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Efficient Embedded Software Migration towards
Clusterized Distributed-Memory Architectures

Rafael Garibotti, Anastasiia Butko, Luciano Ost, Abdoulaye Gamatié, Gilles Sassatelli and Chris
Adeniyi-Jones

Abstract—A large portion of existing multithreaded embedded sofware has been programmed according to symmetric shared memory
platforms where a monolithic memory block is shared by all cores. Such platforms accommodate popular parallel programming models
such as POSIX threads and OpenMP. However with the growing number of cores in modern manycore embedded architectures, they
present a bottleneck related to their centralized memory accesses. This paper proposes a solution tailored for an efficient execution of
applications defined with shared-memory programming models onto on-chip distributed-memory multicore architectures. It shows how
performance, area and energy consumption are significantly improved thanks to the scalability of these architectures. This is illustrated
in an open-source realistic design framework, including tools from ASIC to microkernel.

Index Terms—Multicore programmability, software migration, distributed shared memory, performance scalability.
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1 INTRODUCTION

THE coming years will see embedded systems massively
adopting manycore architectures with up to thousand

of cores. Such architectures will be clusterized to improve
system performance and management. The state-of-the-art
ARM big.LITTLE technology [1] exploits clusterization to
implement a heterogeneous architecture. Core clusterization
is also present in embedded manycore platforms such as
MPPA [2], HyperCore [3] and STM Platform 2012 [4]. This
favors architecture scalability (by cluster replication), and
accelerates the recently observed convergence of embedded
and high-performance computing (HPC) [5].

Since the number of clusters will increase with the fore-
seen high number of cores in future systems, distributed
memories will likely become mainstream for mitigating
memory access bottleneck. This shift from shared mono-
lithic memory to distributed memory will have a significant
impact on legacy embedded software migration and future
embedded application programming. In [6], the authors
already raised the growing software size (billions of ob-
ject code instructions) in embedded systems over last five
decades in automotive, spatial and telecommunication do-
mains. The resulting complexity poses a major challenging
question: how to execute such software with scalable perfor-
mance and energy-efficiency on future clusterized manycore
embedded architectures?

The answer to the aforementioned software migration
challenge necessarily calls for a cost-effective programma-
bility addressing well the characteristics of embedded ap-
plications on those architectures. Embedded applications,
unlike general-purpose, are often integrated with microker-
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lab., Montpellier, France.E-mail: Firstname.Lastname@lirmm.fr

• L. Ost was with LIRMM during this work. He is now with Dpt of
Engineering at Univ. of Leicester, UK.E-mail: luciano.ost@leicester.ac.uk

• C. Adeniyi-Jones is with ARM, Cambridge, UK.
E-mail: Chris.Adeniyi-Jones@arm.com

nels. Their programming on multicore architectures accom-
modates software/hardware allocation where each task is
associated with its own core. This is especially convenient
for applications with safety-critical constraints so as to re-
duce undesired task interferences. On the other hand, usual
embedded programming models assume a centralized shared
memory (CSM) design, i.e. where monolithic memory block
is shared by all cores for data sharing and communications.
Existing legacy embedded software massively relies on this
paradigm. Shared-memory oriented programming has been
attractive due to its simplicity: no explicit communications
by message passing between execution entities, easy implicit
sharing of data object across threads, etc. However, in the
perspective of future distributed-memory clusterized archi-
tectures, the migration of legacy embedded software and the
implementation of emerging embedded applications must
reconsider the current practice in programming so as to an-
swer the aforementioned performance and energy-efficiency
challenge. Possible solutions can be software translation
to new programming languages, compilers or operating
systems.

This paper promotes the following contributions:

• an efficient approach based on light and judicious
software/hardware modifications enabling the exe-
cution of typical shared memory multithreaded em-
bedded software on clusterized distributed shared me-
mory (DSM) embedded multicore architectures;

• a POSIX-like threads API providing code portability,
where the associated runtime library is modified by
defining a new software stack allocation. Then, a
logically shared-memory vision is made available on
top of the considered physically distributed memory
architecture so that applications are transparently
executed without significant changes in source code;

• some improvements in performance scalability and
energy-efficiency enabled by the proposed approach,
considering different benchmarks executing on phy-
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sically shared and distributed memory clusterized
architectures, within a complete realistic environ-
ment, including tools from ASIC up to microkernel.

