
Evolutionary Computing and Particle Filtering:
A Hardware-Based Motion Estimation System

Alfonso Rodriguez and Félix Moreno, Member, IEEE

Abstract—Particle filters constitute themselves a highly powerful estimation tool, especially when dealing with non-linear non-Gaussian
systems. However, traditional approaches present several limitations, which reduce significantly their performance. Evolutionary
algorithms, and more specifically their optimization capabilities, may be used in order to overcome particle-filtering weaknesses.
In this paper, a novel FPGA-based particle filter that takes advantage of evolutionary computation in order to estimate motion
patterns is presented. The evolutionary algorithm, which has been included inside the resampling stage, mitigates the known sample
impoverishment phenomenon, very common in particle-filtering systems. In addition, a hybrid mutation technique using two different
mutation operators, each of them with a specific purpose, is proposed in order to enhance estimation results and make a more robust
system. Moreover, implementing the proposed Evolutionary Particle Filter as a hardware accelerator has led to faster processing times
than different software implementations of the same algorithm.

Index Terms—Embedded systems, evolutionary computing, FPGAs, particle filtering.

•

1 INTRODUCTION

STATE estimation and prediction are considered major
concerns in the field of real-world system analysis. A

large number of studies regarding these two hot topics
can be found throughout the literature, ranging from the
basic filtering approaches to more developed alternatives
that make use of complex mathematical concepts.

In 1960, a new filtering algorithm was proposed: the
Kalman Filter [1]. This algorithm estimates unknown
states using noisy measurements in two stages: predic­
tion and correction. In the former, the system predicts
new states, which are then corrected in the latter us­
ing the measurements. The results obtained with this
double-staged approach are more precise than those
obtained from pure observation. The algorithm has been
thoroughly analyzed since it was proposed, and addi­
tional resources can be found in the literature in this
regard [2].

Limitations in the Kalman Filter algorithm when deal­
ing with systems other than Gaussian and linear re­
vealed that a different alternative had to be developed
in order to cope with more complex estimations. Monte-
Carlo simulations, as well as new mathematical models,
such as Hidden Markov Models (also used in Kalman
filtering), provided a new framework in which new algo­
rithms, the so-called particle filters, were developed. An
extensive report on these topics can be found in [3]. The
most representative implementation of a particle filter
appears in [4], where a new algorithm, the Bootstrap
Filter, is presented. This filter is usually thought of as

the reference particle filter.
This work addresses two different enhancements over

the basic particle filter algorithm: on the one hand, a
fast hardware-based implementation intended for em­
bedded computations; on the other hand, error mitiga­
tion through the addition of evolutionary capabilities
within the particle-filtering algorithm. Hardware-based
architectures can boost particle filters performance, since
parallel processing capabilities are able to speed up
many repetitive tasks. Some approaches have been de­
veloped in the literature. For example, in [5] a hardware
implementation of the Bootstrap Filter is presented. The
authors use VHDL (Very high speed integrated circuit
Hardware Description Language) and a Xilinx Virtex-
2 FPGA (Field Programmable Gate Array) in order to
obtain real-time properties in an object tracking applica­
tion. In [6], the same particle-filtering algorithm is imple­
mented in a Xilinx Virtex-5 FPGA. Parallel processing ca­
pabilities are used in order to process data concurrently,
since every stage performs its computation while the
others are working with other valid data, i.e. in pipeline-
fashion. This leads to a significant decrease in terms of
resource consumption. However, there are not only hard­
ware approaches, but also software/hardware mixed
implementations. For instance, in [7] a SoPC (System on
Programmable Chip) model with hardware accelerators
is proposed, targeting an Altera Cyclone II FPGA. An
embedded processor is in charge of computing weight
values, whereas the particle update is carried out in
hardware, since it is a highly repetitive process. The
authors also introduce some characteristic elements from
evolutionary computation, such as tournament selection
algorithms, in the resampling stage. Another FPGA-
based implementation of a particle filter can be found in
[8]. In this particular example, the algorithm is enhanced
using color histogram optimizations. A Xilinx Virtex-5

FPGA performs all weight and histogram calculations
taking advantage of parallel processing capabilities.

However, in the last few years there has been an
increase in the number of works related with high-
performance particle filters, which use huge numbers
of particles in order to solve complex high-dimensional
problems. These specific problems require massive
amounts of computational resources. Hence, some ap­
proaches have started to use many-core architectures in
order to cope with that restriction. Parallel computing
has proved itself a feasible alternative to traditional ap­
proaches, as it has been shown in [9], where the authors
establish a comparison between a classic CPU (Central
Processing Unit) and a GPU (Graphics Processing Unit).
Their results show that the more parallel the approach
is, the faster the processing can be done. However, there
are some limitations, since each parallel block resamples
from a subpopulation and not from the whole popula­
tion. Different parallel implementations using GPGPUs
(General Purpose GPUs) and multi-core CPUs also ap­
pear in [10]. The authors provide a detailed report on
sensitivity analysis when scaling system parameters such
as the number of particles per filter, the number of sub-
filters and even the state dimensions. The authors have
also extended their research to real-time control appli­
cations of distributed computing approaches to particle
filtering, as in [11].

Particle filtering and evolutionary algorithms, espe­
cially genetic algorithms, share many conceptual simi­
larities. These similarities have been studied and doc­
umented for a long time. For instance, in [12] a modi­
fied particle filter is presented. The author uses genetic
operators such as crossover and mutation to implement
the prediction stage of the filter. The connection between
particle filtering (Monte-Carlo simulations) and Bayesian
inference and their application to evolutionary environ­
ments has also been studied. In [13], the foundations for
Bayesian evolutionary computation are presented. The
idea is to let Bayes rule guide the evolutionary process,
since it is reasonable to think that the most probable
solution is the best one. However, this is not state-of-
the-art research.

In the last few years, the main interest of evolution­
ary computation applied to particle filtering has been
focused on mitigating sample impoverishment phenom­
ena, which is due to suboptimal resampling strategies.
Evolutionary algorithms, as stated in previous sections,
use genetic operators in order to transfer good genes and
to introduce genetic diversity. This last feature is the key
to understand why evolutionary computing is suitable
for solving sample impoverishment (i.e. diversity loss)
problems. Hence, in [14] an evolutionary approach is
introduced in order to mitigate those effects. The au­
thors propose introducing genetic operators right after
performing the importance sampling stage and immedi­
ately before the resampling stage. The resampling stage,
as opposed to the basic Bootstrap Filter [4], performs
an adaptive strategy, in which a parameter (effective

number of particles) is considered in order to decide
whether to perform resampling or not. In this paper, it
is also shown that the mutation operator provides better
dynamic response when the state jumps abruptly. Other
research lines use parallel distributed filters, i.e. with
several particle subpopulations evolving at the same
time. In [15], the authors use these subpopulations to
perform genetic operations and, from time to time, mi­
grate the best individuals from one subpopulation to the
others so that the best genetic traits can be shared. This
also leads to an improvement in global optimum search.
Moreover, the concept of genetic resampling stage is
introduced in this paper for the first time. Nevertheless,
the paper provides only simulation results.

