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Practical approximation of single-qubit unitaries
by single-qubit quantum Clifford and T circuits

Vadym Kliuchnikov, Dmitri Maslov, Michele Mosca

Abstract—We present an algorithm, along with its implementation that finds T-optimal approximations of single-qubit Z-rotations using
quantum circuits consisting of Clifford and T gates. Our algorithm is capable of handling errors in approximation down to size 10

−15,
resulting in optimal single-qubit circuit designs required for implementation of scalable quantum algorithms. Our implementation along
with the experimental results are available in the public domain.

✦

1 INTRODUCTION

QUANTUM computing is a recent computing
paradigm using the laws of quantum mechanics as

a basis for computation. The following two observations
explain the interest in the study of this computing model.
First, it has been shown that quantum algorithms can
solve certain computational problems more efficiently
than the best known classical algorithms. The speed-up
provided by quantum algorithms is sometimes quite
significant, including superpolynomial for the well-
known integer factorization problem (more generally,
the hidden subgroup problem over Abelian groups;
the original quantum algorithm is best known as
Shor’s algorithm). Second, small quantum computations
have already been demonstrated in experiments, and
recent results in scaling and fault tolerance suggest the
possibility of a full-scale quantum computation. As a
result, quantum computations may one day become a
hardware platform capable of substantially speeding up
certain computations in ways classical computation is
believed to be incapable of.

Much like any classical algorithm, a quantum al-
gorithm needs to be implemented efficiently in order
to gain maximal possible advantage from executing it.
Typically, a quantum algorithm is described in terms
of high level procedures such as arithmetic operations
(addition, multiplication, exponentiation) or special pur-
pose transforms, such as the Quantum Fourier Trans-
form (QFT). These large transforms are then decomposed
into high level logical gates, such as Toffoli, Fredkin,
SWAP, arbitrary two-qubit gates, including controlled
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versions of the above, etc., and finally broken down into
circuits over elementary logical gates. The set of the
elementary logical gates allowed is dictated by the fault-
tolerance techniques that limit the efficiency of imple-
menting an arbitrary transformation. Recent studies of
fault tolerance techniques suggest that the fault-tolerant
library should consist of Clifford (single-qubit Pauli,
Hadamard, Phase, CNOT gates) and T logical gates, with
the understanding that the T gate requires considerably
more resources than any of the Clifford gates [1], [13],
[19]. Consequently, since recently, it has become widely
accepted that the T-gate count/depth may serve as a
good first-order approximation of the resource count
required to physically implement a quantum circuit.

In this paper we study the problem of the optimal
single-qubit gate approximation by Clifford and T cir-
cuits. Single-qubit gates arise in a variety of contexts
within quantum algorithms, most notably, in the Quan-
tum Fourier Transform (per [17], controlled-Z rotations
can be implemented by reducing them to Fredkin and
one single-qubit gate; it is the single-qubit gate that
requires approximation and consumes most resources),
and quantum simulations [14], [23]. Interestingly, in both
cases the single qubit gates required are the rotations
around the axis Z , which are the gates we approximate
optimally in this paper.

A solution to the single-qubit circuit approximation
problem in the form of a brute force search to find
optimal circuits was suggested by Fowler [12]. However,
brute force search appears to run out of classical compu-
tational resources for approximation error values below
10−4. The approximation precision can be improved
using the Solovay-Kitaev algorithm [10], [15]. When
using it the resulting circuit size scales as O(log3.97(1/ε))
instead of the optimal scaling O(log(1/ε)). In contrast,
our algorithm is capable of handling precision down
to 10−15 and producing optimal results, and is thus
suited for application to scalable quantum computing.
Next, an exact synthesis algorithm has been developed
to synthesize unitaries over the ring Z[i, 1/

√
2] [17]. This

algorithm synthesizes circuits that are both T- and H-
optimal. However, it does not answer the question of
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how to efficiently approximate a single-qubit unitary
whose elements lie outside the ring Z[i, 1/

√
2], and in

most practical situations this is precisely the case. We
rely on this latter algorithm in our paper, as well as on
the observation made in [17] that finding an approximat-
ing circuit is as difficult as finding the approximating
unitary. More recently, [16] developed an algorithm for
finding asymptotically optimal single-qubit circuit ap-
proximations by using a few ancillae. While this means
that the resource count asymptotics have thus been
settled up to a constant factor in a scalable (polynomial
in log (1/ε) classical resources required to synthesize an
asymptotically optimal quantum circuit) fashion, those
constant factors matter in the actual implementations. At
approximately the same time as our original posting of
this work, a new result appeared [21], that shows how
to approximate single-qubit unitaries with an approxi-
mately 33% overhead compared to the optimal results,
and using no ancillae. While the focus of [21] appears
to be on scaling to handle very tiny errors, our focus
is on minimizing the quantum computing resources
for implementation sizes of foreseeable practical impor-
tance. Indeed, we obtain optimal circuits, meaning fur-
ther simplification is impossible unless other additional
resources are allowed. We also highlight that a number
of approaches have been developed in the literature that
use additional resources in the form of ancillae, special
states, classical feedback, or whose application results in
a probabilistic success of having approximated a target
unitary [3], [4], [5], [11], [15], [20], [24]. In contrast to
those publications, our focus is on solving the basic
version of the synthesis problem—the one requiring only
the necessary resources, and doing so optimally.

As illustrated in Section 6, our implementation is ca-
pable of synthesizing optimal implementations for error
sizes down to 10−15. To calculate how small of an error
one might need to approximate a single-qubit unitary
to, consider Shor’s integer factoring algorithm. Suppose
we want to factor a 1,000,000-bit number, and the effect
of the error due to gate approximation is required to be
negligible, e.g., 0.01%. The number of single-qubit gates
requiring approximation is about 2n logn|n=1,000,000 ≈
4·107. Assuming the errors add up, the precision of
each individual gate does not need to be smaller than
10−12 < 0.0001

4·107 . As such, since our algorithm capable
of approximating single-qubit unitaries to error 10−15,
it can be readily used to approximate the QFT (the
modular exponentiation can be implemented exactly and
requires no approximations) part of Shor’s algorithm
that factors 1,000,000-bit numbers.