In the rest of this paper, Section 2 discusses related work.
Section 3 summarizes the principles of our approach by
introducing considered CSM and DSM designs. Section 4
details the implementation of the approach in an open-
source framework. Section 5 presents experimental results
regarding speedup, area, energy and power consumption.
Finally, Section 6 points out conclusions and future work.

2 RELATED WORK

THERE has been a rich literature on software moder-
nization as surveyed in [7]. Two main approaches are

distinguished: black-box versus white-box. Their application
depends on the level of understanding required for moving
from source software to target software. Usually the black-
box approach only requires the analysis of software inputs
and outputs. Then, wrappers enable to adapt the software
interface within its target environment. The white-box ap-
proach requires a deeper analysis and understanding of
software internal details. Typically, it can rely on static code
analysis of shared data for code parallelization and opti-
mizations during migration. Concrete examples of white-
box techniques are migration of languages or operating
systems via automated translation. In [8] and [9] authors
proposed a semi-automatic program partitioning of sequen-
tial legacy code into process networks that are afterwards
distributed onto multicore or MPSoC platforms.

The above approaches work well when target imple-
mentations adopt a model that does not radically differ
from that of source implementations. The gap between
shared-memory and distributed-memory execution models
will make such techniques hardly applicable. Indeed, de-
ciding automatically an efficient code and data distribu-
tion/parallelization requires a non-trivial analysis going
beyond code parsing and translation only. In our solution
most of modifications focus on specific runtime library,
which is wrapped in such a way that all memory access re-
quests are adequately managed by a specific tiny hardware
module named remote memory access (RMA). Any access to
the (virtual) shared-memory space assumed at application
level is translated by RMA into an access to the (actual)
distributed-memory. In our opinion, the efficient migration
of embedded applications on future manycore architectures
should go beyond software by covering hardware part as
well for scalable performance and energy efficiency.

The DSM architecture model borrowed here, often re-
lies on software support (compilers and runtime libraries)
to achieve memory coherence. Cores have a non-uniform
memory access, i.e. memory access latency depends on
the memory location relative to the processor. The OmpSs
framework [10] exploits program annotations in its compiler
and runtime system to enable the execution on clusterized
GPU-based systems. In [11], an OpenMP-ready DSM system
relies on memory access pattern analysis to offer a low over-
head coherence maintenance. Beyond HPC domain, DSM
has been recently applied to embedded systems [12] [13] [14]
to deal with their increasing number of cores. Its application

to on-chip systems must carefully take into account crucial
constraints on limited silicon area and power budget.

In [12] authors present a DSM design of multiproces-
sor System-on-Chip (MPSoC), where each node contains a
LEON3 core, private and shared memories, and an engine to
handle memory accesses and Network-on-Chip (NoC) com-
munications. They compare the performance gain between
their DSM design and a CSM design, with a H.264 decoder
running on a 3x3-mesh NoC. Their approach does not
address area and power issues, and no programming facility
is given for migration. In [13] authors explore the reduc-
tion of virtual-to-physical address translation overhead in a
NoC based DSM design. They consider a dual micro-coded
controller (DMC) similar to the RMA module considered
in our approach. While RMA is tiny for minimizing silicon
area, DMC has larger size due to dynamic memory parti-
tioning and its maximum theoretical bandwidth is limited
by virtual-to-physical address translation. In [14] a cache
coherence protocol is defined for large-scale NoC-oriented
shared memory architectures. The NoC nodes are grouped
into clusters, each of which consisting of a group of L1 cache
banks and one L2 cache bank. Cache coherence is enforced
hierarchically. The performance evaluation of the imple-
mented memory system shows a speedup of three when
the size of processed data increases, but neither execution
time nor energy consumption are provided.

