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Abstract—Modern multicore embedded systems often execute applications that rely heavily on concurrent data structures. The
selection of efficient concurrent data structure implementations for a specific application is usually a complex and time consuming task,
because each design decision often affects the performance and the energy consumption of the embedded system in various and
occasionally unpredictable ways. The complexity is normally addressed by developers by adopting ad-hoc design solutions, which are
often suboptimal and yield poor results. To face this problem, we propose a semi-automated methodology for the optimization of
applications that utilize concurrent data structures that is based on design space exploration. The proposed approach is evaluated by
using both microbenchmarks and real-world applications that are executed on multicore embedded systems with different architectural
specifications. Our results show that we can identify various trade-offs between different data structure implementations that can be
used to optimize applications that rely on concurrent data structures.
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1 INTRODUCTION

MULTICORE embedded systems are now widely
available in the market and execute a wide range of

applications such as image processing, video streaming,
databases, etc. These applications often rely on concurrent
data structures, where multiple threads store and process
their data. The implementation of these data structures is
crucial to the performance of the application and therefore
to the QoS that the whole system provides.

The design of efficient concurrent data structures is a
complex and demanding task for many reasons. First of all,
application developers cannot intuitively determine in
many cases, without development and testing, which con-
current data structure synchronization method is the most
efficient, especially when they adopt complex and sophisti-
cated synchronization algorithms. The reason is that the
effects of the synchronization algorithms on the efficiency
of a data structure are determined by a large number of
parameters, such as the contention level, the number of
threads, the delay of acquiring/releasing locks, the inherent
parallelism of data structures, etc. As a result, developers
should implement a large number of different “versions” of
data structures, with the same functionality and different
synchronization methods and test them one by one, in order
to find a solution that adheres to the design constraints.

The above problem becomes even more complicated, if
we consider the portability issue. Embedded platforms
support various synchronization primitives or the same
primitives implemented at low level in a different way. A
concurrent data structure implemented on an embedded
platform using a specific synchronization algorithm may
provide different results in terms of performance and
power consumption when implemented on another plat-
form. Therefore, the porting from one system to another
cannot be straightforward. There is a need for exploration
and evaluation of the platform-specific synchronization
options that concurrent data structures utilize in order to
be efficiently ported.

Synchronization algorithms evaluated in general pur-
pose systems cannot always be implemented in embedded
systems directly. General purpose systems provide various
synchronization options often different from the options
that are available in embedded chips [1], [2]. Additionally,
these algorithms were not originally developed to adhere to
the embedded systems’ design constraints, such as the
energy efficiency. Therefore, they should be evaluated and
customized in order to provide efficient results on embed-
ded devices.

Developers normally address the aforementioned
problems by adopting ad-hoc solutions, without consid-
ering the embedded systems’ platform-specific con-
straints that affect performance and energy efficiency of
the synchronization algorithms. Additionally, since the
lock-based synchronization methods are prevalent in the
embedded systems due to their simple control mecha-
nism, they are normally the most widely adopted.
However, these approaches usually lead to suboptimal
solutions. For instance, mutexes on embedded systems
are often implemented as spinlocks, yielding high energy
consumption, which is an important design constraint in
embedded devices.
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1.1 Design Space Exploration
In order to select an efficient concurrent data structure for
an application implemented in an embedded system, there
is a need for exploration of various design options. In this
work, we propose a systematic methodology for the optimi-
zation of applications that utilize concurrent data structures.
The methodology is semi-automated and it is based on the
exploration of the concurrent data structure design space. It
is supported by a tool flow that automates many steps of
the methodology and provides several features for efficient
exploration and extensibility.

The flow of the methodology can be summarized as fol-
lows: The developer, after providing the application and
hardware constraints that prune the proposed design space,
inserts the interface of the tool flow in the application under
optimization. Then, the exploration phase follows, where
data structure implementations instantiated by different
design options are evaluated and the results for various met-
rics are provided to the developer. Therefore, the developer
can select the implementation that is themost efficient in rela-
tion to the design constrains. Thus, the adoption of ad-hoc
solutions and the time consuming and error-prone process of
developing and testing a large number of different imple-
mentationswith various customizations are both avoided.

The contributions of this work are the following:

! We present a systematic classification of the concur-
rent data structure design decisions that form a
design space, along with the interdependences
between the design options and the constraints that
affect the design choices. To the best of our knowl-
edge, there exists no similar classification of the con-
current data structure design space in the literature.

! We propose a systematic semi-automated methodol-
ogy, along with a tool-chain, for the evaluation of dif-
ferent concurrent data structure implementations,
based on design space exploration. The methodology
provides the identification of trade-offs between dif-
ferent data structure implementations for various
metrics.

The rest of the paper is organized as follows: Section 2
presents the related work that is relevant to exploration
methodologies and similar approaches. The description of
the design space, the methodology and the tool flow are pre-
sented in Section 3. In Section 4 we present the results of
applying the methodology on set of benchmarks on differ-
ent embedded platforms. Finally, in Section 5 we draw the
conclusions.

2 RELATED WORK

The concept of the exploration of different data structure
designs has been initially proposed in [3]. It presents the
dynamic data type refinement methodology (DDTR) that
focuses on the identification of trade-offs between non-con-
current data structure implementations in terms of execu-
tion time, memory footprint and energy consumption.
There are major differences between the present work and
the DDTR approach: DDTR methodology is mainly a library
of data structures. It does not provide any systematic way to
prune implementations that are unsupported in specific
applications or platforms, or to prune the ones that are

expected to provide poor results. For example, in the DDTR
methodology, there is no formalizedway to prevent the eval-
uation of tree implementations in a data structure with FIFO
access pattern. As a result, a large number of the implemen-
tations that are evaluated in DDTR are incoherent or mean-
ingless in specific contexts. To face this problem, DDTR is
limited to simple lists and arrays. It has never been evaluated
on applications that utilize data structures more complex
than lists and arrays. For instance, associative arrays cannot
be integrated in theDDTR library, since theywould be evalu-
ated along with arrays and lists, yielding incoherent results.
Additionally, it cannot be extended in the area of concurrent
data structures: It provides no support for preventing the
evaluation of implementations that utilize synchronization
primitives on platforms on which they are unsupported.
Therefore, DDTR is an application and platform-independent
high abstraction level methodology. Since it lacks the features
that would allow the methodology to be extended to complex
and platform-dependent data structures, it is limited to sim-
ple non-concurrent implementations.

