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Abstract — Whereas clustered microarchitectures themselves have been extensively studied, the memory units for these clustered 
microarchitectures have received relatively little attention. This article discusses some of the inherent challenges of clustered memory 
units and shows how these can be overcome. Clustered memory pipelines work well with the late allocation of load/store queue entries 
and physically unordered queues. Yet this approach has characteristic problems such as queue overflows and allocation patterns that 
lead to deadlocks. We propose techniques to solve each of these problems and show that a distributed memory unit can offer significant 
energy savings and speedups over a centralized unit. For instance, compared to a centralized cache with a load/store queue of 64/24 
entries, our four-cluster distributed memory unit with load/store queues of 16/8 entries each consumes 31% less energy and performs 
4,7% better on SPECint and consumes 36% less energy and performs 7% better for SPECfp. 

Index Terms—cache memories, microprocessors, parallel architectures, distributed architectures, clustered architectures. 

——————————   u   ——————————

1 INTRODUCTION 
ESPITE the success of current symmetric chip multi-
processors (CMP) to exploit thread-level parallelism 

(TLP), because of Amdahl's law, the rates of performance 
improvement by TLP will start to decrease if single-
thread performance does not improve accordingly. [1] 
This perspective favors asymmetric (or hybrid) multicore 
processors, which combine one or a few big cores with 
multiple smaller cores. A big core is better suited to exe-
cute sequential program sections where all cores—except 
one—are idle. In this situation, even small increments in 
sequential performance are magnified by a degree that 
justifies the use of techniques that would be deemed inef-
ficient in the absence of CMP. [1] 

Because the thermal and power budgets per chip are 
limited, increased energy efficiency and smart handling 
of wire delays translate directly into higher single-thread 
performance, especially for the big cores alluded above. 
Clustered (or partitioned) microarchitectures are a well-
known architectural paradigm that tackles the wire delay 
problem, keeps the critical circuit complexity low, and is 
especially power-efficient. [2] 

Although the design of clustered microarchitectures 
has been studied before, the partitioning of the memory 
unit has received little attention. [5][6][7][8] This paper 
proposes effective solutions to partition the memory pipe-
line and the first level data cache in the context of a “big 

core” four-clustered microarchitecture. Our distributed 
approach is more power-efficient than a centralized 
memory pipeline and our proposals provide significant 
speedups over a state-of-the-art baseline distributed 
memory unit. 

2 RELATED WORK 
Traditionally, load/store queue entries are assigned to 
memory instructions in program order during the dis-
patch stage before they enter the out-of-order core. Only 
after the address was calculated and when the instruction 
enters the memory pipeline, is its queue entry occupied. 
The entry remains occupied until the instruction commits. 

Reserving entries in the load/store queues of a dis-
tributed memory unit is more difficult because during the 
Dispatch stage the address is still unknown, and it is 
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Fig. 1. Block diagram of the clustered microarchitecture. The 
frontend dispatches instructions to the backend, which consists of 
four clusters each with a register file (RF), issue queue (IQ), and 
functional units (FU). The clusters communicate through an inter-
connection network with a ring topology. Each cluster has an associ-
ated memory unit (MU) with one data cache bank. 
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therefore not clear in which of the multiple queues an 
entry should be reserved. Yoaz et al. [5] propose to use 
bank prediction to reserve entries in two load queues. 
Zyuban and Kogge [2] extend this mechanism to clus-
tered microarchitectures with up to eight banks. This ex-
tension exacerbates the number of mispredictions and the 
cost of replicating entries in multiple queues. Since bank 
mispredictions are discovered late in the pipeline, recov-
ery requires either a pipeline flush and restart (similar to 
branch mispredictions) or the deallocation of its current 
queue entry and the allocation of a new entry in the cor-
rect queue. However, traditional load/store units do not 
support such migrations. Furthermore, there are no pub-
lished bank predictors for many banks with an acceptable 
level of high–confidence mispredictions. 

