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Abstract—Mobile crowdsensing leverages mobile devices (e.g., smart
phones) and human mobility for pervasive information exploration and
collection; it has been deemed as a promising paradigm that will
revolutionize various research and application domains. Unfortunately,
the practicality of mobile crowdsensing can be crippled due to the
lack of incentive mechanisms that stimulate human participation. In this
paper, we study incentive mechanisms for a novel Mobile Crowdsensing
Scheduling (MCS) problem, where a mobile crowdsensing application
owner announces a set of sensing tasks, then human users (carrying
mobile devices) compete for the tasks based on their respective sensing
costs and available time periods, and finally the owner schedules as
well as pays the users to maximize its own sensing revenue under a
certain budget. We prove that the MCS problem is NP-hard and propose
polynomial-time approximation mechanisms for it. We also show that
our approximation mechanisms (including both offline and online ver-
sions) achieve desirable game-theoretic properties, namely truthfulness
and individual rationality, as well as O(1) performance ratios. Finally,
we conduct extensive simulations to demonstrate the correctness and
effectiveness of our approach.

1 INTRODUCTION

With the proliferation of palm-size mobile devices (smart
phones, PDAs, etc.), we have a new tool for pervasive in-
formation collection, sharing, and exploration. For those
information that traditionally require specific (possible
very expensive) instruments or devices to gather, they
can now be outsourced to human crowds. Moreover,
as this tool relies on human mobility and activity to
bring their mobile devices around, it also introduces a
new type of social action: mobile crowdsensing. Recently,
there have emerged numerous systems based on this
idea across a wide variety of research and application
domains, such as healthcare, social networks, safety,
environmental monitoring, and transportation [1], [2].

Whereas mobile crowdsensing appears to be a promis-
ing paradigm that will revolutionize many research and
application domains and ultimately impact on our every-
day life significantly, it cannot take place spontaneously
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in practice, as many other social actions. Apparently,
participating in a mobile crowdsensing task usually re-
quires a mobile device carrier (users hereafter) to move to
specific areas where data gathering is required, to turn
on his/her sensors for gathering data (e.g., GPS loca-
tions), and to upload the sensing data to an online server.
These actions inevitably incur sensing costs in terms of,
for example, (device) energy consumption/depreciation
and Internet access. Therefore, from a pragmatic point of
view, human crowds may not be willing to participate
in mobile crowdsensing unless they are incentivized.
Therefore, proper incentive mechanisms are crucial for
enabling mobile crowdsensing, and this intriguing prob-
lem has started to attract attentions very recently [3]–[7].

Designing incentive mechanisms for mobile crowd-
sensing is challenging, particularly because the designer
face rational but selfish users who can act strategically
(i.e., lying about their private information) to maximize
their own utilities. To handle this issue, a mechanism
needs to motivate the users to report their real private
information, or in game theoretical term, the mechanism
should be truthful [8]. Certain existing proposals [3], [4],
[7] do not take truthfulness into account for the designed
incentive mechanisms. Such mechanisms, though being
able to motivate user participation in a mobile crowd-
sensing application, may end up costing the application
owner a big fortune to obtain a certain sensing revenue.

Mobile crowdsensing also imposes a unique require-
ment on incentive mechanism design, compared with
conventional crowdsourcing applications (e.g., Amazon
Mechanical Turk1). In particular, as most mobile crowd-
sensing tasks entail a certain level of temporal coverage
of the sensing area [1] whereas individual users have
limited participating time, the private information per-
taining to individual users includes not only the sensing
costs but also the available time periods. This unique
requirement makes mechanism design even more chal-
lenging since i) it faces multi-parameter environments
where users’ private information is multi-dimensional,
ii) it has to schedule users properly for revenue maxi-
mization, and iii) it should be able to handle the dynamic
arrivals of the users. To the best of our knowledge, these

1. https://www.mturk.com/mturk/welcome
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issues have never been tackled in the literature by far.
In this paper, we investigate a novel scheduling

problem arising from the mobile crowdsensing context,
where an owner announces a set of sensing tasks with
various values, and users with different available time
and sensing costs bid for these tasks. We design mech-
anisms to schedule the users for maximizing the total
sensing value obtained by the owner under a certain
budget, while achieving multiple performance objectives
including truthfulness, individual rationality [8], prov-
able approximation ratios, and computational efficiency
simultaneously. Moreover, our mechanisms work for
both offline (users all arrive together) and online (user
may arrive sequentially) cases. In summary, we have the
following major contributions in our paper:
• We formally formulate the Mobile Crowdsensing

Scheduling (MCS) problem and prove that it is NP-
hard.

• We propose an offline polynomial-time mechanism
for the MCS problem withO(1) approximation ratio,
which is truthful given that the users strategically
report their multi-dimensional private information
including the sensing costs and available time peri-
ods.

• We propose an online polynomial-time mechanism
for the MCS problem with O(1) competitive ratio,
which is truthful if the users strategically report
their sensing costs.

• We conduct extensive simulations, and the simu-
lation results demonstrate the effectiveness of our
approach.

The remaining of our paper is organized as follows.
We introduce the models and assumptions in Sec. 2,
where we also formulate the MCS problem. Then we
first present an approximation algorithm for the MCS
problem in Sec. 3. Based on this algorithm, we fur-
ther propose truthful mechanisms for the MCS problem
under both offline and online settings in Sec. 4 and
Sec. 5, respectively. We report the results of our extensive
simulations in Sec. 6. We finally discuss the related work
in Sec. 7, as well as conclude our paper in Sec. 8. In
order to maintain fluency, we only prove a few crucial
theorems in the main texts but postpone most of the
(sketched) proofs to the Appendix.

2 MODELING AND PROBLEM FORMULATION

We formally introduce the assumptions and definitions
for the MCS problem in this section.

2.1 The Mobile Crowdsensing Scheduling Problem

We assume that a mobile crowdsensing applica-
tion owner announces a set of sensing tasks K =
{K1,K2, ...Km}, and that performing any task Ki : 1 ≤
i ≤ m per unit time has a sensing value ui ∈ R+ to the
owner, whereas performing any task for less than one
unit time has a sensing value 0. We also assume that the

owner holds a budget G ∈ R+: the maximum amount of
total payment that it is willing to make for outsourcing
the sensing tasks in K to others.

Suppose that a set of users (or sensor carriers), denoted
by A = {A1, A2, ..., An}, may potentially perform the
sensing tasks in K. Each user Ai is able to perform one
sensing task κi ∈ K, and has a private value d̂i ∈ R+

indicating his/her sensing cost per unit time. For con-
venience, let µi = uκi denote the value of Ai to the
owner for Ai’s one unit time sensing on task κi. We also
assume that a user Ai is only available during the time
period [ŝi, êi], where ŝi, êi ∈ Z are the earliest and latest
available points in time private to Ai. Here ŝi and êi are
both integers as they are defined with respect to certain
time units. In reality, a user cannot be available all the
time for sensing due to, for example, his/her own career.
Therefore, we use an integer constant λ to denote the
upper bound of (êi − ŝi),∀i = 1, · · · , n.