The proposed approach is very different: We define the
data structure design space and identify the application and
platform constraints that prune unsupported design options
or options that are expected to provide poor results. Thus,
the application and platform-independent design space is
“converted” to application and platform-specific for each
different context. Therefore, apart from the fact that our
approach reduces the size of the design space that is being
explored, it can also be applied to a wide range of applica-
tions and embedded platforms that support different syn-
chronization primitives. In contrast to DDTR, the approach
presented in this work:

! supports the evaluation of only meaningful data
structures in each context, instead of the evaluation
of all available implementations.

! supports the evaluation of platform-specific data
structures for a specific context, instead of only
abstract platform-independent implementations.

! is extended by supporting various concurrent and
non-concurrent data structure implementations,
such as hash tables, skip-lists and trees.

Finally, as it will be explained in Section 3.1, DDTR meth-
odology is now a small subset of the approach described in
this work. A similar design space exploration approach is
presented in [4]. It focuses on the optimization of dynamic
memory managers for embedded systems and it is comple-
mentary to the present work.

There are many works that propose lock-based and lock-
free concurrent data structure implementations for general
purpose systems, such as queues, trees and hash tables. A
survey can be found in [5]. In our approach, we consider
these works to be design decisions for the implementation
of concurrent data structures. In otherwords, these proposed
solutions compose the design space through which develop-
ers will make the decisions that will lead to the implementa-
tion of application specific and platform-specific efficient
concurrent data structures. Application developers, instead
of selecting in an ad-hoc manner one of the proposed solu-
tions, or implementing a large number of them for evalua-
tion, can use the proposed framework to semi-automatically
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select themost efficient concurrent data structure implemen-
tation for the application under optimization.

There exists a large number of concurrent data structure
libraries, such as the NOBLE [6] and the practical lock-free
data structures [7]. These libraries provide data structure
implementations that are designed to be directly integrated
in applications. In this work, we do not present a library,
but a systematic methodology for identification of trade-offs
between concurrent data structures. The proposed method-
ology is supported not only by a library of concurrent data
structures (which is only one of the components of the tool-
chain we provide), but also by tools that are integrated in a
tool-flow that supports the exploration: tools for pruning
the design space, for automating the exploration process,
for collecting profiling results and for providing the identifi-
cation of Pareto efficient implementations.

Several works describe trade-offs between various syn-
chronization approaches. For instance, the authors in [8]
compare the performance and the energy consumption of
locks and software transactional memory. A similar compar-
ison in a Haswell architecture is described in [9]. Moreshet
et al. propose the implementation of energy efficient lock-
free data structures by utilizing hardware transactional
memory [1]. Other works focus on the evaluation of various
synchronization options on NUMA architectures. For exam-
ple, the authors in [10] evaluate message passing schemes as
alternatives to shared memory data structure designs for
Xeon and SPARC architectures, while Dice et al. propose effi-
cient lock implementations for NUMA [2]. Finally, the evalu-
ation of performance and energy consumption of optimistic
techniques on Nehalem architectures has been studied in
[11]. Our methodology focuses on embedded systems with
architectural characteristics that are different from the afore-
mentioned architectures and do not provide transactional
memory support.

3 METHODOLOGY

In this Section we first define and describe the concurrent
data structure design space. Then, we present the steps

that comprise the proposed optimization methodology,
the tool flow that supports it and the extensibility features
it provides.

3.1 Concurrent Data Structures Design Space
The proposed concurrent data structure design space is
shown in Fig. 1. The decisions taken by the application
developer when implementing a concurrent data structure
are modeled through a set of decision trees that represent
design options of concurrent data structures. The design
space covers the most common concurrent data structure
design options that are proposed in the literature. It is appli-
cation and platform- independent, since it includes design
options that apply to various platforms and to applications
with different behavior. The design options are grouped
into five categories. Each category consists of one or more
decision trees.

Data Structure Design Decisions category refers to the
design of a concurrent data structure, without taking into
consideration the synchronization algorithm that handles
concurrent accesses.

Pthread Lock Decisions category consists of the simple and
the readers/writer pthread locks options.

Test-and-Set Lock Decisions category groups the customi-
zation options for TAS and TTAS locks. Back-off policy deci-
sion determines whether or not a thread will withdraw for
an amount of time (which can increase linearly or exponen-
tially) from spinning on an occupied lock to reduce bus
congestion.

Locking Granularity Decisions category refers to the granu-
larity of locks. Lock-striping is a well-known locking tech-
nique proposed for concurrent hash tables, in which each
lock protects a range of the data structure elements.

The last category is the Lock-less Synchronization Decisions
that groups the design options for lock-less data structures.
Client-Server synchronization model refers to the synchroniza-
tion method proposed in [12]: An on-chip core is dedicated
to play the role of the “server” and it is the only one
that accesses the concurrent data structure directly. The rest
of the on-chip cores are “clients”, which send request

Fig. 1. Concurrent data structures design space.
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messages to the server for specific operations (e.g., insert,
remove, etc.) and wait for the server’s response. The com-
munication takes place through on-chip message passing
between the cores. The application interface for this model
is implemented through a set of macros, as described in
[12]. Elimination-backoff Stack is an algorithm for concurrent
stacks proposed in [13]. Finally, memory reclamation
options handle decisions related to the memory manage-
ment of the dynamic memory for lock-free data structures.
Hazard pointers are presented in [14] and Reference Counting
in [15].