More complex examples can also be found in the lit­
erature: a hybrid evolutionary particle filter is presented
in [16]. This hybrid approach tries to take advantage of
both genetic algorithms (to maintain particle diversity)
and particle swarm optimization (to optimize the final
particle distribution). Furthermore, the algorithm pre­
sented has parallel features, thus reducing computation
times. The strategy presented divides the population in
two groups, and then performs the specific operations
that are required: in one group, a genetic algorithm; in
the other, particle swarm optimization. Before the next
time step, a migration operation is performed (to share
genetic information, as in previous examples).

Real-world applications include object tracking, as in
[17], where another evolutionary approach is presented
in order to deal with sample impoverishment. In this
case, the evolutionary resampling stage may or may
not take part in the estimation loop. The decision is
made based on the aforementioned parameter, i.e. the
effective number of particles. The algorithm presented
provides good results but it is not accurate in tracking
sequences with occlusion. Recent studies with differen­
tial evolution have been conducted in order to reduce
significantly sample sizes [18]. The differential evolution
algorithm divides the particles in three different groups:
the first group would undergo crossover; the second
group would undergo mutation; the last group would
not suffer any modification. One important remark about
this work is that the evolutionary stage takes place at
the very beginning of the process, and it is immediately
followed by the importance sampling stage.

In conclusion, evolutionary computation has found
a vast field of application in which optimization is
not the main concern. The characteristic properties of
the genetic operators make evolutionary algorithms a
potential tool in particle filtering, since they are able to
reduce to almost negligible values both problems: par­
ticle degeneracy (it is avoided performing resampling)
and sample impoverishment (it is avoided introducing
genetic diversity in the particle population).

The rest of this paper is organized as follows: first,
the mathematical concepts regarding particle filtering
are thoroughly covered in Section 2. In Section 3, the
evolutionary algorithm that has been implemented in

the resampling stage is discussed. The proposed system
architecture is presented in Section 4. Section 5 includes
experimental results, followed by the conclusions, pre­
sented in Section 6.

2 PARTICLE FILTERING

Particle filters are based upon Monte-Carlo methods,
which are a set of computational algorithms that obtain
numerical results by using repetitive random sampling,
and Bayesian inference, which uses the well-known
Bayes rule to compute the posterior distribution from
the previous distribution and the likelihood distribution.
Bayes rule, which is also referred to as Bayes theorem,
is often expressed as (1).

P(a\b)
P(b\a)P(a)

(1)

P(a\b) represents the posterior distribution, i.e. the prob­
ability of a when b is known to be a particular value,
P(a) is the prior distribution, P(b\a) is the likelihood
distribution, i.e. the probability of obtaining b after a
has been observed, and P(b) is the marginal likelihood,
which is independent of the hypothesis that is being
tested (i.e. changes in the hypothesis do not affect the
marginal likelihood). Bayesian inference is nothing but
an updating process in which not only evidence (prior
distribution) but also previous knowledge (likelihood
distribution) are taken into account in order to draw a
conclusion.

All equations, expressions and conclusions in this
section are based upon the contents of [19].

2.1 Perfect Monte-Carlo Sampling

Hereafter, let us assume that real-world systems can be
expressed as Markovian, non-linear, non-Gaussian state-
space models. A Markov model is a stochastic model (i.e.
a system which shows random behavior) in which the
Markov property is satisfied, i.e. future states depend
only upon the present state and not the previous history
of the system. Markov property is also referred to as
memoryless property.

p(xt\xt-i)

p(yt\xt)

(2)

(3)

(2) represents the hidden states transition model, or
process model, whereas (3) represents the observation
or measurement model. These models are called Hidden
Markov Models (HMMs) because the state sequence is
unknown, i.e. not all states are observable. The hid­
den states at time t are expressed as xt, whereas the
observations at time t are expressed as yt. With these
definitions, the posterior distribution is calculated using
Bayes theorem as in (4).

P(xo-.t\yi:t)
P(yi:t\xQ:t) pjXQ-.t)

J P(yi:t\xo-.t) P(xo-.t) d x 0 : i

(4)

p(xo-.t\yi:t) is the posterior distribution of the states x0:i

having observed the measures y\:t. The subscripts repre­
sent the time steps in which the distribution is defined,
e.g. p(x0;t\yi:t) is the posterior distribution of the hidden
states from t = 0 to t = t when the observations are
known from t = 1 to t = t.

2.2 Importance Sampling

Perfect Monte-Carlo sampling is unfeasible in most
real-world situations, since it is impossible to sample
from the posterior distribution. In those cases, another
sampling strategy called Importance Sampling (IS) is
used. With this approach, the distribution from which
the samples are drawn is not the actual posterior distri­
bution, but an arbitrary user-defined distribution called
proposal distribution, importance function, or impor­
tance sampling distribution. Therefore, each drawn sam­
ple has to be weighted in order to make both posterior
and importance sampling distributions match. Hence, IS
can be expressed in terms of the equations (5) and (6).

w{xQ:t) =

n(xO:t\yi:t)

P(xo-.t\yi:t)

n{x0:t\y1:t)

(5)

(6)

(5) is the importance sampling distribution and (6) are
the importance weights. The posterior distribution is
then approximated by a finite set of particles using the
expression in (7).

N

P(xo-.t\yi:t) ~ - P / v (d £ 0 : t | y i : t) = ^2™tSxi _(dx0:í (7)

ÍV(dxo:t|yi:t) is the approximated posterior distribution,
Sxi (dx0:i) is the delta-Dirac function located in dx0: i,
N is the number of particles and w\ is the normalized
weight for particle i up to time t, which is obtained from
the particle weight w{xl

0.t) using (8).

w(x 0:t)

12^=1 w(x0:t)
(8)

2.3 Sequential Importance Sampling

One of the most important disadvantages of the afore­
mentioned IS strategy is that it is computationally inten­
sive, since the posterior distribution is calculated from
scratch each time step. Sequential Importance Sampling
(SIS) performs the same computations but in a recursive
manner. The importance sampling distribution and the
weight update equation are now expressed as (9) and
(10).

7T(xO:t|yi:t) = 7 r (x O : t - l | y i : t - l) 7 r (x t | x o : t - l , y i : t) (9)

¡ , ¡ ^p(yt\xt)p(xt\xt-i)
W(Xt) OC W(Xt-i) : ; r - (10)

7r(Xt|XO:t-l,2/l:tJ

Notice that these expressions provide a simple method­
ology for online filtering, since particle weights at any

Weights at t = 200 x pa r t i c l e placement at t = 8 Part ic^e^ácement after resampling at t :

0.9

0.7

0.B

0.3

0 100 200 300 400 50G 6GG 700 BOD 900 1000

k

Fig. 1: Particle degeneracy p h e n o m e n o n . Notice that after a
finite es t imat ion t ime, the particle popu la t ion is biased, since
only one indiv idual has a non-zero weight . There is no diver­
sity in the popula t ion , a n d thus poster ior d is t r ibut ions are no t
accurate.

current time step are obtained from the value at the
previous time step. However, these equations are still
very complex, thus leading to performance problems if
real-time requirements are present as design constraints.
A simple approach can be adopted in order to overcome
these limitations. By selecting the prior distribution as
the importance function, the equations are reduced sig­
nificantly to (11) and (12).

n(xO:t\yi:t) =P{xO:t) = P(xQ:t-l) P{xt \xt-l) (H)

w{xt)<xw{xt-i)p{yt\xt) (12)

Therefore, the transition model p{xt\xt-i), i.e. the pro­
cess model, is used in the sampling stage, and the
observation model p{yt\xt), i.e. the measurement model,
in the weight update stage.