In a Mobile Crowdsensing Scheduling (MCS) problem
(briefly illustrated in Fig. 1), the owner solicits the bids
~b = (b1, b2, ..., bn) from the users inA; each bi :1 ≤ i ≤ n is
a 3-tuple (di, si, ei) where di ∈ R+ and [si, ei] (si, ei ∈ Z)
are Ai’s declared sensing cost (per unit time) and avail-
able time period, respectively. Let Ti = [si, ei] for brevity.
The owner then finds a sensing time schedule ~y(~b) =

(y1(~b), y2(~b), ..., yn(~b)) for the users, where yi(~b) ⊆ Ti is
the time period allocated to Ai for sensing and it is not
necessarily continuous. We also denote by |yi(~b)| the total
length of yi(~b) in time. Based on the bids, the owner also
computes a payment vector ~p(~b) = (p1(~b), p2(~b), ..., pn(~b)),
where pi(~b) ≥ 0 is the payment to Ai and

∑n
i=1 pi(

~b) ≤ G
should be satisfied. Moreover, the payment to any user
Ai should be no less than his/her total sensing cost if
all users bid truthfully, i.e., pi(~b) ≥ di|yi(~b)|. Defining the
owner’s revenue, R

(
~y(~b)

)
, as the total sensing value of

performing the sensing tasks allocated by the sensing
schedule ~y(~b), i.e.,

R
(
~y(~b)

)
=

∑m

i=1
ui ·

⌊∣∣∣∣⋃j:κj=i
yj(~b)

∣∣∣∣⌋ ,
the goal of the MCS problem is to maximize this revenue
subject to all the above constraints. Note that should we
assume that the users always bid truthfully, the MCS
problem would become a pure combinatorial optimiza-
tion problem. As proved by Theorem 1, this simplified
problem is NP-hard.

Theorem 1: The MCS problem with all users bidding
truthfully is NP-hard.

For notational simplicity, we sometimes omit ~b when
writing the schedule and payment vectors (e.g., writing
~y instead of ~y(~b)), if the bid ~b is clear from the context.

2.2 Offline and Online Truthful Mechanisms

Each user Ai has a utility indicating the difference
between the payment made to him/her and his/her
total sensing cost according to the sensing schedule, i.e.,
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Fig. 1. The mobile crowdsensing scheduling (MCS) prob-
lem.

pi(~b) − d̂i|yi(~b)|. In practice, the users are selfish and
are only interested in maximizing their own utilities.
For this purpose, they may bid strategically, i.e., lying
about their private information such as sensing costs and
available time. To handle users’ strategic behaviors, we
need to design truthful mechanisms for the MCS problem
to align the users’ interests with the system goal of rev-
enue maximization. A mechanism is called (dominant-
strategy) truthful if any user maximizes his/her utility
by revealing his/her real private information, no matter
how other users may act [8]. A randomized mechanism
is called truthful (or universally-truthful) if it is a ran-
domization over a set of truthful mechanisms. Moreover,
we also require our mechanisms to satisfy individual
rationality (IR here after), which means that any truth-
telling user Ai always gets a non-negative utility [8],
i.e., pi((d̂i, ŝi, êi), b−i) ≥ d̂i|yi((d̂i, ŝi, êi), b−i)|, where b−i
represents the bids of the users other than Ai.

In the following sections, we aim to design truthful
mechanisms for the MCS problem under both the offline
and online settings. In the offline setting, the owner
collects all the users’ bids before scheduling them, which
corresponds to a practical scenario that the users reserve
sensing tasks in advance. In the online setting, the users’
bids are revealed one by one, and the owner must make
an irrevocable decision on scheduling any user right
at the moment when the user’s bid is revealed. This
setting corresponds to another practical scenario where
the users arrive randomly at some sensing area, and we
assume that the users’ arrival order is drawn uniformly
at random from the set of all permutations over the
users.

3 APPROXIMATION ALGORITHMS FOR MCS
In this section, we treat the MCS problem as a pure
combinatorial optimization problem and design approx-
imation algorithms for it, as shown in Algorithm 1.
Although the strategic behaviors of the users are not
considered in Algorithm 1, this algorithm serves as an
important building block for the truthful mechanisms
designed later.

A partial order ≺ on the set A is used in Algorithm 1,
which is defined as follows. For any two users Ai and

Algorithm 1: ApproxMCS(n,G,~b,A)

1 D ← A; W ← ∅; for i← 1 to n do yi(~b)← ∅
2 repeat
3 Find j such that Aj = max≺(D)

4 Zj ← Tj −
⋃
i:κi=κj

yi(~b)

5 q ← min
{
|Zj |,

⌊
G

2dj
− R(~y(~b))

µj

⌋}
6 if q > 0 then
7 W ←W

⋃
{j}

8 yj(~b)← The first q time units in Zj
9 D ← D − {Ai ∈ A|Ti ⊆

⋃
`:κ`=κi

y`(~b)}
10 until q < |Zj | or D = ∅;
11 for i← 1 to n do pi(~b)← di · |yi(~b)|
12 return ~y(~b), W, ~p(~b)

Aj , if µi/di < µj/dj or µi/di = µj/dj but j > i, then we
say Aj suppress Ai and denote it by Ai ≺ Aj . For any
A′ ⊆ A, we define max≺(A′) to be the user in A′ such
that there does not exist another user Ā ∈ A′ satisfying
max≺(A′) ≺ Ā.

Algorithm 1 iterates among the users and finds the
schedule for them based on a greedy strategy. The algo-
rithm, at the beginning of each iteration, selects a user Aj
based on the partial order ≺ (line 3), and then computes
the time units that can potentially be scheduled for Aj
(line 4). The sensing time yj(~b) scheduled for Aj is taken
as the early sub-period of the uncovered time of Aj ,
where any time point is called uncovered if no user
has been scheduled for it (line 8). At the end of an
iteration, all users whose available time periods have
been covered are removed from the user set D upon
which the algorithm iterates. The algorithm determines
the length of yj(~b) based on the rule in line 5, which
can be deemed as a potential function [9] that facilitates
our later quest for an approximation ratio. Also, the rule
serves as a constraint to bound the total payments below
G.

Let us denote an iteration (from line 2 to 10) in
which line 8 is executed as an effective iteration (i.e., the
concerned user is assigned a non-empty schedule). Sup-
pose that Algorithm 1 has in total h effective iterations.
Let the user scheduled in the ith effective iteration be
Ani : 1 ≤ i ≤ h and let W = {n1, n2, ..., nh} be the index
set of these scheduled users. Let ~yi(~b) be the current value
of vector ~y(~b) after the ith effective iteration is executed,
we have the following results.

Theorem 2: The output of Algorithm 1 is a feasible
solution to the MCS problem.

Theorem 3: Let ~y∗ be an optimal schedule vector for
the MCS problem and Λ = maxi:di≤G(µi · |Ti|). If

Λ ≤
[
e− 1

4e
− ε
]
R(~y∗), (1)

for any ε ∈ (0, e−1
4e ), then ~y is a 4

3ε approximation to
MCS.
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Note that an extra condition (1) needs to be satisfied in
Theorem 3, hence the approximation ratio is conditional.
We shall handle this issue using a randomized mecha-
nism design method in the next section.

4 OFFLINE MECHANISMS FOR MCS
As users’ strategic behaviors are not considered in Algo-
rithm 1, the payments to all users made there are directly
determined by the declared sensing cost and the length
of the time periods scheduled for them. Unfortunately,
this method can be non-truthful: a user may lie about
his/her private information to manipulate the length of
his/her scheduled time, hence to gain a higher utility.
Characterizations of truthful mechanisms exist in the
literature (e.g., [10], [11]), but these characterizations
are only for single parameter mechanisms, while in our
problem any user Ai has three parameters, namely di,
si and ei. Therefore, we hereby design a novel truthful
mechanism for the MCS problem under the offline set-
ting, as shown by Algorithm 2. A sub-routine used by
Algorithm 2 to compute payments to users is shown in
Algorithm 3.