The options that compose the design space are not inde-
pendent, since certain design options may affect other
options. An interdependency occurs when a certain design
option prevents the use of another decision tree, leaf or cate-
gory. The interdependencies provide a complete set of rules
on how a single concurrent data structure can be instanti-
ated in the design space. They are integrated in the tool flow
that supports the methodology and they are used to instanti-
ate coherent concurrent data structures for evaluation. They
are displayed in Fig. 2. The selection of a design option in
the beginning of a directed edge prevents the selection of the
pointed design option. Some interdependencies on Fig. 2 are
depicted using arrows, while the rest are described with
text. The interdependencies that handle the data structure
implementations are an internal part of the proposed tool-
chain. The developer does not have direct access to them.

The design space along with the interdependencies is an
effective and systematic way to illustrate the concurrent
data structure design choices: It makes a distinction
between the decision trees that represent attributes of the
data structures and leaves that represent different values
that an attribute can have. This hierarchical representation
assists the coherent design of the tool-chain and simplifies
the exploration process: All the non-pruned leaves and
design options are evaluated in the exploration phase. In
other words, the implementations that will be evaluated
finally are the ones that can be instantiated from the non-
pruned leaves of the decision trees, by following the inter-
dependencies rules. Additionally, the systematic represen-
tation of the design space through decision trees makes its
extension convenient, as it is described in Section 3.4.

Thus, it assists the hierarchical development and the exten-
sibility of the tool-chain. Based on the definition of the design
space, we propose a step-by-step explorationmethodology.

3.2 Description of the Methodology
The proposed methodology consists of two steps and it is
presented in Fig. 3. The first step is the Concurrent Data
Structure exploration and the second step is the Optimal
Implementation exploration.

As stated in the previous section, the design space is
platform and application independent. Therefore, not all
design options are meaningful for any application, nor
available in all platforms. Before the exploration, it is
necessary to prune the design space, by eliminating
meaningless and non-supported design options.

We identified the application and the platform con-
straints that enable or disable specific categories or decision
trees of the design space: The access pattern is an application
constraint. The number of threads can be an application or a
hardware constraint, while the synchronization primitives
support is a hardware constraint. The constraints are the
input of the methodology, provided by the user that results
in the design space pruning at category or decision tree
level (i.e. they do not prune specific leaves of design trees).
This is important, in order to retain the coherence of the
methodology and the tools that support it.

The access pattern is defined as the sequence that the data
are accessed in a data structure by the application’s algo-
rithm [3]. It refers to an abstraction level above the underly-
ing data structure implementation. It affects the design
decisions of category A of the design space and prunes
meaningless abstract data structures. The access patterns
and the corresponding enabled decision trees of Category A
are shown in Table 1.

The number of threads constraint is related to the concur-
rency of the data structure and it can have two values: one
and many. It determines if specific elements of the data
structure are updated by multiple threads simultaneously.
If the number is one, then categories B, C, D, and E are dis-
abled, as shown in Table 2. In this case, the data structure is
sequential and the exploration is limited to the decision

Fig. 2. Design space interdependencies.

Fig. 3. Concurrent data structures optimization methodology.
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trees of Category A. This is the case with the DDTR method-
ology, presented in [3] that is limited to the first four deci-
sion trees of Category A.

The last constraint is the synchronization primitives sup-
port, which is hardware related and is presented in Table 3.
The specifications of the platform enable decision trees from
categories B, C, D, and E.

It is important to distinguish between the decision tree
and category pruning that occurs due to the application and
hardware constraints and the interdependencies. The role
of the former is to disable unsupported and non-applicable
decision trees and categories due to application and the
platform characteristics. In other words, this early pruning
makes the generic design space to be application and plat-
form-specific. On the other hand, the decision tree interde-
pendences refer to the way that each single data structure
will be instantiated in order to be evaluated in the explora-
tion phase. It determines the way that the leaves of the
design space that remained after the pruning due to the con-
straints will be grouped to instantiate meaningful and valid
concurrent data structures for evaluation.

To apply the first step of the methodology, the user pro-
vides the application and the hardware constraints informa-
tion that prevents the evaluation of non-coherent and
unsupported data structures. The pruned design space is
provided to a script that handles the instantiation of valid
data structure implementations, through a library of con-
current data structures that the proposed tool-chain pro-
vides. All remaining design choices are used to instantiate
coherent data structures, according to the interdependences.

After the instantiation of the valid data structure imple-
mentations, the developer inserts the library interface to the
application manually, by replacing the application’s data
structures under optimization with the ones of the library.
Thus, all operations (e.g., insert, remove, etc.) pass through
the library’s data structures. Since data structures that corre-
spond to the same access pattern (Table 1) have the same
interface, this procedure needs to be done only once.

Then, the exploration takes place: The application is exe-
cuted for all different data structure implementations that
were instantiated previously. The user should provide a
workload that corresponds to the one that the application is
expected to exhibit in real-world. However, for applications
in which the workload may vary at runtime, the user may
decide to profile the application for a set of representative
workloads, with each one corresponding to a different real-
world scenario. In this case, step 1.c of the methodology and
step 2 should be repeated once for each workload.

