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∗Universitat Politècnica de Catalunya, †Barcelona Supercomputing Center

?University of Padua, Italy, ‡Spanish National Research Council (IIIA-CSIC)

Abstract—Numerous researchers have studied the contention that arises among tasks running in parallel on a multicore processor.
Most of those studies seek to derive a tight and sound upper-bound for the worst-case delay with which a processor resource may
serve an incoming request, when its access is arbitrated using time-predictable policies such as round-robin or FIFO. We call this value
upper-bound delay (ubd). Deriving trustworthy ubd statically is possible when sufficient public information exists on the timing latency
incurred on access to the resource of interest. Unfortunately however, that is rarely granted for commercial-of-the-shelf (COTS)
processors. Therefore, the users resort to measurement observations on the target processor and thus compute a “measured” ubdm.
However, using ubdm to compute worst-case execution time values for programs running on COTS multicore processors requires
qualification on the soundness of the result. In this paper, we present a measurement-based methodology to derive a ubdm under
round-robin (RoRo) and first-in-first-out (FIFO) arbitration, which accurately approximates ubd from above, without needing latency
information from the hardware provider. Experimental results, obtained on multiple processor configurations, demonstrate the
robustness of the proposed methodology.

Index Terms—Computers and information processing, Real-time systems, Parallel architectures, Multicore processing

F

1 INTRODUCTION

The real-time systems industry has started to consider
multicore processors (multicores in the following) as their
baseline computing platform, in response to the increasing
performance requirement of new applications. This situa-
tion extends across a variety of application domains, includ-
ing automotive [34], avionics [32], and space [33].

In spite of the potential benefit to available performance,
embracing multicores for the real-time systems industry is a
difficult challenge. Chip providers are driven by the main-
stream market and industrial developers of real-time sys-
tems must stay in the mainstream and use COTS solutions in
order to contain procurement costs. However, mainstream
COTS multicores are designed to improve average perfor-
mance rather than time predictability, which is an essential
ingredient to compute tight and sound worst-case execution
time (WCET) bounds for real-time software programs. Sadly,
at the present state of the art, analysis solutions capable
of delivering tight and sound WCET bounds for COTS
multicores do not yet exist, and execution-time bounds (ETB)
are derived instead, which may or may not be true upper-
bounds.

One of the challenges of timing analysis for COTS multi-
cores stems from the difficulty of determining the worst-
case impact of contention on access to hardware shared
resources. In this paper, the term ubd, for upper-bound delay,
denotes that impact factor. Studies exist that investigate the
ubd arising on access to the on-chip bus [10] and the memory
controller [18], [20]. Those works however yield a tight and
sound ubd estimation only when enough information about

the timing behaviour of the target processor is available.
Both the Static Timing Analysis (STA) and the

Measurement-Based Timing Analysis (MBTA) methods [34]
need trustworthy ubd to compute sound ETBs. STA uses
the ubd to cost every request to a shared hardware resource
issued by a software program. MBTA, the most used prac-
tice in industry at present, needs to know the ubd to gage
the contention delay that may be suffered by application
programs.

Unfortunately, as the complexity of multicores continues
to rise and information on their internal function is increas-
ingly restricted by intellectual property, the static deriva-
tion of ubd becomes inordinately harder. As a testimony
to that, the contention behaviour of the P4080 processor
has been analyzed by an avionics end-user and an STA
tool provider [17] using measurements, thereby obtaining a
measured approximation of the ubd [16], here denoted ubdm.

The net consequence of that difficulty is that the confi-
dence that can be placed on ETB rests on the confidence that
can be attached to the ubdm; in particular, on how well it
approximates the actual ubd.

