Abstract:
In online social networks (OSNs), to evaluate trust from one user to another indirectly connected user, the trust evidence in the trusted paths (i.e., paths built through...Show MoreMetadata
Abstract:
In online social networks (OSNs), to evaluate trust from one user to another indirectly connected user, the trust evidence in the trusted paths (i.e., paths built through intermediate trustful users) should be carefully treated. Some paths may overlap with each other, leading to a unique challenge of path dependence, i.e., how to aggregate the trust values of multiple dependent trusted paths. OSNs bear the characteristic of high clustering, which makes the path dependence phenomenon common. Another challenge is trust decay through propagation, i.e., how to propagate trust along a trusted path, considering the possible decay in each node. We analyze the similarity between trust propagation and network flow, and convert a trust evaluation task with path dependence and trust decay into a generalized network flow problem. We propose a modified flow-based trust evaluation scheme GFTrust, in which we address path dependence using network flow, and model trust decay with the leakage associated with each node. Experimental results, with the real social network data sets of Epinions and Advogato, demonstrate that GFTrust can predict trust in OSNs with a high accuracy, and verify its preferable properties.
Published in: IEEE Transactions on Computers ( Volume: 65, Issue: 3, 01 March 2016)