pure observation. The algorithm has been 
thoroughly analyzed since it was proposed, and addi­
tional resources can be found in the literature in this 
regard [2]. 

Limitations in the Kalman Filter algorithm when deal­
ing with systems other than Gaussian and linear re­
vealed that a different alternative had to be developed 
in order to cope with more complex estimations. Monte-
Carlo simulations, as well as new mathematical models, 
such as Hidden Markov Models (also used in Kalman 
filtering), provided a new framework in which new algo­
rithms, the so-called particle filters, were developed. An 
extensive report on these topics can be found in [3]. The 
most representative implementation of a particle filter 
appears in [4], where a new algorithm, the Bootstrap 
Filter, is presented. This filter is usually thought of as 

the reference particle filter. 
This work addresses two different enhancements over 

the basic particle filter algorithm: on the one hand, a 
fast hardware-based implementation intended for em­
bedded computations; on the other hand, error mitiga­
tion through the addition of evolutionary capabilities 
within the particle-filtering algorithm. Hardware-based 
architectures can boost particle filters performance, since 
parallel processing capabilities are able to speed up 
many repetitive tasks. Some approaches have been de­
veloped in the literature. For example, in [5] a hardware 
implementation of the Bootstrap Filter is presented. The 
authors use VHDL (Very high speed integrated circuit 
Hardware Description Language) and a Xilinx Virtex-
2 FPGA (Field Programmable Gate Array) in order to 
obtain real-time properties in an object tracking applica­
tion. In [6], the same particle-filtering algorithm is imple­
mented in a Xilinx Virtex-5 FPGA. Parallel processing ca­
pabilities are used in order to process data concurrently, 
since every stage performs its computation while the 
others are working with other valid data, i.e. in pipeline-
fashion. This leads to a significant decrease in terms of 
resource consumption. However, there are not only hard­
ware approaches, but also software/hardware mixed 
implementations. For instance, in [7] a SoPC (System on 
Programmable Chip) model with hardware accelerators 
is proposed, targeting an Altera Cyclone II FPGA. An 
embedded processor is in charge of computing weight 
values, whereas the particle update is carried out in 
hardware, since it is a highly repetitive process. The 
authors also introduce some characteristic elements from 
evolutionary computation, such as tournament selection 
algorithms, in the resampling stage. Another FPGA-
based implementation of a particle filter can be found in 
[8]. In this particular example, the algorithm is enhanced 
using color histogram optimizations. A Xilinx Virtex-5 



FPGA performs all weight and histogram calculations 
taking advantage of parallel processing capabilities. 

However, in the last few years there has been an 
increase in the number of works related with high-
performance particle filters, which use huge numbers 
of particles in order to solve complex high-dimensional 
problems. These specific problems require massive 
amounts of computational resources. Hence, some ap­
proaches have started to use many-core architectures in 
order to cope with that restriction. Parallel computing 
has proved itself a feasible alternative to traditional ap­
proaches, as it has been shown in [9], where the authors 
establish a comparison between a classic CPU (Central 
Processing Unit) and a GPU (Graphics Processing Unit). 
Their results show that the more parallel the approach 
is, the faster the processing can be done. However, there 
are some limitations, since each parallel block resamples 
from a subpopulation and not from the whole popula­
tion. Different parallel implementations using GPGPUs 
(General Purpose GPUs) and multi-core CPUs also ap­
pear in [10]. The authors provide a detailed report on 
sensitivity analysis when scaling system parameters such 
as the number of particles per filter, the number of sub-
filters and even the state dimensions. The authors have 
also extended their research to real-time control appli­
cations of distributed computing approaches to particle 
filtering, as in [11]. 

Particle filtering and evolutionary algorithms, espe­
cially genetic algorithms, share many conceptual simi­
larities. These similarities have been studied and doc­
umented for a long time. For instance, in [12] a modi­
fied particle filter is presented. The author uses genetic 
operators such as crossover and mutation to implement 
the prediction stage of the filter. The connection between 
particle filtering (Monte-Carlo simulations) and Bayesian 
inference and their application to evolutionary environ­
ments has also been studied. In [13], the foundations for 
Bayesian evolutionary computation are presented. The 
idea is to let Bayes rule guide the evolutionary process, 
since it is reasonable to think that the most probable 
solution is the best one. However, this is not state-of-
the-art research. 

In the last few years, the main interest of evolution­
ary computation applied to particle filtering has been 
focused on mitigating sample impoverishment phenom­
ena, which is due to suboptimal resampling strategies. 
Evolutionary algorithms, as stated in previous sections, 
use genetic operators in order to transfer good genes and 
to introduce genetic diversity. This last feature is the key 
to understand why evolutionary computing is suitable 
for solving sample impoverishment (i.e. diversity loss) 
problems. Hence, in [14] an evolutionary approach is 
introduced in order to mitigate those effects. The au­
thors propose introducing genetic operators right after 
performing the importance sampling stage and immedi­
ately before the resampling stage. The resampling stage, 
as opposed to the basic Bootstrap Filter [4], performs 
an adaptive strategy, in which a parameter (effective 

number of particles) is considered in order to decide 
whether to perform resampling or not. In this paper, it 
is also shown that the mutation operator provides better 
dynamic response when the state jumps abruptly. Other 
research lines use parallel distributed filters, i.e. with 
several particle subpopulations evolving at the same 
time. In [15], the authors use these subpopulations to 
perform genetic operations and, from time to time, mi­
grate the best individuals from one subpopulation to the 
others so that the best genetic traits can be shared. This 
also leads to an improvement in global optimum search. 
Moreover, the concept of genetic resampling stage is 
introduced in this paper for the first time. Nevertheless, 
the paper provides only simulation results. 