A profiler integrated into the library monitors informa-
tion about the execution time, the number of operations per
thread, throughput, fairness, and memory footprint for each
execution. Results for other metrics, such as power con-
sumption for each implementation that is evaluated are col-
lected manually. To improve the accuracy of the results, the
developer can configure the number of times that the appli-
cation will be executed for each different implementation.
In case of multiple executions per implementation, the pro-
duced results are the average values of each execution. Par-
eto front for two or more optimization objectives is
automatically provided for results produced by the frame-
work directly. For results that are obtained manually, the
Pareto front can be identified with trivial configurations of
the corresponding script.

The second step of the methodology is the Optimal
Implementation exploration. The profiling results for each
concurrent data structure implementation that was evalu-
ated are provided to the developer. Taking into consider-
ation the design constraints, the developer selects the most
efficient data structure implementation for the application
under optimization.

If the application contains more than one data structures,
the access pattern and the number of threads inputs are
required for each one. Then, the library interface is inserted
in each data structure. Thus, all the combinations of imple-
mentations are evaluated by brute-force exploration. In the
second step of the methodology, the developer can select
the most efficient combination of data structure implemen-
tations. Finally, to further illustrate the details of the meth-
odology, Table 4 distinguishes between the steps that are
completed by the tool-chain automatically and the steps
that the developer performs manually.

The overhead of applying the proposed methodology is
affected mainly by two parameters: The number of data
structures of the application for which different implemen-
tations are being evaluated and the size of the design space
for each one. A relatively large design space results in
the evaluation of a large number of data structure

TABLE 1
Access Pattern and Corresponding Enabled Decision

Trees of the Design Space

Access Pattern Enabled Decision
Trees of Category ‘A’

FIFO A1
LIFO A2
Deque A3
Simple storage A4
key-value pairs storage A5, A6, A8
key-value pairs sorted storage A6, A8
String storage A7
Spacial access A9

TABLE 2
Number of Threads and Corresponding Disabled

Categories of the Design Space

Number of threads Disabled Categories

One B, C, D, E
Many -

TABLE 3
Synchronization Primitives Support and Corresponding

Enabled Decision Trees of the Design Space

Synchronization primitives support Enabled decision trees

Pthreads B, D
Test-and-Set C1, C2, D
Custom/Platf. Spec. locks C3, D
Atomic Primitives with CAS E1, E5
Atomic Primitives with DCAS E1, E4
Message passing communication E2
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implementations. However, the pruning that takes place at
the first step of the methodology and the pruning due to the
interdependences, drastically reduces the number of the
implementations that will be finally evaluated.

3.3 Tool Flow and Usage of the Methodology
In this section we provide details on the set of tools that
assist the implementation of each step of the methodology.
The tool flow is presented in Fig. 4.

All different implementations that can be instantiated by
the proposed design space can be represented as direct
acyclic graphs, with the design options being the graph
nodes and the order of decisions being the directed edges.
The graphs along with the application and platform con-
straints (that are provided by the user in a text file) are for-
warded to a script that prunes the unsupported graphs,
making the design space application and platform-

dependent. The pruned design space is subsequently pro-
vided to the implementations generation script that instanti-
ates the valid implementations. The role of the exploration
script is to assign the nodes of the graphs to the library’s
source code, using the Library Database. The database is
implemented as a simple hash table that associates nodes
with library source code and functions. The script parses
the application source files and makes the appropriate
changes in the library interface found in the application’s
source code. Then, it executes the application for each dif-
ferent implementation. Finally, it collects profiling data for
execution time, number of operations per thread, opera-
tions per second, fairness and memory footprint for each
data structure.

As stated in the previous section, the profiling data pro-
duced by the tool-chain are directly processed by the Pareto
front identification script. In the context of this work, an
implementation is Pareto efficient for two optimization
objectives in a particular experiment, if no other evaluated
implementation provides better results for both objectives.
The algorithm is implemented following the exhaustive
solution for Pareto front identification described in [16].

The library interface is inserted in the application by the
user in three steps: The data structures under evaluation are
declared and they are instantiated by calling an initializa-
tion function for each one in the application’s source code.
These functions will be automatically modified by the
exploration script, in order to instantiate different imple-
mentations during the exploration. The last step is the
replacement of the data structure operations with the
library’s interface.

The library is developed in C. It is built in view of provid-
ing operations and interface similar to the corresponding
data structures of the C++ Standard Template Library
(STL). The available operations for the FIFO, Deque, and
Key-value pair Storage access patterns are displayed in
Table 5. The interface of the operations of each data struc-
ture implementation is based on function pointers and it is
exactly the same for all implementations that correspond to
the same access pattern. For example, all the FIFO imple-
mentations that are instantiated by the design search space
have exactly the same interface. Therefore, no changes are
needed to be made to the operation functions (e.g., push,
pop) by the developer or by any script in the application’s
source code, in order to evaluate different FIFO implemen-
tations during the exploration. Instead, the exploration
script automatically modifies only the functions that are
used to initialize each data structure before each execution.
Thus, although the data structure interface remains the
same, the underlying implementation changes. Data

TABLE 4
Non-Automated and Automated Steps of the Methodology

Non-automated steps Automated steps

Input: declaration of constraints 1a: pruning of design space
1c: insertion of Library i/f.
a) data structures declaration 1b: instantiation of valid
b) initialization function call implementations
c) i/f in operations
metrics of 2nd step:
power consumption
measurements for
each execution

1d: config. of initialization
functions before execution.
Execution of valid implem.

metrics of 2nd step: execution
time oper./sec, oper./thread
fairness, memory footprint
identification of Pareto front

Fig. 4. Tool flow of the methodology.

TABLE 5
Example of the Library Interface

FIFO Deque Key-value pairs Storage

empty empty empty iter_begin
size size size iter_end
front push_back insert iter_next
back pop_back find iter_deref
push_back push_front remove
pop_front pop_front count
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structure implementations that have the same interface are
interchangeable in the context of this work, because they
provide the exact same functionality. In other words, all
data structures of Table 1 that support the same access pat-
tern have the same functionality.