To the best of our knowledge, the state-of-the-art tech-
niques used to compute ubdm most frequently employ
specialized programs executing in the application space,
often called resource stressing kernels (rsk) [7], [16], [23], also
referred to as micro-benchmarks. The rsk approach computes
the ubdm by running the software component under analysis
(scua) against a battery of rsk. In particular, the ubdm is
derived by dividing the execution-time increment suffered
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by the scua, (∆ET ), owing to the contention generated by
the rsk, by the number nr of access requests made by
the scua: ubdm = ∆ET /nr . Interestingly, whereas rsk are
expressly designed to produce high contention on a given
shared hardware resource (e.g., the bus) so that the desig-
nated victim suffers high slowdown, insufficient attention
has been devoted to determining whether the ubd is best
approximated using the scua or an rsk as victim.

We show in this paper that the state-of-the-art rsk
methodology may fail at producing sound ubdm values. In
particular, we analyse the impact that round-robin (RoRo)
and first-in-first-out (FIFO) arbitration policies, widely
used in real-time systems due to their time-predictable
traits [10] [19], have on the computation of the ubdm.

In this context, this paper makes the following contribu-
tions:
1) We show that a naı̈ve use of rsk neither guarantees that
the scua’s requests suffer the highest contention (ubd) on
accessing the target shared hardware resource, nor helps
deriving accurate ubdm approximations to it. The key reason
behind this defect is that, under heavy contention scenarios,
RoRo and FIFO produce a “synchrony effect” that causes each
request issued by the scua to suffer a contention delay that
can be systematically inferior to the ubd. We show that
the contention delay is determined by the time elapsed
since the preceding request was served until the current
request is issued. We term this duration injection time. This
phenomenon manifests itself differently for RoRo and FIFO.
2) We propose a methodology to derive a trustworthy
ubdm that does not need to know the specific latencies of
the target shared hardware resource, and thus works for
a wide range of COTS processors. Our approach consists
in inferring the ubdm value by varying the injection time
between requests to the shared hardware resource. This is
realized by inserting a given number of nop instructions
in between access requests. As the results obtained vary
noticeably depending on whether the arbitration policy is
RoRo or FIFO, we propose different methods to obtain the
proper ubdm for each policy.
3) We demonstrate our methodology to derive trustworthy
ubdm for the bus and memory controller on a multicore
setup that matches that of the Cobham Gaisler NGMP
processor [8], a 4-core multicore considered by the European
Space Agency for future missions, which embeds per-core
data and instruction caches connected to the L2 with an
AMBA AHB bus. For the sake of completeness, we also test
our methodology on a variant of this reference multicore
design.

Where measurement observations are the most practical
and perhaps the only available means to derive the impact
of contention bounds for increasingly complex multicores,
our approach provides essential aid to computing a trust-
worthy ubdm for the bus and the memory controller, and
thus increased trustworthiness of the resulting ETB.

The remainder of this paper is organized as follows.
Section 2 introduces the impact that RoRo and FIFO incur
from contention on access to hardware shared resources.
Section 3 describes our reference processor architecture and
the constituents of our measurement-based approach to de-
rive the ubdm, namely, the resource stressing kernels. Section 4
illustrates the synchrony effect that occurs with RoRo and

FIFO under heavy load conditions. Section 5 and 6 show
how our proposed solutions derives ubdm for the bus and
the memory controller, respectively. Section 7 empirically
validates our approaches. Section 8 presents related works.
Section 9 draws our conclusions from this study.

2 CONTENTION ANALYSIS FOR RORO AND FIFO
2.1 Studying the Bus and the Memory Controller
The interconnection network and the memory controller are
two of the hardware resources whose sharing in multicores
causes most bottlenecks for contending tasks that run in
parallel. The determination of the ubd for those resources
has already received the attention of researchers, under
the hypothesis that public documentation on the internal
functioning of the processor exists.

• Bus-based interconnection networks are known to
require little energy as well as to ease protocol design
and verification, while incurring an acceptable slow-
down [25], [31]. The Advanced Microcontroller Bus
Architecture (AMBA) is a bus exemplar widely used
in microcontroller devices as well as in a number of
ASIC and SoC parts with real-time capabilities. The
AMBA bus is the focus of our work here.