More complex examples can also be found in the lit­
erature: a hybrid evolutionary particle filter is presented 
in [16]. This hybrid approach tries to take advantage of 
both genetic algorithms (to maintain particle diversity) 
and particle swarm optimization (to optimize the final 
particle distribution). Furthermore, the algorithm pre­
sented has parallel features, thus reducing computation 
times. The strategy presented divides the population in 
two groups, and then performs the specific operations 
that are required: in one group, a genetic algorithm; in 
the other, particle swarm optimization. Before the next 
time step, a migration operation is performed (to share 
genetic information, as in previous examples). 

Real-world applications include object tracking, as in 
[17], where another evolutionary approach is presented 
in order to deal with sample impoverishment. In this 
case, the evolutionary resampling stage may or may 
not take part in the estimation loop. The decision is 
made based on the aforementioned parameter, i.e. the 
effective number of particles. The algorithm presented 
provides good results but it is not accurate in tracking 
sequences with occlusion. Recent studies with differen­
tial evolution have been conducted in order to reduce 
significantly sample sizes [18]. The differential evolution 
algorithm divides the particles in three different groups: 
the first group would undergo crossover; the second 
group would undergo mutation; the last group would 
not suffer any modification. One important remark about 
this work is that the evolutionary stage takes place at 
the very beginning of the process, and it is immediately 
followed by the importance sampling stage. 

In conclusion, evolutionary computation has found 
a vast field of application in which optimization is 
not the main concern. The characteristic properties of 
the genetic operators make evolutionary algorithms a 
potential tool in particle filtering, since they are able to 
reduce to almost negligible values both problems: par­
ticle degeneracy (it is avoided performing resampling) 
and sample impoverishment (it is avoided introducing 
genetic diversity in the particle population). 

The rest of this paper is organized as follows: first, 
the mathematical concepts regarding particle filtering 
are thoroughly covered in Section 2. In Section 3, the 
evolutionary algorithm that has been implemented in 



the resampling stage is discussed. The proposed system 
architecture is presented in Section 4. Section 5 includes 
experimental results, followed by the conclusions, pre­
sented in Section 6. 

2 PARTICLE FILTERING 

Particle filters are based upon Monte-Carlo methods, 
which are a set of computational algorithms that obtain 
numerical results by using repetitive random sampling, 
and Bayesian inference, which uses the well-known 
Bayes rule to compute the posterior distribution from 
the previous distribution and the likelihood distribution. 
Bayes rule, which is also referred to as Bayes theorem, 
is often expressed as (1). 

P(a\b) 
P(b\a)P(a) 

(1) 

P(a\b) represents the posterior distribution, i.e. the prob­
ability of a when b is known to be a particular value, 
P(a) is the prior distribution, P(b\a) is the likelihood 
distribution, i.e. the probability of obtaining b after a 
has been observed, and P(b) is the marginal likelihood, 
which is independent of the hypothesis that is being 
tested (i.e. changes in the hypothesis do not affect the 
marginal likelihood). Bayesian inference is nothing but 
an updating process in which not only evidence (prior 
distribution) but also previous knowledge (likelihood 
distribution) are taken into account in order to draw a 
conclusion. 

All equations, expressions and conclusions in this 
section are based upon the contents of [19]. 

2.1 Perfect Monte-Carlo Sampling 

Hereafter, let us assume that real-world systems can be 
expressed as Markovian, non-linear, non-Gaussian state-
space models. A Markov model is a stochastic model (i.e. 
a system which shows random behavior) in which the 
Markov property is satisfied, i.e. future states depend 
only upon the present state and not the previous history 
of the system. Markov property is also referred to as 
memoryless property. 

p(xt\xt-i) 

p(yt\xt) 

(2) 

(3) 

(2) represents the hidden states transition model, or 
process model, whereas (3) represents the observation 
or measurement model. These models are called Hidden 
Markov Models (HMMs) because the state sequence is 
unknown, i.e. not all states are observable. The hid­
den states at time t are expressed as xt, whereas the 
observations at time t are expressed as yt. With these 
definitions, the posterior distribution is calculated using 
Bayes theorem as in (4). 

P(xo-.t\yi:t) 
P(yi:t\xQ:t) pjXQ-.t) 

J P(yi:t\xo-.t) P(xo-.t) d x 0 : i 

(4) 

p(xo-.t\yi:t) is the posterior distribution of the states x0:i 

having observed the measures y\:t. The subscripts repre­
sent the time steps in which the distribution is defined, 
e.g. p(x0;t\yi:t) is the posterior distribution of the hidden 
states from t = 0 to t = t when the observations are 
known from t = 1 to t = t. 

2.2 Importance Sampling 

Perfect Monte-Carlo sampling is unfeasible in most 
real-world situations, since it is impossible to sample 
from the posterior distribution. In those cases, another 
sampling strategy called Importance Sampling (IS) is 
used. With this approach, the distribution from which 
the samples are drawn is not the actual posterior distri­
bution, but an arbitrary user-defined distribution called 
proposal distribution, importance function, or impor­
tance sampling distribution. Therefore, each drawn sam­
ple has to be weighted in order to make both posterior 
and importance sampling distributions match. Hence, IS 
can be expressed in terms of the equations (5) and (6). 

w{xQ:t) = 

n(xO:t\yi:t) 

P(xo-.t\yi:t) 

n{x0:t\y1:t) 

(5) 

(6) 

(5) is the importance sampling distribution and (6) are 
the importance weights. The posterior distribution is 
then approximated by a finite set of particles using the 
expression in (7). 

N 

P(xo-.t\yi:t) ~ - P / v ( d £ 0 : t | y i : t ) = ^2™tSxi _(dx0:í (7) 

ÍV(dxo:t|yi:t) is the approximated posterior distribution, 
Sxi (dx0:i) is the delta-Dirac function located in dx0: i, 
N is the number of particles and w\ is the normalized 
weight for particle i up to time t, which is obtained from 
the particle weight w{xl

0.t) using (8). 

w(x 0:t) 

12^=1 w(x0:t) 
(8) 

2.3 Sequential Importance Sampling 

One of the most important disadvantages of the afore­
mentioned IS strategy is that it is computationally inten­
sive, since the posterior distribution is calculated from 
scratch each time step. Sequential Importance Sampling 
(SIS) performs the same computations but in a recursive 
manner. The importance sampling distribution and the 
weight update equation are now expressed as (9) and 
(10). 