The above simple rough calculation motivated our de-
cision to invest additional resources into the calculations
in exchange for a higher quality output (which lead to
a lower cost quantum circuit). In particular, we noted
that we can manage precisions of practical importance,
and have thus invested the additional time into com-
puting the best approximating unitary—our results are
accompanied by the optimality guarantee. Furthermore,
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







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









|00〉 → |00〉
|01〉 → |01〉
|10〉 → |11〉
|11〉 → |10〉

Fig. 1. CNOT gate with control on the first qubit and
target on the second qubit. From left to right: diagram of
the gate, its corresponding unitary, action on the compu-
tational basis of the two qubit state space.

in the above calculation we assumed that the errors add
up in the worst possible way. Naturally and for most
applications and approximations this is unlikely to be
the case, as random and independent noise scales as the
square root of the sum of absolute values of all errors.
Our algorithm may furthermore be easily updated to
provide slightly (on the order of 5%) suboptimal imple-
mentations and draw a random one, thereby providing
a way to grow logical error by a sublinear function of
the sum of errors and potentially resulting in significant
advantage via savings in approximating with a much
larger error.

2 PRELIMINARIES

In this section we review basic concepts with the goal of
introducing the notations. For an in-depth review, please
see [19].

While the state of a classical bit can be either 0 or 1,
the state of a quantum bit, or qubit, is described by a unit
vector in the two-dimensional complex vector space C2.
It is common to use the notation |0〉 and |1〉 to denote
an orthonormal basis of the state space and refer to it
as the computational basis. The state of the system of n
qubits is described by a unit vector that belongs to the
n-fold tensor product of the two-dimensional complex
spaces. If the state of the first qubit is α |0〉 + β |1〉 and
the state of the second qubit is |0〉, then the state of the
corresponding two-qubit system is

(α |0〉+ β |1〉)⊗ |0〉 ∈ C
2 ⊗ C

2 ∼= C
4.

In the circuit model, quantum computation is performed
by applying unitary operators (linear operators that
preserve the usual inner product between vectors) to the
state vector at discrete time steps. A unitary operator
U applied to a single qubit corresponds to the tensor
product U ⊗ I with identity on the rest of the qubits.
For example, when one applies U to the first qubit and
the system is in the state mentioned above, the result
becomes

U ⊗ I ((α |0〉+ β |1〉)⊗ |0〉) = (αU |0〉+ βU |1〉)⊗ |0〉 .
Depending on the gate library used, it is not always

possible to implement a unitary operator exactly, and an
approximation is used instead, meaning those unitaries
that cannot be implemented exactly are replaced with the
ones implementable and close in some distance defined
on the unitaries.



3

The gate library we focus on is Clifford+T. It consists
of the following single-qubit gates

X :=

(

0 1
1 0

)

, Z :=

(

1 0
0 −1

)

, Y := iXZ

H :=
1√
2

(

1 1
1 −1

)

, T :=

(

1 0

0 eiπ/4

)

, P := T 2

and the CNOT gate (see Fig. 1), which is a two-qubit
gate. The above gates, except T gate, are all Clifford gates
and typically are easier to implement fault-tolerantly
than the T gate. The H gate is also called the Hadamard
gate and the P gate is also called the Phase gate; X, Y,
and Z are known as single-qubit Pauli gates.

The result of the computation is obtained by the
measurement of the resulting state. For a single-qubit
state α |0〉+β |1〉, the probability of the outcome 0 is |α|2,
and the probability of the outcome 1 is |β|2. In general,
the result of an n-qubit computation is a probability
distribution on all Boolean n-bit strings. The precision
that we want to achieve during the approximation pro-
cedure is determined by the precision of the resulting
distribution of the outcomes required to successfully
obtain the correct answer.

Any single-qubit unitary can be decomposed in terms
two Hadamard gates and Z-rotations

Rz(φ) :=

(

e−iφ/2 0

0 eiφ/2

)

(see, for example, [15], solution to Problem 8.1). There-
fore, the ability to approximate Rz(φ) implies the ability
to approximate any single-qubit unitary. In addition,
Rz(φ) are common single-qubit rotations used in many
quantum algorithms. For example, they are used in the
Quantum Fourier Transform—an important ingredient
in a number of quantum algorithms, as well as in
quantum chemistry simulations. In this paper we focus
on optimal approximation of Rz(φ) by Clifford and T
gates, and thereby address the practical needs.

3 MAIN RESULTS

In this section we describe our main result—the al-
gorithm for approximating single-qubit rotations Rz(φ)
using Clifford and T circuits. The algorithm is based
on exact synthesis results [17]. In particular, it was
previously shown [17] that any single-qubit unitary can
be represented by a Clifford and T circuit if and only if
it has the following form:

U [x, y, k] =

(

x −y∗ωk

y x∗ωk

)

,

where x, y ∈ Z[i, 1√
2
] and ω := eiπ/4. We call these

unitaries exact, implying that the unitaries can be exactly
represented by the respective circuits, and do not require
to rely on approximation. To approximate Rz(φ) we first
find a unitary U [x, y, k] that is close to it and then use
the exact-synthesis algorithm from [17] to find a circuit

implementing U [x, y, k] with the optimal number of H
and T gates. With the above exact synthesis results [17]
we reduce the problem of finding the best approximation
by a Clifford and T circuit to the problem of finding
the best approximation by an exact unitary. We call this
problem the Closest Unitaries Problem (CUP).

3.1 Closest Unitaries Problem

Here we define the Closest Unitaries Problem formally
and briefly discuss why it is easier to solve this problem
than the similar problem involving circuits. We use
global phase invariant distance to measure the quality
of approximation. It is defined on single-qubit unitaries
as

d(U, V ) :=
√

1− |tr(UV †)| /2.
Motivated by the relative difficulty of implementing the
T gate in practice, we aim to find the best approximation
using at most the given number of T gates. We next
introduce the T-count, T (U), to be the minimal number
of T gates required to implement U up to the global
phase as a circuit over the Clifford and T gate library. In
other words, U can be written in the form

eiαC1TC2T . . . CnTCn+1,

where eiα is some constant (global phase), Ci are Clifford
unitaries, n = T (U), and U cannot be written in the
above form for any n < T (U).

Problem 1. CUP[n, φ] (Closest Unitaries Problem) is the
problem of finding:

• the distance ε[n, φ] between Rz(φ) and the set of exact
unitaries with T-count at most n,

• the subset D[n, φ] of all exact unitaries with T-count at
most n and within distance ε[n, φ] from Rz(φ); T-count
of all elements of D[n, φ] must be minimal.