• The memory controller, which polices access to mem-
ory and thus is necessarily shared across cores,
causes considerable contention and exacts a high
toll on the ETB. Several memory controller designs
have been proposed to contain this contention over-
head [3] [18] [21] [24], which we consider in this
work.

We study how to derive ubd for those two hardware
shared resources, assuming RoRo and FIFO arbitration.
While other arbitration policies exist that aim at better
average performance, they usually lead to more pessimistic
– or simply not computable – ubd. This is the case for some
types of priority arbitration [19] and policies like first-ready
first-come first-served (FR-FCFS) [11].

Let us now look at each policy of interest in isolation.
RoRo. Consider a RoRo-arbitrated resource, contended

by Nc cores, with an access time ≤ lmax
res cycles, where

lmax
res is the maximum delay that it takes for a request to

be serviced by the resource. In Sections V and VI we discuss
this delay for the bus and the memory, respectively called
lmax
bus and lmax

mem.
When core ci, with i ∈ {1, .., Nc}, has the high-

est priority in a given round of RoRo arbitration, the
priority ordering for the subsequent round becomes:
{ci+1, ci+2, ..., cNc, c1, c2, ..., ci}, where ci+1 becomes the
core with the highest priority and ci gets the lowest. As
RoRo is work conserving, a lower-priority requester can
be granted access to the resource when all higher-priority
contenders do not require it.

When all cores continuously issue access requests, the
theoretical worst case is that any request ri issued from the
scua always has the lowest priority. We therefore have:

ubdRoRo = (Nc − 1)× lmax
res (1)

Under a contention scheme of this type, both STA and
MBTA can be applied to the scua in isolation (hence with
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no parallel contention) and then the worst-case contention
overhead can be added compositionally by factoring the
above ubd into each access to the shared resource.

Obviously however, the particular time alignment be-
tween the scua’s access and the circulation of the RoRo
priority token across cores determines the contention delay
actually suffered, so that the ubdm may be significantly
lower than the ubd. This is further discussed in Section 5.

FIFO. Consider now the same resource, this time with
FIFO arbitration, accessed by Nc cores, where each core
can have only up to one pending request in flight. FIFO
assigns access priority in order of arrival so that the requests
arriving earlier to the arbiter get higher priority.

The theoretical worst case for the scua occurs when all
cores have a pending request and a request ri from the scua
is preceded by Nc − 1 older requests from the other cores.
This produces the same ubd as for RoRo:

ubdFIFO = (Nc − 1)× lmax
res = ubdRoRo (2)

However, by the time request ri is issued, the oldest
request at the top of the FIFO queue may have progressed
to near completion, which – again – causes ubdm to be
lower than ubd. We can thus observe that under both RoRo
and FIFO, the worst case occurs contingent on a particular
alignment between the scua’s request(s) and those of all
other contending cores, and is distinct for each arbitration
policy.

2.2 Difficulties in Determining the UBD
When the internal workings of the processor cannot be
known, the ubd cannot be determined analytically, but only
approximated via ubdm, as was the case in [17].

We noted earlier that designing observation experiments
to maximize the impact that the interfered scua’s requests
suffer from other cores (which is required to “conjure” the
ubd) is impaired by the need to control the alignment in
time between the scua’s requests and those of the contending
cores.

Consider Nc arbitrary software components, SC =
{sc1, sc2, ..., scNc

}, one of which is our scua, with each sci
pinned to a distinct core, all contending access to a RoRo-
arbitrated resource. It is evident that if we simply run
all those programs together, with no other precaution, it
would be highly unlikely that each and every scua’s request
incurred worst-case contention. This is so because, when a
request ri from the scua is issued in the program run, its
RoRo priority is not necessarily the lowest and therefore its
wait time is less than ubdRoRo. The case of FIFO arbitration
is analogous, because it is equally unlikely that every single
scua request is issued when all other cores have pending re-
quests enqueued and none of them is already being served.