Compared to above DSM design approaches for em-
bedded systems, our approach aims to provide an efficient
sharing of local memories from different cores so as to
scale system performance by aggregating the bandwidth
of available distributed memories. It also targets a minimal
silicon area and system energy consumption. By concentra-
ting all re-design efforts at runtime software and hardware
levels, it facilitates the execution of shared-memory oriented
embedded applications on distributed-memory multicore
on-chip systems with very limited modifications. This is
simpler and cost-effective for legacy software migration.

3 FROM CSM TO DSM: GENERAL APPROACH

FROM a general point of view, large-scale clusterized
distributed-memory architectures are hierarchical sys-

tems in which every sub-system comprises its local com-
puting resources including a number of cores sharing lo-
cal memory. The software programming on top of such
systems typically considers either explicit communication
transactions through message-passing with an API such as
MPI; or alternative programming models associated with
software techniques for memory coherence between the dif-
ferent local memories. The recent partitioned global address
space (PGAS) programming model [15] borrows features of
both shared memory and distributed memory programming
models. Here program variables share a common address
space, and are accessible to all processes (or threads). The
address space is logically partitioned in such a way that a
notion of proximity to a particular memory section is made
available to processes. This provides the necessary locality
information for efficient and scalable mappings of data onto
both shared and distributed memory hardware.

At sub-system level, a symmetric multiprocessing (SMP)
architecture model is usually adopted where all cores uni-
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formly have access to the centralized shared memory. Such
CSM sub-systems guarantee memory coherence, which im-
plies that modification to any memory location by a core
becomes immediately visible to other cores through cache
coherence protocols [16]. Shared memory parallel program-
ming API, e.g. POSIX threads, assume this feature.

From now on, we mainly concentrate on sub-system
level to illustrate the DSM-based embedded software mi-
gration proposed in this paper. We show that DSM provides
better performance scalability at that level by removing
the bandwidth sharing bottleneck inherent to CSM. Our
approach is inspired by the PGAS paradigm. However,
unlike PGAS languages, it does not manage data locality
via program annotations or macros in order to avoid mo-
difications of legacy code and compiler. Figure 1 shows con-
sidered NoC-based tiled multicore architecture. Each tile,
represented by a blue square, contains a core. Each cluster
represented by red dashed-line boxes is composed of a num-
ber of tiles. This number can differ from a cluster to another.
Two memory organizations are shown. The left-hand side
illustrates a clusterized centralized shared memory design
where each cluster comprises one host core tile (displayed on
top-left in the cluster) that executes the main thread (or task)
of an application and stores entire shared memory including
all data and application code instructions. The remaining
worker threads are executed on the other tiles, and therefore
access shared data located on the host core tile remotely.
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Fig. 1. Clusterized NoC-based multicore architecture: CSM vs. DSM.

The right-hand side of Figure 1 depicts our DSM design
approach. The instruction memory storing application code
is split over the different tiles within each cluster. This leads
to a spatial distribution of memory traffic and decreased
instruction cache miss latency compared to CSM design. As
application code is read only no cache coherence protocol
is required. Each tile shares part of its resulting local ins-
truction memory with the other tiles, thus resulting in a
globally unified shared memory address space. The main
application thread is executed by the host core tile, which
also stores all data memory. The host core tile executes no
worker thread but handles creation, synchronization and
deletion of worker threads. It, therefore, acts as a memory
server and synchronization handler. Shared data are cached
and cache coherence is achieved via a relaxed memory
consistency model relying on thread synchronization.

The reason behind our decision to distribute only code
(and not data) lies in the SIMD nature of the targeted
application kernels in which dozens if not hundreds of
threads executing the same code are spawned: all those

threads fetch the same instructions, albeit at different time
instants. Distributing code results in a significant increase
in efficiency by avoiding redundancy and enabling large
kernels to fit across the multiple memories.