7T(xO:t|yi:t) = 7 r ( x O : t - l | y i : t - l ) 7 r ( x t | x o : t - l , y i : t ) (9) 

¡ , ¡ ^p(yt\xt)p(xt\xt-i) 
W(Xt) OC W(Xt-i) : ; r - (10) 

7r(Xt|XO:t-l,2/l:tJ 

Notice that these expressions provide a simple method­
ology for online filtering, since particle weights at any 
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Fig. 1: Particle degeneracy p h e n o m e n o n . Notice that after a 
finite es t imat ion t ime, the particle popu la t ion is biased, since 
only one indiv idual has a non-zero weight . There is no diver­
sity in the popula t ion , a n d thus poster ior d is t r ibut ions are no t 
accurate. 

current time step are obtained from the value at the 
previous time step. However, these equations are still 
very complex, thus leading to performance problems if 
real-time requirements are present as design constraints. 
A simple approach can be adopted in order to overcome 
these limitations. By selecting the prior distribution as 
the importance function, the equations are reduced sig­
nificantly to (11) and (12). 

n(xO:t\yi:t) =P{xO:t) = P(xQ:t-l ) P{xt \xt-l ) ( H ) 

w{xt)<xw{xt-i)p{yt\xt) (12) 

Therefore, the transition model p{xt\xt-i), i.e. the pro­
cess model, is used in the sampling stage, and the 
observation model p{yt\xt), i.e. the measurement model, 
in the weight update stage. 

Basic particle-filtering implementations using SIS 
show biased populations, where only one particle is 
significant (i.e. its weight is one, whereas the rest of the 
population is negligible) after a certain finite execution 
time, as it can be seen in Fig. 1. This is the so-called 
particle degeneracy phenomenon, and it might lead to 
large errors in the estimations, since the posterior dis­
tribution is represented by only one effective particle. 
The main reason for this phenomenon to appear is that 
the variance of the importance weights can only increase 
over time, as it has been shown in [20]. 

2.4 Resampling 

The particle degeneracy phenomenon can be mitigated 
provided that an additional resampling stage is included 
in the basic particle filter. The resampling stage is located 
after the sampling and weight calculation processes, 
and generates a new particle population according to 
their current weights. This new population can then be 
homogenized by making all particle weights equal. This 
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Fig. 2: Sample impover i shmen t p h e n o m e n o n . Subopt imal re­
sampl ing strategies genera te inaccurate poster ior dis t r ibut ions. 
Results s h o w large var ia t ions in we igh t and particle dis t r ibu­
t ions before (left) and after (right) resampl ing opera t ions . In 
the images , actual measu remen t s appea r in black, es t imated 
states in green and particle dis t r ibut ions in red. 

is the normal procedure in the Bootstrap Filter [4], whose 
algorithm is shown in Table 1. 

However, suboptimal resampling algorithms tend to 
generate populations where no diversity exists, for par­
ticles with higher weights are statistically selected many 
times [21], which means that most of the particles are 
identical (see Fig. 2). Therefore, the posterior distribution 
is inaccurate, and estimation performance is significantly 
reduced. This phenomenon is known as sample impov­
erishment, since the population is reduced to a set of 
particles (usually a small number) with the same state, 
not providing additional information. 

Both particle degeneracy and sample impoverishment 
are the most important problems in particle-filtering 
systems, and have to be mitigated, if not eliminated. 

TABLE 1 
Bootstrap Filter Algorithm 

6: 
7: 
8 
9 

10: 
11 

Initialize particle population x\ and fc = 1 
while(l) 

for (i = 0; i < PARTICLES; i++) 
Importance sampling x\ ~ p(%%\%%_i) 
Compute weights w(xz

k) ~ p(y\\%%) 

Normalize weights wz
k = 

w(xj) 
•r^PARTICLES 

end for 
for (i = 0; i < PARTICLES; i++) 

Resample according to weight x\ oc w\_ 
end for 
fc++ 

end while 

w(x3,) 

The Boostrap Filter algorithm presents some similarities with the 
Kalman Filter. There is a prediction stage, in which each particle 
is updated using the prior distribution (importance sampling). The 
update is carried out afterwards, first computing the normalized 
weights and then performing resampling in order to reject those 
individuals whose weight is smaller. Notice that there is a resam­
pling operation each time step fc. 



2.5 Further Discussion 

Even though HMMs are very widely used throughout 
the literature, there are other mathematical models that 
provide much more generalization and in which particle 
filtering is still feasible. That is the case of Pairwise and 
Triplet Markov Models. 

Pairwise Markov Models (PMMs) can be built upon 
the assumption that the pair (xt,yt) is markovian, 
whereas Triplet Markov Models (TMMs) consider the 
triplet (xt,rt,yt), where rt is an additional auxiliary 
process, to be markovian. In [22], the authors prove that 
TMMs are more general than PMMs and PMMs more 
general than HMMs. Furthermore, the authors show that 
classical particle filtering approaches can be extended to 
both PMMs and TMMs. 

Examples of particle filters implemented using these 
more general models as mathematical foundation can 
be found in the literature [23]. However, and since the 
objective of this work is to show the benefits of both 
evolutionary computing and hardware acceleration in 
particle filtering, the classical HMMs approach is suf­
ficient. 

3 EVOLUTIONARY RESAMPLING 

The sample impoverishment phenomenon in particle 
filtering appears, as it has been mentioned in the pre­
vious section, when the posterior distribution is repre­
sented by a particle set in which there is no diversity. 
Since one of the key features of genetic operators is intro­
ducing genetic diversity, it seems reasonable to combine 
evolutionary computation and particle filtering in order 
to improve the posterior distribution precision, and thus, 
the overall filtering performance. 

