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Abstract—The logarithmic number system has been proposed as an alternative to floating-point arithmetic. Multiplication, division and

square-root operations are accomplished with inexpensive fixed-point methods, but addition and subtraction are considerably more

challenging. Recent work has demonstrated that these operations too can be done with similar speed and accuracy to their FP

equivalents, but the necessary circuitry is complex. In particular, it is dominated by the need for large ROM tables for the storage and

interpolation of non-linear functions. We describe a new co-transformation procedure that eliminates much of the ROM space and

allows the easy synthesis of the remainder in logic, and we then evaluate several interpolation methods that might benefit from it.

Synthesised 32-bit implementations are compared with floating-point units, and show substantial reductions in delay, with equivalent

accuracy and area.

Index Terms—High-speed arithmetic, logarithmic number system

Ç

1 INTRODUCTION

THERE are five parameters of interest in the design of a
real arithmetic unit: wordlength (which governs range

and precision), accuracy (i.e., error, both in quantisation
and processing), speed, area, and power dissipation. The
floating-point (FP) system is commonly implemented at
wordlengths of 32, 64 and 80-bits, and has a maximum error
of 0.5 l.s.b.. The other three parameters are open-ended and
therefore subject to continuous attempts at improvement.

In 2008 we described a 32-bit microprocessor in which
the real arithmetic subsystems had been replaced by ones
based on the Logarithmic Number System (LNS) [1]. We
showed that its speed and accuracy exceeded that of a
commercial FP device fabricated in a similar technology,
and concluded that further improvements in LNS techni-
ques would open a clear gap between these and FP imple-
mentations. Herein, we describe such a development.

In an LNS a real number is represented as its fixed-point
logarithm. Range and precision of the represented numbers
are very similar to floating-point values of the same wor-
dlength. Multiplication, division and square root operations
become fixed-point addition, subtraction and right shift
respectively. Unlike their FP counterparts, these operations
are fast and cheap (often effectively cost-free, as they share
the existing fixed-point unit), andmultiplication and division
return exactly quantised results. Until recently, however,
these inherent advantages were offset by the difficulty of
implementing addition and subtraction, which involve the

evaluation of the non-linear functions (1) and (2). For
i ¼ log2 x, j ¼ log2 y, r ¼ j� i, and assuming j � i:

log2 ð2i þ 2jÞ ¼ iþ log2ð1þ 2rÞ ¼ iþ FAðrÞ; (1)

log2 ð2i � 2jÞ ¼ iþ log2ð1� 2rÞ ¼ iþ FSðrÞ: (2)

The functions FAðrÞ and FSðrÞ, generically referred to as
F(r), are illustrated in Fig. 1. Up to about 20 bits these func-
tion values can be stored directly in a ROM. Being irrational,
they are subject to a rounding error. Beyond this, memory
requirements become prohibitive, and instead the function
is stored at intervals with intervening values obtained by
interpolation, which adds to the error. Following an opera-
tion the error in a result can be exponentiated into the linear
domain and compared directly with the corresponding FP
error, as described in Section 2 below. A desirable objective
has always been to keep it within the worst-case FP error of
0.5 l.s.b., but this has not always been achieved. The prob-
lem is compounded by the singularity in the subtraction
function, where the rapidly changing derivative as r ! 0
necessitates the use of successively smaller interpolation
intervals that require a significant increase in storage, often
to the point of impracticality. To some extent the issues of
function evaluation in general, and dealing with the singu-
larity in particular, have been addressed separately.

Interpolation increases the delay and also introduces
its own error. A variety of interpolation techniques have
been devised, some of which maintain better accuracy
than FP arithmetic. Of these, some operate over the entire
range of the subtraction curve and consequently have a
large storage requirement. Others do not attempt to oper-
ate near the singularity, instead deploying some algebraic
technique that transforms subtractions in this region into
an equivalent calculation comprising only of easier opera-
tions. This itself introduces further delays, arithmetic ele-
ments and storage, and while the impact of these might
be significantly less than that of an interpolation in this
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region, they still impose a burden that is vastly dispro-
portionate to the small part of the range that these sub-
tractions represent.

Section 2 will illustrate the problem and set the baseline
for this work by reviewing a number of existing 32-bit inter-
polators, all of which achieve FP-equivalent accuracy. They
vary in their treatment of r close to zero, but all manifest the
basic difficulty in dealing with subtractions in this region.

The method we describe in this paper is sometimes
referred to as co-transformation. It takes i and r, and
converts them to new values where r is of larger magnitude
and hence easier to interpolate. We will take an existing
first-order co-transform and develop it into a second-order
arrangement (cf. [10] eqn (30)). By doing so, we will signifi-
cantly reduce its storage to an extent that allows the remain-
ing tables to be conveniently synthesised in logic. By
removing explicit ROM elements from the design, together
with their associated timing and layout considerations, a
significant increase in speed is also achieved. The trade-off
is that, whenever the new transform is used, the subsequent
interpolation needs to be performed twice.

Sections 3 and 4 deal, respectively, with the algebra of the
original and modified co-transforms, while Section 5 deals
with the specific question of what proportion of subtrac-
tions will require its use. Section 6 revisits the interpolator
schemes introduced in Section 2, and shows how each
would be affected if used with the new co-transform. Two
interpolators are then chosen for further development, one
emphasising high speed and the other a small area.

Section 7 will then develop these latter two schemes
into full arithmetic units, which will be compared with a
variety of FP units independently designed by other
workers using a similar fabrication technology. Previous
studies, e.g. [19], [20], have concluded that the choice
between FP and LNS is best made individually for each
application. We will show that, for general use, 32-bit
LNS arithmetic offers significantly less delay than FP,
roughly equal area, and equivalent accuracy.