This paper presents a different approach to over-
come this problem based on the late allocation of entries in 
physically unordered load/store queues [6][7][8]. It de-
fers entry allocation until the address is calculated to 
avoid replication and the resulting need of large queues—
with costly CAMs—or complex entry migration mecha-
nisms that would be required otherwise. Physically unor-
dered queues are challenging because they complicate the 
implementation of mechanisms such as disambiguation 
and store-to-load forwarding. This next section shows 
how a distributed memory unit with unordered queues 
can be implemented. 

3 THE BASELINE DISTRIBUTED MEMORY UNIT 
This section describes our baseline distributed memory 
unit. It combines several state-of-the-art techniques, such 
as late allocation of queue entries, no-hit bits, bank pre-
dictors, and store wait tables, which have not been pro-
posed before in this combination for a distributed 
memory unit and which offer significant advantages over 
previous proposals. [2][7][13] 

The clustered microarchitecture, which we use as 
starting point for our design, is described in greater detail 
elsewhere. [3] The superscalar architecture is divided into 
a centralized frontend and a distributed backend. The 
frontend consists of the Fetch, Decode, Cluster Steering, 
Rename, and Dispatch stages, the backend of the Issue, 
Register Read, Execute, Write–back, and Commit stages. 
Backend structures such as issue queues, register files, 
and functional units are all distributed over multiple clus-
ters. In this section we describe an extension to this start-
ing point that adds a distributed memory unit and a dis-
tributed first level data cache. Fig. 1 illustrates the main 
elements of the resulting architecture. 

The cache banks are not interleaved word-wise like 
traditional cache banks, but cache-line-wise to avoid the 
replication of cache tags across clusters. 

3.1 Inter-Cluster Networks and Instruction Steering 
The distributed nature of the baseline architecture re-
quires careful planning to minimize communications. 
Communications between clusters add latencies and con-
sume significant amounts of energy. 

Our baseline uses the Alpha ISA, where each load in-
struction has only one input register. The address calcula-

tion is always performed in the cluster that holds the in-
put register. The calculated address determines which 
data cache bank the instruction will access. 

The mapping of the output register determines into 
which register file the result will be written. To avoid an-
other inter-cluster communication, the output register 
should be mapped preferably to the cluster with the cor-
responding cache bank. Because the data cache bank is 
unknown until the address calculation, the instruction 
steering mechanism employs a bank predictor. [5][10] 

Store instructions have two input registers; one de-
termines the memory address and the other the memory 
data. Internally, we split store instructions into store ad-
dress and store data instructions. This allows the disam-
biguation logic to use the store address, even if the store 
data is still pending. The steering mechanism maps the 
two instructions to the same cluster. 

3.2 Reservation and Release of Queue Entries 
Instructions are inserted into the queue when they access 
the memory pipeline. Queue entries are allocated out-of-
order and the queues are not physically ordered.  The 
problem of allocating queue entries is very similar to allo-
cating physical registers, which is a well-studied topic. 

When a memory instruction commits, the ROB 
broadcasts a message to all clusters of the distributed 
memory unit. This message specifies how many load and 
how many store instructions are to be committed. The 
committed instructions are removed from the load/store 
queues. We discuss a more aggressive method to release 
load queue entries in section 7. 

3.3 Store–to–Load Forwarding  
Organizing the memory unit in banks guarantees that 
memory dependencies are always confined to a single 
cluster. To enable the forwarding of data from a store to a 
load instruction, load instructions search the store queue 
when they are executed. 

If no match is detected the load obtains its data from 
the memory hierarchy. 

If a single match is detected we compare the age of 
the load and store instructions. We enable store–to–load 
forwarding if the load is younger than the store. (i.e. if the 
load succeeds the store in the original instruction stream) 
To compare their age we simply subtract the nine-bit se-
quence numbers of the two instructions. 