Algorithm 2: Truthful Offline Mechanism for MCS

1 Generate a random number o from the uniform
distribution on the interval [0, 1]

2 if o ≤ 1
2 then

3

(
~y(~b),W

)
← ApproxMCS(n,G,~b,A)

4 forall the ni ∈ W do
5 pni(

~b)← CalPayment(n,G,~b,A,W, ~y, ni)

6 forall the i 6∈ W do pi(~b)← 0

7 else
8 forall the i ∈ A do pi(~b)← 0
9 j ← arg maxi:di≤G µi; W ← {j}

10 yj(~b)← an arbitrary time unit in Tj ; pj(~b)← G

11 Pay pi(~b) to Ai : ∀i ∈ W at the end of Ti if Ai
successfully completes his/her sensing task during
yi(~b)

12 return ~y(~b), ~p(~b)

Algorithm 2 is apparently a randomized mechanism.
With probability one half, the algorithm calls Algo-
rithm 1 to get a feasible schedule for each user (line 3).
However, instead of using the simple payment rule
in Algorithm 1, Algorithm 2 replaces it with a more
complicated method shown by Algorithm 3 to calcu-
late the payments (line 5); otherwise Algorithm 2 runs
lines 8-10 and selects a user whose sensing cost per unit
time is no more than the budget and whose sensing
value per unit time is maximized. Then the selected
user is paid the amount G, while others are paid zero.
The payments are made to the users using a post-paid
scheme, i.e., a payment is made instantly at the end of
a user’s claimed available time period only if he/she

Algorithm 3: CalPayment(n,G,~b,A,W, ~y, ni)

1 for j ← 1 to n do tj ← ∅
2 for j ← 1 to i− 1 do tnj ← ynj (

~b)
3 S ← {j|1 ≤ j ≤ n, µjdj ≺

µni
dni
}

4 pni(
~b)← dni · |yni(~b)|; k ← ni; θ ← |S|

5 while θ ≥ 0 do
6 Z1 ← Tni −

⋃
`:κni=κ`

t`; γ1 ←
µni
µk
·dk; γ2 ←

µniG

2R(~t)

7 if S 6= ∅ then
8 Find j such that Aj = max≺(S)

9 γ2 ← min
{
µni
µj
· dj , γ2

}
10 if |Z1| > 0

∧
γ2 ≥ γ1 then

11 pni(
~b) = pni(

~b)+
∫ γ2

γ1
min

{
|Z1|,

⌊
G
2v −

R(~t)
µni

⌋}
dv

12 else break
13 if S 6= ∅ then
14 Z2 ← Tj −

⋃
`:κj=κ`

t`

15 q ← min
{
|Z2|,

⌊
G

2dj
− R(~t)

µj

⌋}
16 if q > 0 then
17 tj ← The first q time units in Z2

18 if q < |Z2| then break
19 k ← j; θ ← |S|; S ← S\{j}
20 θ ← θ − 1

21 return pni(
~b)

has successfully performed the sensing task during the
whole time period scheduled for him/her (line 11). To
understand the payment calculation in Algorithm 3, we
introduce Lemma 1, Lemma 2 and Theorem 4, which
are also useful for characterizing truthfulness under our
multi-parameter environment.

Lemma 1: For any user Ai and his/her two bids
bi = (di, si, ei) and b′i = (d′i, si, ei), if d′i ≥ di, then
|yi(b′i, b−i)| ≤ |yi(bi, b−i)|.

Lemma 2: For any user Ai and his/her two bids bi =
(di, si, ei) and b′i = (di, s

′
i, e
′
i), if [s′i, e

′
i] ⊆ [si, ei], then

|yi(b′i, b−i)| ≤ |yi(bi, b−i)|.
Theorem 4: For any user Ai with the bid bi =

(di, si, ei) and any b−i,
∫∞

0
|yi ((v, si, ei), b−i) |dv < +∞

and the payment to Ai computed by Algorithm 3 is

pi(bi, b−i) = di|yi(bi, b−i)|+
∫ ∞
di

|yi ((v, si, ei), b−i) |dv. (2)

Proof: For i 6∈ {n1, n2, ..., nh}, we have pi(bi, b−i) =
0 and |yi(bi, b−i)| = 0. According to Lemma 1, for any
v > di, we have |yi((v, si, ei), b−i)| ≤ |yi(bi, b−i)|, hence
|yi((v, si, ei), b−i)| = 0. So (2) holds in this case.

Now we analyze Algorithm 3 in details for the case of
i ∈ {n1, n2, ..., nh}, and we write i as ni in this case. In
Algorithm 3, we first initialize the vector ~t to record the
user schedules that are decided before Ani , as shown
in lines 1-2. Then we use S to denote the indices of
the users that are suppressed by Ani according to the
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partial order ≺ (line 3). Note that if Ani bids d′ni > dni ,
the uncovered available time period of Ani (i.e., Z1)
may change, because we have µni/d

′
ni < µni/dni and

some users originally suppressed by Ani may hence
get scheduled before Ani . Consequently, we calculate
the schedule for other users (recorded in ~t) when dni
increases, and divide the interval [dni ,+∞) into some
sub-intervals, such that the uncovered available time
period of Ani remains the same when Ani changes dni
within each of these sub-intervals, as shown in lines 5-
20. More specifically, the algorithm, at the beginning
of each iteration, picks a user’s index j from S such
that Aj is maximal with respect to the partial order ≺,
then it identifies a sub-interval

(
µni
µk
· dk,

µni
µj
· dj
]

for dni
(indicated by γ1 and γ2), where k is the index of the last
picked user from S (line 19, but initially set as ni). As Ani
remains scheduled before Aj when dni varies within this
sub-interval, we calculate the partial payment in line 11
based on the current schedule. When dni gets bigger than
µni
µj
· dj , then Aj will be scheduled before Ani , and we

calculate Aj ’s schedule in this case by lines 13-19. With
this adjusted schedule, the algorithm goes into the next
iteration to further accumulate the partial payment in
a different sub-interval. At the end, the algorithm goes
through all the possible sub-intervals in [dni ,∞), so the
payment is exactly calculated as the right-hand side of
(2). Hence the theorem follows.

In Lemma 3 and Theorem 5, we prove that the payment
calculated by Algorithm 3 is no more than the budget G
and Algorithm 2 provides a feasible solution satisfying
IR to the MCS problem.

Lemma 3: For any user Aj and his/her bid (dj , sj , ej),
if j ∈ {n1, n2, ..., nh}, then we have dj ≤ µj ·G/R(~y).

Theorem 5: The mechanism shown in Algorithm 2
provides a feasible solution that satisfies IR to the MCS
problem.

More importantly, using the results stated in Lemma 1,
Lemma 2 and Theorem 4, we can now prove the truthful-
ness of the mechanism by Theorem 6. The rationale lies
in the difference between any user Ai’s payment and
his/her true sensing cost: regardless of how other users
may bid, this difference is always maximized if Ai bids
truthfully and hence truth-telling is a dominant strategy
for Ai.