2 EXISTING METHODS

In this section we will describe a number of existing LNS
implementations that achieve accuracy equivalent to that of
floating-point arithmetic. The relevant definitions of
‘accuracy’ were presented in [4] and, for ease of reference,
we open with a short summary of this material.

2.1 Measurement of Accuracy

In an FP system, assuming that both operands represent
exact values, a result Â as returned by a practical implemen-
tation can be regarded as an approximation to the
corresponding exact result A. Each result is thus in error by

e ¼ Â�A. This error may be quoted relative to the exact
result itself and, with an f-bit mantissa, may be expressed in
terms of the weight of the l.s.b.. In [4] we denoted this
quantity as the ‘relative arithmetic error’,

erel arith ¼ 1

2�f

Â�A

A
: (3)

In the equivalent LNS (i.e., with f-bit fractional part), it
may be correspondingly assumed that the inputs to an oper-
ation are exact. Direct comparison can be made between the
two number systems by exponentiating the LNS operands
and result to their FP representation.

For f ¼ 23, FP arithmetic has worst-case errors
emax rel arith � 0:5, emin rel arith � �0:5, and mean errors
eav rel arith ¼ 0, jejav rel arith ¼ 0:1733.

2.2 LNS Implementation Methods

Lewis A high-order polynomial interpolator was presented
by Lewis [2], and was the first published 32-bit design that
maintained FP-equivalent accuracy. Its coefficients were cal-
culated dynamically which imposed a delay but, apart from
the storage for the subtraction function in the range r � �1,
its memory was extremely compact. The interpolator tables
were optimally partitioned, but implemented with an
address generator that mapped each partition into a single
physical device. The lookup table sizes, shown in Fig. 2,
row 1, illustrate the problem associated with subtractions
for which r is close to zero. The segment to the left repre-
sents the storage for the addition operation. The middle seg-
ment (‘Sub (lo)’) shows the storage for subtractions in the
range r < �1, and the rightmost segment (‘Sub (hi)’) that
for r � �1. The latter is 9.2 times that needed for the remain-
der of the subtraction curve, and accounts for 83 percent of
the total storage in this design. A fabricated variant [3]

Fig. 2. Storage requirements for various LNS interpolation schemes.

Fig. 1. LNS addition and subtraction functions.
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therefore relaxed the requirement for accurate interpolation
in this region, as did other implementations e.g. [9] which is
based on multipartite tables.

ELM We described an alternative 32-bit interpolation
technique [4] that was based on a first-order Taylor approxi-
mation with a correction scheme that approximated the
combined effect of the higher-order terms. The two curves
were each partitioned at successive powers of 2. Each parti-
tion was divided into 256 intervals, n, of width D. The value
of D doubled from one partition to the next, although
for clarity in what follows we shall omit reference to this
variation. For each interval was stored the value of the func-
tion F(�nD) at the start of the interval, together with the
slope of the tangent, D(�nD), at that point. The error in an
interpolation increased as the interpolation point d moved
along the tangent away from the stored point, up to a maxi-
mum E(�nD) immediately before the next stored point. This
maximum error was also stored for each interval. It was
observed that the error at d, expressed as a proportion of the
maximum error E for that interval, was approximately
constant in all intervals on both curves. By calculating this
proportion throughout one interval and storing its values
on another table, P, the error in any particular interpolation
could be determined by multiplying the interval-specific
value E(n) by P(d). This was accumulated with dD(�nD) and
F(�nD) to obtain the result. That is,

F ð�nD� dÞ � F ð�nDÞ � dDð�nDÞ þEðnÞP ðdÞ:

This maintained FP-equivalent accuracy and offered a
much shorter delay path than hitherto because inputs to the
multipliers were delivered directly from the tables. These
were implemented as physically separate devices for each
partition, (and it is interesting to note that such a multi-table

structure has been identified as a useful factor in power
reduction [26]). However, it did not attempt to operate near
the singularity. Instead, a co-transform [7] was applied in
the case of any subtraction with r close to zero (>�0.5),
which it converted to an equivalent subtraction with r well
away from zero. The co-transform is implemented with two
tables F1 and F2, which together comprise a far smaller
amount of storage than would the tables necessary for accu-
rate interpolation. These two techniques were combined in
the first 32-bit silicon with FP-equivalent accuracy, the Euro-
pean Logarithmic Microprocessor [1]. Fig. 3 shows an
outline of the arrangement.

The storage sizes for this scheme are shown in row 2 of
Fig. 2. The co-transform unit comprises F1 and F2 tables
each of 2,048 words, 63,488 and 65,536 bits respectively,
or 129,024 bits in total. It is now 1.3 times that of the
remainder of the subtraction curve (‘Sub (lo)’), and
accounts for 36 percent of the total storage. A die plot of
the ELM was shown in [21]. There are two adder/subtrac-
tor units, known as ‘multi-cycle ALUs’. The logic for the
two units is merged, but their tables are mirrored on
either side of the die. The F1 and F2 co-transform tables
(labeled G on the plot), in exact agreement with the
proportion of bits that they contain, comprise 36 percent
of the total ROM area.

Chester An improvement to this interpolation technique
was suggested by Chester [8], who proposed using a chord
as the interpolating line. This reduced the size of the F and
E tables at the expense of a larger P table, a significant
decrease in the net total. Values of D were calculated
dynamically, by looking up and subtracting two consecu-
tive values of F, which was therefore held in an interleaved
memory. Thus

F ð�nD� dÞ
� F ð�nDÞ� ðd=DÞ½F ð�nDÞ � F ð�fnþ 1gDÞ� þEðnÞP ðdÞ:

Calculation of the indices to the F tables imposed an
additional delay, but the subtraction to obtain D passed a
carry-save result to the following multiplier and elimination
of the D table resulted in a further substantial memory sav-
ing. Implementation of the co-transform was unchanged
from [4]. The co-transform tables were now 4.1 times the
size of the remaining subtraction table and accounted for
53 percent of total storage (Fig. 2, row 3).