The requirement for the elements of D[n, φ] to have the
minimal T-count is non-trivial. This is because the set of
all exact unitaries with T-count at most n and within
distance ε[n, φ] from Rz(φ) may contain unitaries with
different T-count, as is illustrated in the example we give
in the next subsection (formulas (2)).

A naı̈ve brute-force solution to CUP[n, φ] [12] requires
one to enumerate all exact unitaries with T-count at most
n. Our algorithm allows us to significantly reduce the
size of the search space used for solving CUP[n, φ] when
ε[n−1, φ] is known. Informally, if one has already solved
CUP[n−1, φ] there is no need to solve CUP[n, φ] from
scratch: one just needs to check if using exact unitaries
with T-count at most n instead of exact unitaries with
T-count at most n−1 allows them to improve the quality
of approximation over previously achieved ε[n−1, φ]. It
is much easier to accomplish this when approximating
by unitaries compared to approximating by circuits.

In the next section we describe in more detail the
problem that we need to solve on top of CUP[n−1, φ]
to find the solution to CUP[n, φ]. We call this problem
the Restricted Closest Unitaries Problem.
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3.2 Restricted Closest Unitaries Problem

We introduce the notion of minimal unitaries that is cru-
cial for the definition of the Restricted Closest Unitaries
Problem (RCUP) and use it to show the relation between
CUP and RCUP. The definition of the minimal unitaries
is motivated by the fact that the distance between the
exact unitary U [x, y, k] and Rz(φ) can be written as

d(Rz(φ), U [x, y, k]) =
√

1−
∣

∣Re(xeiφ/2ω−k/2)
∣

∣. (1)

In particular, we see that the distance depends only on
x but not on y. We say that unitary U [x, y, k] is minimal
if its T-count is equal to the minimum of T-counts over
all unitaries of the form U [x, y′, k] for y′ from Z[i, 1√

2
].

Below is an example of the minimal and non-minimal
unitaries that we found while approximating Rz(π/16):

U [3+5ω−3ω2−2ω4,−2+2ω2−3ω3, 0]/8and
U [3+5ω−3ω2−2ω4, 3−2ω+2ω3, 0]/8.

(2)

The first unitary has T-count of 10 and the second has
the T-count of 12.

We next state the RCUP using the notion of minimal
unitaries:

Problem 2. RCUP[n, φ, δ] (Restricted Closest Unitaries
Problem) is the problem of finding:

• The distance ε[n, φ, δ] between Rz(φ) and the set of
minimal exact unitaries within distance δ from Rz(φ)
and with T-count equal to n (in the case if there are no
such unitaries we define ε[n, φ, δ] := δ),

• The set D[n, φ, δ] of minimal exact unitaries within
distance ε[n, φ, δ] from Rz(φ) and with the T-count equal
to n.

The following Lemma establishes the relation between
CUP and RCUP.

Lemma 1. CUP[n, φ] reduces to CUP[n−1, φ] and
RCUP[n, φ, δ] for δ = ε[n−1, φ] as follows:

• If ε[n, φ, δ] ≥ ε[n−1, φ], then ε[n, φ] = ε[n−1, φ]
and D[n, φ] = D[n−1, φ].

• If ε[n, φ, δ] < ε[n−1, φ], then ε[n, φ] = ε[n, φ, δ]
and D[n, φ] = D[n, φ, δ].

Proof: There are two alternatives for a given pair
n and φ: using unitaries with T-count n in addition to
unitaries with T-count n−1 either allows one to achieve
better approximation quality or it does not. In the first
case, the only possibility is if ε[n, φ, δ] < ε[n−1, φ]; in the
second case, if ε[n, φ, δ] ≥ ε[n−1, φ]. By the definition
D[n, φ] contains only minimal unitaries, and the condi-
tion ε[n, φ] < ε[n−1, φ] implies that all unitaries in D[n, φ]
must have T-count equal to n. Therefore, we conclude
that D[n, φ, δ] = D[n, φ] when ε[n, φ, δ] < ε[n−1, φ]. It
is also easy to see that if using unitaries with T-count
n does not improve the approximation quality, then
D[n, φ] = D[n−1, φ].

In practice, we believe it to be helpful to have a list of
answers to the set of problems CUP[n, φ] for n between

0 and N , where N is bounded by the amount of clas-
sical computing resources available, but has to be large
enough to allow scalable quantum computing. Indeed,
such a list allows the compiler (or a circuit designer) to
quickly select the best needed approximation for a given
unitary. The list is furthermore not very long owing
to the logarithmic scaling of the optimal T -count as a
function of the approximation error, allowing efficient
storage and access to it. Lemma 1 shows that the task
of computing such a list is equivalent to solving a set of
RCUP[n, φ, δn], with a proper choice of δn.

3.3 Algorithm

In this section we present an algorithm for solving
RCUP[n, φ, δ] and prove its correctness. In the previous
section we showed that the distance between Rz(φ) and
the exact unitary U [x, y, k] is a function of x and k, see
equation (1). Our algorithm searches for approximations
of x instead of directly searching for U [x, y, k]. This
motivates the following definition of T-count, applied to
the elements of Z[i, 1√

2
]:

Tk(x) := min {T (U [x, y, k])|U [x, y, k] – exact unitary}
If the above minimum is to be taken over an empty set,
we define Tk(x) := ∞. In other words, this means that
there is no unitary over the ring Z[i, 1√

2
] such that x is its

entry. We discuss the conditions on x that guarantee the
existence of U [x, y, k] later in Section 5. Function Tk(x) is
useful for both the algorithm description and the proof
of its correctness. It has several properties:

Proposition 1. The T-count of an element x ∈ Z[i, 1√
2
] has

the following properties:

• T-count of any minimal unitary U [x, y, k] is Tk(x),
• Tk(x) = Tkmod2(x),
• Tk(x) = Tk(ωx),
• if 4 ≤ Tk(x) <∞

then Tk(x)=sde(|x|2)−2+(sde(|x|2)+k)mod 2.