If more than a single match is detected we must iden-
tify the youngest of the matches that are older than the 
load. A physically unordered store queue requires a dif-
ferent approach than a physically ordered queue to han-
dle this case. We adopt a scheme described by Webb, Kel-
ler, and Meyer [9]. They add a no–hit bit to all queue en-
tries. Whenever a store instruction is inserted into the 
queue, its address is compared to the addresses of store 
instructions already present in the queue. If a store in-
struction in the queue matches, the no–hit bit of the older 
of the two instructions is set. At any point in time, out of 
several stores in the queue with matching addresses, all 
but the youngest will have the no–hit bit set. Instructions 
with the no–hit bit set are exempt from all future address 
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comparisons. As a result, load instructions that search the 
store queue never match more than a single store instruc-
tion and only a single circuit is required for age compari-
sons. At least two other more complex solutions have 
been published. [7] [11] 

3.4 Handling Unresolved Stores 
Load instructions execute speculatively and search only 
for store instructions present at execution time in the store 
queue. To verify that no dependencies were violated, 
store instructions search the load queue for younger loads 
(i.e. loads which succeed the store in the original instruc-
tion stream) with matching addresses as soon as they are 
inserted into the store queue. If such a load is identified 
the microarchitecture restores consistency with a pipeline 
flush. We provide only one comparator circuit for this test 
and use the no–hit bit for load queue entries in a similar 
manner as for the store queue described in section 3.3 
above, i.e. for all the load instructions that match the ad-
dress the no–hit bit is used to identify the youngest hit. 

To reduce the number of memory dependency viola-

tions we utilize a store wait table similar to the Alpha 
EV6. Load instructions which are predicted to violate de-
pendencies, are retained in the issue queue until the ad-
dresses of all older store instructions are known. Our ex-
periments show that this arrangement consistently out-
performs conservative issue policies as well as complex 
proposals, which involve address and dependency pre-
dictors. [13] 

3.5 Multiprocessor Memory Consistency 
The requirements for multiprocessor memory consistency 
vary with the ISA in question. In our experiments, we 
adopt the Alpha ISA and its memory consistency model. 
However, with the exception of section 6, everything de-
scribed in this paper could be adapted to a stricter con-
sistency model, e.g. sequential consistency. 

The Alpha consistency model requires that we detect 
cases where two speculative load instructions access the 
same memory location in reverse order, where the 
younger load (i.e. the load that succeeds the other in the 
original instruction stream) accesses the location before 
the other load does. 

To test for this condition each load instruction 
searches the load queue for instructions with the same 
address. As mentioned above in section 3.3 this search 
and the following age comparison are required to estab-
lish the no–hit bits in the load queue. This scheme is ex-
tended to detect the case where the load that is about to 
be inserted into the queue hits a load instruction that is 
younger (i.e. the load already in the queue succeeds the 
other load in the original instruction stream). When this 
case is detected, the pipeline is flushed to avoid a viola-
tion of the memory consistency model.  

4 EXPERIMENTAL METHODOLOGY 
To evaluate our microarchitectural proposals we use a 
simulator, which is based on the SimpleScalar toolset. We 
use the SPEC CPU2000 benchmarks to evaluate our archi-
tecture proposals. The benchmarks are compiled and op-
timized for the Alpha EV6 using the original toolchain 
from Digital. We simulate the first 100 million instruc-
tions after skipping the initialization phase of each 
benchmark. Table 1 summarizes the most important ar-
chitectural parameters.  

We use two first level data cache organizations in 
our experiments: A centralized organization with a single 
memory pipeline and a single data cache, as well as the 
distributed organization described in the last section. The 
centralized memory pipeline is connected to one of the 
clusters. The other three clusters have to use the intercon-
nection network to access the memory pipeline. 

We use CACTI 6.5 to calculate the latencies of the 
centralized cache and the distributed cache banks. While 
the latencies depend on the process technology in ques-
tion, the ratio of the latencies for centralized and distrib-
uted caches remains approximately the same for technol-
ogies from 90 to 32nm, so that the results of the simula-
tions are meaningful for various process technologies. 