FloPoCo An alternative co-transform was proposed in
[10], [11], [12], [13], [14]. It converts r for a subtraction into
an argument to the addition function which, having no sin-
gularity, is easier to interpolate. Hardware complexity is
roughly equivalent to that of [7]. The most recent version of
this scheme [14] is used in FloPoCo [15], a VHDL generator
for FPGA arithmetic. Additions and direct subtractions are
executed with an extension of multipartite table methods
that allow the evaluation of polynomials of any degree [16],
and have a maximum error of one FP-equivalent l.s.b.. The
co-transformation is applied as r approaches zero (the
actual threshold is configurable), but such subtractions may
then have a larger error [17].

Minimax Fu [18] examined the Minimax algorithm as a
solution to the interpolation of F(r), and devised an
FPGA-based arrangement. Equations (1) and (2) were

Fig. 3. Block diagram of ELM ALU (from [4]).
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rearranged to bring r onto the positive axis, and an adap-
tive technique selected the most optimal intervals for the
application of a Minimax algorithm: for FAðrÞ 416 inter-
vals were required to cover the interpolated range. As in
Lewis’ design, an address generating circuit provided an
address input to a single physical ROM, but to maintain
time-efficiency the coefficients were then delivered
directly to the multipliers. At 32 bits, a second-degree
polynomial achieved FP-equivalent accuracy, and an eco-
nomical datapath layout evaluated this by Horner’s
method:

FAðrÞ ¼ c2x
2 þ c1xþ c0

¼ c0 þ ðc1 þ c2xÞx:

A similar approach was used for FSðrÞ, except in the
region close to the singularity, in this case r < 4. Using a
technique first proposed by Paliouras and Stouraitis [5],
these subtractions decomposed FSðrÞ into two separate
functions, both easier to interpolate than FSðrÞ itself. How-
ever, they required an additional interpolator and tables for
their evaluation. The scheme is particularly suitable for use
on an FPGA where multiplication hardware is abundant,
but it is difficult to extrapolate an estimate of its size or per-
formance in a silicon implementation.

It will be evident from Fig. 2 that the storage requirement
for the subtraction curve as it approaches zero accounts for
a vastly disproportionate amount of the storage overall. A
figure of 83 percent when these values are interpolated (in
[2]) improves to 36 or 53 percent when the co-transform is
applied ([4] and [8]), but even this is far more than is
commensurate with the proportion of operations lying in
this region. In the following two sections we will review the
co-transform algebra, and then describe a development of it
that substantially reduces this storage. As a result, the entire
ALU can now be synthesised in logic.

3 FIRST-ORDER CO-TRANSFORMATION

The co-transformation was originally conceived for use
with an interpolator based on a first-order Taylor approxi-
mation. We will describe its development within the con-
text of that interpolator, but it should be noted that the
resulting algebra is independent of this and pertains only
to the region �1 < r < 0. It can therefore be applied in con-
junction with any interpolating scheme that adequately
handles the remainder of the curve. From hereon we shall
be concerned only with the subtraction function so, for
clarity, we abbreviate all references to FSðrÞ to F(r).

For most of the range of r, F(r) can be obtained by
interpolation, using tables of the function (F) and deriva-
tive (D). The tables are stored at intervals of D, which is a
power of 2, and is the largest possible value that permits
accurate interpolation. To accommodate the varying non-
linearity, the function is partitioned at varying powers of 2,
with the value of D in each partition being half that of the
partition to its left. As r ! 0 the subtraction function exhib-
its a singularity in which the rapidly changing derivative
makes accurate interpolation difficult without continuing
the partitioning through several negative powers of 2, so
massively increasing the storage requirement.

The co-transformation simplifies the subtraction
operation by obviating the interpolation in the region
�1 < r < 0, eliminating table D and reducing substantially
the size and complexity of table F, using instead two much
smaller and regularly organised tables. At and below
r ¼ �1, the F and D tables are implemented as before, but in
this region are small. It relies on the replacement of subtrac-

tion 2i � 2j with two successive subtractions

2i � 2j ¼ ð2i � 2jþk½1�Þ � 2jþk½2�; (4)

where

2k½1� þ 2k½2� ¼ 1; i:e:;k½2� ¼ log2ð1� 2k½1�Þ: (5)

Factor 2k½1� is individually chosen for each value of
r ¼ j� i such that the index r[1] for the inner subtraction
falls on the nearest modulo-D[1] boundary beneath j� i,
where D[1] is now fixed at a large value. F(r[1]) can therefore
be obtained directly from lookup table F1, which contains
F(r) for �1 < r < �D½1� at modulo-D[1] intervals. Factor k[1]
is constrained to lie in the range �D½1� � k½1� < 0, and can
therefore be used to index another lookup table F2, contain-
ing F(r) for all possible values of r between �D½1� < r < 0, to

obtain k[2]. Since 2k½1� � 1, k[2] is a large negative value. This
has the effect of increasing the magnitude of the index for
the outer subtraction, r[2], such that r½2� < �1. It therefore
falls in the linear region of F(r[2]), and can be obtained by
interpolation from the small remaining F and D tables
covering this region.