It is for this reason that the resampling stage of the 
proposed Evolutionary Particle Filter features a genetic 
algorithm. Each chromosome encodes the particle state, 
as it is shown in (13). 

x\, yk are the position values in both x-axis and y-
axis, and vx\, vy

l
k are the velocity values referred to the 

same axes. The subscripts k represent the current time 
step, whereas the superscripts i represent the particle 
identifier. 

3.1 Genetic Operators 

Let us now focus on the genetic operators: crossover 
and mutation. Crossover not only increases population 
diversity, but also helps improving population fitness, 
for children that inherit the best characteristics, i.e. genes, 
from the parents are more likely to pass from one 
generation to the next one. Since all state variables are 
represented using real numbers, arithmetic crossover can 

be applied in order to combine genetic traits from both 
parents. Crossover operations are therefore expressed in 
terms of the equations in (14). 

xl = ax\ + (l-<y)xi (14) 
xbk = axí + (1-a)xÍ 

xk, xk are the offspring particles obtained from the 
parents xk and x3

k, and a ~ [7(0,1). The superscripts 
are the individual identifiers (a, b for the children; i, j 
for the parents). 

Mutation, on the other hand, is used to introduce 
random variations within the particle population, which 
also increases population diversity. In this work, two 
different mutation proposals have been defined: local 
search mutation and random placement mutation. The 
former mutates the parent and generates a child in a 
close region around the state of the parent, whereas 
the latter generates a valid random particle in the state 
space, i.e. within its limits. These two possible mutation 
operations provide more flexibility. Local search muta­
tion is defined as in (15). 

xl = xl + sk (15) 

xk is the particle generated after mutation, xk are the 
state variables of the parent i, and 8k is an array where 
each component is defined by Ski ~ N{ni,ai). Random 
placement mutation is based upon (16). 

xk is, again, the particle generated after mutation, xmin 

and xmax are the minimum and maximum allowable 
values for the state variables, i.e. the state space bound­
aries, and ¡3 ~ £/(0,1). 

Why have these genetic operators, and not others, 
been selected? Arithmetic crossover generates children 
by averaging, with some weighting process in between, 
the parents states. Therefore, if the parents are in a close 
region around the maximum fitness point, the children 
will likely have better fitness values. Otherwise, they will 
be discarded in future generations. Hence, the posterior 
distribution will be more precise. The proposed mutation 
strategies cover two different and opposed situations. 
On the one hand, local search mutation is useful when 
the particle population is close to the optimal value, 
since mutation generates another particle in a close 
environment of the parent. This leads to an increase 
in high-fitness population. On the other hand, random 
placement mutation provides robustness in those time 
steps in which the tracking is lost, i.e. the posterior dis­
tribution is inaccurate or cannot be properly estimated. 

3.2 Fitness Function 

Given the fact that particle filtering and evolution­
ary computing have common features, such as be­
ing population-based algorithms, some parallelisms can 
be established (at least to some extent). For instance, 



weights can also be thought of as fitness values. By 
making this simple assumption, the design is simpli­
fied significantly, since only one computation (weight) 
has to be performed instead of two (fitness value and 
weight). In this particular case, particle weights (i.e. 
fitness values) are calculated using a normal multivari­
ate probability density function, using two dimensions 
and assuming that the two random variables are non-
correlated. Therefore, these values can be obtained using 
(17). 

f(x,y) 
2naxay 

e x p • 
(x-fj,x) (y-f¿y) 

(17) 

ax and ay are the standard deviation values of the 
random variables x and y, which are the actual mea­
surements in both x-axis and y-axis, whereas ¡ix and ¡iy 
represent the mean values, which are the current particle 
x-axis and y-axis estimated measurements (calculated 
from the particle state variables). The fitness function is 
then expressed as (18). 

/(**,*£) = 
1 

2 7T axay 

e x p • 
(zxk °xk) 

(z Vk ^Vk) (18) 

Therefore, each particle weight/fitness is the probability 
of obtaining the measured positions in a normal 2-
dimensional probability density function whose mean 
values are that particle positions. 

3.3 Selection 

In traditional implementations of evolutionary algo­
rithms, parent selection usually follows stochastic pro­
cesses, whereas survivor selection is based upon de­
terministic processes. In this work, however, both par­
ents and survivors are selected using Stochastic Uni­
versal Sampling (SUS), since having only one selection 
algorithm is more suitable for hardware implementa­
tions with limited resources. This algorithm performs 
fitness proportionate selection in a roulette-wheel fash­
ion. However, as opposed to the basic roulette-wheel 
implementation, it is an unbiased process in which any 
individual may be selected, even those with the lowest 
fitness values in the population. SUS algorithm is shown 
in Fig. 3. 

4 SYSTEM ARCHITECTURE 

A novel hardware-based Evolutionary Particle Filter, 
the so-called HW-EPF, is presented in this work. The 
algorithm (see Table 2) has been implemented in a 
FPGA using VHDL. The HW-EPF is used as a hardware 
accelerator by the main processor of a SoPC, since it 
provides better performance than software in fast and 

TABLE 2 
HW-EPF Algorithm 

Initialize particle population xz
0 and fc = 1 

while(l) 
for (i = 0; i < PARTICLES; i++) 

Importance sampling x\ ~ v{x\\x\-\) 
Compute weights w(xz

k) ~ p(y\\%%) 

Normalize weights wz
k = 

w(xj) 
¿2?ARTICLES w(x3k) 

for (gen = 0; gen < GENERATIONS; gen++) 
Parent selection (SUS) 
Draw r ~ U(0, 1). Arithmetic crossover if r < pCross 
Draw r ~ U(0, 1). Mutation if r < pmut 

Local search mutation if r > pmut rmut 
Random placement mutation if r < pmut rmut 

Survivor selection (SUS) 
end for 

end for 
k++ 

end while 

The HW-EPF algorithm modifies the basic resampling stage and 
includes a genetic algorithm (steps 6 to 11) in order to take advan­
tage of the optimization capabilities of evolutionary computation. 
In addition, more than one mutation operator has been included, 
in order to further improve estimation performance. 

repetitive sequential processes, e.g. particle update or 
particle sorting. The block diagram of the SoPC can be 
seen in Fig. 4. 