The function sde(x) (the smallest denominator expo-
nent) is defined to take value m when x is written in the
form (a+

√
2b)/
√
2
m

, where a, b and m are integers.
To solve RCUP[n, φ, δ] we go through the elements x

of Z[i, 1√
2
] such that Tk(x) = n in an efficient way. In

particular, we split the search problem into two smaller
sub-problems—the search for real and imaginary parts
of x, and take into account the necessary conditions
that the real and imaginary parts of the solution must
satisfy. The latter helps to shrink the size of the search
space, resulting in a better efficiency. In more detail, the
properties of Tk(x) imply that we only need to consider k
equal to zero or one, and limit the set of possible x using
the relation between Tk(x) and sde. The next proposition
summarizes the constraints on x that must be satisfied.

Proposition 2. Let x ∈ Z[i, 1√
2
] be such that Tk(x) ≥ 4.

Then, x can be written as (a0 +
√
2b0 + i(a1 +

√
2b1))/

√
2m

for integers aj , bj and m. The following conditions hold:
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• m ≤ ⌊(Tk(x) + 5)/2⌋,
• a20 + 2b20 ≤ 2m and a21 + 2b21 ≤ 2m.

Note that we separated conditions on integers a0, b0
and a1, b1 defining the real and imaginary parts of
x. The first constraint follows from the inequality
√

1−
∣

∣Re(xeiφ/2ω−k/2)
∣

∣ ≤ δ (see (1)) and leads to ad-

ditional constraints on aj , bj that are also separate for
the real and imaginary parts of x:

Proposition 3. Let x = (a0+
√
2b0+i(a1+

√
2b1))/

√
2m for

integers aj , bj and a non-negative integer m, and |x|2 ≤ 1. Let
√

1− |Re(xe−iθ)| ≤ δ ≤ 1. Then, the following conditions
hold:

• |(a0 +
√
2b0)− cos(θ)

√
2m| ≤ δ

√
2m+1,

• |(a1 +
√
2b1)− sin(θ)

√
2m| ≤ δ

√
2m+1.

In the first part of the algorithm (Fig. 2) we build
arrays of aj , bj satisfying conditions from Propositions 2
and 3 by calling the FIND-HALVES (Fig. 3) procedure.
In addition, in FIND-HALVES we compute contributions
εre and εim from the real and imaginary parts of x to
√

1−
∣

∣Re(xeiφ/2ω−k/2)
∣

∣. More details on this are pro-

vided by the following proposition:

Proposition 4. Let δ ≤ 1/2 and let x = (a0+
√
2b0+ i(a1+√

2b1))/
√
2m for integers aj , bj and non-negative integer m.

If the following holds:

• |(a0 +
√
2b0)− cos(θ)

√
2m| ≤ δ

√
2m+1,

• |(a1 +
√
2b1)− sin(θ)

√
2m| ≤ δ

√
2m+1,

then

(
√

1− |Re(xe−iθ)|)2
√
2m = εre + εim,

εre = cos(θ)(
√
2m cos(θ)− (a0 + b0

√
2)),

εim = sin(θ)(
√
2m sin(θ)− (a1 + b1

√
2)).

In the next steps of the algorithm we enumerate x from
Z[i, 1√

2
] satisfying the necessary conditions. We start

with those that give the best approximations, in other

words the smallest value of
√

1−
∣

∣Re(xeiφ/2ω−k/2)
∣

∣. For

each candidate x we compute Tk(x) using procedure
MIN-T-COUNT. When an x with the required T-count
is found, procedure ALL-UNITARIES is called to find
all minimal exact unitaries of the form U [x, y, k], and
the algorithm terminates. Details on MIN-T-COUNT and
ALL-UNITARIES are provided in Section 5.

It is important to note that step 8 of the algorithm
(Fig. 2) is performed efficiently. We first choose tuples
corresponding to the real parts such that εre belongs to
the interval I = [α0, α1] and then, for each εre, choose
tuples with εim in the interval [α0−εre, α1−εre]. The
proofs of the propositions presented above are tedious
and we postpone them to Section 4. We next rely on these
propositions to prove the correctness of the algorithm.

Theorem 1. The RCU-Algorithm (Fig. 2) solves
RCUP[n, φ, δ]—the Restricted Closest Unitaries Problem
with T-count n, angle φ and threshold δ when n ≥ 4 and
δ ≤ 1/2.

Input: n, φ, δ ⊲ n – T-count, Rz(φ) – target rotation
1: m← ⌊(n+ 1)/2⌋+ 2
2: for k = 0, 1 do
3: Lre,k ← FIND-HALVES(cos(φ− πk/8),m, δ)
4: Lim,k ← FIND-HALVES(sin(φ − πk/8),m, δ)

⊲ (described on Fig. 3)
5: end for
6: Interval I ← [0, α] ⊲ Pick α > 0 based on Lre,k, Lim,k

7: while I ∩ [0, δ] 6= ∅ do
8: Find an array A of tuples (ε, a0, b0, a1, b1, k) s.t.:

• (εre, a0, b0) from Lre,k

• (εim, a1, b1) from Lim,k

• ε = εre + εim and ε ∈ I ∩ [0, δ]
9: Sort A by ε in ascending order

10: ε1 < . . . < εM ← all distinct ε that occur in A
11: for j = 1 to M do
12: ∂ ← ∅

13: for all (εj , a0, b0, a1, b1) ∈ A do
14: x′ ← a0 + b0

√
2 + i(a1 + b1

√
2)

15: n0 ←MIN-T-COUNT(x′,m, k)
⊲ (computes Tk(x′/

√
2m), see Sec. 5)

16: if n = n0 then
17: ∂ ← ∂ ∪ALL-UNITARIES(x′,m, k)

⊲ (enumerates minimal unitaries
⊲ U [x′/

√
2m, y, k], see Sec. 5)

18: end if
19: end for
20: if ∂ 6= ∅ then
21: return (εj , ∂) ⊲ Solution
22: end if
23: end for
24: Replace I = [α0, α1] by I = [α1, 2α1 − α0]
25: end while
26: return (δ,∅) ⊲ No solutions
Output: (εRn , ∂

δ
n,φ)

Fig. 2. RCU-Algorithm: the algorithm for RCUP[n, φ, δ].

Proof: We first formally describe the output of the
algorithm (ε∗, ∂) and then prove that it is indeed the
solution to RCUP[n, φ, δ]. Let us define θk := πk

8 −
φ
2 for

k = 0, 1 and the following sets:

Sk :=

{

x

∣

∣

∣

∣

Tk(x) = n,
√

1− |Re(xe−iθk)| ≤ δ

}

.