Note that as our approach does not deal with explicit
allocation of application in memory, critical code regions
may not be homogeneously distributed across the shared
memory address space. This implies variable numbers of
requests to each distributed memory part.

4 IMPLEMENTATION OF OUR APPROACH

WE consider the open-source and customizable NoC-
based MPSoC platform [17] implemented at RTL

level. A very interesting feature of this customizable mul-
ticore platform is its ability to enable the creation of clusters
according to CSM design (see left-hand side of Figure 1).
Each cluster is composed of a shared memory and a number
of tiles. Applications mapped onto a cluster share memory
through the host tile while those mapped onto different
clusters transfer data via message-passing. It consists of a
tiled multicore platform comprising: a light embedded core
with L1 cache memory based on microblaze instruction
set architecture; a NoC router based on Hermes [18]; an
internal scratchpad memory (SPM) to store application code
and microkernel (derived from [19]); a timer, an interrupt
controller; and a RMA hardware module, which is respon-
sible for accessing remote SPM. POSIX threads are used as
shared-memory parallel programming model.

Given the above platform, we design a new DSM archi-
tecture based on the template in Figure 1 so as to compare
application code executions on both CSM and DSM architec-
tures for software migration purpose. We present below the
main modifications required for achieving it. The resulting
open-source research platform is available for download 1.

4.1 Modifications of application, runtime and hardware
To incorporate DSM capabilities in the chosen platform
[17], we apply a number of modifications summarized in
Figure 2. The concerned parts are highlighted: microkernel,
software stack allocation and RMA module.
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Fig. 2. DSM implementation flow highlighting the modifications imple-
mented in the reference platform.

1. Available for download at: www.lirmm.fr/ADAC
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4.1.1 Modification of input application code

Input application code requires no modification compared
to generic POSIX thread compliant code, but replacing stan-
dard header files with those specific to the proposed archi-
tecture as highlighted in Figure 3. Function prototypes and
functionalities (see [17]) remain the same, thereby making
the approach generic as legacy multithreaded code can be
ported over to the DSM architecture with little to no effort.
The underlying libraries handle all of the architecture spe-
cific mechanisms that ensure proper application execution.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include “jpeg_lib.h”
#include “mylib.h”
#include “4_Images2.h”
 
#define NUM_THREAD 15
 
int main(void){
    int I;
    int ID[NUM_THREAD];
 
    //Init Threads
    pthread_t thread[NUM_THREAD];
    for(i=0; i<NUM_THREADS; i++)
        ID[i] = I;
 
    for(i=0; i<NUM_THREADS; i++)
        Pthread_create (&threads[i], NULL, 
Processframe_main, (void *), &ID[i]);
 
    for(i=0; i<NUM_THREADS; i++)
        pthread_join (threads[i], NULL);
 
    return 0;
} 

#include “libc_API.h”
#include “shared_memory_API.h”
#include “pthread_API.h”

#include “jpeg_lib.h”
#include “mylib.h”
#include “4_Images2.h”
 
#define NUM_THREAD 15
 
int main(void){
    int I;
    int ID[NUM_THREAD];
 
    //Init Threads
    pthread_t thread[NUM_THREAD];
    for(i=0; i<NUM_THREADS; i++)
        ID[i] = I;
 
    for(i=0; i<NUM_THREADS; i++)
        Pthread_create (&threads[i], NULL, 
Processframe_main, (void *), &ID[i]);
 
    for(i=0; i<NUM_THREADS; i++)
        pthread_join (threads[i], NULL);
 
    return 0;
} 

Fig. 3. MJPEG main program encoding: SMP (left) vs. DSM (right).

4.1.2 Runtime software level

The first modification concerns the configuration of the
address space in the microkernel. Indeed, the original ar-
chitecture has one of the following configurations: i) each
tile has the same SPM size with private and shared memory
address spaces, so the host tile can be located in any tile.
This flexibility affects the silicon area of the entire system
since only the host tile can use the shared memory address
space; ii) tiles have different SPM sizes, implying more
complexity in the microkernel and a mapping preset for host
tile. As DSM design has no restriction on private and shared
memory address spaces, it is possible to have the smallest
required silicon area with the higher flexibility.