Theorem 6: The scheduling mechanism shown in Al-
gorithm 2 is truthful.

Proof: We first prove that lines 3-6 is truthful. Sup-
pose that there exists a user Ai whose truthful bid is b̂i =
(d̂i, ŝi, êi), but he/she can get a higher utility by bidding
bi = (di, si, ei) 6= b̂i for some b−i. If yi(bi, b−i) 6⊆ [ŝi, êi],
Ai gets zero payment because the mechanism requires
Ai to complete sensing during yi(bi, b−i) to get paid.
If ei 6∈ [ŝi, êi], Ai again gets zero payment because the
mechanism employs a post-paid scheme and Ai cannot
get paid when he/she is unavailable. Therefore, we must
have yi(bi, b−i) ⊆ [ŝi, êi] and ei ∈ [ŝi, êi]. Now if si ≥ ŝi,

we have [si, ei] ⊆ [ŝi, êi]; so using Lemma 2 we get

|yi ((di, si, ei), b−i) | ≤ |yi ((di, ŝi, êi), b−i) |. (3)

Otherwise if si < ŝi, we know that the period [si, ŝi] must
have been covered before deciding the schedule of Ai
based on his/her bidding bi, because otherwise the algo-
rithm will allocate time in [si, ŝi] to Ai according to line 8
of Algorithm 1, which contradicts yi(bi, b−i) ⊆ [ŝi, êi].
Hence we know yi ((di, si, ei), b−i) = yi ((di, ŝi, ei), b−i).
As [ŝi, ei] ⊆ [ŝi, êi], (3) also holds by using Lemma 2.

For Ai’s any bid (d′i, s
′
i, e
′
i), let fi((d

′
i, s
′
i, e
′
i), b−i)

denote the uncovered time in [s′i, e
′
i] when the al-

gorithm allocates time to Ai based on a bid vec-
tor ((d′i, s

′
i, e
′
i), b−i). The above reasoning actually re-

veals that fi((di, si, ei), b−i) ⊆ fi((di, ŝi, êi), b−i). Ac-
cording to the mechanism, for any v ≥ di we have
fi((v, si, ei), b−i) ⊆ fi((di, si, ei), b−i), fi((v, ŝi, êi), b−i) ⊆
fi((di, ŝi, êi), b−i) and

[fi((di, ŝi, êi), b−i)\fi((v, ŝi, êi), b−i)] ∩ fi((di, si, ei), b−i)
⊆ fi((di, si, ei), b−i)\fi((v, si, ei), b−i),

which yield fi((v, si, ei), b−i) ⊆ fi((v, ŝi, êi), b−i) and

|yi ((v, si, ei), b−i) | ≤ |yi (((v, ŝi, êi), b−i) |. (4)

Since the user gets more utility by bidding bi then by
bidding b̂i, we know that:

pi((di, si, ei), b−i)− d̂i · |yi((di, si, ei), b−i)|
> pi((d̂i, ŝi, êi), b−i)− d̂i · |yi((d̂i, ŝi, êi), b−i)|.

Combing this with Theorem 4 gives us

(di − d̂i) · |yi((di, si, ei), b−i)|

>

∫ ∞
d̂i

|yi((v, ŝi, êi), b−i)|dv −
∫ ∞
di

|yi((v, si, ei), b−i)|dv.

Case 1: di ≥ d̂i, using (4) and Lemma 1 we get

(di − d̂i) · |yi((di, si, ei), b−i)|

>

∫ di

d̂i

|yi((v, ŝi, êi), b−i)|dv

≥ (di − d̂i) · |yi((di, ŝi, êi), b−i)|.

If di = d̂i, then we get 0 > 0, a contradiction. If di >
d̂i, then we get |yi((di, si, ei), b−i)| > |yi((di, ŝi, êi), b−i)|,
which contradicts (3).

Case 2: di < d̂i, using (4) and Lemma 1 we get:

(di − d̂i) · |yi((di, si, ei), b−i)|

> −
∫ d̂i

di

|yi((v, si, ei), b−i)|dv

≥ (di − d̂i) · |yi((di, si, ei), b−i)|,

hence |yi((di, si, ei), b−i)| < |yi((di, si, ei), b−i)|, also a
contradiction.

The above reasoning has shown that lines 3-6 is truth-
ful. Now we prove that lines 8-10 is truthful. If a user
Ai gets a non-empty schedule by bidding truthfully,
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then Ai clearly cannot benefit from lying. Now suppose
that Ai gets an empty schedule (hence the utility 0) by
bidding truthfully. If d̂i ≤ G, then Ai cannot increase
his/her utility by lying, because he/she will anyway get
an empty schedule regardless of his/her bid. If d̂i > G,
then the only way that may allow Ai to get a non-empty
schedule is to bid some (di, si, ei) with di ≤ G. However,
in that case Ai’s utility is G − d̂i < 0. Therefore, Ai is
better off bidding truthfully. From the above reasoning,
we know that Algorithm 2 is a randomization of two
truthful mechanisms, and is hence truthful.

Finally, based on the approximation ratio of Algo-
rithm 1, we can prove that Algorithm 2 has an O(1)
approximation ratio, as shown by Theorem 7. We also
analyze the time complexity of Algorithm 2 by Theo-
rem 8.

Theorem 7: The mechanism shown in Algorithm 2 has
an approximation ratio of O(1).

Theorem 8: The worst-case time complexity of Algo-
rithm 2 is O(n2).
Obviously, the major time complexity results from call-
ing Algorithm 3 for at most n times.

5 ONLINE MECHANISMS FOR MCS
In this section, we study incentive mechanisms for the
MCS problem under the online setting, where the users
come in random orders and the schedule/payment for
each user has to be decided upon his/her arrival. We
assume in this case that any user Ai would only lie about
his/her sensing cost d̂i, and we will design truthful
mechanisms such that reporting his/her real cost is a
dominant strategy of Ai. The problem of handling users’
strategic bidding on their available time periods under
the online setting is left for future work.

We first propose a simple online mechanism in Al-
gorithm 4 for the MCS problem, whose idea originates
from the secretary algorithm [12]. In lines 5-6 of Algo-

Algorithm 4: A Deterministic Online Mechanism

1 α← 0; j ← 0
2 upon Ai’s arrival
3 j ← j + 1
4 if j ≤ bne c then
5 yi ← ∅; pi ← 0
6 if di ≤ G then α← max{α, µi}
7 else
8 if µi ≥ α

∧
di ≤ G

∧
G > 0 then

9 yi ← an arbitrary time unit in Ti
10 pi ← G; G← 0
11 else
12 yi ← ∅; pi ← 0

13 return (~y, ~p)

rithm 4, we assign empty schedules to the first arrived
bne c users, and find one of them whose sensing cost per

unit time is no more than the budget and whose sensing
value per unit time is the maximum denoted by α. The
value of α is then used as a threshold for the later users,
among which we will select the first one whose sensing
value per unit time is no less than α and pay him/her G;
other users all get empty schedules and zero payments
(lines 8-12). The schedules and payments assigned to the
users are returned by vector ~y and vector ~p, respectively.

Clearly, Algorithm 4 provides a feasible solution to
the MCS problem and satisfies IR. The truthfulness and
competitive ratio of Algorithm 4 are given in Theorem 9
and Theorem 10, respectively:

Theorem 9: The online scheduling mechanism in Al-
gorithm 4 is truthful.