Thus:

r½1� ¼ ðððj� iÞDIVD½1�Þ � 1Þ � D½1� ¼ jþ k½1� � i; (6)

k½1� ¼ �ðððj� iÞMODD½1�Þ þ D½1�Þ ¼ i� jþ r½1�; (7)

k½2� ¼ F ðk½1�Þ: (8)

The original values i and j are modified to yield the fol-
lowing operands to the outer subtraction:

i½2� ¼ iþ F ðr½1�Þ; (9)

j½2� ¼ jþ F ðk½1�Þ ¼ jþ k2; (10)

and the subtraction becomes

2i � 2j ¼ 2iþF ðr½1�Þ � 2jþF ðk½1�Þ: (11)

This generates an index r[2]

r½2� ¼ j� iþ F ðk½1�Þ � F ðr½1�Þ
¼ j� iþ log2ðð1� 2i�jþr½1�Þ=ð1� 2r½1�ÞÞ: (12)

The value of r[2] can be considered in three regions,
depending on the original operands i and j. For j� i � �1,
r[2] is taken directly as j� i, and will lie in the linear region
of F from which F(r) can be obtained by interpolation. For
�1 < j� i < �D½1�, r[2] is derived as shown above, and as
it also lies in the linear region of F, F(r) is similarly obtained
by interpolation. For the third region, �D½1� � j� i < 0, the
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derived value of r[2] rises above �1. However, this range is
covered by the F2 table, and F(r) is therefore already avail-
able as k[2]. The modified values r[2] and i[2] are passed to
the interpolator for completion of the outer subtraction.

Following interpolation of F(r[2]), the result of the sub-
traction is

log2ð2i � 2jÞ ¼ iþ F ðr½1�Þ þ F ðr½2�Þ: (13)

The arrangement is illustrated in Fig. 4.
It is shown in [7] that the combined size of the F1 and F2

tables is about one-seventh of that of the F and D tables that
would be required to yield an interpolation of similar
accuracy.

A number of simplifications are possible in an implemen-
tation of this scheme. In the calculation of k[1] and r[1] the sub-
traction j� i is not necessary because this term is already
available as r. Operation DIV returns a truncated result, and
since D[1] is a power of 2 the DIV, MOD and � operations
involve only bit-partitioning and concatenation of zeroes.
Thus the only arithmetic operations required in these calcula-
tions are the addition or subtraction of the single-bit constants
D[1] and 1. However, it will be noted that there is a determin-
istic relationship between the bit-partitioned values of r and
the functions k[1] and r[1] that form the indices to the F1 and
F2 tables. The addition and subtraction can therefore be
avoided completely by rearranging the mapping of addresses
to function values in these tables. Calculation of the index r[1]
and coefficient k[1] can thus be donewith no time overhead at
all. Finally, the subtraction to obtain r[2] can be rearranged to
use the precalculated value of r, and to use cumulative addi-
tions instead of an addition and a subtraction. The entire unit
can thus be implementedwith aworst-case delay of one ROM
access, a carry-propagate adder and a carry-save stage.

4 SECOND-ORDER CO-TRANSFORMATION

The fractionating coefficient k[1] can be applied recursively.
Substituting

2jþk½2� ¼ 2j � 2jþk½1�

into (4), and designating a new value k[11] for use in a man-
ner analogous to k[1]:

2i � 2j ¼ ð2i � 2jþk½1�Þ � ð2j � 2jþk½1�Þ
¼ ð2i � 2jþk½1�Þ � ðð2j � 2jþk½1�þk½11�Þ � 2jþk½1�þk½12�Þ;

(14)

where

2k½11� þ 2k½12� ¼ 1; i:e:;k½12� ¼ log2ð1� 2k½11�Þ: (15)

The four subtractions comprising (14), and their respec-
tive indices r, will now be numbered as follows:

2i � 2j ¼ ð2i � 2jþk½1�Þ
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

1

�ð ð2j � 2jþk½1�þk½11�Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

11

�2jþk½1�þk½12�Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

12
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2

:

(14A)

Again, k[1] is selected such that index r[1] falls on the
nearest modulo-D[1] boundary beneath j� i, and F(r[1]) is
obtained directly from lookup table F1, containing F(r) for
�1 < r < �D½1� at modulo-D[1] intervals. However, D[1] is
now fixed at a larger value than was the case in the first-
order arrangement, thereby shortening the index to the F1
table by the number of additional bits used. Previously, this
would have caused a corresponding increase in size of the
index to the F2 table. Now, however, coefficient k[11] is sim-
ilarly selected such that r[11] falls on the modulo-D[11]
boundary beneath jþ k½1� � j ¼ k½1�, and F(r[11]) is
obtained from table F11 which contains F(r) for �D½1� � r <
�D½11� at modulo-D[11] intervals. This reduces the index to
the F11 table by the number of bits representing D[11]. The
final coefficient, k[12], is obtained by lookup of table F12
indexed by k[11], itself represented by the same number of
bits as D[11]. The conceptual arrangement is shown in
Fig. 5. The index r has effectively been split into three

Fig. 4. Conceptual arrangement of first-order co-transformation.

Fig. 5. Conceptual arrangement of second-order co-transformation.
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partitions, each of which will optimally be about a third of
the length of the original.