TABLE 1 
MAIN SIMULATION PARAMETERS 

Frontend (Monolithic, In-Order) 
 

width / depth / reorder buffer size 
 
 

8 / 9 / 256 

Backend (Clustered, Out-of-Order) 
 

number of clusters 
 

ALU (per cluster) 
units / registers / issue queue size 

  

FPU (per cluster) 
units / registers / issue queue size 

 

Interconnection Network 
topology / latency per hop 

 
 

4 
 

 
2 / 56 / 16 
 

 
1 / 56 / 16 
 

 
ring / 1 cycle 

Level 1 Data Cache 
 

Centralized cache (monolithic) 
size / associativity / line size 

latency 
ports 

 

OR 
 

Clustered cache (per cluster) 
size /associativity / line size 

latency 
ports 

 

Bank Predictor (monolithic) 
size 

type 

 
 

 
64KB / 2 / 32B 
3 cycles 
2 read/write 
 

 
 

 
16KB / 2 / 32B 
2 cycles 
1 read /1 write 
 

 
3.3KB 
tournament 

Other Memory Hierarchy 
 

Level 1 instr. cache (monolithic) 
size / associativity / line size 

latency 
 

Level 2 unified cache (monolithic) 
size / associativity / line size 

latency 
 

Main Memory 
latency random / latency burst 

 
 

 
64KB / 2 / 32B 
1 cycle 
 

 
2MB / 16 / 32B 
14 cycles 
 

 
96 / 13 cycles 
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5 AVOIDING LOAD/STORE QUEUE OVERFLOWS AND 
DEADLOCKS 

In this section, we propose two extensions to the ar-
chitecture we described in section 3. These extensions 
avoid queue overflows and deadlocks that would other-
wise result in pipeline flushes. 

Using late allocation in a distributed memory unit 
requires a trade-off for the queue size. In the worst case, 
when all load/store instructions access the same memory 
bank a queue has to hold all in-flight loads and stores. 
Oversizing the queues to cover this case is unattractive 
because load/store queue entries are expensive and the 
average utilization per entry would be low. The alterna-
tive are smaller queues and a mechanism to handle over-
flows. If an instruction overflows a load/store queue, it 
has to be re-executed. The architecture described so far 
lacks a mechanism to handle re-executions and recovers 
from an overflow with a pipeline flush. 

In the same vein, a single memory pipeline cannot 
sustain the combined bandwidth of all address generation 
units. Because the memory pipelines cannot assert back-
pressure over the interconnection network, bursts of in-
structions to a single memory bank lead to overflows and 
pipeline flushes. Our first proposal the memory issue 
queue improves the handling of overflowing queues. 

Another problem of the late, out-of-order allocation 
are deadlocks. When the calculation of an address is de-
layed so long that all queue entries in the corresponding 
cluster are already occupied by younger instructions a 
deadlock occurs. Because queue entries are deallocated in 
program order in the Commit stage, a younger instruc-
tion will deallocate its entry only after all older instruc-
tions committed. The architecture described so far uses a 
pipeline flush to recover from this condition. Our second 
proposal, Deadlock Aware Entry Allocation, avoids these 
deadlocks. 

When we compare the extensions proposed in in this 
section we refer to the basic architecture outlined so far as 
naïve. For performance comparisons, we also include a 
configuration with a centralized memory pipeline and a 
centralized data cache. Because the load/store queue siz-
es of centralized and distributed memory pipelines are 
not directly comparable, we include only one centralized 
configuration with large load and store queues (64 and 24 
entries respectively)—larger queues do not increase per-
formance further. In section 7 we will compare central-
ized and distributed configurations in more detail. 

5.1 Memory Issue Queue (MIQ) 
In this section, we propose memory issue queues to de-
couple the memory pipelines from the address generation 
units. With memory issue queues of 16 entries, we can 
avoid load/store queue overflows and costly pipeline 
restarts almost completely. With a memory issue queue, 
the execution of memory instructions can be delayed until 
the required execution resources are available. This in-
cludes load/store queue entries as well as execution slots 
in the memory pipeline. 

A larger load/store queue could reduce overflows 
too, but load/store queue entries contain CAMs, that 
make large queues slower and consume more energy. 

Fig. 3 shows how the different memory issue queues 
fit into the design. The load issue queue (LIQ) receives 
load instructions from the interconnection network (ICN), 
buffers the instruction if necessary, and finally issues the 
instruction for execution in the memory unit. The store 
issue queue (SIQ) works in a similar way for store ad-
dress instructions. The store data issue queue (SDIQ) is 
not an independent queue but essentially a buffer that 
holds store data instructions, while their corresponding 
store address instruction is waiting in the store issue 
queue. 