The memory allocation of the data structures of the
library is made dynamically. The lists are implemented
as single linked lists (for the queue decision tree leaf) or
double linked list (for the deque, the Stack and the List
decision trees). The array implementations are similar to
the STL vectors: When no more elements can be stored,
their capacity is doubled by a memory-copy operation,
automatically.

To increase its portability of the library, the atomic primi-
tives are implemented using the corresponding gcc
intrinsics. The client-server synchronization model is imple-
mented as a wrapper around the message buffers used for
communication between the chip cores. If another low-level
communication primitive is available (e.g., interrupts), the
user follows the steps described in Section 3.4 to integrate it
in the library.

Although the tool provides memory footprint informa-
tion, the results cannot be consistent for concurrent data
structures, since they are affected by non-deterministic
parameters, such as the order at which the threads acquire
locks. However, these results can be used for the estimation
of the order of magnitude of the memory size that each data
structure requires.

3.4 Extensibility of the Methodology
The design space we propose covers the most common data
structures that can be found in the literature and in real-
world applications. However, it cannot be considered
exhaustive. In this section we describe the steps that the
user can follow in order to extend it with more design
options (Fig. 5).

The first step is the extension of the design space by add-
ing new design options. It can be made either by the addi-
tion of new leaves to existing decision trees, or by adding
new decision trees to an existing or to a new category. The
second step, is the extension of the design constraints. The
user should determine whether or not the new design
option is disabled for specific application or platform con-
straints and update the input constraints text file. It is
important to state that a constraint cannot prune one or
more decision tree leaves. It can only prune a category or a
complete decision tree. This is important for ensuring the
coherence of the methodology and the tools.

The third step is to identify the interdependences
between the new and the existing design options and

update the interdependencies text file. Then, the source
code is manually added in the library. It should cover all
possible data structure implementations that are not pruned
by the interdependencies. If the extension is a new data
structure, the supported operations must be the same with
the data structures that have the same access pattern and
should be defined as function pointers. Additionally, an ini-
tialization function must be provided that instantiates the
new data structure declarations.

The developer should reuse components of the
library: For example, if a new data structure is added,
the source code of lock implementations that already
exists must be integrated in the new data structure,
directly. However, if the new data structure utilizes new
kinds of locks, then these lock types must be added as
new design options in the design space, by following
again the steps described in Fig. 5. Finally, the developer
updates the database with the new design option, by
assigning the appropriate source files, functions and dec-
larations to the corresponding design options.

4 DEMONSTRATION OF METHODOLOGY

In this Section we evaluate the proposed methodology. We
selected five realistic benchmarks that utilize concurrent
data structures, running on two representative embedded
platforms with very different hardware specifications. Our
goal is to identify trade-offs in the applications for various
metrics, by evaluating different concurrent data structure
implementations.

4.1 Platform Case Studies
The two selected platforms are a board that integrates the
Freescale I.MX 6 Quad and the Movidius Myriad chip. They
are representative of two different categories of modern
multicore embedded chips.

Freescale I.MX 6 Quad belongs to a family of multicore
ARM-based chips integrated in single-board computers [17].

It integrates four ARMCortex A9 cores operating at 1GHz
and provides two cache levels. Regarding the hardware
specifications that can be used for efficient synchronization,
the I.MX 6 chip provides pthread through Linux OS, Test-and-
Set andAtomic Primitives with CAS support (Table 3).

Myriad is a 65nm heterogeneous MPSoC designed by
Movidius Ltd. It acts as a low power coprocessor integrated
in mobile devices and it focuses on video and streaming
processing.

It integrates a 32-bit RISC processor (LEON3) and 8
VLIW SHAVE cores. Regarding the memory specifications,
Myriad contains 1MB of on-chip SRAM memory available
to all SHAVEs, which is not cached and 64MB of off-chip
DDR memory. More technical information on Myriad chip
can be found in [18].

With respect to the synchronization options, Myriad pro-
vides 8 spinlocks implemented as fair locks with round-robin
arbitration. It also provides a set of registers that can be used
for fast and efficient message exchange between the SHAVEs.
Each SHAVE has its own copy of these registers and the size
of each one is 4"64 bit words. They can be used to implement
a client-server synchronizationmodel, as described in Section
3.1 and presented in [12]. Therefore, with respect to the

Fig. 5. Extending the methodology with more design options: steps and
requirements.
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hardware specifications that can be used for synchronization,
Myriad chip provides Custom/Platform-specific locks and Mes-
sage Passing communication support (Table 3).

4.2 Application Case Studies
The aforementioned embedded chips, though they target
different embedded platforms, run applications that rely
heavily on concurrent data structures, such as databases
and data streaming applications. To evaluate our methodol-
ogy, we selected five benchmarks from different application
domains, which we ported to the aforementioned platforms.
These benchmarks are representative of the kind of applica-
tions that run on modern multicore embedded platforms.
Two of them are custom microbencharks, while the rest are
realistic applications. They are presented on Table 6.

The first benchmark is a concurrent deque microbe-
nchmark. The experimental setup is similar to the one used
in previous works [22]. We run three experiments for the
specific benchmark: In the first one the deque is initialized
with 100,000 elements. In the second, the deque is initialized
as in the previous experiment, however, each thread exe-
cutes a custom synthetic workload after each operation.
Thus, in this experiment we explore the case in which the
deque contention level is lower in comparison with the pre-
vious one. Finally, in the last experiment, there is no syn-
thetic workload and the deque is not initialized with
elements. The second benchmark is an in-memory, non-
relational database microbenchmark. It stores key-value
pairs and supports find and store operations. The database
is initialized with 20,000 unique 32-bit keys. Patricia appli-
cation is taken from the MiBench benchmark suite [23]. The
multicore version is based on a radix tree data structure,
which is lock-protected and each core executes an equal
amount of the total workload [19]. Dedup is a data dedupli-
cation algorithm taken from the Parsec Benchmark Suite
[20]. Finally, the last application performs a multiway data
Streaming Aggregation [21]. We used this application in
order to demonstrate the implementation of the methodol-
ogy in applications that utilize more than one concurrent
data structure. The application aggregates streams of tuples
and maintains two concurrent data structures.