Thus:

r½1� ¼ ðððj� iÞDIVD½1�Þ � 1Þ � D½1� ¼ jþ k½1� � i; (16)

k½1� ¼ �ðððj� iÞMODD½1�Þ þ D½1�Þ ¼ i� jþ r½1�; (17)

r½11� ¼ �ðððj� iÞMODD½1�Þ þ D½1�Þ þ ððj� iÞMODD½11�Þ
¼ k½1� þ k½11�; (18)

k½11� ¼ ððj� iÞMODD½11�Þ ¼ r½11� � k½1�; (19)

k½12� ¼ F ðk½11�Þ: (20)

Subtractions 11 and 1 of (14A) are performed directly by
lookup of their respective function tables. Subtraction 12
then generates an index

r½12� ¼ k½1� þ F ðk½11�Þ � F ðr½11�Þ
¼ k½1� þ log2ðð1� 2k½11�Þ=ð1� 2k½1�þk½11�ÞÞ: (21)

The value of r[12] varies with the original r as shown in
Fig. 6, where �2D½1� < r < �D½1�, i.e., r lies across the
range of one D[1]. In the arrangement used for this illustra-
tion, D[11] is 6 bits and D[1] is 13, i.e., r is partitioned into
low, middle and high-order segments of 6, 7 and 10 bits
respectively. This is not the most optimal partitioning, but
was chosen for this illustration to keep the graph to a man-
ageable size. The modified value r[12] exhibits a repeating
pattern of subintervals across each D[11]. With the excep-
tion, discussed below, of the extreme left subinterval,
r½12� < �1. Note, in fact, that for the point in each subinter-
val where k½11� ¼ 0, r½12� ¼ �1. These points have been
omitted from the graph, and in practice they are ignored
because the subsequent calculation of F(r[12]) is conse-
quently zero.

To illustrate the difference between the leftmost subin-
terval and the others, it is necessary to consider the
behaviour of r[12] as r progresses across the range of D[1].
In the first subinterval at the left of the figure k½1� < D½11�,
and k½1� þ k½11� ¼ D½11�. To the far left of this subinterval,
k½11� � D½11�, and since k[1] is small, r½12� � 0. Throughout

this subinterval the middle partition is zero. It is therefore
possible to treat this subinterval as a special case of the
first-order arrangement, in which the second-order coeffi-
cient k[11], table F12 and index r[12] are analogous to the
first-order k[1], F2 and r[2]. The new value r[2] bypasses
the first interpolator and is passed directly to the second
interpolation stage. Throughout the next subinterval,
k½1� þ k½11� ¼ 2D½11�. To the far left of this subinterval,
again, k½11� � D½11�, but since k[1] and k[11] are both
small, the exponential terms are approximately linear in
behaviour and r[12] is therefore ��1. From here on,
r½12� < �1. Except in the case just mentioned, subtraction
12 in (14A) is then completed in the first interpolator,
which is positioned as shown in Fig. 5.

The result of subtraction 12 is then itself subtracted from
the result of subtraction 1. Its index r[2] is

r½2� ¼ j� iþ F ðr½12�Þ þ F ðr½11�Þ � F ðr½1�Þ
¼ j� iþ F ðr½12�Þ þ log2ðð1� 2k½1�þk½11�Þ=ð1� 2k½1�þj�iÞÞ:

(22)

The value of r[2] is plotted in Fig. 7. In all cases,
r½2� < �1, as illustrated in the plot over the range
�1 < r < �D½1�. The subtraction can therefore be per-
formed with a second pass of the interpolator. The result,
again, is

log2ð2i � 2jÞ ¼ iþ F ðr½1�Þ þ F ðr½2�Þ: (23)

In a manner analagous to that of the first-order arrange-
ment, in which the value of r[2] falls into one of three
regions, here it is separated into four. Again, this depends
on the original operands i and j. For j� i � �1, r[2] is taken
directly as j� i, and will lie in the linear region of F from
which F(r) is obtained by interpolation. For
�1 < j� i < �D½1�, r[2] is derived as shown above, and
now has a maximum of approximately �1. Thus it also lies
in the linear region of F, and F(r) is similarly obtained by
interpolation. In the third region, �D½1� � j� i < �D½11�,
the high-order partition is zero and subtractions in this
region can therefore be processed with a first-order tech-
nique using the F11 and F12 tables. Finally, F(r) for
�D½11� � j� i < 0 is taken directly from the F12 table.

Fig. 6. Value of r[12] for �2D½1� < r < �D½1�.
Fig. 7. Value of r[2] for �1 < r < �D½1�.
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In terms of hardware implementation, it is possible to
make optimisations similar to those used in the first-order
arrangement. The initial calculation of r[1], k[1] and k[11]
can be done by rearranging the bits internally, and
although several additions and subtractions are required,
they can be reordered so that only additions are involved.
Although Fig. 5 shows the conceptual algebraic layout, the
co-transformation unit itself terminates after the calcula-
tion of r[12] and i[12]. These values are passed to the
interpolator where subtraction 12 of (14A) is completed,
giving j[2]. The arrangement of Fig. 3 is modified with a
feedback path to return this result to the top of the ALU,
where i[2] has now been stored in a holding register. These
values form the inputs to subtraction 2 which, having
r < �1, automatically bypasses the co-transform unit and
proceeds directly to the second interpolation.

Rows 4, 5 and 6 of Fig. 2 review the three interpolators
in rows 1, 2 and 3, each of them now in conjunction with a
second-order co-transform optimally partitioned with
respect to table size, i.e., with k[11] at 8 bits and k[1] at 16.
The results will be discussed in Section 6, but it is immedi-
ately evident that the co-transform is now realised in 21,248
bits (640 words) instead of 129,024 (4,096 words). The F1,
F11 and F12 tables are now 4,096, 8,448 and 8,704 bits (128,
256 and 256 words) respectively. This represents a reduction
to about 16 percent of the original size, and has the major
practical advantage that the tables can now be conveniently
synthesised in logic. It does, however, come at the expense
of a vastly increased delay for subtractions using the co-
transformation. These now require two passes through the
interpolator, and will therefore have around twice the delay
of a direct subtraction.

From this, two questions follow. The first concerns the best
region of application of the transform, which can consist of all
or any part of the range r > �1. Reducing the range will
reduce the number of subtractions using it, while also reduc-
ing the co-transform table sizes but increasing those of the
interpolator. A second question relates to the desirable prop-
erties of the interpolator itself. Each of these questions raises a
number of related issues,which are examined in the following
two sections.