Memory issue queues allow us to establish an oldest-
first issue policy for memory instructions. This improves 
performance by approximately 3% over a simple FIFO. In 
addition, we adapt the issue policy to block instructions 
that are likely to cause pipeline flushes (e.g. deadlocks, 
memory dependency violations, etc.). 

The presence of a memory issue queue implies that 
memory instructions will issue two times: first to calcu-
late the address and then to access memory. These queues 
allow memory instructions to re-issue should an error 
occur during execution. Such errors include partial 
memory dependencies, store–load dependencies where 
the store data has not yet arrived, and others. Providing a 
re-issue mechanism allows the architecture to handle the-
se cases more gracefully than e.g. with a pipeline flush. 

Some microarchitectures allow instructions to re-
issue directly from the load/store queue [14]. In these 
microarchitectures, the load/store queue additionally 
serves as memory issue queue, even though an individual 
queue entry only requires one of the two functions at any 
given time. By separating the queues we make better use 
of the complex logic. 

Memory issue queues can be implemented using 
well-known techniques. Buyuktosunoglu et al. describe 
spatially unordered issue queues. They also detail mech-
anisms to select the oldest instruction in the queue. [12] 

LD data
to ICN

LD
from ICN

STA
from ICN

SDQSQ

LIQ SDIQSIQ

LQ Data
Cache

STD
from ICN

Fig. 7. Memory issue queue block diagram. 
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Instructions, which did not execute 
successfully, remain in the memory issue 
queue, but are marked as not ready. The 
queue includes a wakeup mechanism to 
promote these instructions again to the 
ready state [14] [15]. 

5.2 Deadlock Aware Entry Allocation 
(DAEA) 
In this section, we propose a deadlock 
aware entry allocation scheme to avoid 
deadlock conditions. This technique re-
duces the number of pipeline flush events 
and allows us to use smaller load/store 
queues without sacrificing performance. 

The memory issue queue allows us to 
use an issue policy. Deadlock aware entry allocation is an 
issue policy that avoids deadlocks. The mechanism relies 
on information that is exchanged among the clusters over 
the interconnection network. 

To avoid deadlocks completely an instruction must 
issue only if all older instructions are guaranteed to be 
able to issue too. This includes instructions whose ad-
dresses are not yet calculated. Once instructions calculate 
their addresses and hence their mapping to clusters be-
comes known, they inform all clusters of the mapping. To 
decide whether or not to issue an instruction, all instruc-
tions with unknown mappings and all instructions that 
map to the same cluster are taken into account. Only if the 
number of free entries exceeds the number of older in-
structions mapped to the same cluster plus the number of 
those with unknown mappings, is it safe to issue an in-
struction. 

In the following discussion we will focus on the load 
queue, however the same principles apply to the store 
queue. The deadlock–aware entry allocation mechanism 
is built around a permission bit–vector (PV). Each 
memory issue queue has its own permission vector. This 
vector is indexed by the load sequence number and con-
tains one bit for each dispatched, in-flight load instruc-
tion. An instruction is allowed to issue if its correspond-
ing permission bit is set. The initial state after reset is a 
permission vector that contains all zeros except for the 
first Nqueue positions, where Nqueue refers to the size of the load 
queue. Fig. a) shows an example for a queue size of four 
entries. This vector allows the four oldest instructions in-
flight to issue but denies issue to all other instructions.  

As more instructions are executed, more information 
becomes known about the mapping of instructions to 
clusters. Whenever a load calculates its address, it is sent 
to the corresponding cluster and a NACK message con-
taining the load sequence number is sent to all other clus-
ters to inform them about the new mapping. Upon receiv-
ing the messages, the other clusters update their permis-
sion vectors in the following way: Fig. b) shows the ex-
ample of a NACK message that is received for an instruc-
tion that had no prior permission to issue. In this case, its 
corresponding permission bit is set in the vector. Fig. c) 
shows the case of a NACK message for a load that did 
have prior issue permission. In this case, the permission is 

passed along to the oldest instruction without issue per-
mission. This is accomplished by passing the permission 
bit to the left until the first zero-bit is encountered, some-
what similar to carry propagation. 