We first consider the case when at least one of the Sk is
non-empty and show that the algorithm outputs a pair
(ε∗, ∂) such that

ε∗ = min(ε∗1, ε
∗
2), where

ε∗k = min
{

√

1− |Re (xe−iθk)|
∣

∣

∣ x ∈ Sk

}

.

Let us also denote by ∂k the elements of Sk within
distance ε∗ from Rz(φ). It is not difficult to see that at
least one of the ∂k is non-empty.

By the definition of Sk, the value ε∗ is in the interval
[0, δ]. Therefore, at some iteration in the while loop ε∗

will belong to the interval I and will be in the list
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ε1, . . . , εM . Indeed, suppose that ∂k∗ is non-empty and x
is its element. In other words x is such that Tk∗(x) = n
and

√

1− |Re(xe−iθk∗ )| = ε∗. Proposition 2 implies that
x can be represented as

(a0 + b0
√
2+ a1i+ b1i

√
2)/
√
2m, for m = ⌊(n+1)/2⌋+ 2.

Propositions 2 and 3 imply that integers aj, bj must
satisfy the following inequalities

a20 + 2b20 ≤ 2m, a21 + 2b21 ≤ 2m,

|(a0 +
√
2b0)− cos(θk∗)

√
2m| ≤

√
2m+1δ,

|(a1 +
√
2b1)− sin(θk∗)

√
2m| ≤

√
2m+1δ.

This implies that after executions of procedure FIND-
HALVES, for

εre =
√
2−m cos(θ)(

√
2m cos(θ)− (a0 + b0

√
2))

εim =
√
2−m sin(θ)(

√
2m sin(θ)− (a1 + b1

√
2))

,

the triples (εre, a0, b0) and (εim, a1, b1) belong to Lre,k∗

and Lim,k∗ (Fig. 2), correspondingly. From Proposition 4
we recall that ε∗ = εre + εim, and therefore the tuple
(ε∗, a0, b0, a1, b1) belongs to the array A and ε∗ is in
the list ε1, . . . , εM . Let m0 denote the position of ε∗

in the list. When the for loop reaches m = m0 the
algorithm will terminate. It is not difficult to see that
the algorithm does not terminate before this step, as it
would contradict the minimality of ε∗. The only way for
the the algorithm to terminate earlier is if there is an x
such that

√

1− |Re (xke−iθk)| < ε∗ and Tk(x) = n.
The procedure ALL-UNITARIES is designed to output

the set

∂ =
⋃

k=0,1
g=0..7

{

ωgU [x, y, k] ∈ Umin
∣

∣ x ∈ ∂k, y ∈ Z[i,
1√
2
]

}

,

where by Umin we denote the set of all exact minimal
unitaries.

Let us now show that (ε∗, ∂) is the solution to
RCUP[n, φ, δ]. Suppose that the set D[n, φ, δ] is non-
empty and let U [x, y, k] be some element of the set
such that the distance to it from Rz(φ) is minimal. The
distance can be expressed as:

d(Rz(φ), U [x, y, k]) =
√

1−
∣

∣Re(xeiφ/2ω−k/2)
∣

∣ < δ.

Proposition 1 implies that Tk(x) = n because U [x, y, k]
is a minimal unitary with T-count n. We next show that
we can make k equal to zero or one. Indeed, let us write
k = k0 + 2s where k0 is either zero or one, then

∣

∣

∣Re(xeiφ/2ω−k/2)
∣

∣

∣ =
∣

∣

∣Re(xωseiφ/2ω−k0/2)
∣

∣

∣ .

Again using Proposition 1 we see that Tk(xωs) = n. In
addition, we have

d(Rz(φ), U [x, y, k]) =
√

1−
∣

∣Re((xωs)e−iθk0 )
∣

∣.

This implies that xωs is in Sk0
and ε∗ is less than or

equal to ε[n, φ, δ]. We next show that ε∗ ≥ ε[n, φ, δ].
Suppose that ∂k0

is non-empty for some k0 and let x be

its element. Then, we have Tk0
(x) = n and there exists a

y ∈ Z[i, 1√
2
] such that unitary U [x, y, k0] is minimal with

T-count n. We also notice that d(Rz(φ), U [x, y, k0]) = ε∗,
which concludes the proof of the equality ε∗ = ε[n, φ, δ].

Next we show that ∂ coincides with the set D[n, φ, δ].
Consider some element ωgU [x, y, k] of ∂. The set
D[n, φ, δ] contains any unitary U together with all uni-
taries ωgU , therefore it is enough to show that U [x, y, k]
is in D[n, φ, δ]. The fact that U [x, y, k] is a minimal
unitary and Tk(x) = n implies that U [x, y, k] has T-
count n. On the other hand, by definition of ∂k we have
that d(Rz(φ), U [x, y, k]) = ε∗ which shows that ∂ is a
subset of D[n, φ, δ]. Let us now show that D[n, φ, δ] is
a subset of ∂. Let U [x, y, k] be an element of D[n, φ, δ].
We first note that U [x, y, k] can be equivalently written
as ωsU [xω−s, yω−s, k−2s]. We chose s in such a way
that k0 = k−2s is either zero or one. We note that
U [xω−s, yω−s, k0] is a minimal unitary and therefore
Tk0

(xω−s) = n. Distance d is global phase invariant,
which implies that d(Rz(φ), U [xω−s, yω−s, k0]) = ε∗ and
√

1− |Re (xω−se−iθk)| = ε∗. We conclude that xω−s is in
∂k0

and U [xω−s, yω−s, k − 2s] is in ∂. It is not difficult
to see from the definition of ∂ that if U is in ∂ then for
any integer g unitary ωgU is also in ∂. This concludes
the proof of the equality D[n, φ, δ] = ∂.

To conclude the entire proof, we still need to discuss
the special case when the problem has no solutions.
Suppose that D[n, φ, δ] is an empty set. It is not difficult
to show that this implies that both Sk are empty and
vice-versa, using the ideas from the main part of the
proof.

The restrictions on n and δ in the theorem statement
are not significant. It is much easier to solve CUP[n, φ]
directly when n < 4. From our numeric experiments we
found that D[3, φ] is always less than 0.1376 therefore
each time RCUP[n, φ, δ] is used, it is used with parameter
δ < 1/2.

It is possible to make the FIND-HALVES proce-
dure (Fig. 3) slightly more efficient. We found that the
length of the interval [amin, amax] in it is usually less than
1/2 therefore the internal for loop can be replaced with
the function round. It is also not difficult to see that the
while loop of the procedure can be easily parallelized.
In our implementation of the algorithm we benefit from
both these observations.