5 USE OF THE CO-TRANSFORMATION

The first-order co-transform, as implemented on the ELM,
relied on two tables with 11 address bits each; that is, it was
applied only over the range r > �0:5. This minimised the
overall storage in this unit. The second-order arrangement
has much smaller tables, and, by eliminating the corre-
sponding interpolator table, minimal storage will conse-
quently occur now when it is applied over its full operative

range of r > �1. On the other hand, this will increase the
number of subtractions using it, and hence the time penalty
in doing so. To quantify this, we analysed two examples of
the more advanced types of digital filter, this being the area
that has probably aroused the most interest as an applica-
tion for LNS processing. Each application was programmed
in optimised assembly language and executed on the ELM
simulator, which had been modified to count the number of
subtractions lying in the ranges over which the co-transform
might be deployed.

The first application comprised a QR-Recursive Least
Squares filter of order 16, running over 2,000 timesteps. This
was introduced in [1], and the program, input data and
results were exactly as described there. The second was
based on the Fast Affine Projection algorithm, used here for
echo cancellation. From the noisy signal presented to its
input, it yielded an estimate of the error at each timestep.
This was also run over 2,000 timesteps. In each case, input
data made significant use of all parts of the dynamic range.

The proportion of subtractions lying within the fullest
range of deployment of the co-transform unit is shown in
Table 1, col. 2. Normally, however, the same hardware will
be used both for additions and subtractions, so any penalty
resulting from the use of the transform will be incurred rela-
tive to the total number of additive operations. This is
shown in col. 3, which is itemised to show the lower and
higher halves of the range.

These results provide little reason to restrict the applica-
tion of the co-transform unit. Even when deployed over its
full range of r > �1, only about 5 percent of additive opera-
tions will use it in RLS, and less than 2 percent in FAP. On
the other hand, this study is based on only two specific
examples, and we are aware of evidence from other workers
suggesting that some applications might have a higher
proportion of subtractions for which r is close to zero. In
what follows in this paper, we have applied the co-trans-
form throughout its full range r > �1, but this is undoubt-
edly an area that needs further work.

6 INTERPOLATION WITH SECOND-ORDER

CO-TRANSFORMATION

The second-order co-transform can be applied to any of the
interpolators described in Section 2 and shown in the first
three rows of Fig. 2. Note, however, that interpolation is not
the focus of this paper; rather it is the purpose of this section
to discuss the issues relating to the integration of the inter-
polator with the co-transform unit, and to illustrate the per-
formance of the co-transform in operation in a practical
setting. For full details of the interpolators the reader is
referred to the referenced publications.

TABLE 1
Analysis of Subtractions in Application Examples

1. No. of Additive
Operations
(millions)

2. % Subtractions in the
Range

3. % Additive Operations
Comprised by Subtractions

in the Range

Add Subtract �1 < r �1 < r � �0:5 �0:5 < r

Recursive Least Squares 0.52 0.46 11.0 1.09 4.08
Fast Affine Projection 4.42 3.55 3.20 0.72 0.71
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Fig. 2, rows 4, 5 and 6 show the storage requirements
for each of the interpolators previously discussed, this
time in tandem with a second-order transform. In Lewis’
interpolator, storage for subtractions near the singularity
will now account for 30 percent of the total, which itself
will see a reduction to about 25 percent of its original
size. This is by far the most compact arrangement in
terms of storage, but its delay path is longer than the
others. With the ELM interpolator and that of Chester,
storage for subtractions close to the singularity is reduced
to 9 and 16 percent respectively, and the totals have been
reduced to 65 and 54 percent of their original values.
Chester’s has less storage overall, but a longer delay
path. Both, however, include large P tables of 1 kword or
more, synthesis of which would be inefficient and time-
consuming.

An ideal interpolator for use with the co-transform
would have the shortest possible delay path, both because
high speed is an objective in itself, and to avoid an unrea-
sonably long delay when the co-transform is used twice.
Coefficients would be delivered directly from the table to
the multipliers, and separate tables for each partition would
simplify address generation. For ease of synthesis the tables
themselves would be small. Two further interpolator
designs were of interest from this perspective.

Modified Chester A modification of Chester’s design was
also described in [8] and some minor changes to it in [21].
There is no run-time subtraction to derive D, the values of
which are instead held on a separate table, and therefore no
need to interleave the F table. It uses a smaller P table, at the
expense of larger F, D and E tables. Essentially this arrange-
ment is the same as the ELM interpolator, except that the
D table represents the slope of the chord instead of the tan-
gent, and the E and P tables are recalculated accordingly. Its
storage requirements are given in Fig. 2, row 7.

Minimax We also developed a Minimax-based system
with negative r. Unlike Fu, we did not minimise the hard-
ware by evaluating the polynomial with Horner’s method
but, rather, minimised the delay by direct evaluation using
three multipliers.

Similar in complexity to Modified Chester, the F, D and E
tables of the latter are replaced by tables of the 0th, 1st and
2nd order coefficients. These tables have been calculated
with the Sollya utility [24], which minimises the storage
requirement for results of a specified accuracy. The P table
of the Modified Chester interpolator is correspondingly
replaced by a multiplier that forms the square of its argu-
ment. Each partition is divided into 128 intervals. Storage
for this scheme is shown in Fig. 2, row 8.

In both the latter interpolators, delay paths were further
minimised, e.g., by combining consecutive arithmetic

elements to eliminate carry-propagate additions from all
but the last element in a chain. No more aggressive optimi-
sation was attempted, however, and it is possible that either
arrangement could be further improved.