Proof: As the users cannot control their arrival se-
quence, they also cannot control the value of α. The
first arrived bne c users are always assigned the empty
schedule, so they always get the utility 0 no matter how
they bid. Now consider any Ai whose arrival order is
greater than bne c. If Ai gets a non-empty schedule by
bidding d̂i, then it is clear that he/she cannot benefit
from lying, because his/her utility G − d̂i ≥ 0 is the
largest one he/she can possibly get. Otherwise if Ai gets
an empty schedule by bidding d̂i, then there are two
cases we need to consider: (i) G = 0 when Ai arrives:
In this case, Ai will always get utility 0 no matter how
he/she bids. (ii) G > 0 when Ai arrives: In this case we
must have µi < α or d̂i > G. If µi < α, then Ai always
gets utility 0 regardless of his/her bid. If µi ≥ α and
d̂i > G, bidding any di > G will always cause Ai to get
an empty schedule (hence the utility 0), while bidding
di ≤ G would enable Ai to get a non-empty schedule, but
his/her utility G − d̂i would be negative; hence he/she
is better off bidding truthfully.

Theorem 10: If Λ ≥ R(~y∗)
150 (where Λ was defined in

Theorem 3), then Algorithm 4 has a O(1) competitive
ratio with a constant probability.
Note that the competitive ratio stated in Theorem 10 is
conditional. To rectify this problem, we propose a ran-
domized mechanism shown in Algorithm 5, which runs
Algorithm 4 with probability one half and runs lines 3-
16 otherwise. Roughly speaking, the idea of lines 3-16
is the following: we assign the empty schedule to the
first arrived ξ users and use them as a random sample
to guess the optimal solution R(~y∗) (lines 7-10); then we
use this guess to schedule the users coming afterwards
(lines 12-16). It can be seen from lines 13-14 that Al-
gorithm 5 satisfies IR and provides a feasible solution
to the MCS problem. The truthfulness of Algorithm 5 is
proven in Theorem 11:

Theorem 11: The online scheduling mechanism shown
in Algorithm 5 is truthful.

Proof: We have proved in Theorem 9 that Algo-
rithm 4 is truthful, so we only need to prove that lines 3-
16 are truthful given that users strategically report their
sensing costs. Note that the users cannot control their
arrival order as well as the value of R(~r), hence the first
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Algorithm 5: A Randomized Online Mechanism

1 Generate a random number o from the uniform
distribution on the interval [0, 1];

2 if o ≤ 1
2 then

3 Let ξ be a random number generated from the
binomial distribution B(n, 1/2)

4 M ← G; j ← 0; Aξ ← ∅
5 upon Ai’s arrival
6 j ← j + 1
7 if j ≤ ξ then
8 yi ← ∅; pi ← 0; Aξ ← Aξ

⋃
{Ai}

9 if j = ξ then
10 ~r(~bξ)← ApproxMCS(ξ,G,~bξ,Aξ)
11 else
12 η ← 5G · µi/R(~r); Fi ← Ti −

⋃
`:κi=κ`

y`
13 if di ≤ η

∧
η · |Fi| ≤M

∧
|Fi| ≥ 1 then

14 yi ← Fi; pi ← η · |Fi|; M ←M − pi
15 else
16 yi ← ∅; pi ← 0

17 else Run Algorithm 4 to get (~y, ~p)
18 return (~y, ~p)

arrived ξ users always get utility 0 no matter how they
bid. Now consider any user Ai who arrives afterwards. If
Ai gets a non-empty schedule (i.e., |yi| 6= 0) by bidding
d̂i, then we know that d̂i ≤ η and Ai gets the utility
(η − d̂i) · |Fi| ≥ 0, which remains the same if Ai bids
any di ≤ η. If Ai bids di > η, then his/her utility will
be 0, so he/she is better off bidding his/her true value.
Otherwise if |yi| = 0 when Ai bids d̂i, then at least one
of the following conditions holds: (i) η · |Fi| > M ; (ii)
|Fi| = 0; (iii) d̂i > η. If (i) or (ii) holds, Ai’s utility remains
0 no matter how he/she bids. If (iii) holds, then bidding
di ≤ η may get Ai assigned a non-empty schedule, but
in that case the utility of Ai would be (η − d̂i) · |Fi| < 0,
hence he/she is still better off bidding the true value d̂i.

Finally, the competitive ratio and time complexity of
Algorithm 5 are given in Lemma 4-6 and Theorem 12:

Lemma 4: Let (σ1, σ2, ..., σn) be the actual arrival se-
quence of the users’ indices, which is a permutation
of {1, 2, ..., n}. Let ∆1 =

∑ξ
i=1 µσi · |y∗σi | and ∆2 =∑n

i=ξ+1 µσi · |y∗σi |. If Λ ≤ R(~y∗)
150 , then ∆1 ≥ R(~y∗)/3

and ∆2 ≥ R(~y∗)/4 hold at the same time with constant
probability.

Lemma 5: If Λ ≤ R(~y∗)
150 , then ∆1

5 ≤ R(~r) ≤ R(~y∗).

Lemma 6: If Λ ≤ R(~y∗)
150 , then the solution output by

lines 3-16 of Algorithm 5 has an O(1) competitive ratio
with constant probability.

Theorem 12: The competitive ratio and worst-case
time complexity of Algorithm 5 are O(1) and O(n2),
respectively.

6 SIMULATIONS

We conduct extensive simulations to evaluate the per-
formance of our truthful scheduling mechanisms. The
objective of our simulations is to corroborate the cor-
rectness and effectiveness of our mechanisms in terms
of various metrics (including owner revenue, total pay-
ment, truthfulness and IR) under different parameter
settings (such as the number of users or tasks, as well
as the budget). Since we are the first, to the best of
our knowledge, to study the MCS problem (see the
discussions in Sec. 1 and the definition in Sec. 2), we
can only make comparisons between our own algorithms
in the simulations. For brevity, we hereby denote our
two main algorithms Algorithm 2 and Algorithm 5 by
“offline” and “online”, respectively.

6.1 Default Settings

We randomly generate the sensing values of tasks, the
number of users and the users’ private values. More
specifically, the sensing cost per unit time (i.e., d̂i) of
any user Ai is generated randomly from the uniform
distribution U [0.1, 1.1], and the sensing value per unit
time ui of any task Ki is also generated from the same
distribution (i.e., both are bounded away from 0). The
earliest available time point ŝi of any user Ai is gen-
erated randomly from U [0, 100], whereas the length of
Ai’s available time period is generated randomly from
U [0, 10]. Both the number of users n and the budget G
are set to 1000; the number of tasks m is set 100; and
each user selects only one task, with equal probability
out of all tasks. All our simulations follow these default
settings unless otherwise stated.

6.2 Owner Revenue

We study the owner revenue achieved by our mech-
anisms under different user number, budget and task
number in Fig. 2. For each data point, we perform 100
simulations with random inputs and we plot the average
value and standard deviation. In general, offline always
works better than online. This is natural because online
faces a harsher condition that a schedule has to be
determined for a user upon his/her arrival. In particular,
with the information on all users, offline can leverage a
sorting based on ≺ to optimize the performance, whereas
online do not have this privilege.