4 TECHNICAL DETAILS

In this section we prove Propositions 1-4. First we need
to recall some useful results and definitions from [17].
It is possible to extend sde on exact unitaries as
sde(U [x, y, k]) = sde(|x|2). The following result relates
it to a unitary T-count:

Lemma 2 (Corollary of the Theorem 2 from [17]). Let U
be a unitary over Z[i, 1√

2
] such that sde(U) ≥ 4, and j and l

be integers such that sde(HT jUT lH) = sde(U) + 1. Then,

T (U) = sde(U)− (jmod2)− (lmod 2).
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Input: α, δ ∈ R,m ∈ Z,m ≥ 0
1: procedure FIND-HALVES(α,m, δ)
2: W ← α

√
2−m, ε← δ

√
2m

3: b← ⌊−
√
2m⌋

4: v ← α
√
2m − b

√
2 ⊲ true on every step

5: R← ∅

6: while b ≤ ⌈
√
2m⌉ do

7: amin = ⌈v − ε⌉, amax = ⌊v + ε⌋
8: for all a ∈ [amin, amax] ∩ Z do ⊲ See Sec. [*]
9: if a2 + 2b2 ≤ 2m then ⊲ for discussion

10: R← R ∪ {((x− a)W,a, b)}
11: end if
12: end for
13: b← b+ 1, x← x−

√
2

14: end while
15: Sort R by first element in ascending order
16: return R
17: end procedure

Fig. 3. FIND-HALVES Procedure. Finds all numbers of
the from a +

√
b that satisfy conditions |α

√
2m − (a +

b
√
2)| ≤ δ

√
2m and a2 + 2b2 ≤ 2m. Returns the list of

tuples (α
√
2−m(α

√
2m−(a+b

√
2)), a, b) sorted by the first

entry.

Next follow the proofs of all four propositions.

Proof of Proposition 1: The first property follows di-
rectly from the definition of Tk(x) and minimal unitaries.
To prove the second one we observe that multiplication
by the Phase gate P := diag{1, i} does not change the
T-count of a unitary and U [x, y, k]P = U [x, y, k + 2]; the
definition of Tk(x) implies Tk(x) = Tk+2(x). To prove
the third one we rely on the equality ωU [x, y, k] =
U [ωx, ωy, k + 2].

To prove the fourth property let us consider the min-
imal unitary U [x, y, k]. Its T-count is at least four and
therefore it requires at least three Hadamard gates to be
implemented. As a result, sde(U [x, y, k]) is greater than
four. Lemma 2 applies to U [x, y, k] and implies that there
are three possible values of Tk(x)—being sde(U [x, y, k])−
2, sde(U [x, y, k])− 1, and sde(U [x, y, k]). A minimal uni-
tary cannot have T-count equal to sde(U [x, y, k]). Indeed,
if this were true the unitary TU [x, y, k]T †, that is equal to
U [x, yω, k], would have had T-count of sde(U [x, y, k])−2,
which contradicts the minimality of U [x, y, k]. We next
show that the T-count of U [x, y, k] is completely defined
by the parity of sde and k. The determinant of U [x, y, k]
is equal to ωk. In addition, the T-count of U [x, y, k] must
have the same parity as k, because the T gate is the
only gate in a Clifford+T library whose determinant
is equal to an odd power of ω. To illustrate, if sde
were odd and k were even, the T-count could only be
equal to sde(U [x, y, k])−1. Via going through all possible
parity combinations, we get to the required expression
for Tk(x).

Proof of Proposition 2: Recall that any x ∈ Z[i, 1√
2
]

can be written as (a0 +
√
2b0 + i(a1 +

√
2b1))/

√
2m,

where aj , bj and m are integers. Let us choose such
a representation where m is minimal. Integer m must
be positive, otherwise x either cannot be an entry of a
unitary or its T-count must be zero. Note that at least
one of the aj in the expression must be odd, otherwise
m is not minimal. It is useful to expand |x|2 as

(a20 + a21) + 2(b20 + b21) + 2
√
2(a0b0 + a1b1)

2m
.

If one of the aj is odd and the other one is even we
obtain the equality sde(|x|2) = 2m. Let us not consider
the case when both aj are odd. In the case that b0 and
b1 have different parity we get:

(a20 + a21) + 2(b20 + b21) = 0mod4, and
a0b0 + a1b1 = 1mod2,

and conclude that sde(|x|2) = 2m− 3. In the other case,
when b0 and b1 have the same parity, we get (a20 + a21)+
2(b20 + b21) = 2mod 4 and sde(|x|2) = 2m− 2. In the worst
case 2m− 3 ≤ Tk(x) + 2, which gives us a bound on m.

To prove the second part of the proposition we con-
sider a minimal unitary U [x, y, k] and note that |x|2
and |y|2 can be expressed as (x0 +

√
2x1)/2

m and (y0 +√
2y1)/2

m, correspondingly. The equality |x|2 + |y|2 = 1
implies that x0 + y0 = 2m. Using the non-negativity of
y0 we get

x0 = (a20 + a21) + 2(b20 + b21) ≤ 2m,

which leads to the desired bounds on aj and bj .
Proof of Proposition 3: Firstly, we show that |x−eiθ| ≤√

2δ. To accomplish this, we expand |x − eiθ|2 and note
that the inequality |x|2 ≤ 1 implies that |x − eiθ|2 ≤ 2 −
2Re(xe−iθ). We obtain the bound 2 − 2Re(xe−iθ) ≤ 2δ2

noting that
√

1− |Re(xe−iθ)| ≤ δ ≤ 1.
Secondly, for any complex number z, the absolute

values of its real and imaginary parts are both less than
|z|. Using the inequality |x − eiθ| ≤

√
2δ, derived in the

previous paragraph, we conclude that:

|(a0 +
√
2b0)− cos(θ)

√
2m| ≤

√
2m+1δ,

|(a1 +
√
2b1)− sin(θ)

√
2m| ≤

√
2m+1δ.

Proof of Proposition 4: First we show that Re(xe−iθ) >
0. Inequalities for real and imaginary parts of

√
2m(x −

eiθ) imply |x− eiθ| ≤ 2δ and |x| ≥ 1− 2δ. Using that |x−
eiθ|2 = 1+|x|2−2Re(xe−iθ) we conclude that Re(xe−iθ) ≥
1− 2δ which is always non-negative when δ ≤ 1/2.