4.3 Evaluation Setup
In all experiments, the number of threads does not exceed
the hardware limit of the physical cores. In other words, all

applications in the four-core I.MX 6 use four threads, while
in the 8-core Myriad chip use up to eight threads, with each
thread pinned to a specific core during the whole execution.
More specifically, in Myriad, we run experiments for two-
cores (i.e., two threads with each one pinned to a specific
core), four, six and eight cores. The only exception is the
Streaming Aggregation application, in which we run
experiments only for 8 cores. The duration of all experi-
ments is at least one minute. Finally, all values presented in
the following section (including the power consumption
results) are the average of 10 executions, by elimination of
the outliers.

Execution time on I.MX 6 Quad was measured using the
gettimeofday linux command, while in Myriad we used the
DrvTimer functions that are provided by the Myriad MDK.
The power consumption results were obtained through
hardware instrumentation using a Watts Up PRO meter
device and following a setup similar to methods proposed
in the literature [11]. The device was connected directly to
the power supply cable of the I.MX 6 board, while in Myriad
it was connected to a shunt resistor attached to the power
supply cable.

Fairness was evaluated according to the approach pro-
posed in [24]. A prerequisite for the correct estimation of
fairness by our tools is that all threads execute the same
amount of workload for a specific amount of time. Fairness
values close to 1 indicate fair behavior, while lower values
imply unfairness and thread starvation.

4.4 Demonstration on Freescale I.MX 6 Quad Chip
The first three subfigures of Fig. 6 present the performance
vs. power consumption results for three different scenarios
of the deque benchmark on I.MX 6 Quad chip. 18 different
implementations were evaluated and each point in the fig-
ures corresponds to a different deque implementation. The
Pareto efficient implementations are detailed in Table 7. We
notice that the most efficient implementations are array-
based. This is related to the fact that the I.MX 6 chip pro-
vides cache hierarchy, which favors data structures that
provide high data locality. The high contention scenario
presented in Fig. 6a favors, in terms of performance, imple-
mentations that utilize the back-off policy (DQH1, DQH2).
However, when the contention level lowers, the back-off
implementations fail to provide high performance due to
lock underutilization. In this case, spinlocks and TTAS locks
without back-off provide higher performance (DQL2).
Finally, in the case of a non-initialized deque, the perfor-
mance and the power consumption are affected mainly by
the sequence of operations: The larger the number of times
that a thread tries to pop from an empty deque and fails, the
lower the performance.

The results for the database benchmark on I.MX 6 chip
are presented in Fig. 6d. A total of seven different imple-
mentations were evaluated and we identified three Pareto
efficient implementations, which are a lock-based b-tree
(DB1) and two lock-based hash tables (DB2 and DB3). DB3
is the implementation that provides highest throughput
due to the lock-striping approach. However, DB1 yields
lower power consumption in comparison with the DB3,
since in the hash table using lock-striping, more threads are
active simultaneously than in the b-tree implementation. In

TABLE 6
Description of Benchmarks and Applications

Test case
Distrib. of
operations
or dataset

Access
Pattern

# conc.
d.s.

Deque 50% push
50% pop

deque 1

Database 20% write,
80% read

key-value
pairs storage

1

Patricia 40% unique
keys [19]

string storage 1

Dedup [20] key-value
pairs storage

1

Streaming
Aggregation

[21] key-value pairs
sorted storage

2
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the latter, the threads are often suspended by the kernel,
while they wait for the lock to be released.

There are two valid implementations for the Patricia
benchmark for the I.MX 6 chip. String storage access pat-
tern enables the decision tree A7 (Table 1) and there are
two available implementations for the trie data structure:
a lock-based radix tree that utilizes pthread-rw locks (P1)
and a lockless Ctrie that uses atomic primitives (P2) [25].
Ctrie is designed for efficient cache utilization and there-
fore provides high performance on the I.MX 6 Quad chip.
However, the fact that in lock-free implementations the

threads that access the data structures are constantly
active (either by making retries when atomic operations
fail, or by accessing and updating the data structure)
explains the Ctrie implementation’s increased power
consumption.

A set of seven different implementations were evaluated
for the Dedup application on I.MX 6 Quad. We identified
trade-offs for throughput versus power consumption, dis-
played in Fig. 6f: The DD1 implementation yields 4.8 per-
cent lower power consumption in comparison with DD3
that provides 71 percent higher throughput. As shown in

Fig. 6. Demonstration on I.MX 6 Quad chip (four threads).