In Fig. 2(a), we study the impact of the number of
users on the owner revenue, by scaling the number of
users from 500 to 5000 with an increment of 100 (below
1000) and of 1000 (beyond 1000). The owner revenues of
both offline and online increase with the number of users.
This can be explained by the reason that, as the diver-
sities of both the users’ sensing costs and available time
periods increase with the number of users, the degree of
freedom in finding schedules is enlarged, which in turn
results in larger revenues. The same trend is also shown
in Fig. 2(b), where we fix the number of users to 1000 but
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0 500 1000 1500 2000
0

200

400

600

800

Budget

o
w

n
e
r 

re
v
e
n
u
e

 

 

offline

online

(b) Revenue changing with budget.

0 50 100 150 200
0

100

200

300

400

500

number of tasks

o
w

n
e

r 
re

v
e

n
u

e

 

 

offline

online

(c) Revenue changing with task number

Fig. 2. The owner’s revenue as functions of (a) the number of users, (b) the total budget, and (c) the number of tasks.
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Fig. 3. Feasibility check in terms of total payment and IR.

scale the budget G from 200 to 2000 with an increment
of 100 (before 1000) and of 500 (after 1000). This is rather
straightforward to understood because a higher budget
allows the algorithms to schedule users whose sensing
costs are higher and hence cannot be afforded under a
lower budget.

In Fig. 2(c), we fix the user number to 1000 and
increase the number of tasks from 20 to 200 with an
increment of 20. It can be seen that the owner revenues
obtained by both our mechanisms slightly increase when
the number of tasks increases. This can be explained by
the reason that, when the number of tasks increases,
the number of users that can perform each task tend
to decrease, which results in less overlapping available
time periods and higher revenue. Obviously, this effect is
less direct than that from either increasing user number
or budget, so the resulting improvement to the revenue
is also marginal.

6.3 Solution Feasibility and Individual Rationality
We verify the feasibility and IR of the solutions output
by our algorithms in this section. We first show that
the total payment is always no more than the budget,
then we use two examples to demonstrate that IR is
also guaranteed, i.e., each user gets a payment higher
than his/her cost. In Fig. 3(a), we scale the budget in the
same way as Fig. 2(b), and we show the maximum total
payment for each case. Apparently, the budget has never
been surpassed. Again, offline is shown to be superior to
online: it results in lower total payments.

In Fig. 3(b) and 3(c), we demonstrate IR using the
outputs from offline and online, respectively. We plot the
sensing costs and payments only for users with non-zero

payments. IR of our mechanisms can be immediately
seen: a payment is always greater than the correspond-
ing cost. We can also see that more users are assigned
non-empty schedules by offline, which, to some extent,
explains the observation made for Fig. 2 that offline
always achieves a higher revenue than online.

6.4 Truthfulness
We verify the truthfulness of both offline and online by
arbitrarily picking up a few users and checking their
utilities under different bidding values.

We first study the truthfulness of offline by Fig. 4.
We arbitrarily pick a user Ai whose true values are
d̂i = 0.5, ŝi = 12 and êi = 22, then we change Ai’s
bid (with other users’ bids fixed) to see how Ai’s utility
changes. Since we cannot draw a 4-dimensional chart
here, we show the results by two figures. In Fig. 4(a),
the bid of Ai’s available time period is fixed to [12, 22],
and we scale Ai’s bid on his sensing cost from 0.1 to
3.3 with an increment of 0.1. Indeed, bidding the true
sensing cost (shown by the red pentagram) allows Ai to
maximize his/her utility. In Fig. 4(b), we fix Ai’s bid on
his sensing cost to 0.5, but varies Ai’s bid on his earliest
and latest available time points. Again, Ai’s utility is
maximized when he/she bids his/her true value [12, 22].
These demonstrate that Ai has no incentive to deviate
from bidding his/her true values.

Similarly, we study the truthfulness of online by Fig. 5.
In Fig. 5(a), we pick an arbitrary user whose true sensing
cost is 0.3 and who is assigned an empty schedule by
online. Then we scale this user’s bid on his sensing cost
from 0.01 to 0.4 with an increment of 0.01. The user
indeed achieves his/her maximum utility 0 by bidding
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his true sensing cost 0.3. In Fig. 5(b), we pick another
user (in another simulation) whose true sensing cost
is 0.4 and who is assigned a non-empty schedule by
online. Then we scale this user’s bid from 0.01 to 10 with
an increment of 0.01. Again, the result shows that the
user’s utility is maximized when he/she bids his/her
true sensing cost.
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Fig. 4. Truthfulness validation for offline.
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Fig. 5. Truthfulness validation for online.

7 RELATED WORK

Mobile crowdsensing involves using (human carried)
smartphones to gather data in a much larger scale than
what can be done in conventional ways, either through
autonomous phone sensing or by further demanding
active human participation [1], [2]. While the develop-
ments on mobile crowdsensing applications are plentiful,
only a few proposals have started on studying how to
incentivize participation to such applications until very
recently [3]–[7].

Duan et al. [5] have proposed incentive mechanisms
to motivate collaboration in mobile crowdsensing based
on Stackelberg games and contract theory. However, the
mechanisms provided in [5] require either the complete
information or the prior distributions of users’ private
types, hence are not prior-free mechanisms as those in
our work. Yang et al. [6] suggest both a platform-centric
model and a user-centric model for mobile sensing. They
also use a Stackelberg game to design incentive mech-
anisms for the platform-centric model, and use auction
theory to design truthful mechanisms for the user-centric
model; nevertheless the truthful auction mechanisms
provided in [6] are only for single-parameter users and
only run in an offline manner. Moreover, no theoretical
performance ratios are provided for them in [6]. Some
other issues such as pricing, coverage, and privacy of
mobile crowdsensing have also been studied by the work

in [3], [4], [7], but these proposals are either not based
on a game theoretical perspective or have not considered
important game-theoretic issues such as truthfulness and
IR. Most importantly, none of the work in [3]–[7] has
considered the special time scheduling problem arising
from the mobile crowdsensing paradigm, hence their
problem definitions are totally different from ours.

There also exist proposals on designing approximation
algorithms or truthful mechanisms for job-scheduling on
parallel machines, such as [13]–[16]. However, these pro-
posals focus on the problem of minimizing the schedul-
ing makespan, which is a totally different goal from ours.
Besides, all the mechanisms in this line could entail an
arbitrarily large payment to ensure truthfulness. Finally,
the frugal or budget-feasible mechanism design prob-
lems have been studied in [17]–[20], but these proposals
only aim at designing single-parameter mechanisms for
allocating indivisible goods, which is very different from
the scheduling problems studied in this paper.

8 CONCLUSION

We have studied incentive mechanisms for a novel
scheduling problem (the MCS problem) arising from the
mobile crowdsensing paradigm, where an application
owner pays the sensor carriers and schedules their sens-
ing time based on their bids to maximize the total sens-
ing value. We have proved the NP-hardness of the MCS
problem, and proposed polynomial-time approximation
mechanisms for it that run both offline and online. We
also have proved that our mechanisms have O(1) per-
formance ratios and satisfies game-theoretic properties
including individual rationality and truthfulness. The
effectiveness of our approach has been corroborated by
the simulation results. To the best of our knowledge, we
are the first to study the mechanism design problems for
the mobile crowdsensing scheduling problem.
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APPENDIX

Proof of Theorem 1: We prove the NP-hardness of
the MCS problem by a reduction from the Partition prob-
lem [21]. Given a set of n integers S = {a1, a2, ..., an}, the
Partition problem is to decide whether the set S can be
partitioned into two subsets such that the sum of the
numbers in one subset equals the sum of the numbers
in another. Suppose that there are n tasks and n users
in the MCS problem, and each user Ai can perform only
task Ki. Let the length of the available time period of
any user be 1, and let ai = di = µi for any i. Let the
budget G = 1

2

∑n
i=1 ai. The MCS decision problem asks

if the owner can obtain a revenue R ≥ G. Obviously, this
problem is equivalent to the Partition problem on the set
S. Since the Partition problem is NP-complete, the MCS
problem is NP-hard.