Second, we use Re(xe−iθ) > 0 to write

(
√

1− |Re(xe−iθ)|)2
√
2m =√

2m(1− cos(θ)Re(x)− sin(θ)Im(x)).

By replacing 1 with cos(θ)2 + sin(θ)2 we find

(
√

1− |Re(xe−iθ)|)2
√
2m =

cos(θ)(cos(θ)
√
2m −

√
2mRe(x))+

sin(θ)(sin(θ)
√
2m −

√
2mIm(x)),

which leads to the required result.
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Input: x′ = a0 + b0
√
2 + i(a1 + b1

√
2),m, k ∈ Z,m ≥ 0

1: procedure MIN-T-COUNT(x′,m, k)
2: a+ b

√
2← 2m − |x′|2, s← sde(|x′|2/2m)

3: if s ≤ 4 then
4: return ∞
5: end if
6: if IS-SOLVABLE(a+

√
2b) then

7: return s− 2 + (k + s)mod 2
8: else
9: return ∞

10: end if
11: end procedure
Output: n

Fig. 4. MIN-T-COUNT Procedure. Outputs Tk(x′/
√
2m) if

it is greater or equal to 4 and∞ otherwise.

5 NORM EQUATIONS

In this section we discuss mathematical tools required
to compute Tk(x) (procedure MIN-T-COUNT) and to
enumerate all minimal exact unitaries with top-left entry
x – unitaries of the form U [x, y, k] (procedure ALL-
UNITARIES). Alternatively, these two problems can be
reformulated using equation

|y|2 = 1− |x|2, (3)

that expresses the condition of U [x, y, k] being a unitary
matrix. Proposition 1 implies that it is easy to find Tk(x)
when the equation above has a solution for some y
from Z[i, 1√

2
]. The problem of enumerating all unitaries

is directly related to enumerating all the solutions of the
equation (3).

We reduce the equation (3) to the relative norm equa-
tion between two rings of algebraic integers:

Z [ω] :=
{

a0 + a1ω + a2ω
2 + a3ω

3
∣

∣ ai ∈ Z
}

, ω := eiπ/4,

and its real subring Z
[√

2
]

:=
{

a+ b
√
2
∣

∣ a, b ∈ Z
}

.

Indeed, x and y can be expressed as x′/
√
2
m

and y′/
√
2
m

where x′ and y′ are from Z [ω]. Equation (3) can then be
rewritten as

|y′|2 = 2m − |x′|2 = A+B
√
2 ∈ Z

[√
2
]

, (4)

which is a special case of the relative norm equation
well studied in the literature [6], [7]. The conditions
required for this equation to be solvable, as well as
the methods for enumerating its solutions (when exist)
are well-known. The algorithmic solution is furthermore
available in the software package PARI/GP [9]. Next we
give a brief simplified overview of the results related to
solving the equation (4).

Symmetries in equations frequently provide useful
insights about their solvability. As was observed in [21],
the automorphism Aut of both Z [ω] and its subring
Z
[√

2
]

defined as:

Aut(ω) := −ω,Aut(
√
2) := −

√
2, Aut(a) := a, for a ∈ Z

is useful in studying the equation (4). It can be easily
verified that the mapping Aut(·) preserves the addition,
multiplication and commutes with complex conjugation
and taking the norm squared (| · |2). Therefore, if y′ is
a valid solution to the equation (4), then Aut(y′) must
also be a valid solution to the equation Aut(A+B

√
2) =

A−B
√
2. This implies the following necessary conditions

for the equation (4) to be solvable:

A+B
√
2 ≥ 0, A− B

√
2 ≥ 0. (5)

However, as we will show below, this condition is not
sufficient.

The problem of solving the relative norm equation can
be reduced to a set of subproblems. Suppose that A +
B
√
2 can be written as a product (A1+B1

√
2)(A2+B2

√
2)

and {yj} is the set of solutions to the relative norm
equation (4) with the right-hand side of Aj + Bj

√
2. In

such case, ωky1y2, ωky∗1y2, ωky1y
∗
2 , and ωky∗1y

∗
2 are also

solutions of the equation (4), for any integer k. More
generally, any element A+B

√
2 of Z

[√
2
]

can be written
as the product:

u
√
2
k(0)

p
k(1)
1 . . . p

k(N)
N q

l(1)
1 . . . q

l(M)
M ,

also known as prime factorization, where u is a unit in
the ring Z

[√
2
]

, p1..N and q1..M are primes in the ring
Z
[√

2
]

, and k(·), l(·) ∈ N ∪ 0. It turns out that every
such u possesses the property u · Aut(u) = 1 and pj
are distinguished from qj as follows: pj · Aut(pj) are
integer prime numbers of the form 8n ± 1, whereas
qj ·Aut(qj) are integer prime numbers of the form 8n±3.
The above factorization raises to the general theory of
quadratic extensions and classification of primes into
ramified, split and inert (see Chapter 3.4 of [8]). When
the necessary condition (5) holds, the right hand side can
thus be rewritten as

(
√
2− 1)l(0)

√
2
k(0)

p
k(1)
1 . . . p

k(N)
N q

l(1)
1 . . . q

l(M)
M , (6)

keeping in mind that p
k(j)
j , Aut(p

k(j)
j ), q

l(j)
j , and

Aut(q
l(j)
j ) should all be positive.

√
2−1 is the fundamen-

tal unit of Z
[√

2
]

(for results on unit groups of quadratic
extensions see Chapter 3.4.2 of [8]). The condition (5)
implies that the sum k(0)+l(0) must be an even number.
The relative norm equation (4) with the right-hand side
of A+B

√
2 is solvable if and only if each of the equations

|y′|2 = p
k(j)
j and |y′|2 = q

l(j)
j is solvable. Next we discuss

the solvability of such equations with primes in Z [ω] in
more details.