Basic particle-filtering implementations using SIS
show biased populations, where only one particle is
significant (i.e. its weight is one, whereas the rest of the
population is negligible) after a certain finite execution
time, as it can be seen in Fig. 1. This is the so-called
particle degeneracy phenomenon, and it might lead to
large errors in the estimations, since the posterior dis­
tribution is represented by only one effective particle.
The main reason for this phenomenon to appear is that
the variance of the importance weights can only increase
over time, as it has been shown in [20].

2.4 Resampling

The particle degeneracy phenomenon can be mitigated
provided that an additional resampling stage is included
in the basic particle filter. The resampling stage is located
after the sampling and weight calculation processes,
and generates a new particle population according to
their current weights. This new population can then be
homogenized by making all particle weights equal. This

12

1D

B

*' B

4

2

D

1
i t

. . . .

.XX

7 •••

6 -•

5 •••

4 -••

3 -

2 - •

1 -•

0 •••

10 20

k

Fig. 2: Sample impover i shmen t p h e n o m e n o n . Subopt imal re­
sampl ing strategies genera te inaccurate poster ior dis t r ibut ions.
Results s h o w large var ia t ions in we igh t and particle dis t r ibu­
t ions before (left) and after (right) resampl ing opera t ions . In
the images , actual measu remen t s appea r in black, es t imated
states in green and particle dis t r ibut ions in red.

is the normal procedure in the Bootstrap Filter [4], whose
algorithm is shown in Table 1.

However, suboptimal resampling algorithms tend to
generate populations where no diversity exists, for par­
ticles with higher weights are statistically selected many
times [21], which means that most of the particles are
identical (see Fig. 2). Therefore, the posterior distribution
is inaccurate, and estimation performance is significantly
reduced. This phenomenon is known as sample impov­
erishment, since the population is reduced to a set of
particles (usually a small number) with the same state,
not providing additional information.

Both particle degeneracy and sample impoverishment
are the most important problems in particle-filtering
systems, and have to be mitigated, if not eliminated.

TABLE 1
Bootstrap Filter Algorithm

6:
7:
8
9

10:
11

Initialize particle population x\ and fc = 1
while(l)

for (i = 0; i < PARTICLES; i++)
Importance sampling x\ ~ p(%%\%%_i)
Compute weights w(xz

k) ~ p(y\\%%)

Normalize weights wz
k =

w(xj)
•r^PARTICLES

end for
for (i = 0; i < PARTICLES; i++)

Resample according to weight x\ oc w_
end for
fc++

end while

w(x3,)

The Boostrap Filter algorithm presents some similarities with the
Kalman Filter. There is a prediction stage, in which each particle
is updated using the prior distribution (importance sampling). The
update is carried out afterwards, first computing the normalized
weights and then performing resampling in order to reject those
individuals whose weight is smaller. Notice that there is a resam­
pling operation each time step fc.

2.5 Further Discussion

Even though HMMs are very widely used throughout
the literature, there are other mathematical models that
provide much more generalization and in which particle
filtering is still feasible. That is the case of Pairwise and
Triplet Markov Models.

Pairwise Markov Models (PMMs) can be built upon
the assumption that the pair (xt,yt) is markovian,
whereas Triplet Markov Models (TMMs) consider the
triplet (xt,rt,yt), where rt is an additional auxiliary
process, to be markovian. In [22], the authors prove that
TMMs are more general than PMMs and PMMs more
general than HMMs. Furthermore, the authors show that
classical particle filtering approaches can be extended to
both PMMs and TMMs.

Examples of particle filters implemented using these
more general models as mathematical foundation can
be found in the literature [23]. However, and since the
objective of this work is to show the benefits of both
evolutionary computing and hardware acceleration in
particle filtering, the classical HMMs approach is suf­
ficient.

3 EVOLUTIONARY RESAMPLING

The sample impoverishment phenomenon in particle
filtering appears, as it has been mentioned in the pre­
vious section, when the posterior distribution is repre­
sented by a particle set in which there is no diversity.
Since one of the key features of genetic operators is intro­
ducing genetic diversity, it seems reasonable to combine
evolutionary computation and particle filtering in order
to improve the posterior distribution precision, and thus,
the overall filtering performance.

It is for this reason that the resampling stage of the
proposed Evolutionary Particle Filter features a genetic
algorithm. Each chromosome encodes the particle state,
as it is shown in (13).

x\, yk are the position values in both x-axis and y-
axis, and vx\, vy

l
k are the velocity values referred to the

same axes. The subscripts k represent the current time
step, whereas the superscripts i represent the particle
identifier.

3.1 Genetic Operators

Let us now focus on the genetic operators: crossover
and mutation. Crossover not only increases population
diversity, but also helps improving population fitness,
for children that inherit the best characteristics, i.e. genes,
from the parents are more likely to pass from one
generation to the next one. Since all state variables are
represented using real numbers, arithmetic crossover can

be applied in order to combine genetic traits from both
parents. Crossover operations are therefore expressed in
terms of the equations in (14).

xl = ax\ + (l-<y)xi (14)
xbk = axí + (1-a)xÍ

xk, xk are the offspring particles obtained from the
parents xk and x3

k, and a ~ [7(0,1). The superscripts
are the individual identifiers (a, b for the children; i, j
for the parents).

Mutation, on the other hand, is used to introduce
random variations within the particle population, which
also increases population diversity. In this work, two
different mutation proposals have been defined: local
search mutation and random placement mutation. The
former mutates the parent and generates a child in a
close region around the state of the parent, whereas
the latter generates a valid random particle in the state
space, i.e. within its limits. These two possible mutation
operations provide more flexibility. Local search muta­
tion is defined as in (15).

xl = xl + sk (15)

xk is the particle generated after mutation, xk are the
state variables of the parent i, and 8k is an array where
each component is defined by Ski ~ N{ni,ai). Random
placement mutation is based upon (16).

xk is, again, the particle generated after mutation, xmin

and xmax are the minimum and maximum allowable
values for the state variables, i.e. the state space bound­
aries, and ¡3 ~ £/(0,1).

Why have these genetic operators, and not others,
been selected? Arithmetic crossover generates children
by averaging, with some weighting process in between,
the parents states. Therefore, if the parents are in a close
region around the maximum fitness point, the children
will likely have better fitness values. Otherwise, they will
be discarded in future generations. Hence, the posterior
distribution will be more precise. The proposed mutation
strategies cover two different and opposed situations.
On the one hand, local search mutation is useful when
the particle population is close to the optimal value,
since mutation generates another particle in a close
environment of the parent. This leads to an increase
in high-fitness population. On the other hand, random
placement mutation provides robustness in those time
steps in which the tracking is lost, i.e. the posterior dis­
tribution is inaccurate or cannot be properly estimated.