Proof of Theorem 2: As the users’ strategic be-
haviours are not considered here, it can be easily seen
by line 11 in Algorithm 1 that any user can always get
a payment no less than his sensing cost. Hence we only
need to prove that the total amount paid to the users is
no more than the budget G. For any 1 ≤ i ≤ h we have

R(~yi) = R(~yi−1) + |yni |µni

≤ R(~yi−1) + µni

(
G

2dni
− R(~yi−1)

µni

)
= µniG/(2dni),

hence we get

µni/dni ≥ 2R(~yi)/G, (5)

and

µn1/dn1 ≥ µn2/dn2 ≥ · · · ≥ µnh/dnh ≥ 2R(~y)/G.

So the total amount paid to the users is∑
1≤i≤h

dni · |yni | ≤
∑

1≤i≤h

µni · |yni | ·
G

2R(~y)
=

G

2
. (6)

Therefore, Algorithm 1 yields a feasible solution.
Proof of Theorem 3: Suppose that Algorithm 1 has

l effective iterations if we replace line 5 by

q ← min

{
|Zj |,

G−
∑n
i=1 di ∗ |wi(~b)|
dj

}
, (7)

and let ~xi be the current vector ~w(~b) after the ith effective
iteration (1 ≤ i ≤ l) is executed in this case. Clearly,
h ≤ l, and the user scheduled in the ith effective iteration
under this case can also be denoted by Ani : 1 ≤ i ≤ l.
Let R′(~xi) =

∑i
j=1 µnj |xnj |.

Let X0 = ∅ and Xi = {An1
, An2

, ..., Ani} for any 1 ≤
i ≤ l. From Algorithm 1 we know that, for any 1 ≤ j < l
and any 1 ≤ i ≤ j, Tni must be covered by ~xj , i.e.,
Tni ⊆

⋃
1≤`≤j∧κn`=κni

fn` where ~f = ~xj . Therefore, we
have

R(~w∗)−R′(~xj) ≤
∑

i:Ai∈A\Xj
|w∗i |µi

=
∑

i:Ai∈A\Xj
|w∗i |di ·

µi
di
≤ G ·

µnj+1

dnj+1

(8)

= G ·
|xnj+1

|µnj+1

|xnj+1 |dnj+1

= G · R
′(~xj+1)−R′(~xj)
|xnj+1 |dnj+1

(9)

where (8) holds because of the greedy selection rule in
line 3. This yields

R′(~xj+1) ≥
|xnj+1

|dnj+1

G
R(~w∗)

+

(
1−
|xnj+1 |dnj+1

G

)
R′(~xj) (10)

Note that equation (9) and (10) also hold for j = 0 since
R′(~x0) = 0. Therefore, when k = 1, we have:

R′(~xk) ≥

[
1−

k∏
i=1

(
1− |xni |dni

G

)]
R(~w∗) (11)

By induction and using equation (10), for any 1 < k ≤ l,
we also have

R′(~xk) ≥ |xnk |dnk
G

R(~w∗)

+

(
1− |xnk |dnk

G

)[
1−

k−1∏
i=1

(
1− |xni |dni

G

)]
R(~w∗)

=

[
1−

k∏
i=1

(
1− |xni |dni

G

)]
R(~w∗),

which means that equation (11) holds for any 1 ≤ k ≤ l.
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Now we assume that
∑l
i=1 |xni |dni = G. In this case,

using equation (11) we can get:

R′(~xl) ≥
[
1−

∏l

j=1

(
1−
|xnj |dnj

G

)]
R(~w∗)

=

1−
l∏

j=1

(
1−

|xnj |dnj∑l
i=1 |xni |dni

)R(~w∗)

≥
(
1− (1− 1/l)l

)
R(~w∗)

≥ (1− 1/e)R(~w∗) (12)

On the other side, if
∑l
i=1 |xni |dni < G, then we

must have Tj ⊆
⋃

1≤i≤l xni for any j /∈ {n1, n2, ..., nl},
because otherwise |xj | 6= 0, which is a contradiction. This
implies that R′(~xl) ≥ R(~w∗). Consequently, we know
that equation (12) always holds.

It can be seen that |yni | = |xni | for any 1 ≤ i ≤ h − 1
and |ynh | ≤ |xnh |. From line 8 we know |ynh | = b G

2dnh
−

R(~yh−1)
µnh

c. Hence we get

|xnh | ≥
G

2dnh
− R(~yh−1)

µnh
− 1 =

G

2dnh
− R′(~xh−1)

µnh
− 1

This yields

R′(~xh) = R′(~xh−1) + |xnh |µnh ≥ G · µnh/(2dnh)− µnh

Therefore, for any h ≤ i ≤ l we have

µni/dni ≤ µnh/dnh ≤ 2(R′(~xh) + µnh)/G (13)

Since R′(~xh−1) ≤ R(~y), using equation (13) we get:

R′(~xl) = R′(~xh−1) +

l∑
i=h

µni |xni |

≤ R(~y) +
2(R′(~xh) + µnh)

G
·

l∑
i=h

dni |xni |

≤ R(~y) + 2(R′(~xh−1) + µnh |xnh |) + 2µnh
≤ 3R(~y) + 4µnh |xnh |
≤ 3R(~y) + (1− 1/e− 4ε)R(~w∗)

Combing this with equation (12), the theorem follows.

Proof of Lemma 1: Because µi/d′i ≤ µi/di, bidding
b′i can only postpone the schedule assignment for Ai
according to line 3 of Algorithm 1. Hence the length
of the time period scheduled for Ai can only decrease
when Ai bids b′i, due to line 5 of Algorithm 1.

Proof of Lemma 2: Let Ẑ and Ẑ ′ be the uncovered
available time period of Ai when Ai is scheduled by
Algorithm 1 with the input bids being (bi, b−i) and
(b′i, b−i), respectively. As [s′i, e

′
i] ⊆ [si, ei], we must have

Ẑ ′ ⊆ Ẑ. Hence the lemma follows due to lines 5 and 8
of Algorithm 1.

Proof of Lemma 3: Suppose that j = nc : 1 ≤ c ≤ h

(hence j ∈ {n1, n2, ..., nh}) and dj >
µj ·G
R(~y) by contradic-

tion, we have

R(~y)−R(~yc) ≤
∑

c≤i≤h
|yni | · dni · (µni/dni)

≤ µj
dj
·
∑

1≤i≤h

|yni | · dni ≤
G

2
· µj
dj

(14)

< R(~y)/2,

where (14) holds due to (6). Therefore R(~y) < 2R(~yc). On
the other side, (5) suggests µj/dj ≥ 2R(~yc)/G. Combin-
ing these inequalities yields dj <

µj ·G
R(~y) ; a contradiction.