TABLE 7
Pareto Efficient Implementations on I.MX 6 Quad Chip

Pareto Point Data Structure Implementation Pareto Point Data Structure Implementation

DQH1 A3(DLL), C1(TTAS), C2(exp), D1(fine) P2 A7(trie), E1(atomic), E5(hazard)
DQH2 A3(array), C1(TTAS), C2(exp), D1(fine) DD1 A8(b-tree), B2(RW locks), D1(coarse)
DQL1 A3(array), C1(TTAS), C2(linear), D1(fine) DD2 A5(hash-closed), E1(atomic), E5(hazard)
DQL2 A3(array), C1(TTAS), C2(none), D1(fine) DD3 A5(hash-closed), B2(RW locks), D1(lock-str.)
DQN1 A3(array), C1(TTAS), C2(linear), D1(fine) S1 A6(skip list), E1(atomic), E5(hazard)/
DQN2 A3(array), C1(TAS), C2(none), D1(fine) A6(skip-list), B2(RW-locks), D1(lock-str.)
DB1 A8(b-Tree), B2(RW locks), D1(coarse) S2 A6(skip list), B2(RW locks), D1(lock-str.) /
DB2 A5(open), B2(RW locks), D2(lock-str.) A6(skip list), E1(atomic), E5(hazard)
DB3 A5(closed), B2(RW locks), D2(lock-str.) S3 A6(skip list), E1(atomic), E5(hazard) /
P1 A7(trie), B2(RW locks), D1(coarse) A6(skip list), E1(atomic), E5(hazard)
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Table 7, DD1 is a lock-based b-tree implementation of the
Dedup concurrent data structure, while DD3 is a lock-based
hash table. The hash table implementation provides higher
concurrency than the b-tree implementation, due to the
lock-striping granularity. However, more cores are active
simultaneously and perform intensive calculations. There-
fore the power consumption is increased. DD2 is a lock-free
hash. It provides slightly higher performance than the lock-
based hash table, however it consumes more power due to
the fact that the cores are constantly active. Similar conclu-
sions about the power consumption of the lock-free data
structures can be found in the literature [11]. The lock-based
b-tree implementation (DD1) is the one with the lowest
power consumption, since the threads are often suspended
by the kernel.

The Streaming Aggregation application is heavily data
driven with relatively low computational workload. Nine
concurrent data structure combinations were evaluated
(three different implementations for each data structure)
and three Pareto efficient points were identified. S1 corre-
sponds to a lock-free skip list for the first data structure (in
which the tuples are inserted) and a lock-based skip list for
the data structure where the aggregated value is calculated.
S2 is the exact opposite combination, while S3 corresponds

to the lock-free implementations for both data structures.
We notice that the latter implementation provides the high-
est throughput, along with the highest power consumption
(42 and 5.1 percent higher than S1 respectively). Similar
results related to the efficiency in terms of throughput of
lock-free data structures for streaming aggregation imple-
mentations can be found in the literature [21].

Fig. 6h presents the fairness values for the Pareto efficient
data structure implementations on I.MX. 6 chip for all the
applications. In general, most implementations provide high
fairness, above or very close to 0.9. The same applies to the
lock-free implementations that provide fairness equal or
close to the corresponding lock-based. An interesting obser-
vation that is especially visible in the deque and in the data-
base benchmarks is the fact that the implementations that
provide relatively high throughput (e.g., DQH2, DB3), tend
to provide smaller degree of fairness. This trend is a result of
lock contention. Indeed, it is less intense in the deque bench-
mark in the low contention scenario (DQL1 andDQL2).

4.5 Demonstration on Myriad Chip
The results of the demonstration of the methodology on
Myriad for the deque benchmark are presented in the first
three subfigures of Fig. 7 and the sequence of decisions for

Fig. 7. Demonstration on Myriad chip.

2028 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 7, JULY 2016



the Pareto efficient points is shown in Table 8. Four imple-
mentations were evaluated for 2, 4, 6 and 8 threads. We
notice that, in contrast with the I.MX. 6 experiments, many
Pareto points that provide high performance are list-based
deque implementations (e.g., DQH(4)2, DQH(6)2, DQL(2)2),
since Myriad chip does not provide cache memory or pre-
fetching mechanisms that tend to favor implementations
with high data locality. Also, the client-server based imple-
mentations provide not only low energy consumption, but
also, in some cases, high performance, mainly in the experi-
ments with small number of threads (e.g., DQH(4)2, DQL(4)
2, and DQN(2)). Additionally, as the contention level
decreases, we notice in Fig. 7b that the throughput gap
between the client-server based implementations and the
lock-based becomes smaller. For instance, DQH(4)2 pro-
vides 31 percent higher throughput than DQH(4)1, while
the difference between DQL(4)2 and DQL(4)1 is reduced to
11 percent. Finally, the experiment with the non-initialized
deque is presented in Fig. 7c. As in the corresponding
experiment on I.MX.6 chip, the number of times that the
threads try to pop from an empty deque affects the perfor-
mance of each implementation.

Eight different implementations for the Database bench-
mark were evaluated on Myriad chip. The corresponding
Pareto curves are presented in Fig. 7d. For the eight-thread
experiment, the Pareto efficient implementations are similar
to the ones that were identified in the I.MX 6 experiment
(lock-based hash table and lock-based b-tree). Pareto point
DB(6)3 is a lock-based hash table implementation, which
yields 32.6 percent higher throughput in comparison with
DB(6)1 and 4 percent higher power consumption. DB(6)2 is
the client-server version of the same implementation. We
notice that as the number of threads increases, the lock-
based hash table implementation begins to outperform the
client-server model, since it provides more parallelism.

The results of the demonstration of the methodology in
Patricia application are presented in Fig. 7e. There are two
valid implementations for the string storage access pattern: A
lock-based (P(2)2, P(4)2, P(6)2, P(8)) and a client-server (P(2)
1, P(2)3, P(2)5). Performance versus power consumptions
trade-offs are identified for two, four and six-thread experi-
ments. For instance, in the 6-thread version of Patricia, the
lock-based P(6)2 trie implementation yields 17.2 percent

higher throughput, while the client-server P(6)1 yields 10.7
percent lower power consumption in comparisonwith P(6)2.