At any time, the number of bits set to one in the 
permission vector is equal to the number of received 
NACK messages plus Nqueue. The mechanism gives issue 
permission to the first Nqueue instructions out of all instruc-
tions that did not send a NACK message. Notice that the 
instructions that did not send a NACK message are those 
which are known to map to the local cluster or whose 
mapping is not yet known. By choosing the first Nqueue in-
structions out of these instructions, deadlocks are com-
pletely avoided. 

To allow continuous operation the permission vector 
is organized as a circular buffer and the permission bits 
may pass from the leftmost to the rightmost bit. Upon 
commit of an instruction the corresponding permission 
bit is cleared in the remote clusters as shown in Fig. d). If 
the commit liberates an instruction in the local load 
queue, the next youngest load is given permission to is-
sue, see Fig. e). Again, this is implemented by a carry-
propagation-like mechanism that traverses the permis-
sion bits to the left until a zero bit is encountered. 

To guarantee the correct behavior of this mechanism, 
the size of the permission vector must at least be equal to 
the maximum number of load instructions in-flight in the 
out-of-order core plus Nqueue bits. These Nqueue additional bits 
are necessary to handle extreme cases, for example, when 
a single cluster receives NACKs for all in-flight loads. 

Clusters calculate addresses in parallel, and multiple 
NACK messages may be generated in a single cycle. In 
our experiments, we limit the addresses generation rate to 
one load and one store address per cluster per cycle. This 
matches the cache bandwidth of one load and one store 
per cluster. 

5.3 Evaluation 
Fig. 5 shows that the memory issue queue and the dead-
lock aware entry allocation reduce overflow and deadlock 
events. The memory issue queue reduces flush events 
significantly for all queue sizes. This reduction is also sig-
nificant for large load queues, where overflows are pri-
marily caused by the bandwidth mismatch between ad-
dress generation units and memory pipelines. Small 
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1111000000000 00 0

0111111010000 00 1

0111111110000 00 1

a) Initial State for a Queue with Four Entries

c) Remote NACK, Passing Permission

b) Remote NACK

0111111111000 00 1

0011111111000 00 1

d) Remote Commit

0011111111000 00 1

0001111111100 00 1

e) Local Commit, Passing Permission
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New PV

Old PV

New PV

Old PV

New PV
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Fig. 4. Updates of the permission vector (PV) for the deadlock aware entry allocation. 
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queues are especially prone to deadlocks, because a full 
queue is a precondition for a deadlock. The deadlock 
avoidance scheme eliminates all deadlocks; the few re-
maining flush events are caused by overflows. 

Fig. 6 illustrates the performance impact of the 
memory issue queue and the deadlock avoidance scheme. 
The best configuration for a memory issue queue im-
proves performance by 14.5% for integer and by 32.0% for 
floating-point benchmarks. The deadlock avoidance 
scheme significantly improves the performance for con-
figurations with small queues. Because large queues suf-
fer few deadlocks, they offer less potential for improve-
ment. Small load queues, 16 entries for integer and 24 
entries for floating-point, reach a performance plateau. 
Even smaller queues still obtain high performance. A load 
queue size of 12 entries can achieve integer performance 
within 1.9% of the largest load queues and 20 entries get 
within 1.3% of the best floating-point performance. The 
integer performance of a centralized load queue can be 
reached with only 8 queue entries. A queue with 12 en-
tries surpasses the integer as well as the floating-point 
performance of a centralized queue. 

6 EARLY RELEASE OF LOAD QUEUE ENTRIES 
(ERLQ) 
In this section we propose the early release of load queue 
entries. This technique allows smaller load queues with-
out sacrificing performance. 

To maximize the effective load queue size, instruc-
tions should occupy load queue entries no longer than 
required. Traditionally, instructions free their load queue 
entries when they commit. By freeing entries earlier, we 
can make better use of the load queue entries. This pro-
posal can be applied not only to our distributed memory 
unit, but to centralized memory pipelines as well. How-
ever, this scheme is limited to ISAs with a relaxed 
memory consistency model. (Our other proposals are not 
restricted to a particular consistency model.) 