The proposed implementation takes advantage of the 
distributed resources inside the FPGA. For instance, 
particle states are stored in the internal RAM (Random 
Access Memory), and the fitness function is stored in 
internal LUTs (Look-Up Tables). In addition, some op­
erations have been multiplexed in order to maximize 
resource sharing, i.e. to minimize resource consumption, 
which also provides significant benefits (e.g. less area 
overhead). Hence, a tradeoff between resource utilization 
and hardware acceleration is made, which is a common 
practice in embedded system design. 

Limited-precision fixed-point arithmetic is inherent 
to most hardware designs, since computations require 
fewer resources and are carried out faster. Some prob­
lems may arise when using limited-precision data types, 
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Fig. 4: SoPC internal architecture. The main processor in the 
system (in this case a Xilinx MicroBlaze soft-core) uses the 
HW-EPF as a h a r d w a r e accelerator. The HW-EPF prov ides 
three different interfaces: a register-based control po r t via PLB 
(Processor Local Bus), a m e m o r y controller por t and some 
in te r rupt signals. 
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Fig. 3: Stochastic Universal Sampling. After sorting the particles according to their fitness values (/¿) and computing the 
cumulative fitness function, individuals are selected drawing a uniform random number r and dividing the whole cumulative 
fitness range in as many equal divisions as individuals to be selected (nse¡). 

e.g. overflow, underflow, and the results might not be 
accurate enough. However, these factors have no rele­
vant influence in the proposed architecture, as it will be 
shown in forthcoming sections. 

4.1 Motion Model Equations 

Assuming uniform motion patterns in both axis, the 
importance sampling process, i.e. particle updating pro­
cess, is performed using the system of linear equations 
shown in (19) and (20). 

Xk ~ ^Xk-1 

A 

Wk-l 

1 0 T 0 
0 1 0 T 
0 0 1 0 
0 0 0 1 

(19) 

(20) 

ii>fc_i is an array where each component is defined by 
wik_i ~ N((j,i,(Ti), i.e. an array of normal-distributed 
random numbers or white noise. The coefficient T in 
matrix A represents the sampling time, i.e. the theoretical 
interval between two consecutive time steps, and has 
been included in order to weight the influence of the 
particle velocities in the estimation results. Notice that 
this parameter is not related with the system clock 
frequency at all. 

In order to reduce the overall number of multipliers, 
each particle uses four clock cycles (one clock cycle 
per state variable) to be fully updated. Multiplexing 
the input signals of the arithmetic operators (adders 
and multipliers), and thus providing resource sharing 
mechanisms, resource consumption remains balanced. 

With the updated states, the system provides an esti­
mated measurement. This value is computed using the 
expressions (21) and (22). 

z. 

H = 

xk 
~ i 

ZVk . 

1 0 
0 1 

0 " 
0 

(21) 

(22) 

cxk and -Vk are the estimated measured values of the 
particle i state variables at time k in both x-axis and y-
axis respectively. 

Since the estimated measurements are the position 
state variables, the architecture has been simplified 
avoiding the usage of additional resources. 

4.2 Genetic Operators 

Genetic operations are performed over each parent 
if a uniform random number is below the established 
thresholds, i.e. crossover and mutation probabilities. 
Crossover unit follows equation (14), whereas mutation 
unit follows equations (15) and (16). As far as the hard­
ware implementation of these modules is concerned, 
they share the same architecture as the one described in 
the previous subsection. The arithmetic units have their 
inputs multiplexed in order to favor resource sharing, at 
the expense of adding a fixed latency, in terms of clock 
cycles, to the system. 

4.3 Fitness Evaluation 

Implementing equation (18) is not feasible in hard­
ware, due to the limitations of fixed-point arithmetic. 
In addition, complex mathematical functions, such as 
exponentials, are highly time-consuming. Therefore, they 
should not be used when optimizing system perfor­
mance, even if a floating-point unit is available in the 
design. In order to overcome this disadvantage, the pro­
posed implementation changes complex computations 
by indexing operations in a LUT. The values of equation 
(18) are evaluated in a small set of reference points at 
synthesis time. The result of this discretization process 
is shown in Fig. 5. Then, whenever the system needs to 
compute a value, the LUT is accessed at run-time and 
the fitness is obtained by zero-order interpolation. With 
this proposed alternative, the system shows improved 
estimation times without affecting estimation precision. 

4.4 Estimation 

At the end of each estimation step, the current state is 
obtained from the whole particle population using the 



expression (23). Uniform distribution Normal distribution 

Xk = 
Vk 

v"xk 

V Vk 

N 

(23) 

Xk is the estimated state at time k, xx
k are the state 

variables of the particle i at time k, and wl
k are the 

normalized weights for each particle, computed as in 
(24). 

-¿ =
 w ( 4 ) f(zk,zl) 

^N J2i=if(zk,z
3
k 

(24) 

4.5 Random Number Generator 

Particle filters are always built upon stochastic pro­
cesses. Furthermore, evolutionary algorithms also re­
quire random numbers in order to decide whether to 
apply a specific genetic operator, or which individuals 
are chosen in the selection stages. Hence, random num­
ber generation is considered a main task within the HW-
EPF. 

Taking a closer look at the proposed algorithms, it is 
clear that two different types of random numbers have 
to be generated: on the one hand, uniform-distributed 
random numbers, e.g. crossover and mutation proba­
bility thresholds, a in (14) and ¡3 in (16). On the other 
hand, normal-distributed random numbers, e.g. wk-i 
in process model equation (19), or 8k in local search 
mutation equation (15). 