3.2 Fitness Function

Given the fact that particle filtering and evolution­
ary computing have common features, such as be­
ing population-based algorithms, some parallelisms can
be established (at least to some extent). For instance,

weights can also be thought of as fitness values. By
making this simple assumption, the design is simpli­
fied significantly, since only one computation (weight)
has to be performed instead of two (fitness value and
weight). In this particular case, particle weights (i.e.
fitness values) are calculated using a normal multivari­
ate probability density function, using two dimensions
and assuming that the two random variables are non-
correlated. Therefore, these values can be obtained using
(17).

f(x,y)
2naxay

e x p •
(x-fj,x) (y-f¿y)

(17)

ax and ay are the standard deviation values of the
random variables x and y, which are the actual mea­
surements in both x-axis and y-axis, whereas ¡ix and ¡iy
represent the mean values, which are the current particle
x-axis and y-axis estimated measurements (calculated
from the particle state variables). The fitness function is
then expressed as (18).

/(**,*£) =
1

2 7T axay

e x p •
(zxk °xk)

(z Vk ^Vk) (18)

Therefore, each particle weight/fitness is the probability
of obtaining the measured positions in a normal 2-
dimensional probability density function whose mean
values are that particle positions.

3.3 Selection

In traditional implementations of evolutionary algo­
rithms, parent selection usually follows stochastic pro­
cesses, whereas survivor selection is based upon de­
terministic processes. In this work, however, both par­
ents and survivors are selected using Stochastic Uni­
versal Sampling (SUS), since having only one selection
algorithm is more suitable for hardware implementa­
tions with limited resources. This algorithm performs
fitness proportionate selection in a roulette-wheel fash­
ion. However, as opposed to the basic roulette-wheel
implementation, it is an unbiased process in which any
individual may be selected, even those with the lowest
fitness values in the population. SUS algorithm is shown
in Fig. 3.

4 SYSTEM ARCHITECTURE

A novel hardware-based Evolutionary Particle Filter,
the so-called HW-EPF, is presented in this work. The
algorithm (see Table 2) has been implemented in a
FPGA using VHDL. The HW-EPF is used as a hardware
accelerator by the main processor of a SoPC, since it
provides better performance than software in fast and

TABLE 2
HW-EPF Algorithm

Initialize particle population xz
0 and fc = 1

while(l)
for (i = 0; i < PARTICLES; i++)

Importance sampling x\ ~ v{x\\x\-\)
Compute weights w(xz

k) ~ p(y\\%%)

Normalize weights wz
k =

w(xj)
¿2?ARTICLES w(x3k)

for (gen = 0; gen < GENERATIONS; gen++)
Parent selection (SUS)
Draw r ~ U(0, 1). Arithmetic crossover if r < pCross
Draw r ~ U(0, 1). Mutation if r < pmut

Local search mutation if r > pmut rmut
Random placement mutation if r < pmut rmut

Survivor selection (SUS)
end for

end for
k++

end while

The HW-EPF algorithm modifies the basic resampling stage and
includes a genetic algorithm (steps 6 to 11) in order to take advan­
tage of the optimization capabilities of evolutionary computation.
In addition, more than one mutation operator has been included,
in order to further improve estimation performance.

repetitive sequential processes, e.g. particle update or
particle sorting. The block diagram of the SoPC can be
seen in Fig. 4.

The proposed implementation takes advantage of the
distributed resources inside the FPGA. For instance,
particle states are stored in the internal RAM (Random
Access Memory), and the fitness function is stored in
internal LUTs (Look-Up Tables). In addition, some op­
erations have been multiplexed in order to maximize
resource sharing, i.e. to minimize resource consumption,
which also provides significant benefits (e.g. less area
overhead). Hence, a tradeoff between resource utilization
and hardware acceleration is made, which is a common
practice in embedded system design.

Limited-precision fixed-point arithmetic is inherent
to most hardware designs, since computations require
fewer resources and are carried out faster. Some prob­
lems may arise when using limited-precision data types,

Microblaze C J!

z
I / D

memory

PLB

INT
controller

BRAM
controller

EPF
peripheral

Fig. 4: SoPC internal architecture. The main processor in the
system (in this case a Xilinx MicroBlaze soft-core) uses the
HW-EPF as a h a r d w a r e accelerator. The HW-EPF prov ides
three different interfaces: a register-based control po r t via PLB
(Processor Local Bus), a m e m o r y controller por t and some
in te r rupt signals.

r £

xo

rtsei /

Xl

Zifr
nse¡

X2 X3

! ' •

X4 Xs

Fig. 3: Stochastic Universal Sampling. After sorting the particles according to their fitness values (/¿) and computing the
cumulative fitness function, individuals are selected drawing a uniform random number r and dividing the whole cumulative
fitness range in as many equal divisions as individuals to be selected (nse¡).

e.g. overflow, underflow, and the results might not be
accurate enough. However, these factors have no rele­
vant influence in the proposed architecture, as it will be
shown in forthcoming sections.

4.1 Motion Model Equations

Assuming uniform motion patterns in both axis, the
importance sampling process, i.e. particle updating pro­
cess, is performed using the system of linear equations
shown in (19) and (20).

Xk ~ ^Xk-1

A

Wk-l

1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

(19)

(20)

ii>fc_i is an array where each component is defined by
wik_i ~ N((j,i,(Ti), i.e. an array of normal-distributed
random numbers or white noise. The coefficient T in
matrix A represents the sampling time, i.e. the theoretical
interval between two consecutive time steps, and has
been included in order to weight the influence of the
particle velocities in the estimation results. Notice that
this parameter is not related with the system clock
frequency at all.

In order to reduce the overall number of multipliers,
each particle uses four clock cycles (one clock cycle
per state variable) to be fully updated. Multiplexing
the input signals of the arithmetic operators (adders
and multipliers), and thus providing resource sharing
mechanisms, resource consumption remains balanced.

With the updated states, the system provides an esti­
mated measurement. This value is computed using the
expressions (21) and (22).

z.

H =

xk
~ i

ZVk .

1 0
0 1

0 "
0

(21)

(22)

cxk and -Vk are the estimated measured values of the
particle i state variables at time k in both x-axis and y-
axis respectively.

Since the estimated measurements are the position
state variables, the architecture has been simplified
avoiding the usage of additional resources.

4.2 Genetic Operators

Genetic operations are performed over each parent
if a uniform random number is below the established
thresholds, i.e. crossover and mutation probabilities.
Crossover unit follows equation (14), whereas mutation
unit follows equations (15) and (16). As far as the hard­
ware implementation of these modules is concerned,
they share the same architecture as the one described in
the previous subsection. The arithmetic units have their
inputs multiplexed in order to favor resource sharing, at
the expense of adding a fixed latency, in terms of clock
cycles, to the system.