The two common uses of the load queue are detec-
tion of data dependency misspeculations and enforce-
ment of multiprocessor memory consistency. 

Memory units, which use data dependency specula-
tion and issue loads speculatively, usually employ the 
load queue to detect store-load-ordering violations, which 
occur when a load was reordered with respect to a store 
and both instructions access a common memory location. 
The key observation here is that store instructions search 
only for younger load instructions. When a load address 
has been compared to all older stores, its queue entry is 
no longer needed to detect store–load dependency viola-
tions. 

Shared memory multiprocessor systems require fur-
ther verifications of the memory ordering. Which verifica-
tions are required depends on the memory consistency 
model. For some ISAs like Alpha, PowerPC, ARMv7, 
SPARC RMO, and Itanium correctness can be guaranteed 
by asserting that load instructions from the same core do 
not access a memory location out of order. This can be 
implemented by searching the load queue for younger 
instructions with matching addresses, whenever a load 
instruction is executed. The key observation here is that 
load instructions search only for younger load instruc-
tions. When a load address has been compared to all old-
er loads, its queue entry is no longer used to detect coher-
ency violations. 

If we combine the two observations, we arrive at a 
condition that allows us to release load queue entries be-
fore the commit stage without impacting the functionality 
of the load queue. In the case of a distributed memory 
unit, we must also consider instructions that are mapped 
to other pipelines. The condition to release a load queue 
entry is modified as follows: All load and store instruc-
tions which are older than the load in question must al-
ready have searched the load queue or are known to exe-
cute in other pipelines. 

The mechanism for the early release of load queue 
entries keeps track of instructions, which execute locally 
as well as remotely. To keep track of remote memory in-
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Fig. 6. Instructions per cycle for deadlock aware entry alloca-
tion. The figure shows the load queue size of each of the four 
clusters for a naïve configuration and memory issue queues 
with oldest-first policy (MIQ-PRI) and additionally with dead-
lock aware entry allocation (MIQ-PRI+DAEA). The dashed 
line shows the performance of a centralized memory pipeline 
with 64 load queue entries. 
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Fig. 5. Pipeline flush events caused by load queue overflows 
and load queue deadlocks per 100 committed instructions. 
The figure shows the load queue size of each of the four 
clusters for a naïve configuration and memory issue queues 
with oldest-first policy (MIQ-PRI) and additionally with dead-
lock aware entry allocation (MIQ-PRI+DAEA). 
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structions it uses the same NACK messages that were 
used in the deadlock aware entry allocation, section 5.2 
above. This information is aggregated in a bit-vector and 
used to decide if an instruction qualifies to be released 
early from the load queue. 

Fig.  shows the impact of the early release of load 
queue entries on performance. For small queue sizes, 
there is a significant benefit of early release and the per-
formance plateau can be reached with smaller queues. In 
the case of integer benchmarks, a configuration with only 
6 queue entries achieves performance within 3.8% of the 
largest configuration (with 8 entries within 2.2%). The 
floating-point benchmarks show even greater improve-
ments in IPC. A configuration with 16 queue entries 
achieves floating-point performance within 2.3% of the 
largest configuration. The performance of a centralized 
load queue can be reached with only six entries for inte-
ger and eight entries for floating point benchmarks. 

7 PERFORMANCE AND ENERGY EFFICIENCY 
To make the case for a distributed memory unit we con-
clude the paper with an estimation of performance and 
energy of our proposal compared to a centralized 
memory unit. 

To estimate the energy of the memory unit we esti-
mate the energy cost of different microarchitectural 
events and sum the quantities over the course of the sim-
ulation. We account for dynamic energy related to the 
memory unit including the data caches, the disambigua-
tion logic, the bank predictors, and the inter-cluster com-
munication. The individual energy costs are calculated 
using CACTI 6.5. For the sake of simplicity, we do not 
take into account memory issue queues, the translation 
look–aside buffer, cache misses, or external snoop events. 