Uniform distributions are relatively easy to obtain in 
hardware systems using a LFSR (Linear Feedback Shift 
Register). These devices generate a stream of uniform-
distributed pseudorandom numbers. Since motion esti­
mation is not a highly demanding application, pseudo­
random features are enough. 

Normal multivariate PDF 

40 0 

Fig. 5: Fitness evaluation LUT. The normal probability density 
function is computed at synthesis time. Taking advantage of 
symmetry properties, only one quadrant has been mapped into 
the LUT, thus achieving a reduction in the number of internal 
resources of the FPGA. 

Fig. 6: Random Number Generator histograms. Uniform-
distributed random numbers (left) and normal-distributed ran­
dom numbers are used in different stages in the HW-EPF. 

Normal distributions, on the other hand, are not that 
simple to obtain in hardware systems. Some imple­
mentation alternatives can be found in the literature 
[24], but in this work, a new strategy has been used. 
Using a large LFSR, twelve uniform random numbers 
are drawn at the same time. Then, these numbers are 
added, and the resulting number, as a consequence of 
the central limit theorem, is assumed to follow a normal 
distribution. This assumption is valid, as it can be seen 
in the distribution histograms in Fig. 6. This approach 
provides an accurate implementation without increasing 
excessively resource consumption. 

5 EXPERIMENTAL RESULTS 

In this section, different aspects of the implemented 
design are put to the test. This work addresses algo­
rithm validation, overall system functionality validation 
through Hardware In the Loop (HIL) co-simulation, and 
a sensitivity analysis of the most important parameters 
in the system. It also covers performance comparisons 
between different implementations of the same algo­
rithm, and a summary report on resource consumption 
and timing rates. All those test in which an actual 
physical device is needed have been carried out using 
the XUP-V5 development board, which features a Xilinx 
Virtex-5 FPGA. 

5.1 Evolutionary Resampling Algorithm Validation 

A first set of test has been designed in order to validate 
the evolutionary algorithm in the resampling stage of the 
particle filter. Since these tests deal with the algorithm 
itself and not with the implementation, they have been 
carried out in MATLAB, not taking into account actual 
implementation considerations, such as fixed-point data 
precision or data overflow effects within the mathemat­
ical operations. The most used equations in particle-
filtering performance validation tests are those from 



the univariate non-stationary growth model, with the 
addition of a quadratic measurement model. The combi­
nation of both equations provides a highly non-linear 
system, thus making it suitable for testing non-linear 
estimation capabilities. Hence, the validation equations 
can be expressed as (25) and (26). 

Xk = xk-i + ——2~ 1" 7 c o s( l-2 (k - 1)) + wfc_i (25) 
! + **-! 

Zk=20+iPk (26) 

Wfc_i ~ N(0,ax) is the so-called process noise, whose 
standard deviation is represented by ax/ and fk ~ 
N(0, az) is the so-called measurement noise, whose stan­
dard deviation is represented by az. Both noise distribu­
tions have zero mean. Notice that the equations repre­
sent a one-dimensional system, since the aim of these 
tests is to validate the functionality of the evolutionary 
resampling stage, and not the target application itself. 

Results from a comparison between the standard 
Bootstrap Filter and the proposed HW-EPF show that, 
under normal operation, both filters provide accurate 
estimations (see Fig. 7). However, the HW-EPF slightly 
outperforms, in terms of tracking performance, the Boot­
strap Filter (see estimation errors in Fig. 8). Moreover, if 
changes are introduced in the trajectory so as to simulate 
an inaccurate transition process modeling, the HW-EPF 
is able to recover from lost-tracking states, whereas the 
standard Bootstrap Filter loses the tracking never to 
recover from that stray state. This specific condition is 
shown in Fig. 9. 

Another important feature of the proposed resampling 
stage is that, as opposed to the resampling strategy 
adopted in the Bootstrap Filter, it does not generate 
sample impoverishment phenomena (at least to some 
extent) in the system (see Fig. 10). Furthermore, if the 
number of generations the evolutionary algorithm runs 
is not large, particle diversity is kept and thus sample 
impoverishment phenomena are mitigated. However, 
evolutionary processes in which the maximum genera­
tion limit is not set to be small might show no mitigation 
at all. 

5.2 HIL Functional Validation 

Hardware-in-the-loop co-simulation is a useful testing 
methodology in which the designed system is connected 
to a real-world environment, usually the one in which 
it has been designed to work. The environment is in 
charge of providing all necessary stimuli to the design 
under test and, therefore, it does not have to be modeled. 
Environment modeling is a highly time-consuming task 
in system testing or validation processes. Hence, HIL 
co-simulation is able to speed up the testing phase in 
every design process. It is for this reason that this testing 
methodology has been used in order to validate the right 
functionality of the HW-EPF, i.e. its motion estimation 
capabilities. 

Particle filters are commonly used as the main es­
timation engine in many different applications. These 
applications include, but are not limited to, visual track­
ing [25] [26], object detection [27], image segmentation 
[28], contour detection [29], video stabilization [30], and 
even point set registration [31], i.e. finding a spatial 
transformation that aligns two given point sets. More­
over, particle filters have also been used as powerful 
estimation tools in other applications, such as video 
coding/decoding [32]. The proposed architecture can be 
used in almost any application scenario that requires 
estimations of both position and velocity of a mov­
ing object. The modular implementation ensures that 
the system can switch applications by simply changing 
the preprocessing stage. Therefore, the proposed HW-

System evolution 

Fig. 7: HW-EPF vs. Bootstrap filter. In normal operation mode, 
both filters provide accurate estimations and are able to track 
the object. The image shows the real trajectory, as well as both 
filter estimations. 
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Fig. 8: HW-EPF vs. Bootstrap filter: overall estimation error. 
Although the tracking is lost at certain points in both filters, the 
HW-EPF provides estimations with less mean error. Moreover, 
lost-tracking situations appear more often in the Bootstrap 
Filter. 