In the reference platform, the entire application code
is placed in the host tile memory while the other tiles
only contain the microkernel object code. These tiles then
execute threads whose instructions are located on the host
tile, through fetching required data whenever a cache miss
occurs. In the DSM implementation, a dedicated script takes
care of application code generation. It is responsible for
compiling separately application code, resulting object code
is then spread across the cluster. For example, a N kB binary
is divided in M slices of N/M kB, where M is the number
of participating tiles configured to hold a portion of the
instruction object code. Each slice is linked to a shared me-
mory address region belonging to a given tile address space.
Default mapping performs descending distance installation,
i.e. code gets gradually installed from the farthest to the
closest tile (with reference to the host tile).

Note that only code gets distributed across the tiles’
SPMs: this facilitates implementation as no cache coherence
mechanism is required, and allows for a much better ex-
ploitation of on-chip SPM as no thread code is replicated.

4.1.3 Hardware level
From a software perspective, the microkernel has a vision of
a unified shared memory address space, though physical
memories are distributed across tiles. This abstraction is
made possible by adapting the RMA hardware module [17]
so that each and every tile may both fetch data from remote
tiles and serve incoming memory requests.

Whenever the tile-local core L1 cache issues a cache line
request, the RMA first checks whether the corresponding
data is available locally or remotely, through simple address
decoding. Should the address be mapped to a distant tile
memory, the RMA issues a request routed through the NoC
to the target tile. The remote tile RMA then serves that
request and returns desired cache line content.

The RMA is both connected to the NI and the local bus
on which it operates similar to a DMA (Direct Memory
Access) engine. For performance reasons, the RMA pos-
sesses a buffer having for size that of a cache line (256 bits).
Furthermore, one key factor of the overall memory perfor-
mance is the RMA latency, which greatly depends upon
NoC features such as channel width. The specific protocol
and its implementation have been optimized for latency, not
for throughput, as cache miss traffic is rather more latency-
sensitive. Low to moderate latencies are ensured thanks to
implemented buffers, which mitigate for aliased requests.

Finally, the RMA module requires an addressing scheme
to enable distant memory access. For legacy reasons, the
memory mapping of the 32-bit range is divided as follows:
i) the four highest bits are kept for the selection of a local
component that is connected to the core, ii) bits 20 to 27 are
used to select the coordinates of the tile memory in case of a
remote access, and iii) the last 20 bits are used for memory
address. This allows for simpler memory management as
local access can be detected using the same strategy for each
tile. Moreover, due to this memory mapping, it is possible
to address up to 256 (16x16) tiles in a cluster, each of which
having up to 1 MB of memory.

4.2 Memory coherence
The POSIX threads API used for both CSM and DSM
systems has functions belonging to three main categories:
thread creation, mutexes and barriers. Though shared data
remain located on the host tile’s SPM, consistency has to be
insured as those data are cached on the remote tiles.

The relaxed memory coherence model adopted in our
DSM approach makes memory coherent at synchronization
points, i.e. whenever an API function is called. For that
purpose, the API requires shared data be explicitly flagged
as such, so that execution confluence is guaranteed. This
accounts for the only difference in function prototype with
the POSIX thread API, all others being otherwise equivalent.
Data consistency is therefore purely handled in software.

According to that explicit flagging of shared data, in-
validation and flush of a given cache line occur only if
cache line tag corresponds to the address specified by
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TABLE 1
Summary of architecture set evaluated throughout all experiments.

Cluster size 4x4
Communication Dual 32 bits channel NoC @ 500MHz

CPU core 32 bit, 5 pipeline stage Microblaze ISA
@ 500MHz

CPU caches 2kB-16kB direct mapped L1 I$ and D$
caches, 256 bit/line

Tile local shared RAM 2kB-16kB
Tile local private RAM 64kB microkernel + 32kB code/data

Thread assignment
1 worker thread/tile for avoiding per-
formance penalties from context switch-
ing, main thread on master tile

Target technology 45nm CMOS bulk - FreePDK library [20]
Memory information Evaluation by using NVSIM tool [22]

the instruction. This condition avoids unnecessary cache
flushes/invalidations of cache lines containing unrelated
data. An extensive description of the memory coherence
model is given in [17].