In principle, given a specific scua, one might possibly
design matching contenders capable of issuing their access
requests with the frequency needed to cause the scua’s
requests to always be last in the queue and incur ubd
contention. However, this effort would be utterly dispro-
portionate, owing to its extreme sensitivity to the particular
behaviour of (the particular version of) the scua and, even
worse, to its critical dependence on detailed knowledge of
the inner workings of the resources of interest so that the

Fig. 1: Block diagram of our reference processor architecture.

desired timing of request generation can be well understood
and fully controlled.

We can therefore maintain that soundly approximating
the ubd with observation measurements that are affordable
for design and implementation costs is an open problem.
Interestingly however, solving that problem would be of
great value to industrial users, as they would be provided
with scua-independent test sets capable of causing ubdm
to be a sound approximation of ubd, which could thus be
used as an additive factor to the ETB determined for the
scua in isolation, with state-of-the-art single-core analysis
techniques. This is the challenge we tackle here.

3 ELEMENTS OF THE PROPOSED SOLUTION

We now present the COTS processor that we studied, which
we describe first, and the resource-stressing kernels (rsk) [7],
[16], [23], small application-level programs designed to
stress specific hardware resources, which form the state-of-
the-art building block to our solution.

3.1 Processor Architecture
The processor we consider in this work is Cobham Gaisler’s
Next-Generation Multi-Purpose Processor [8], which is one
of the multicores currently considered by the European
Space Agency for use aboard future satellite missions.

The NGMP is a quad-core processor with private per-
core instruction and data caches, referred to as IL1 and DL1
respectively, each with 16 KB capacity, 4-way, 32-byte lines,
and 1-cycle hit latency. An AMBA AHB bus serves as the
bridge between the IL1 and DL1 on core and the second-
level 256 KB 4-way cache (L2), which can be partitioned
across cores, one way per core. DL1 is write-through and all
caches use LRU replacement. In the NGMP, whose general
architecture is depicted in Figure 1, contention only occurs
on access to the bus and to the memory controller, since the
L2 is partitioned.

3.2 Resource Stressing Kernels
We first discuss the specialization of rsk for the processor
resources of interest, and then we show that they fail to
safely approximate the respective ubd. Subsequently we
present a new methodology to do that.

Bus. We call the rsk dedicated to the bus, bus stressing
kernel (bsk). The bsk is designed to cause every instruction
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(a) bsk ... (b) msk

Fig. 2: Pseudo-code of rsk for the bus made with load opera-
tions.

to miss in DL1 and hit in L2. This structure ensures a short
turn-around time for memory requests, which keeps the bus
as busy as possible.

Given that DL1 uses LRU replacement, the bsk com-
prises a loop with W + 1 load instructions, where W is
the number of DL1 cache ways (see Figure 2(a)). Those
loads have a predefined stride among them so that they
access the same DL1 set, thus exceeding its capacity and
systematically missing in DL1. Furthermore, the memory
addresses referenced by the bsk are designed to exactly fit in
L2. In this way, all accesses miss in DL1 and hit in L2.

To hit in L2 we use load operations, which produce the
highest bus contention. In the NGMP in fact, L2 hits hold
the bus until the L2 serves the request, while L2 load misses
are split transactions, which release the bus until memory
sends the missed data, and store requests are immediately
served, thus keeping the bus busy for a shorter duration.

Figure 2(a) presents the bsk for the NGMP: as the DL1 has
4 ways, the loop body of the bsk includes five instructions
that all map to the same set.

Had the DL1 replacement policy been unknown, we
would have designed the loop body to perform N �W +1
distinct accesses to the same set, for an N that does not
exceed the L2 capacity in the corresponding L2 set, to make
it highly unlikely for memory operations to hit in DL1.