Proof of Theorem 5: It is easy to see that lines 8-10
of Algorithm 2 can output a feasible solution satisfying
IR to the MCS problem. The output of lines 3-6 satisfies
IR according to Theorem 4. Hence we only need to prove
that

∑
j∈W pj(~b) ≤ G for W = {n1, n2, ..., nh}. According

to Lemma 3, no user Aj : j ∈ W can bid (dj , sj , ej) with
dj >

µj ·G
R(~y) , because otherwise he/she will get an empty

schedule. Therefore, using Theorem 4 and Lemma 1 we
can get

pj(bj , b−j)

= dj · |yj(bj , b−j)|+
∫ ∞
dj

|yj ((v, sj , ej), b−j) |dv

= dj · |yj(bj , b−j)|+
∫ µj ·G

R(~y)

dj

|yj ((v, sj , ej), b−j) |dv

≤ dj · |yj(bj , b−j)|+
(
µj ·G
R(~y)

− dj
)
· |yj(bj , b−j)|

= (µj ·G/R(~y)) · |yj(bj , b−j)|.

Given that R(~y) =
∑
j∈W µj · |yj(bj , b−j)|, we can prove∑

j∈W pj(~b) ≤ G by summing up pj(bj , b−j) for all j ∈
W , hence the theorem follows.

Proof of Theorem 7: For any ε ∈ (0, e−1
4e ), if (1)

is satisfied, then the mechanism in Algorithm 2 has a
revenue of at least 4

3ε ·R(~y∗) with probability of 1
2 ; if (1)

is not satisfied, then we have:

µj ≥ max
i:di≤G

(µi · |Ti|)/λ ≥
(
e− 1

4λe
− ε

λ

)
R(~y∗),

hence the mechanism has a revenue of at least
(
e−1
4λe −

ε
λ

)
·

R(~y∗) with probability of 1
2 . Therefore, the overall ap-

proximation ratio of the mechanism is O(1). For exam-
ple, if we set ε = 3

28 (1− 1/e), then the expected revenue
of the mechanism is at least 1

7λ (1− 1/e) ·R(~y∗).
Proof of Theorem 8: Line 3 of Algorithm 2 calls

Algorithm 1 that has a time complexity of O(n2) due
to the sorting of the users. Line 5 is iterated at most
n times and each calculates the payment to one user
by calling Algorithm 3 that has a time complexity of
O(n). The time complexity of lines 8-10 in Algorithm 2
is O(n). Consequently, the overall time complexity of
Algorithm 2 is O(n2).

Proof of Theorem 10: Similar to the secretary
algorithm [12], we can prove that the user Ak is se-
lected with probability of at least 1/e − 1/3, where
k = arg maxi:di≤G µi, as far as there are more than two
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users (i.e., n ≥ 3). Hence Algorithm 4 has a constant
competitive ratio of 1/(150λ) with probability of at least
1/e− 1/3.

Proof of Lemma 4: Let {Y1, Y2, ..., Yn} be a set of
independent random variables such that Yi = |y∗i | · µi if
i ∈ {σ1, σ2, ..., σξ}, and Yi = 0 otherwise. Clearly, Yi ≤ Λ
for any 1 ≤ i ≤ n. Let Y =

∑n
i=1 Yi. Hence, ∆1 = Y and

∆2 = R(~y∗)− Y . For any 1 ≤ i ≤ n, we have

Prob (i ∈ {σ1, σ2, · · · , σξ})

=

n∑
j=1

Prob(σj = i) · Prob(ξ ≥ j) =
1

n
E(ξ) =

1

2
.

So we know E(Y ) =
∑n
i=1 E(Yi) = 1

2

∑n
i=1 |y∗i | · µi =

R(~y∗)
2 . According to the Chernoff bound, we get

Prob

(
∆1 ≤

R(~y∗)

3

)
= Prob

(
Y ≤

(
1− 1

3

)
E(Y )

)
≤ e

− 1
9
·E(Y )

2Λ = e−
R(~y∗)
36Λ ≤ e−

150
36 ≤ 0.016,

and

Prob

(
∆2 ≤

R(~y∗)

4

)
= Prob

(
Y ≥

(
1 +

1

2

)
E(Y )

)

≤

(
e

1
2

(1 + 1
2 )(1+ 1

2 )

)E(Y )
Λ

≤ (0.9)
R(~y∗)

2Λ ≤ 0.975 ≤ 0.001.

By the union bound, we know

Prob{∆1 ≥ R(~y∗)/3 ∧∆2 ≥ R(~y∗)/4} ≥ 0.983.

So the lemma follows.
Proof of Lemma 5: Let opt1 be the revenue of the op-

timal solution for the first arrived ξ users {Aσ1
, ..., Aσξ}.

Using Theorem 3 with ε = e−1
4e −

1
150 , we get

R(~r) ≥ 4

3
·
(
e− 1

4e
− 1

150

)
· opt1 ≥ 1

5
· opt1.

As opt1 ≥ ∆1, we get R(~r) ≥ ∆1/5. On the other hand,
R(~r) ≤ opt1 ≤ R(~y∗), hence the lemma follows.

Proof of Lemma 6: Let O1 = {σi|ξ + 1 ≤ i ≤
n
∧
y∗σi 6⊆

⋃
j:κj=κσi

yj} and O2 = {σi|ξ + 1 ≤ i ≤
n
∧
y∗σi ⊆

⋃
j:κj=κσi

yj}. Since
∑
i∈O2

|y∗i | · µi ≤ R(~y), we
have

∆2 −R(~y) =
∑
i∈O1

|y∗i | · µi +
∑
i∈O2

|y∗i | · µi −R(~y)

≤
∑

i∈O1

|y∗i | · µi.

For any i ∈ O1, we must have |y∗i | 6= 0, |yi| = 0, and
|Fi| ≥ 1. So we can discuss line 13 as follows:

Case 1: Suppose that di > η = 5G · µi/R(~r) for any
i ∈ O1. Using Lemma 5 we have:

∆2 −R(~y) ≤
∑

i∈O1

|y∗i | · di ·R(~r)/(5G)

≤ R(~r)/5 ≤ R(~y∗)/5.

As R(~y∗) ≤ 4∆2 according to Lemma 4, we have

R(~y) ≥ ∆2 −R(~y∗)/5 ≥ R(~y∗)/20.

Case 2: Suppose that there exists i ∈ O1 such that
di ≤ 5G · µi/R(~r) but η|Fi| = 5|Fi| · G · µi/R(~r) > M .
In this case, using Lemma 4 and Lemma 5 we get:

M ≤ 5|Fi| ·G · µi/R(~r) ≤ 5G · Λ/R(~r)

≤ 5G · R(~y∗)

150

/(
∆1

5

)
≤ G

2
, (15)

hence

G

2
≤

n∑
i=ξ+1

pσi ≤
n∑

i=ξ+1

|yσi | · 5G · µσi/R(~r)

= 5G ·R(~y)/R(~r) ≤ 25G ·R(~y)/∆1

≤ 75G ·R(~y)/R(~y∗), (16)

which yields R(~y) ≥ 1
150R(~y∗). Therefore, lines 3-16

of Algorithm 5 has a competitive ratio of 1/150 with
probability of at least 0.983.

Proof of Theorem 12: Similar to the proof of The-
orem 7, it can be easily proven that Algorithm 5 has
an O(1) competitive ratio based on Lemma 6 and Theo-
rem 10. Algorithm 5 has its running time predominantly
spent on line 10, which has a O(n2) worst-case time
complexity.
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