Throughput versus power consumption results for the
Dedup application are displayed in Fig. 7f. We identified
trade-offs in all experiments. In the eight-thread experiment
using a b-tree lock-based implementation (DD(8)1) the
power consumption is lower by 1.2 percent in comparison
with the lock-based hash implementation (DD(8)2). How-
ever, the lock-based hash implementation yields increased
throughput by 40 percent, since it provides more parallel-
ism on Myriad due to the lock-striping technique. We notice
that for relatively small number of threads, where the lock
contention level is low, the client-server implementations
dominate in both performance and power consumption.
However, in the six and eight-thread experiments the lock-
based hash implementation provides higher throughput.

Streaming Aggregation application is implemented for 8
threads only. Sixteen data structures combinations were
evaluated (four for each data structure). S1 corresponds to
the client-server version for both data structures, while S2 is
lock-based versions. Since only three threads access each
data structure, the client-server implementations provide
comparable performance with the corresponding the lock-
based ones.

We present fairness results for two real-world applica-
tions: Patricia in Fig. 7h and Dedup in Fig. 7i. In both appli-
cations, although the client-server based implementations
provide fairness similar to the lock-based for up to four
threads, for the six-thread experiment the fairness is signifi-
cantly lower; close to 0.7. On the contrary, the lock-based
implementations maintain fairness higher than 0.75 in all
cases. Indeed, in contrast with the Myriad mutexes, no fair-
ness mechanism is provided for the message-based commu-
nication that it is used in the client-server model. Therefore,
client-server model implementations tend to provide lower
fairness as the number of threads increases. The same con-
clusion can be reached for the rest of the test cases that are
not presented, due to lack of space.

4.6 Discussion of Experimental Results
In this section, by studying the evaluation results, we
identify the hardware and application characteristics that
do not prune the design space, however they affect the

TABLE 8
Pareto Efficient Implementations on Myriad Chip

Pareto Point Data Structure Implementation Pareto Point Data Structure Implementation

DQH(2), DQH(8)1 A3(array), C3(custom), D1(fine) DB(6)3, DB(8)2 A5(hash-closed), C3(custom), D1(lock-str.)
DQH(4)1 A3(array), E2(client-server) DB(8)1 A8(b-tree), C3(custom), D1(coarse)
DQH(4)2, DQH(6)1 A3(DLL), E2(client-server) P(2)1, P(4)1, P(6)1 A7(trie), E2(client-server)
DQH(6)2, DQH(8)2 A3(DLL), C3(custom), D1(fine) P(2)2, P(4)2, P(6)2, P(8) A7(trie), C3(custom), D1(coarse)
DQL(2)1 A3(array), C3(custom), D1(fine) DD(2)1, DD(4)3, DD(6)1 A8(b-tree), E2(client-server)
DQL(2)2, DQL(8) A3(DLL), C3(custom), D1(fine) DD(2)2, DD(4)2, DD(6)2 A5(hash-closed), E2(client-server)
DQL(4)1, DQL(6) A3(DLL), E2(client-server) DD(4)1 A5(hash-open), E2(client-server)
DQL(4)2 A3(array), E2(client-server) DD(6)3, DD(8)2 A5(hash-closed), C3(custom), D1(lock-str.)
DQN(2) A3(DLL), E2(client-server) DD(8)1 A8(b-tree), C3(custom), D1(coarse)
DQN(4), DQN(6)2 A3(array), E2(client-server) S1 A6(skip-list), E2(client-server) /
DQN(6)1, DQN(8) A3(DLL), C3(custom), D1(fine) A6(skip-list), E2(client-server)
DB(2)1, DB(4)1, DB(6)1 A8(b-tree), E2(client-server) S2 A6(skip-list), C3(custom), D1(lock-str.) /
DB(2)2, DB(4)2, DB(6)2 A5(hash-closed), E2(client-server) A6(skip-list), C3(custom), D1(lock-str.)
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performance, the power consumption and the fairness of
various decision trees.

The rate at which the operations are performed by the
application’s algorithm may impact the lock contention and
therefore it affects the performance of the decision tree
leaves of the categories B, C, and D. High operation rate that
may cause increased level of lock contention favors back-off
implementations, as shown in the high contention deque
experiment in Fig. 6a on I.MX. 6 chip. The operation rate
impacts the fairness, as well: As shown in Fig. 6h for the
deque implementations, the fairness when the contention is
increased, is lower than in the low contention experiment.
This is consistent with the results of other related works
that evaluate fairness [24].

The memory hierarchy and more specifically the existence
of cache and prefetching techniques affects the leaves of
Category A, by favoring implementations that provide high
data locality (e.g., in the deque benchmark for I.MX. 6 in
Fig. 6a). Additionally, the existence of cache affects the per-
formance of the leaves of categories B, C, and D. Although,
spinlocks can provide high performance in case of low oper-
ation rate (e.g., deque benchmark in Fig. 6b), the combina-
tion of high operation rate and the existence of cache yields
low performance. The performance may drop even more in
case of a fine grain locking implementation (decision tree
D1) under high lock contention [24]. However, this is not
the case in Myriad, as shown in the high contention experi-
ment for six threads in Fig. 7a, since Myriad does not pro-
vide cache memory.

Finally, it is important to state that the results provided by
the proposed tool-chain can be used by developers to pro-
duce results for more complex metrics. For example, Fig. 8
shows performance per Watt results for the Pareto efficient
implementations of the Database benchmark on I.MX.6
Quad. These results are produced by the ones of Fig. 6e.

5 CONCLUSION

We described and demonstrated a systematic methodology
for the optimization of applications that utilize concurrent
data structures. Themethodology provides the identification
of trade-offs of different implementations for various
metrics. It is based on design space exploration and it is
supported by a tool-chain that partially automates the
exploration process. The methodology assists developers in
the selection of efficient data structure implementations for
applications under optimization and on the effective porting

of applications on platforms with various specifications. In
the future, we plan to extend the design space of themethod-
ology with more design options and evaluate our approach
onmore hardware platforms.
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