(a) Frame #26 (b) Frame #33 fc) Frame #50 

Fig. 11: HIL co-simulation results. The functional validation of the proposed architecture is carried out using a red object tracking 
proof-of-concept demonstrator. Results show that the HW-EPF performs estimations in real time (assuming video inputs of 30fps). 

200 r 

System evolution 

Fig. 9: HW-EPF vs. Bootstrap filter: mutation benefits. Mutation 
generates individuals in high-fitness areas of the state space, 
thus recovering from lost-tracking situations, as opposed to the 
Bootstrap Filter. 
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Fig. 10: Sample impoverishment mitigation in the HW-EPF. As 
opposed to the Bootstrap Filter, the HW-EPF assures particle 
diversity due to its evolutionary properties, thus providing 
accurate posterior distributions. These results are better if the 
generation count is kept at a minimum value. Notice that the 
population moves towards the maximum fitness point. 

EPF constitutes itself a generic, application-independent 
motion estimation system. However, a visual tracking 
application has been selected as a proof of concept. 

The HIL co-simulation has been set up using both 
Simulink and Xilinx System Generator toolboxes. Images 
are acquired through a webcam and then preprocessed 
inside the Simulink model. The target application is to 
track red objects within the visual space. Hence, the 
preprocessing stage detects those red objects, selects the 
biggest among them and extracts its center of mass x-axis 
and y-axis coordinates. These two values are the actual 
measured values that are sent to the evaluation board 
through an Ethernet point-to-point connection. The HW-
EPF then estimates the position of the center of mass and 
sends back those estimated coordinates, which are then 
printed over the original image. 

The obtained results prove that the HW-EPF provides 
an accurate tracking (i.e. estimated values), thus vali­
dating the proposed system architecture and implemen­
tation. In addition, and since normal operation times 
allow real-time computation (as it will be shown in the 
forthcoming subsections), it is possible to track objects 
using not only static images but also live-feed video (Fig. 
11). 

5.3 Sensitivity Analysis 

Complex designs such as the HW-EPF require a large 
number of system parameters so that they can be flex­
ible and, to some extent, reconfigurable. Therefore, it 
seems reasonable to analyze whether these parameters 
have some impact on system performance or not. Fur­
thermore, it also seems relevant to detect on which 
parameter the system has stronger dependencies. The 
complete list of system parameters, as well as their 
default values can be seen in Table 3. The analysis is 
focused on two different, yet significant, performance 
variables: on the one hand, estimation error, i.e. the 
difference between the estimation and the actual value; 
on the other hand, estimation time, i.e. the time the 
system needs to generate a valid estimation from a valid 
measurement. The estimation error is evaluated as the 
Euclidean distance (or 2-norm distance) between both 
estimation and measurement points, which is shown in 



TABLE 3 
System Parameters: Reference Values 

Parameter 
&pos 
°vel 

&rneas 
T 

#LUT Values 
# Particles 
^Parents 

^Generations 
Pcross 
Pmut 
rjnut 
&mut 

7)-

Description 
Position standard deviation 
Velocity standard deviation 
Measurement standard deviation 
Theoretical sampling time 
Fitness LUT values per dimension 
Population size 
Parents number 
Generations number 
Crossover probability 
Mutation probability 
Mutation ratio 
Local search standard deviation 

Value 
32 

0.01 
10 

0.033 
32 
200 
10 
2 

0.6 
0.1 
0.4 
6.0 

efc v ^ xk ~Xk) + (Z; Vk -Vk) (27) 

cxk and zyk are the measurements, whereas Xk and i¡k 
are the estimations. 

System parameters in this work can be divided into 
two different groups: model parameters (e.g. process 
noise or measurement noise standard deviations) and 
evolutionary algorithm parameters. The results that ap­
pear in this subsection deal with the latter. 

It seems clear that population size has a huge im­
pact on estimation performance (see Fig. 12). However, 
the larger the population is, the slower the estimations 
are and the larger the resource consumption rate is. 
Increasing the number of parents also leads to a very 
significant increase in hardware resources (more internal 
RAM memory is needed in both cases) and estimation 
times, but the estimation error is not improved (see Fig. 
13). Therefore, the number of particles has to be deter­
mined by the tradeoff between accuracy, speed and area, 
whereas the number of parents is determined by the 
minimum amount that assures particle diversity and a 
sufficient number of mutation and crossover operations. 

When the number of generations is increased, the 
estimation error suffers the same variation (see Fig. 14), 
due to sample impoverishment phenomena. Further­
more, an increase in the generation limit produces longer 
estimation times. Hence, the number of generations has 
to be kept under a certain threshold to still benefit from 
the evolutionary resampling stage. 

Crossover and mutation probabilities, generally speak­
ing, provide better results, in terms of estimation error, 
when their values are close to one. An increase in 
crossover probability always leads to smaller estimation 
errors. However, increases in mutation probability have 
different outcomes depending on the mutation operator 
that is dominant. When the mutation ratio favors ran­
dom placement the estimation error is increased (see Fig. 
16); when local search mutation is favored, estimation 
errors decreases (see Fig. 15). This reveals that, although 
random placement mutation is absolutely necessary in 
order to deal with lost-tracking situations, it must be 
kept at minimum values to avoid affecting system per­
formance. 

The effect that crossover and mutation probabilities 

have in estimation time is the opposite of that in esti­
mation error. Larger probabilities mean more offspring 
particles and, therefore, more sorting operations that 
increase sharply estimation times (see Fig. 17). Hence, 
another tradeoff between estimation performance and 
execution time determines whether to select specific 
values for crossover and mutation probabilities or not. 

5.4 HW vs. SW Performance Comparison 

The proposed architecture targets embedded systems. 
The usage of hardware resources instead of software 
routines provides a significant improvement in terms 
of performance and execution time. Take for instance 

Estimation Error Boxplot 

Fig. 12: Estimation error vs. population size boxplot. Estimation 
error can be significantly reduced if the population size is 
increased. Small particle population generate bad results, as 
it can be seen in the example of 20 particles, whereas large 
populations increase resource utilization. 