Memory Controller. Analogously, we call msk the rsk
dedicated to stressing the memory controller. The msk de-
sign follows the same principles as for the bsk, except that
the memory accesses in the msk have to yield L2 misses.
The factors of influence to this end are the size of the way
for DL1 and L2 (to cause L2 misses and therefore access
the memory controller), and the size of the cache line (that
determines the unit of transfer).

For the NGMP, we use a load stride of 64 KB, which is
an integer multiple of the DL1 way size (4 KB). Hence, all
memory accesses map to the same DL1 set. This is also the
way size of the L2, hence memory accesses also map onto
one and the same set. As L2 uses LRU replacement, every
memory access made by the msk results in a miss. Figure 2(b)
presents the pseudo-code of the msk.

4 THE SYNCHRONY EFFECT

Intuitively, one would expect that assigning specialized rsk
to all cores contending with the scua should capture the
worst-case contention scenario, and thus allow obtaining a
trustworthy approximation of the relevant ubd.

As we show next however, this intuition is wrong in
practice, because, when exposed to heavy load conditions,
both FIFO and RoRo experience a particular phenomenon

TABLE 1: Main terms used in this paper

∆ET Execution time increment suffered by scua
nr Number of accesses made by scua
lmax
res Max response time of one resource
Nc Number of cores
ci Core i
Rx Max no. of requests made by task X in a run
ri Request i
δi Injection time between ri and ri−1

γi Contention delay suffered by request i
etisol Execution time when running in isolation
etrsk Execution time when running against rsk
dbus Execution time increment caused by contention for the bus

that we term the synchrony effect. The essence of this phe-
nomenon is that, when all cores issue requests at a given
constant rate to the resource of interest, their requests
interleave in a particular way systematically, so that their
interleaving becomes synchronous. In that situation, the
resulting contention delay becomes constant and, more im-
portant, unlikely to match the ubd.

We now discuss the synchrony effect for the bus, which
we obtain by using Nc − 1 bsk as contenders to the scua,
under both FIFO and RoRo. Table 1 lists the key symbols we
use in the discussion.

4.1 Synchrony Effect under FIFO

The synchrony effect causes the shared resource to behave as
if it was multiplexed across all cores, with each core being
assigned a time slot of duration equal to the service time
of an individual request. Interestingly, this applies to both
FIFO and RoRo. Let us now study that effect for FIFO.

The contention delay suffered by the scua for its request
ri+1 depends on the time elapsed since its preceding request
ri and how ri+1 positions in the request queue.

Let us assume that the scua may issue multiple requests
to the bus, which we denote Rscua = {r0, r1, ..., rm}.
Assume that those requests may be issued at arbitrary
times, so that some time elapses between any two sub-
sequent requests from the scua. Let us call injection time,
denoted δi, the time span between the issue of requests
ri−1 and ri for any R. Accordingly, for Rscua, we have
{δscua1 , δscua2 , ..., δscuam }.

In our reference architecture, δi corresponds to the time
elapsed since the data loaded by ri−1 is sent back to DL1,
until ri is ready to access the bus. A minimum injection
time δmin separates any two subsequent requests from R.
δmin is equal to the time it takes for DL1 and the core to
process ri−1, once it is served, and execute the instruction
corresponding to ri, until ri gets ready to access the bus.

When a program runs in parallel with other contenders,
each of its request ri may suffer a contention delay γi.
Accordingly, for Rscua, we have {γscua1 , γscua2 , ..., γscuam }.

Since the bsk are designed to access the bus with high
frequency, their requests have low injection time. In concept,
the maximum contention scenario should occur for δmin =
0.

We now illustrate the synchrony effect under FIFO with
an example where contenders are bsk and the scua can
be either another bsk or any other software component.
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Fig. 3: Contention delay γ as a function of δ (FIFO) for δmin = 0
and δmin = 2, respectively. At each cycle, priorities are shown
as at the start of cycle, prior to arbitration.