5 EXPERIMENTAL RESULTS

We evaluate the performance and energy consumption
gains of the DSM architecture design proposed in previous
sections in comparison with a CSM design.

5.1 Setup information
We consider a synthesizable RTL description in VHDL for
both CSM and DSM architecture templates. Table 1 gives the
details of the distributed-memory multi-core architecture.

Three application kernels with different profiles are used
to evaluate the two platform types: MJPEG video decoding
from multimedia domain; Smith-Waterman (SW) algorithm
used to find similar regions in DNA sequences and advanced
encryption standard (AES), a worldwide used cryptography
application kernel. Their evaluation follows the simulation
flow illustrated in Figure 4 according to the following steps:

1) a netlist is obtained by logic synthesis of the multi-
core architecture using an open source design kit
for 45nm CMOS technology [20], the RTL VHDL
system description and block constraints to detect,
e.g., glitches, slow paths and clock skew;

2) the target application and the microkernel are com-
piled using GCC compiler (version 4.4 or above).
The output is the object code for each input file,
mapped onto clusters according to Section 4.1.2;

3) the object code produced by combining the appli-
cation and the microkernel is simulated with the
netlist in the Cadence Incisive Simulator [21], pro-
ducing performance values;

GCC#
Compiler#

Design#
Compiler#

Memory#Cell#
(45nm)#

NVSim#

Performance#
Results#

Power#Consump@on#
Results#

Cadence#
Incisive#
Simulator#

Power#
Consump@on#

Model#

2#

1# 3# 4#5#
RTL#

Design#

C#code#

Fig. 4. Simulation flow used to validate the proposed architecture design.

4) memory property is evaluated with NVSim tool
[22], e.g. leakage and dynamic power consumption,

5) energy and power consumption results are ex-
tracted using the power consumption model based
on memory access requests and the NoC data com-
munication volume collected from simulation.

5.2 Speedup Evaluation

Three multithreaded application kernel workloads are ex-
ecuted on CSM and DSM platforms in order to compare
performance gains and penalties inherent to both imple-
mentations. The considered application kernels have dif-
ferent profiles. SW has small code size and is very com-
pute oriented, which results in limited cache miss rate and
near-linear scalability. On the opposite side, MJPEG has a
larger code size. The results show good scalability because
synchronization barriers are found only at the end of each
processing frame. For small cache sizes, an impact on perfor-
mance is observed with a speedup limitation. Finally, AES
has significant amounts of synchronizations where multiple
threads issue concurrent accesses to same data/variables,
making their parallelization capability low.

Figure 5 shows speedup versus number of tiles in a
cluster according to CSM and DSM. The execution time
of each benchmark is normalized to the minimal cluster
size (1-tile) to facilitate comparison. Results show that by
aggregating the bandwidth of available multiple distributed
memories, applications present performance improvement
of upto 3 times in the DSM design (Figure 5.b with 12
core tiles and 4kB cache size). Nevertheless, a plateau is
observed for application kernels beyond a certain number
of tiles. AES shows a plateau reached from 4 tiles in CSM by
using 4kB cache size, whereas in DSM gains are observed
up to 8 tiles (see dashed-line in Figure 5.c). The resulting
performance of DSM also relies on the fact that threads may
fetch codes from multiple instruction memory instances,
which are distributed along the platform (Figure 6.a).

In order to deeply investigate the plateau occurrence
on both systems, AES is chosen to have a communication-
oriented behavior, besides being the type of application
with the biggest challenge for such architectures. This re-
sults in high pressure on the communication/memory sub-
system. AES kernel is evaluated according to the following
monitoring information presented in Figure 6: i) shared
memory distribution, ii) NoC bandwidth usage and iii)
RMA bandwidth usage. Here, the comparative DSM design
is configured by installing application kernel code over 8
tiles out of the 16 tiles available in a cluster (dashed lines in
Figure 5.c).