Estimation Error Boxplot 
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Fig. 13: Estimation error vs. parent number boxplot. Increasing 
the number of parents increases system performance, but only 
slightly. Since parent number has a deep impact on resource 
consumption, the fewer individuals are selected as parents, the 
smaller the resulting implementation is. 



E 10 

Estimation Error Boxplot 
TABLE 4 

Resource Consumption 

Resource 
Slice Registers 

Slice LUTs 
Block RAM 

DSPs 

Utilization(%) 
12 
18 
6 

26 

Resource consumption report on the global hardware accelerator 
architecture. The module has been implemented in a Xilinx Virtex-
5 FPGA (5vlxll0tffll36-l). Notice that there is a large number 
of DSP processing elements used, which may generate large area 
overheads in other platforms. 

in both Fig. 18 (min imum estimation times) and Fig. 19 
(maximum estimation times). 

Fig. 14: Estimation error vs. generation number boxplot. When­
ever the generation limit is increased, there is an increase in 
the estimation error, since the resulting posterior distribution 
suffers more sample impoverishment effects. 

the fitness evaluat ion modu le , which replaces a complex 
mathematical equat ion (online computat ion) by a m u c h 
faster indexing process (LUT addressing). 

Establishing a compar ison be tween the same algo­
ri thm implemented on different e m b e d d e d platforms, it 
is clear that the ha rdware approach outperforms those 
that t ry to take advantage of software resources. Soft­
ware approaches , no mat ter w h a t data precision the 
comput ing core uses (fixed-point or floating-point opera­
tions), present a bottleneck in the fitness evaluat ion unit . 
Complex mathematical operat ions, such as exponential 
functions, reduce e m b e d d e d systems performance. The 
proposed ha rdware accelerator performs est imations in 
less t ime that the other alternatives, independent ly of the 
n u m b e r of particles that is being used. This can be seen 

Estimation Error (r = 0.25) 

Fig. 15: Estimation error vs. genetic operators with more lo­
cal search mutation than random placement mutation. Local 
search mutation reduces overall estimation errors. Crossover 
also helps reducing estimation errors, but its effects are more 
relevant. 

5.5 Resource Consumption and Timing Results 

This last subsection shows the resource utilization 
report (Table 4) and the t iming results (Table 5), i.e. 
m a x i m u m frequency in the design. Notice that the im­
plemented HW-EPF uses a large n u m b e r of DSPs units 
inside the FPGA, even though the architecture has been 
opt imized by means of resource shar ing techniques. This 
can be considered one of the design main weaknesses . 
In addit ion, the m a x i m u m allowable frequency is not 
that high w h e n compared wi th those of the individual 
modu les that consti tute the whole design. This is mainly 
due to large routes inside the FPGA. However , this 
m a x i m u m frequency value still provides good results 
w h e n deal ing wi th real-time video processing. 

6 CONCLUSIONS 

A novel particle-filtering architecture, the HW-EPF, 
has been designed. Its performance analysis reveals that 
it not only provides accurate mot ion state est imations, 
bu t also outperforms other algori thms, e.g. the Bootstrap 

Estimation Error = 0.75) 

Fig. 16: Estimation error vs. genetic operators with less local 
search mutation than random placement mutation. Random 
placement mutation, although necessary in order to recover 
from lost-tracking events, does not help reducing estimation 
errors as local search mutation. 



Elapsed Time 

Fig. 17: Est imation t ime vs . genetic opera tors . The chi ldren 
count affects the t ime spent in each est imation. There is a 
bott leneck in the fitness-sorting a lgor i thm, and its negat ive 
effects are sharper w h e n the crossover probabil i ty is increased 
( two chi ldren appear , instead of only one as in muta t ion) . 

TABLE 5 
Timing Repor t 

Module 
Random Number Generator 

Process model 
Crossover unit 
Mutation unit 

Divider 
HW-EPF 

Maximum frequency (MHz) 
135.080 
95.716 
113.097 
99.885 

227.376 
63.914 

Timing results for each of the individual modules that constitute the 
HW-EPF peripheral, as well as those from the final architecture. The 
maximum operating frequency of the integrated design is reduced 
due to large interconnecting routes between modules. As in the 
resource consumption report, the selected device is a Xilinx Virtex-
5 FPGA (5vlxll0tffH36-l). 

Filter. Particle-filtering common problems, i.e. particle 
degeneracy and sample impoverishment, are mitigated 
with the proposed algorithm, providing both accurate 
and realistic posterior distributions. 

The HW-EPF modular architecture provides flexibility 
and reconfiguration capabilities to the embedded system 
in which is used. As a hardware accelerator, it speeds up 
estimation throughput. This acceleration has been veri­
fied when establishing a comparison between the same 
algorithm with different implementations (only hard­
ware, software with fixed-point precision, and software 
with floating-point precision) over the same evaluation 
platform, and comes from the advantages that hardware 
processing has when dealing with repetitive operations. 

The sensitivity analysis shows that those system pa­
rameters that increase particle number, e.g. population 
size, parent size (the more parents are selected, the more 
offspring is generated), have to remain under certain 
limits, in order to avoid excessively large implementa­
tions, i.e. with large area overhead. Moreover, mutation 
and crossover probability thresholds have to be selected 
taking into account the tradeoff between precision and 
execution time: higher values show, generally speaking, 
more accurate results but it takes longer to obtain the 
estimations. In addition, the maximum number of gen­
erations has to be small, in order to mitigate sample im­
poverishment phenomena and reduce estimation times. 

All things considered, the HW-EPF has proved to be 
an outstanding filter, as well as a robust and powerful es­
timation tool. A proof-of-concept implementation using 
HIL co-simulation has been made in order to validate 
system functionality. 
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