An error analysis for the two interpolators is presented in
Table 2. They are broadly similar except that Minimax has a
smaller bias, which reflects the objective of the utility with
which it was designed. Worst-case accuracy in each case is
within FP-equivalent limits. The Modified Chester interpo-
lator requires 183,296 bits of table space, against 110,080
for Minimax.

7 LNS ALUS COMPARED WITH FP

These two designs were synthesised and routed in the
Faraday UMC 0.18 mm technology, using Synopsis Silicon
Compiler and Cadence SoC Encounter. Areas and delays
are presented in Fig. 8. Areas are itemised between those
of the multiplication-division units and the combined
addition-subtraction units. Delays are itemised for multi-
plication-division, addition-direct subtraction, and co-
transformed subtraction.

The Minimax interpolator includes an additional multi-
plier that forms the quadratic term, so there is less differ-
ence in the silicon areas than in the lookup table sizes. The
area of the Modified Chester interpolator is 583,550 mm2,
and that of Minimax 474,438 mm2. The Modified Chester
design has a delay of 6.97 ns. Its P table returns values in
which each bit is a function of its nine address inputs. For
Minimax, the longer delay of 9.30 ns is due to the extra mul-
tiplier. Studies, e.g. [22], [23], have shown that a dedicated
squaring circuit can reduce the delay of a general multiplier
by up to 25 percent. This would amount to something less
than a nanosecond in this case, but is an improvement that
might be attempted.

TABLE 2
Error Analysis of Selected Interpolators with Second-Order Co-Transform

emax rel arith emin rel arith eav rel arith jejav rel arith

Modified Chester
Add þ0.4527 �0.4623 þ0.0077 þ0.1745

Subtract þ0.4987 �0.4604 þ0.0024 þ0.1738

Minimax
Add þ0.4720 �0.4944 �0.0015 þ0.1721

Subtract þ0.4626 �0.4617 þ0.00055 þ0.1719

Fig. 8. Area and delay of flowthrough LNS units routed at 0.18 m.
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Kwon et al. [6] present a comparison of two 32-bit FP
designs, also synthesised and routed for 0.18 mm fabrica-
tion, and include data for speed and area. The first design,
DIVA, is optimised for minimal area. It is clocked at
266 MHz, and performs addition and multiplication in five
cycles and division in 12. It has a synthesised area of
481,635 mm2. MONARCH is also clocked at 266 MHz, but is
optimised for speed. Delays and silicon areas for these devi-
ces are summarised in Fig. 9. (Kwon does not disaggregate
the areas of the various functional units so the total areas
are used throughout).

Also shown in Fig. 9 are the corresponding figures for
the two LNS designs, the delay times of which have been
fitted into a multiple of this 266 MHz clock period. With the
Modified Chester arrangement, addition and direct sub-
traction could be completed in two cycles (7.52 ns) and co-
transformed subtractions in 4 (15.04 ns). Multiplication and
division would complete in one cycle, although this
includes a large amount of slack time. The routed area of
this ALU, including that of the multiplicative operators,
would be 593,071 mm2. For Minimax, addition would
require three cycles (11.28 ns) and co-transformed subtrac-
tions 6 (22.56 ns). Its routed area is 483,959 mm2.

The similarity in areas between the faster LNS and FP
designs, Modified Chester and MONARCH, conveniently
allows for a direct comparison of their speeds. The LNS
design completes in 67 percent of the time of its FP counter-
part, except in co-transformed subtractions where the ratio
is 133 percent. On the assumption, based on the figures pre-
sented in Table 1, that 5 percent of subtractions require the
use of the co-transform, then the LNS will have an average
delay 70 percent of that of FP. The two slower designs, Mini-
max and DIVA, are likewise very similar in area and here
the LNS design has 60 percent of the delay of the FP unit, or

120 percent for co-transformed subtractions, an average of
63 percent. Multiplications are accelerated between three
and five times, and divisions up to 12.

In [25], Saleh and Swartzlander report the area and flow-
through delays for 32-bit FP arithmetic in a more recent
45 nm fabrication. Their objective was to develop a fused
dot-product unit, but they give the metrics for the discrete
operators in [25], Table 2. These are reproduced here in
Table 3, col. 1.

We do not have access to an equivalent 45 nm process, but
were able to resynthesise and route the two LNS designs for
the Faraday UMC 65 nm process. Results for these two units
are given in Table 3, cols 2 and 3.

Interpretation of these results is a little tenuous, being cir-
cumscribed not only by the different geometries but also by
the fact that the FP unit does not perform division. The
65 nm Modified Chester arrangement performs an addition
or direct subtraction with 55 percent of the delay of the
45 nm FP unit in col. 1, and a co-transformed subtraction
with 118 percent of this delay. Using the weighted average
described above, a mixture of direct and co-transformed
subtractions will complete with 58 percent of the FP delay.
Multiplications are about 14 times faster. With a reduction
to 45 nm fabrication, these speeds could only improve. The
LNS design does occupy almost three times the area of the
FP unit, but applying a 50 percent reduction as one moves
from 65 to 45 nm, it would become 1.5 times the size. The
comparison would then have to account for the assumed
size of an FP division unit. If this were taken to be, say
25 percent of that of the adder and multiplier, then this LNS
design might occupy 1.2 times the area of the FP unit. This
improvement to 58 percent of the delay (or better at 45 nm)
with 1.2 times the area seems roughly consistent with the
results observed at 0.18 mm: 70 percent of the delay with
equal area.

In the case of the Minimax design additive delays are
75 percent of those of the FP unit, and co-transformed sub-
traction 158 percent, a weighted average of 79 percent. On
the same assumptions as above, a 45 nm realisation would
occupy a similar area to that of the FP unit.