Figure 6.a clearly shows the application kernel code
installed on host core tile (CSM) or distributed across several
tiles (DSM). The resulting bandwidth of NoC and RMA
shows that in CSM all the traffic naturally converges to
the host tile. This leads to a communication and memory
access bottleneck. DSM system does not suffer from this
as communication load gets distributed across several tiles.
Behavior may significantly differ from an application to
another as critical code regions are not homogeneously
distributed across the address space. The NoC traffic is
therefore uneven with peaks observed in specific regions. In
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Fig. 5. Performance evaluation for different embedded applications showing the benefits achieved with DSM design.
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Fig. 6. Evaluation of different metrics (memory, NoC and RMA Bandwidth usage) for a 4x4 tile array executing AES application with 8 threads.

both cases for this evaluation, NoC usage remains modest
because of considered low number of tiles in a cluster.

Figure 6.c also shows the average bandwidth usage
for the RMA module. In CSM, the observed peak RMA
through-traffic is about 80% of its maximum theoretical
bandwidth [17]. This explains the observed plateau in appli-
cation speedup. In DSM system, though bandwidth is more
distributed, resulting in better speedup, a similar behavior
is observed for one of the participating tiles (i.e. core tile 22
in Figure 6.c). This again originates from the logical uneven
occurrence of cache misses across the address space, some
of the AES core functions being hosted on that tile. As
the cluster grows, this RMA tile will become the system
bottleneck, causing an increase in cache miss latency. This
results in a longer execution time.

Results show that the hardware-level modification
(RMA) in DSM plays an important role in speedup enhan-
cement, bringing no performance penalty compared to re-
ference design. An alternative approach can rely on task
migration [23]. But, this can incur a possible performance
penalty due to the time required for transferring thread
code, beyond the challenging implementation of all required
mechanisms on the small memory footprint available in
embedded systems.

5.3 Area Optimization and Power Consumption
Our approach opens on-chip area saving opportunities in
DSM through decreased L1 cache memory sizes while main-
taining similar performance compared to CSM system.

Table 2 shows tile area savings resulting from various
reductions of the core L1 cache memory size. Up to about
16% savings can be achieved depending on the design
decision. At least 2.5% of tile area can be saved as DSM
design with 2kB cache memory always achieves higher

scalability performance than a 4kB L1 cache memory in
CSM. This analysis is important because it helps to decide
which configuration is better in an ASIC project.

TABLE 2
Tile area saving vs. L1 Cache Memory.

Chosen L1 cache Initial L1 cache memory size

memory size 4 kB 8 kB 16 kB

2 kB 2.43% 7.17% 16.72%
4 kB ——– 4.62% 13.95%
8 kB ——– ——– 8.91%

Beyond the need of performance increase and area min-
imization, future clusterized manycore embedded architec-
tures will also require energy consumption reduction. In the
following, we consider a modeling of power consumption in
order to analyze the impact of both CSM and DSM designs
on energy consumption. The system power consumption
can be divided into 3 parts: local SPM memories, NoC and
cores. For simplicity purpose, both designs are assumed
processor-agnostic and only power and energy related to
memory and NoC are evaluated. Monitors have been used
throughout the system to collect the required information.