4.3 Fitness Evaluation

Implementing equation (18) is not feasible in hard­
ware, due to the limitations of fixed-point arithmetic.
In addition, complex mathematical functions, such as
exponentials, are highly time-consuming. Therefore, they
should not be used when optimizing system perfor­
mance, even if a floating-point unit is available in the
design. In order to overcome this disadvantage, the pro­
posed implementation changes complex computations
by indexing operations in a LUT. The values of equation
(18) are evaluated in a small set of reference points at
synthesis time. The result of this discretization process
is shown in Fig. 5. Then, whenever the system needs to
compute a value, the LUT is accessed at run-time and
the fitness is obtained by zero-order interpolation. With
this proposed alternative, the system shows improved
estimation times without affecting estimation precision.

4.4 Estimation

At the end of each estimation step, the current state is
obtained from the whole particle population using the

expression (23). Uniform distribution Normal distribution

Xk =
Vk

v"xk

V Vk

N

(23)

Xk is the estimated state at time k, xx
k are the state

variables of the particle i at time k, and wl
k are the

normalized weights for each particle, computed as in
(24).

-¿ =
 w (4) f(zk,zl)

^N J2i=if(zk,z
3
k

(24)

4.5 Random Number Generator

Particle filters are always built upon stochastic pro­
cesses. Furthermore, evolutionary algorithms also re­
quire random numbers in order to decide whether to
apply a specific genetic operator, or which individuals
are chosen in the selection stages. Hence, random num­
ber generation is considered a main task within the HW-
EPF.

Taking a closer look at the proposed algorithms, it is
clear that two different types of random numbers have
to be generated: on the one hand, uniform-distributed
random numbers, e.g. crossover and mutation proba­
bility thresholds, a in (14) and ¡3 in (16). On the other
hand, normal-distributed random numbers, e.g. wk-i
in process model equation (19), or 8k in local search
mutation equation (15).

Uniform distributions are relatively easy to obtain in
hardware systems using a LFSR (Linear Feedback Shift
Register). These devices generate a stream of uniform-
distributed pseudorandom numbers. Since motion esti­
mation is not a highly demanding application, pseudo­
random features are enough.

Normal multivariate PDF

40 0

Fig. 5: Fitness evaluation LUT. The normal probability density
function is computed at synthesis time. Taking advantage of
symmetry properties, only one quadrant has been mapped into
the LUT, thus achieving a reduction in the number of internal
resources of the FPGA.

Fig. 6: Random Number Generator histograms. Uniform-
distributed random numbers (left) and normal-distributed ran­
dom numbers are used in different stages in the HW-EPF.

Normal distributions, on the other hand, are not that
simple to obtain in hardware systems. Some imple­
mentation alternatives can be found in the literature
[24], but in this work, a new strategy has been used.
Using a large LFSR, twelve uniform random numbers
are drawn at the same time. Then, these numbers are
added, and the resulting number, as a consequence of
the central limit theorem, is assumed to follow a normal
distribution. This assumption is valid, as it can be seen
in the distribution histograms in Fig. 6. This approach
provides an accurate implementation without increasing
excessively resource consumption.

5 EXPERIMENTAL RESULTS

In this section, different aspects of the implemented
design are put to the test. This work addresses algo­
rithm validation, overall system functionality validation
through Hardware In the Loop (HIL) co-simulation, and
a sensitivity analysis of the most important parameters
in the system. It also covers performance comparisons
between different implementations of the same algo­
rithm, and a summary report on resource consumption
and timing rates. All those test in which an actual
physical device is needed have been carried out using
the XUP-V5 development board, which features a Xilinx
Virtex-5 FPGA.

5.1 Evolutionary Resampling Algorithm Validation

A first set of test has been designed in order to validate
the evolutionary algorithm in the resampling stage of the
particle filter. Since these tests deal with the algorithm
itself and not with the implementation, they have been
carried out in MATLAB, not taking into account actual
implementation considerations, such as fixed-point data
precision or data overflow effects within the mathemat­
ical operations. The most used equations in particle-
filtering performance validation tests are those from

the univariate non-stationary growth model, with the
addition of a quadratic measurement model. The combi­
nation of both equations provides a highly non-linear
system, thus making it suitable for testing non-linear
estimation capabilities. Hence, the validation equations
can be expressed as (25) and (26).

Xk = xk-i + ——2~ 1" 7 c o s(l-2 (k - 1)) + wfc_i (25)
! + **-!

Zk=20+iPk (26)

Wfc_i ~ N(0,ax) is the so-called process noise, whose
standard deviation is represented by ax/ and fk ~
N(0, az) is the so-called measurement noise, whose stan­
dard deviation is represented by az. Both noise distribu­
tions have zero mean. Notice that the equations repre­
sent a one-dimensional system, since the aim of these
tests is to validate the functionality of the evolutionary
resampling stage, and not the target application itself.

Results from a comparison between the standard
Bootstrap Filter and the proposed HW-EPF show that,
under normal operation, both filters provide accurate
estimations (see Fig. 7). However, the HW-EPF slightly
outperforms, in terms of tracking performance, the Boot­
strap Filter (see estimation errors in Fig. 8). Moreover, if
changes are introduced in the trajectory so as to simulate
an inaccurate transition process modeling, the HW-EPF
is able to recover from lost-tracking states, whereas the
standard Bootstrap Filter loses the tracking never to
recover from that stray state. This specific condition is
shown in Fig. 9.

Another important feature of the proposed resampling
stage is that, as opposed to the resampling strategy
adopted in the Bootstrap Filter, it does not generate
sample impoverishment phenomena (at least to some
extent) in the system (see Fig. 10). Furthermore, if the
number of generations the evolutionary algorithm runs
is not large, particle diversity is kept and thus sample
impoverishment phenomena are mitigated. However,
evolutionary processes in which the maximum genera­
tion limit is not set to be small might show no mitigation
at all.

5.2 HIL Functional Validation

Hardware-in-the-loop co-simulation is a useful testing
methodology in which the designed system is connected
to a real-world environment, usually the one in which
it has been designed to work. The environment is in
charge of providing all necessary stimuli to the design
under test and, therefore, it does not have to be modeled.
Environment modeling is a highly time-consuming task
in system testing or validation processes. Hence, HIL
co-simulation is able to speed up the testing phase in
every design process. It is for this reason that this testing
methodology has been used in order to validate the right
functionality of the HW-EPF, i.e. its motion estimation
capabilities.

Particle filters are commonly used as the main es­
timation engine in many different applications. These
applications include, but are not limited to, visual track­
ing [25] [26], object detection [27], image segmentation
[28], contour detection [29], video stabilization [30], and
even point set registration [31], i.e. finding a spatial
transformation that aligns two given point sets. More­
over, particle filters have also been used as powerful
estimation tools in other applications, such as video
coding/decoding [32]. The proposed architecture can be
used in almost any application scenario that requires
estimations of both position and velocity of a mov­
ing object. The modular implementation ensures that
the system can switch applications by simply changing
the preprocessing stage. Therefore, the proposed HW-

System evolution

Fig. 7: HW-EPF vs. Bootstrap filter. In normal operation mode,
both filters provide accurate estimations and are able to track
the object. The image shows the real trajectory, as well as both
filter estimations.