8 PROCESSOR INTEGRATION

We will now consider the integration of this unit into a pro-
cessor. In [1] we discussed the architectural implications
that arose in the ELM. Reasoning that the main strength of
the LNS is the low latency and small resource requirement
of its multiplicative operations, we developed a short vector
machine with parallel replicated multipliers and, as far as

Fig. 9. Area and delay of pipelined LNS and FP units routed at 0.18 m.

TABLE 3
Delay and Area of Some Arithmetic Units Routed in Smaller Geometries

1. Saleh & Swartzlander
45 nm

2. Modified Chester 65 nm 3. Minimax 65 nm

Delay (ns) Area (mm2) Delay (ns) Area (mm2) Delay (ns) Area (mm2)

Add / Sub 1.644 3,811 0.91
38,661

1.24
31,432

Sub (Co-tr) - - 1.94 2.60

Mul 1.804 9,482
0.13 537 0.13 537

Div - -
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possible, adders. The emphasis on low latency was consis-
tent with a flowthrough implementation of the adders,
which the various ROM elements would have made awk-
ward to pipeline, besides restricting the clock speed.

With the removal of any explicit ROM cells, the last point
in this justification becomes invalid. Registers can now be
inserted at any convenient point in the adder datapath and,
with regard not to have an unduly adverse impact on
latency, a modest degree of pipelining can be considered.
The latencies shown in col. 2 of Table 3 would then suggest
that an operating frequency approaching 2 GHz will be
achievable with a two-stage adder pipeline and single-stage
multiplier.

On the ELM there are two parallel addition/subtraction
units that stride through consecutive pairs of elements in
a vector. These units are not pipelined, and normally
complete in three cycles. If either element requires a co-
transform then the system simply stalls for an additional
cycle to allow time for it. Although this will hold up the
other unit, which may not have needed the co-transform
service, the relatively infrequent occurrence of these trans-
forms and the fact that the system stalls for only one cycle
more than the default three, render this a minor loss of effi-
ciency. A vector of length n that does not involve a co-trans-
form will execute in 3n/2 cycles. If, however, t elements
require the transform (assuming they are not located in the
same pair), then this will increase to ð3n=2Þ þ t cycles,
degrading the throughput by a factor of 3n=ð3nþ 2tÞ.

With the two parallel units now pipelined into two
stages, a pair of intermediate results including one that
requires the co-transform, emerging from the second stage
will now be recycled to the first. Including a one-cycle lead-
off, a vector with no co-transformed elements will occupy
ðn=2Þ þ 1 cycles, increasing to ðn=2Þ þ 1þ t when the co-
transform is involved. The performance degradation for
various values of n and t, where t/n is in broad agreement
with the values reported in Table 1, are shown in Table 4.

The pipelined implementation will evidently lose up to
about 11 percent of its peak performance, under workloads
representative of those used in Section 5. This de-rating fac-
tor could be applied to any of the designs developed in
Section 7. A pipelined version of the Modified Chester
design, for example, with a clock period 55 percent that of
an FP unit, would see this relative advantage reduce to
62 percent.

9 CONCLUSION

The LNS promises to outperform FP arithmetic, at least at
32 bits, but one of the most cumbersome aspects of the design
of an LNS arithmetic unit is the size of the ROM-based lookup
tables required for accurate interpolation of the subtraction
function. Whereas the addition curve is well behaved, and

uses tables that are small enough to permit convenient synthe-
sis, that for subtraction exhibits a difficult singularity.
Although a study of some sample DSP programs revealed
that subtractions in this region would comprise no more than
about 5 percent of executed additive operators, examination
of different arithmetic units indicated that storage of the
necessary values for these subtractions could account for up
to 83 percent of storage overall.

Here, we have described a development that substan-
tially reduces the storage needed to implement these sub-
tractions. It could be used either as a replacement for the
existing co-transform in units that currently include one, or
as a replacement for the large amounts of storage involved
in interpolating directly. Storage for the respective subtrac-
tions would now account for 30 percent or less of the totals,
which themselves would be reduced to between 65 and
25 percent of their previous sizes. The removal of these large
tables brings within easy reach the possibility of synthesis-
ing the remaining smaller ones, thereby eliminating the
timing and layout problems associated with ROM elements,
facilitating a significant improvement in speed, and
enabling a pipelined architecture if desired.

The drawback of this modified transform is that, in the
few percent of additive operations that require it, it necessi-
tates the re-use of the interpolator.

In order to illustrate the benefits of the new co-transform
unit in what might be a contemporary setting, we studied
two other interpolators in detail, both with good speed and
area characteristics, and both easy to synthesise. These were
developed into complete arithmetic units, which were
compared with FP designs that had been independently
designed in comparable geometries. LNS units performing
the four primary operations will occupy a broadly similar
area to those of their FP equivalents, and additive opera-
tions will deliver equivalent accuracy. Additive delays will
be between about a half and three-quarters of those of FP,
and the units can be pipelined.

Co-transforms of the third (or higher) orders are possible,
but would require a third pass through the interpolator and
at 32 bits would yield only a marginal reduction in storage.
They might, however, hold promise at longer wordlengths.
Apart from continuing improvements at 32 bits, this is
another avenue for exploration.

Aside from this, the question of power dissipation is com-
ing increasingly to the fore, and remains for further consider-
ation. Likewise, the widespread interest in custom
datapaths, or compound primitives like fused multiply-add,
may lead to some interesting application studies.
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TABLE 4
Throughput Degradation of Co-Transformed Operations

n ¼ 16
t ¼ 1

n ¼ 32
t ¼ 1

n ¼ 32
t ¼ 2

n ¼ 64
t ¼ 1

n ¼ 64
t ¼ 4
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