The centralized configuration uses a cache of 
64 Kbytes size, two read/write ports, and 3-cycle access 
latency. The distributed configuration uses four caches of 

16 Kbytes size each, one read port and one write port 
each, and 2-cycle access time. It also has a bank predictor, 
which is used to minimize communication between clus-
ters. To calculate the length of the interconnects between 
two neighboring clusters, we roughly estimate the chip 
area of each clustered backend. We studied illustrated die 
plots of three out-of-order microarchitectures and meas-
ured the chip area of the blocks that correspond roughly 
to a cluster of the backend. These blocks account for two 
integer units, a single floating-point unit, the memory 
unit, the register file and the corresponding issue queues. 
By averaging the three estimates, we arrive at an approx-
imate area of 1,600 million square lambda per cluster. We 
set the interconnection length of our model to the square 
root of the estimated cluster area. Interconnects are 78 bits 
wide, 64 bits of address or data and 14 bits of additional 
information such as instruction type, destination cluster, 

sequence number, access 
size, etc. We calculate the 
energy for the interconnects 
with the model from 
CACTI 6.5, the same model 
we also use for the data 
cache. 

Fig.  shows the results 
of this estimation. For 
SPECint as well as SPECfp 
the distributed configura-
tions achieve higher per-
formance and at the same 
time consume significantly 
less energy. As the sizes of 
load and store queues are 
increased, at some point 
only energy increases and 
performance stagnates. This 
can be observed in the inte-
ger part of the figure. The 
floating-point benchmarks 
can make use of larger 
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Fig. 7. Instructions per cycle for early release of load queue 
entries. The figure shows the load queue size of each of the 
four clusters for a naïve configuration and memory issue 
queues with oldest-first policy (MIQ-PRI). Notice that com-
pared to the previous graphics we add the size 6 and omit 
the size 28. The dashed line shows the performance of a 
centralized memory pipeline with 64 load queue entries. 
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queues and the effect is not as visible because we did not 
include huge queue sizes to illustrate this point. 

The increased queue size affects primarily the cost of 
disambiguation. Since the centralized configuration con-
tains larger queues it is affected more by increases in the 
size and the slope of the curve is higher than for the dis-
tributed configuration. 

To understand these results better we break down 
the energy consumption of two configurations. We 
choose a centralized configuration with a load/store 
queue size of 64/24 entries and a distributed configura-
tion with a load/store queue size of 24/8 for each cluster. 
Fig.  shows the energy components and the trend for 
shrinking process technologies. The relative advantage of 
the distributed configuration increases slightly with 
smaller process technologies while the distribution of 
energy usage between the components remains stable. 
Not included in the figures is the increase in latency in 
smaller process technologies of the centralized cache rela-
tive to the distributed cache. For 90nm the centralized 
cache is 1.2 times slower than the distributed cache, for 
32nm it is 1.7 times slower. 

Comparing the energy usage of the different compo-
nents, we observe that the distributed configuration uses 
less energy for each single component (except of the bank 
predictor). Communication is the component with the 
largest energy consumption. Even if we include the bank 
predictor into the communication cost, the distributed 
configurations use less energy for communication. The 
energy savings are most pronounced for caches and dis-
ambiguation. This is the result of using smaller structures. 

8 CONCLUSION 
This paper proposes several techniques to design a 

partitioned memory unit for a “big core” clustered micro-
architecture, and to reduce the complexity of the disam-
biguation logic and the first level data cache. This ap-
proach provides significant energy savings and improved 
performance, compared to a centralized memory unit. 

Our results show that the combination of our tech-
niques can provide substantial energy savings and 

speedups to a four-cluster dis-
tributed memory unit, over a 
centralized approach. For in-
stance, compared to a central-
ized approach with a load/store 
queue of 64/24 en-tries, parti-
tioned memory units with 
load/store queues of 16/8 en-
tries consume 31% less energy 
and perform 4,7% better on 
SPECint (36% and 7% for 
SPECfp). Even with load/store 
queues as small as 12/8 entries, 
the distributed memory unit 
provides significant energy sav-
ings and speedups over central-
ized configurations of any 
queue size. 
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