Filtering error

- SIR (eav = 0.066535)

-EPF(ea =0 07311)

^ tibial!-ikuJIiL
0 10GG 2GGG 3000 4000 5000 6000 7000 8000 3000 10000

'.•i''Hy'•••••'•••

Fig. 8: HW-EPF vs. Bootstrap filter: overall estimation error.
Although the tracking is lost at certain points in both filters, the
HW-EPF provides estimations with less mean error. Moreover,
lost-tracking situations appear more often in the Bootstrap
Filter.

(a) Frame #26 (b) Frame #33 fc) Frame #50

Fig. 11: HIL co-simulation results. The functional validation of the proposed architecture is carried out using a red object tracking
proof-of-concept demonstrator. Results show that the HW-EPF performs estimations in real time (assuming video inputs of 30fps).

200 r

System evolution

Fig. 9: HW-EPF vs. Bootstrap filter: mutation benefits. Mutation
generates individuals in high-fitness areas of the state space,
thus recovering from lost-tracking situations, as opposed to the
Bootstrap Filter.

x particle placement at t = 8
1 2 F

10 h

6h

2h

D[

A
ParticJ(e-ipJ'icement after resampling at t

Oh
10 12 14 16 18

k
12 14

k
16 18

Fig. 10: Sample impoverishment mitigation in the HW-EPF. As
opposed to the Bootstrap Filter, the HW-EPF assures particle
diversity due to its evolutionary properties, thus providing
accurate posterior distributions. These results are better if the
generation count is kept at a minimum value. Notice that the
population moves towards the maximum fitness point.

EPF constitutes itself a generic, application-independent
motion estimation system. However, a visual tracking
application has been selected as a proof of concept.

The HIL co-simulation has been set up using both
Simulink and Xilinx System Generator toolboxes. Images
are acquired through a webcam and then preprocessed
inside the Simulink model. The target application is to
track red objects within the visual space. Hence, the
preprocessing stage detects those red objects, selects the
biggest among them and extracts its center of mass x-axis
and y-axis coordinates. These two values are the actual
measured values that are sent to the evaluation board
through an Ethernet point-to-point connection. The HW-
EPF then estimates the position of the center of mass and
sends back those estimated coordinates, which are then
printed over the original image.

The obtained results prove that the HW-EPF provides
an accurate tracking (i.e. estimated values), thus vali­
dating the proposed system architecture and implemen­
tation. In addition, and since normal operation times
allow real-time computation (as it will be shown in the
forthcoming subsections), it is possible to track objects
using not only static images but also live-feed video (Fig.
11).

5.3 Sensitivity Analysis

Complex designs such as the HW-EPF require a large
number of system parameters so that they can be flex­
ible and, to some extent, reconfigurable. Therefore, it
seems reasonable to analyze whether these parameters
have some impact on system performance or not. Fur­
thermore, it also seems relevant to detect on which
parameter the system has stronger dependencies. The
complete list of system parameters, as well as their
default values can be seen in Table 3. The analysis is
focused on two different, yet significant, performance
variables: on the one hand, estimation error, i.e. the
difference between the estimation and the actual value;
on the other hand, estimation time, i.e. the time the
system needs to generate a valid estimation from a valid
measurement. The estimation error is evaluated as the
Euclidean distance (or 2-norm distance) between both
estimation and measurement points, which is shown in

TABLE 3
System Parameters: Reference Values

Parameter
&pos
°vel

&rneas
T

#LUT Values
Particles
^Parents

^Generations
Pcross
Pmut
rjnut
&mut

7)-

Description
Position standard deviation
Velocity standard deviation
Measurement standard deviation
Theoretical sampling time
Fitness LUT values per dimension
Population size
Parents number
Generations number
Crossover probability
Mutation probability
Mutation ratio
Local search standard deviation

Value
32

0.01
10

0.033
32
200
10
2

0.6
0.1
0.4
6.0

efc v ^ xk ~Xk) + (Z; Vk -Vk) (27)

cxk and zyk are the measurements, whereas Xk and i¡k
are the estimations.

System parameters in this work can be divided into
two different groups: model parameters (e.g. process
noise or measurement noise standard deviations) and
evolutionary algorithm parameters. The results that ap­
pear in this subsection deal with the latter.

It seems clear that population size has a huge im­
pact on estimation performance (see Fig. 12). However,
the larger the population is, the slower the estimations
are and the larger the resource consumption rate is.
Increasing the number of parents also leads to a very
significant increase in hardware resources (more internal
RAM memory is needed in both cases) and estimation
times, but the estimation error is not improved (see Fig.
13). Therefore, the number of particles has to be deter­
mined by the tradeoff between accuracy, speed and area,
whereas the number of parents is determined by the
minimum amount that assures particle diversity and a
sufficient number of mutation and crossover operations.

When the number of generations is increased, the
estimation error suffers the same variation (see Fig. 14),
due to sample impoverishment phenomena. Further­
more, an increase in the generation limit produces longer
estimation times. Hence, the number of generations has
to be kept under a certain threshold to still benefit from
the evolutionary resampling stage.

Crossover and mutation probabilities, generally speak­
ing, provide better results, in terms of estimation error,
when their values are close to one. An increase in
crossover probability always leads to smaller estimation
errors. However, increases in mutation probability have
different outcomes depending on the mutation operator
that is dominant. When the mutation ratio favors ran­
dom placement the estimation error is increased (see Fig.
16); when local search mutation is favored, estimation
errors decreases (see Fig. 15). This reveals that, although
random placement mutation is absolutely necessary in
order to deal with lost-tracking situations, it must be
kept at minimum values to avoid affecting system per­
formance.

The effect that crossover and mutation probabilities

have in estimation time is the opposite of that in esti­
mation error. Larger probabilities mean more offspring
particles and, therefore, more sorting operations that
increase sharply estimation times (see Fig. 17). Hence,
another tradeoff between estimation performance and
execution time determines whether to select specific
values for crossover and mutation probabilities or not.

5.4 HW vs. SW Performance Comparison

The proposed architecture targets embedded systems.
The usage of hardware resources instead of software
routines provides a significant improvement in terms
of performance and execution time. Take for instance

Estimation Error Boxplot

Fig. 12: Estimation error vs. population size boxplot. Estimation
error can be significantly reduced if the population size is
increased. Small particle population generate bad results, as
it can be seen in the example of 20 particles, whereas large
populations increase resource utilization.

Estimation Error Boxplot

10 15
#Parents

Fig. 13: Estimation error vs. parent number boxplot. Increasing
the number of parents increases system performance, but only
slightly. Since parent number has a deep impact on resource
consumption, the fewer individuals are selected as parents, the
smaller the resulting implementation is.

E 10

Estimation Error Boxplot
TABLE 4

Resource Consumption

Resource
Slice Registers

Slice LUTs
Block RAM

DSPs

Utilization(%)
12
18
6

26

Resource consumption report on the global hardware accelerator
architecture. The module has been implemented in a Xilinx Virtex-
5 FPGA (5vlxll0tffll36-l). Notice that there is a large number
of DSP processing elements used, which may generate large area
overheads in other platforms.

in both Fig. 18 (min imum estimation times) and Fig. 19
(maximum estimation times).