As a result, energy and power consumption models are
created based on [24], leading to the following equations:

E

MEM

= (nb RD ⇤ E
read

) + (nb WR ⇤ E
write

)

+(nb tiles ⇤ (L
MEM

⇤ ExecT ime)) (1)
E

Router

= (nb F lit ⇤ E
router

) + (nb tiles ⇤ St E

router

) (2)

PowerCons =
E

MEM

+ E

Router

ExecT ime

(3)

where E

MEM

and E

Router

respectively denote the energy
consumed by memory and routers while their sum provides
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the global consumed energy used to define PowerCons,
representing the overall power consumption. The meaning
of each variable in above equations is given as follows:

nb tiles : total number of core tiles,
ExecT ime : application kernel execution time,
nb RD : total number of reads occurred in all dis-

tributed memories in the system,
nb WR : total number of writes occurred in all dis-

tributed memories in the system,
E

read

: dynamic energy consumed in one read from
the memory obtained through NVSim,

E

write

: dynamic energy consumed in one write to
the memory obtained through NVSim,

L

MEM

: memory leakage power obtained with
NVSim,

nb F lit : total number of flits passed on all routers,
E

router

: dynamic energy consumed when a flit
passes on the router, obtained via synthesis,

St E

router

: synthesized static energy of router.

To characterize the above models, memory-related va-
lues are obtained with the NVSim energy profiling tool
[22], while router-related values are obtained through logic
synthesis using the FreePDK [20] open-source design kit for
45nm technology.

Figure 7 illustrates power and energy-to-solution figures
for the AES application kernel in both CSM and DSM sys-
tems. As expected, DSM system incurs a higher power peak
for 2kB and 4kB cache sizes because of the shorter execution
time. The global consumed energy is, however, less for
the same reason, yielding an overall energy efficiency. For
the same configuration, a decrease of upto 50% of energy
dissipation is observed in DSM compared to CSM systems.
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Fig. 7. Energy and power comparison: DSM vs CSM.

A temporal power consumption profile is given in Figure
8. It is important to note the significant power fluctuations
in the DSM plot. This is due to the cache misses emitted
to different target memory regions, physically located on
different tiles: path of different lengths (NoC hop count)
are sequentially activated in the NoC, as shown in Figure
6.b, then resulting in significant fluctuations in consumed
power. Furthermore, the area saving opportunities indicated
that a reduction on core L1 cache memory size from 4kB to
2kB in DSM design has a performance equal or higher than
in CSM design with 4kB of cache memory. However, Figure
8 shows that this performance increase causes an overhead
both on energy and power consumption.

The different experimental results presented above con-
firm our software migration approach is promising for
future clusterized DSM manycore embedded architectures.
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Unlike several existing approaches that often advocate ap-
plication software translation to new programming lan-
guages, compilers or operating systems via virtualization,
we believe for embedded systems (due to their parti-
cularity such as a tight integration of applications with
microkernels) hardware level modifications together with
limited but judicious adjustments of runtime libraries are
the key ingredients for scalable performances and energy-
efficiency. The modifications of legacy code in this context
are very limited, then avoiding tedious and error-prone
code rewriting. For new software, the mainstream shared-
memory programming model can still be used to implement
future applications on target architectures. We also notice
the central role that the RMA hardware module plays in
performance improvement when considering clusterized
DSM design. Such a mechanism contributes to an overall
efficient bandwidth exploitation in the system.

6 CONCLUSION AND PERSPECTIVES

THIS paper addressed the execution of multithreaded
software originally written for centralized shared-

memory (CSM) architectures onto clusterized distributed
shared-memory (DSM) manycore architectures with very
limited modifications of their original code. This contributes
to answering the challenging software migration issue in-
creasingly required by new architectures. The proposed so-
lution advocated runtime and hardware level modifications
to enable scalable performances and energy consumption
of applications on clusterized architectures. Experimental
results showed that DSM features substantial performance
scalability improvements over CSM. In DSM, as SPM on
every tile is made available to all others, this allows for
further performance benefits, as less data converge to the
same tile. The paper also demonstrated the opportunity of
reducing implementation cost by means of decreasing cache
sizes with DSM strategy. For a same given configuration, a
decrease of up to 50% of energy dissipation is observed in
DSM compared to CSM.

Future work lies in exploring the use of linker scripts
for function-level control of memory mapping, aiming at
better distribution of memory traffic across physical me-
mories, which will further reduce the consumed energy. A
generalization of our approach by distributing both data
and instruction caches is another important perspective.
This involves adequate cache coherence mechanisms.
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