When k(j) and l(j) are even integers, the equations
obviously have a solution. Every odd number is a sum of
an even number and a 1. The equation |y′|2 = pj has a so-
lution if and only if p·Aut(p) is a prime of the form 8n+1.
A probabilistic polynomial time algorithm for finding a
solution can be found in [21]. In this case, according to
the theory of cyclotomic number fields, it is said that the
prime integer p ·Aut(p) splits completely [22]. Solvability
of the equation |y′|2 = qj is related to two subrings of
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Z [ω]: Z[i
√
2] and Z[i]. When qj has the form 8n−3, it

splits in Z[i]. In other words, there is a solution to the
equation of the form y′=a±bi, where a and b are integers.
When qj has the form 8n+3, it splits in Z[i

√
2]—in other

words, there is a solution to the equation of the form
y′=a ± ib

√
2, where a and b are integers. In both cases,

the equations can be solved in probabilistic polynomial
time, see Chapter 4.8 [6] for details.

When the ring factorization (6) is known, the solution
to the equation (4) can be found efficiently. The problem
of factorization over the ring Z [ω] can be reduced to that
of factoring integers. We note that the mapping/norm
N : p 7→ p ·Aut(p) is multiplicative and applying it to (6)
gives us integer

(−1)l(0)+k(0)2k(0)N (p1)
k(1) . . .N (pN )k(N)q

2l(1)
1 . . . q

2l(M)
M .

Therefore, via employing integer factoring we can find
all N (pj), k(j), qj , and l(j). Recall that N (pj) are prime
numbers of the form 8n ± 1 and qj are prime num-
bers of the form 8n ± 3. Numbers pj can be found
in probabilistic polynomial time using the algorithm
from Chapter 4.8 [6], that is available as a part of
PARI/GP package [9]. Therefore, the implementation of
the predicate IS-SOLVABLE in the MIN-T-COUNT pro-
cedure (Fig. 4) first checks the necessary conditions (5).
If they hold, it computes the norm N of the right-hand
side of the equation, and finds N (pj), k(j), qj , and l(j).
The procedure returns TRUE if there is no N (pj) of the
form 8n− 1 such that k(j) is odd, and FALSE otherwise.

We demonstrate how to enumerate all solutions to (4)
with the following example. Consider the equation:

|y′|2 = 1 828 037 034− 1 292 617 383
√
2.

The norm N of the right-hand side has prime integer
factorization 2 · 193 · 2297 · 32. We next find that the
equation can be rewritten as

|y′|2 = (
√
2− 1)15 ·

√
2 · (15− 4

√
2) · (53− 16

√
2) · 3.

The general form of the solution is

y′ = (
√
2− 1)7ωky0·Y1·Y2·Y3, Yj ∈ {yj, y∗j },

where y0 = 1−ω, y1 = −1− 3ω+ω2− 2ω3, y2 = 3− 6ω−
2ω2+2ω3, and y3 = 1±i

√
2. We do not consider complex

conjugation of y0 because (y0)
∗ = ω3y0. This is related

to the fact that 2 is the only ramified prime in Z [ω] [22].
Taking into account that k can take values from zero to
seven we find that there are 64 different solutions to the
equation in our example.

To implement ALL-UNITARIES procedure we need
to factorize the right-hand side of the relative norm
equation (4), find and record all possible solutions, write
down all the unitaries, and pick those that are minimal.

6 EXPERIMENTAL RESULTS

In this section we discuss performance of our C++
implementation of the above algorithms. We report

memory and processing time required by our imple-
mentation, as well as the precision in approximation
we were able achieve. In our experiments we used a
high performance server with eight Quad-Core AMD
Opteron 8356 (2.30 GHz) processors and 128 GB of RAM
memory. Our implementation completely utilizes the
processing power of the server and runs 32 threads in
parallel. The binary and the source code are available at
https://code.google.com/p/sqct/.

To obtain the estimates for the time and memory
required to run our algorithm to approximate some
target unitary we found T-optimal approximations of Rz

rotations by angles of the form 2πk/1000 for k = 1..1000.
We used circuits with up to 109 T gates for the approx-
imation. The only known algorithm that gives the same
optimality guarantee as our algorithm is the naive brute
force search, [12]. Let NBFS and tBFS be the number of
records and user time needed for the brute force search.
Since the number of unitaries with T-count at most n
scales as 192 · (3 · 2n − 2) [18], both log2(NBFS) and
log2(tBFS) equal to n up to an additive constant. The
most memory consuming part of our algorithm is the
FIND-HALVES procedure. The base two logarithm of
the number of records it produces scales as 0.17n+5.07
on average and as 0.25n + 3.15 in the worst case, see
Fig. 5. Fig. 6 illustrates the fact that FIND-HALVES is
the most time consuming part of the algorithm and, on
average, logarithm base two of the time in milliseconds
required to execute this step scales as 0.21n−10.41. Even
though our algorithm requires an exponential amount
of time and memory, the constants in the exponent
are between four and five times better than those in
the naive brute force search. This allows us to find
T-optimal approximations with precisions up to 10−15

using modern computers. We believe such a precision
to be sufficient for most applications, as we discussed in
the introduction.

On average, the number of T gates needed to
achieve a given quality of approximation ε scales as
3.067 log(1/ε) − 4.322 (Fig. 7). The knowledge of this
scaling is important for estimating the resources required
to run quantum algorithms having Rz rotations as their
building block. The best previous estimate was based
on the values of log2(1/ε) less than 14, due to the
inefficiency of the naive brute force approach [12]. Our
result, summarized in Fig. 7, results in a much more sub-
stantiated numerical evidence for the resource scaling.

We computed optimal circuits for Rz rotations by an-
gles π/2k for k = 3, 4, . . . , 27. These rotations are used in
the Quantum Fourier Transform, latter being a common
building block for many quantum algorithms. We found
approximations reaching precision up to 10−15 (Fig. 9).
To make a direct comparison to [21] we also found
optimal approximations of Rz(0.1) using up to 153 T
gates and reaching precision 3.18 · 10−16 (Fig. 8). Com-
puting these approximations of Rz(0.1) took 33.2 hours
in total, user time. Our circuit approximations are about
25% shorter than those obtained using the algorithm

https://code.google.com/p/sqct/
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from [21], and are guaranteed to be optimal.

All optimal circuits found by our algorithm are avail-
able online at https://code.google.com/p/sqct/.

To verify correctness of our implementation, we
coded a naive brute-force search algorithm that also
solves Closest Unitaries Problem. We ran both algo-
rithms to find all optimal approximations of rotations
Rz(2πk/1000) for k ∈ [0, 1000] with at most 18 T gates.
The two algorithms produced identical results. The ver-
ification procedure is a part of SQCT 0.2 and can be
executed via command line option “-B”.
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