Fig. 14: Estimation error vs. generation number boxplot. When­
ever the generation limit is increased, there is an increase in
the estimation error, since the resulting posterior distribution
suffers more sample impoverishment effects.

the fitness evaluat ion modu le , which replaces a complex
mathematical equat ion (online computat ion) by a m u c h
faster indexing process (LUT addressing).

Establishing a compar ison be tween the same algo­
ri thm implemented on different e m b e d d e d platforms, it
is clear that the ha rdware approach outperforms those
that t ry to take advantage of software resources. Soft­
ware approaches , no mat ter w h a t data precision the
comput ing core uses (fixed-point or floating-point opera­
tions), present a bottleneck in the fitness evaluat ion unit .
Complex mathematical operat ions, such as exponential
functions, reduce e m b e d d e d systems performance. The
proposed ha rdware accelerator performs est imations in
less t ime that the other alternatives, independent ly of the
n u m b e r of particles that is being used. This can be seen

Estimation Error (r = 0.25)

Fig. 15: Estimation error vs. genetic operators with more lo­
cal search mutation than random placement mutation. Local
search mutation reduces overall estimation errors. Crossover
also helps reducing estimation errors, but its effects are more
relevant.

5.5 Resource Consumption and Timing Results

This last subsection shows the resource utilization
report (Table 4) and the t iming results (Table 5), i.e.
m a x i m u m frequency in the design. Notice that the im­
plemented HW-EPF uses a large n u m b e r of DSPs units
inside the FPGA, even though the architecture has been
opt imized by means of resource shar ing techniques. This
can be considered one of the design main weaknesses .
In addit ion, the m a x i m u m allowable frequency is not
that high w h e n compared wi th those of the individual
modu les that consti tute the whole design. This is mainly
due to large routes inside the FPGA. However , this
m a x i m u m frequency value still provides good results
w h e n deal ing wi th real-time video processing.

6 CONCLUSIONS

A novel particle-filtering architecture, the HW-EPF,
has been designed. Its performance analysis reveals that
it not only provides accurate mot ion state est imations,
bu t also outperforms other algori thms, e.g. the Bootstrap

Estimation Error = 0.75)

Fig. 16: Estimation error vs. genetic operators with less local
search mutation than random placement mutation. Random
placement mutation, although necessary in order to recover
from lost-tracking events, does not help reducing estimation
errors as local search mutation.

Elapsed Time

Fig. 17: Est imation t ime vs . genetic opera tors . The chi ldren
count affects the t ime spent in each est imation. There is a
bott leneck in the fitness-sorting a lgor i thm, and its negat ive
effects are sharper w h e n the crossover probabil i ty is increased
(two chi ldren appear , instead of only one as in muta t ion) .

TABLE 5
Timing Repor t

Module
Random Number Generator

Process model
Crossover unit
Mutation unit

Divider
HW-EPF

Maximum frequency (MHz)
135.080
95.716
113.097
99.885

227.376
63.914

Timing results for each of the individual modules that constitute the
HW-EPF peripheral, as well as those from the final architecture. The
maximum operating frequency of the integrated design is reduced
due to large interconnecting routes between modules. As in the
resource consumption report, the selected device is a Xilinx Virtex-
5 FPGA (5vlxll0tffH36-l).

Filter. Particle-filtering common problems, i.e. particle
degeneracy and sample impoverishment, are mitigated
with the proposed algorithm, providing both accurate
and realistic posterior distributions.

The HW-EPF modular architecture provides flexibility
and reconfiguration capabilities to the embedded system
in which is used. As a hardware accelerator, it speeds up
estimation throughput. This acceleration has been veri­
fied when establishing a comparison between the same
algorithm with different implementations (only hard­
ware, software with fixed-point precision, and software
with floating-point precision) over the same evaluation
platform, and comes from the advantages that hardware
processing has when dealing with repetitive operations.

The sensitivity analysis shows that those system pa­
rameters that increase particle number, e.g. population
size, parent size (the more parents are selected, the more
offspring is generated), have to remain under certain
limits, in order to avoid excessively large implementa­
tions, i.e. with large area overhead. Moreover, mutation
and crossover probability thresholds have to be selected
taking into account the tradeoff between precision and
execution time: higher values show, generally speaking,
more accurate results but it takes longer to obtain the
estimations. In addition, the maximum number of gen­
erations has to be small, in order to mitigate sample im­
poverishment phenomena and reduce estimation times.

All things considered, the HW-EPF has proved to be
an outstanding filter, as well as a robust and powerful es­
timation tool. A proof-of-concept implementation using
HIL co-simulation has been made in order to validate
system functionality.

REFERENCES

Minimum estimation times

t—EPF-HW
t—EPF-SW (fixed)
t—EPF-SW (floating)

[1] R. E. Kalman, "A new approach to linear filtering and prediction
problems," ASME Journal of Basic Engineering, 1960.

Maximum estimation times

-EPF-HW
-EPF-SW (fixed)
-EPF-SW (floating)

Fig. 18: M i n i m u m est imat ion t imes compar ison . Both crossover
and muta t ion probabil i t ies are set to zero a n d thus no child
is genera ted . This is no t a real si tuation, since there is n o
evolut ionary influence on the est imations. However , the H W -
EPF is still m u c h faster than the other two approaches .

Fig. 19: M a x i m u m est imat ion t imes compar ison. Both crossover
and muta t ion probabil i t ies are set to one and t hus all possible
chi ldren are generated. Est imation t imes are m u c h shorter in
the HW-EPF, independen t ly on the popu la t ion size.

[2] G. Welch and G. Bishop, "An introduction to the kalrnan filter,"
Chapel Hill, NC, USA, Tech. Rep., 1995.

[3] A. Doucet and A. M. Johansen, "A tutorial on particle filtering
and smoothing: fifteen years later," 2011.

[4] N. Gordon, D. Salmond, and A. Smith, "Novel approach to
nonlinear/non-gaussian bayesian state estimation," 7EEE Proceed­
ings F, Radar and Signal Processing, vol. 140, no. 2, pp. 107-113,
1993.

[5] J. U. Cho, S.-H. Jin, X. D. Pham, J. W. Jeon, J.-E. Byun, and
H. Kang, "A real-time object tracking system using a particle
filter," in Intelligent Robots and Systems, 2006 IEEE/RSJ International
Conference on, Oct 2006, pp. 2822-2827.

[6] H. El-Halym, I. Mahmoud, and S. E.-D. Habib, "Efficient hard­
ware architecture for particle filter based object tracking," in Image
Processing (ICIP), 2010 17th IEEE International Conference on, Sept
2010, pp. 4497^500.

[7] S.-A. Li, C.-C. Hsu, W.-L. Lin, and J.-P Wang, "Hard­
ware/software co-design of particle filter and its application in
object tracking," in System Science and Engineering (ICSSE), 2011
International Conference on, June 2011, pp. 87-91.

[8] S. Agrawal, P. Engineer, R. Velmurugan, and S. Patkar, "Fpga
implementation of particle filter based object tracking in video,"
in Electronic System Design (ISED), 2012 International Symposium
on, Dec 2012, pp. 82-86.

[9] V. Jilkov, J. Wu, and H. Chen, "Performance comparison of gpu-
accelerated particle flow and particle filters," in Information Fusion
(FUSION), 2013 16th International Conference on, July 2013, pp.
1095-1102.

[10] M. Chitchian, A. van Amesfoort, A. Simonetto, T. Keviczky,
and H. Sips, "Adapting particle filter algorithms to many-core
architectures," in Parallel Distributed Processing (IPDPS), 2013 IEEE
27th International Symposium on, May 2013, pp. 427-438.

[11] M. Chitchian, A. Simonetto, A. van Amesfoort, and T. Keviczky,
"Distributed computation particle filters on gpu architectures for
real-time control applications," Control Systems Technology, IEEE
Transactions on, vol. 21, no. 6, pp. 2224-2238, Nov 2013.

[12] T. Higuchi, "Monte carlo filter using the genetic algorithm op­
erators," Journal of Statistical Computation and Simulation, vol. 59,
no. 1, pp. 1-23, 1997.

[13] B.-T. Zhang, "A bayesian framework for evolutionary computa­
tion," in Evolutionary Computation, 1999. CEC 99. Proceedings of the
1999 Congress on, vol. 1, 1999, pp. -728 Vol. 1.

[14] S. Park, J. P. Hwang, E. Kim, and H.-J. Kang, "A new evolutionary
particle filter for the prevention of sample impoverishment,"
Evolutionary Computation, IEEE Transactions on, vol. 13, no. 4, pp.
801-809, Aug 2009.

[15] C. Li, Q. Honglei, and X. Juhong, "Distributed genetic resam­
pling particle filter," in Advanced Computer Theory and Engineering
(ICACTE), 2010 3rd International Conference on, vol. 2, Aug 2010,
pp. V2-32-V2-37.

[16] J. Zhang, T.-S. Pan, and J.-S. Pan, "A parallel hybrid evolutionary
particle filter for nonlinear state estimation," in Robot, Vision and
Signal Processing (RVSP), 2011 First International Conference on, Nov
2011, pp. 308-312.

[17] W L. Khong, W. Y. Kow, Y. K. Chin, M. Y Choong, and K. Teo,
"Enhancement of particle filter resampling in vehicle tracking via
genetic algorithm," in Computer Modeling and Simulation (EMS),
2012 Sixth UKSim/AMSS European Symposium on, Nov 2012, pp.
243-248.

[18] C. Nyirarugira and T. Y Kim, "Adaptive evolutional strategy of
particle filter for real time object tracking," in Consumer Electronics
(ICCE), 2013 IEEE International Conference on, Jan 2013, pp. 35-36.

[19] A. Doucet, N. De Freitas, and N. Gordon, Eds., Sequential Monte
Carlo methods in practice, 2001.

[20] A. Doucet, S. Godsill, and C. Andrieu, "On sequential monte carlo
sampling methods for bayesian filtering," Statistics and Computing,
vol. 10, no. 3, pp. 197-208, 2000.

[21] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, "A tuto­
rial on particle filters for online nonlinear/non-gaussian bayesian
tracking," Signal Processing, IEEE Transactions on, vol. 50, no. 2,
pp. 174-188, Feb 2002.

[22] F Desbouvries and W Pieczynski, "Particle filtering in pairwise
and triplet markov chains," in Proceedings of the IEEE EURASIP
Workshop on Nonlinear Signal and Image Processing (NSIP 2003),
Grado-Gorizia, 2003, pp. 8-11.

[23] N. Abbassi, D. Benboudjema, S. Derrode, and W Pieczynski,
"Optimal filter approximations in conditionally gaussian pairwise

markov switching models," Automatic Control, IEEE Transactions
on, vol. PP, no. 99, pp. 1-1, 2014.

[24] D.-U. Lee, J. Villasenor, W Luk, and P. Leong, "A hardware
gaussian noise generator using the box-muller method and its
error analysis," Computers, IEEE Transactions on, vol. 55, no. 6, pp.
659-671, June 2006.

[25] Y Zheng, Z. Shi, R. Lu, S. Hong, and X. Shen, "An efficient
data-driven particle phd filter for multitarget tracking," Industrial
Informatics, IEEE Transactions on, vol. 9, no. 4, pp. 2318-2326, Nov
2013.

[26] J. Kwon, H. S. Lee, F Park, and K. M. Lee, "A geometric particle
filter for template-based visual tracking," Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 36, no. 4, pp. 625-
643, April 2014.

[27] G Gualdi, A. Prati, and R. Cucchiara, "Multistage particle win­
dows for fast and accurate object detection," Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 34, no. 8, pp. 1589-
1604, Aug 2012.

[28] D. Varas and F Marques, "Region-based particle filter for video
object segmentation," in Computer Vision and Pattern Recognition
(CVPR), 2014 IEEE Conference on, June 2014, pp. 3470-3477.

[29] N. Widynski and M. Mignotte, "A multiscale particle filter frame­
work for contour detection," Pattern Analysis and Machine Intelli­
gence, IEEE Transactions on, vol. 36, no. 10, pp. 1922-1935, Oct
2014.

[30] J. Yang, D. Schonfeld, and M. Mohamed, "Robust video stabiliza­
tion based on particle filter tracking of projected camera motion,"
Circuits and Systems for Video Technology, IEEE Transactions on,
vol. 19, no. 7, pp. 945-954, July 2009.

[31] R. Sandhu, S. Dambreville, and A. Tannenbaum, "Point set reg­
istration via particle filtering and stochastic dynamics," Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 32,
no. 8, pp. 1459-1473, Aug 2010.

[32] S. Wang, L. Cui, L. Stankovic, V Stankovic, and S. Cheng, "Adap­
tive correlation estimation with particle filtering for distributed
video coding," Circuits and Systems for Video Technology, IEEE
Transactions on, vol. 22, no. 5, pp. 649-658, May 2012.

Alfonso Rodriguez was born in Madrid, Spain,
in 1989. He received the BSc degree in in­
dustrial engineering and the MSc degree in
industrial electronics from the Universidad Po­
litécnica de Madrid (UPM), Spain, in 2012 and
2014.

He is currently a full-time researcher and
working toward the PhD degree in industrial
electronics at Centro de Electrónica Industrial
(CEI), UPM. His current research interests in­
clude artificial intelligence, embedded systems,

high performance computing, and reconfigurable computing.

Felix Moreno (M'10) was born in Valladolid,
Spain, in 1959. He received the M.Sc. and Ph.D.
degrees in telecommunication engineering from
Universidad Politécnica de Madrid (UPM), in
1986 and 1993, respectively.

Currently, he is Associate Professor of Elec­
tronics at UPM. His research interests are fo­
cused on evolvable hardware, high-performance
reconfigurable and adaptive systems, hardware
embedded intelligent architectures, and digital
signal processing systems.