We explore two scenarios, with δmin = 0 and δmin > 0
respectively. The former, while infeasible in reality, serves
for illustration.
Scenario δmin = 0: Let us assume that request ri of the scua
is just serviced and all other cores have pending requests
enqueued. Figure 3 (rows δmin = 0) illustrates how γi+1

varies as a function of δi+1 (shown in the first row). For
instance, if δi+1 = 1, then γi+1 = 8 since ri+1 cannot be
granted access to the bus until the ongoing request from
c0 is completed (which takes 2 more cycles) and requests
from cores c1 and c2 are also serviced (which takes another
3 + 3 = 6 cycles) since they are both already in the queue.

Assuming that each core can only have one pending
request, the worst contention (ubd) occurs when ri+1 is
delayed by the full service of Nc − 1 requests coming from
the other Nc − 1 cores. In this example in Figure 3, this
means γi+1 = 9. When δmin = 0 and lbus denotes the
bus service time for an individual request, the synchrony
effect manifests in the fact that γi+1 has a periodic behavior
that ranges from (Nc − 2)× lbus + 1 (when one contending
request is near completion) to (Nc − 1) × lbus (when all
other contending requests are pending and none is being
serviced). Thus, the particular value of δi+1 determines the
value of γi+1.

If δscuai is arbitrary, it stands to reason that it is very
unlikely that all requests rscuai ∈ Rscua experience γscuai =
ubd. If for scua we use another bsk, which has δi = 0 for all
ri ∈ R, as shown in Figure 3, then γ = ubd systematically.
Scenario δmin > 0: Owing to cache latency, the common

case for the bus is δmin > 0. (For other farther-away off-core
resources, such as the memory controller, δmin � 0.)

The bottom rows in Figure 3 show the impact on γr+1

when δmin = 2. Right after ri is serviced, γr+1 would be
equal to ubd. However, for 2 cycles ri+1 cannot reach the
bus and thus δr+1 ≥ 2. In particular, if δr+1 = 2, then c0’s
request is already being processed at the time ri+1 is issued,
hence γr+1 < ubd. If δ = 3, then c0’s request has been
processed and its subsequent request will take at least 2
cycles to be issued and reach the queue. Thus, if δ = 3, then

Fig. 4: Example where contention delay γ is maximized for
FIFO.

γr+1 = 6. Analogously, if δr+1 = 4, then γr+1 = 5. If δr+1 =
5, then ri+1 finds the same scenario as for δr+1 = 2, with the
only difference that the particular requests in the queue have
different core owners, but for the same contention effect on
ri+1. Hence, when the scua executes against bsk, it cannot
experience ubd contention regardless of whether the scua is
a bsk itself or not.

In general, if the contending cores execute bsk, γscuai for
request ri ∈ Rscua can be described with the following
equation, where δ ≥ δmin holds:

γFIFO(δ) = max (ubd− ((δ − δmin) mod lbus)− δmin, 0)
(3)

Note, however, that this does not mean that ubd cannot
be experienced systematically. For instance, assume that the
scua is a bsk and the contending cores execute programs that
incur δ = 11 in c0, δ = 8 in c1 and δ = 5 in c2, as shown
in Figure 4. In this scenario, after ri is serviced, the queue
is empty for 2 cycles, and when δ = δmin = 2, then ri+1

is issued and contends with requests from all other cores,
which arrive simultaneously and are enqueued before it.
All requests are processed in order and ri+1 experiences
γ = ubd. Then, the queue is empty again for δmin cycles
until the same scenario for δ = 2 repeats for δ = 16.
However, while this scenario could be hypothetically pro-
duced, it is very difficult – if at all possible – for a user to
create programs with given δ values, which align in time
properly, while ensuring that when requests arrive to the
bus simultaneously, they are systematically enqueued in the
desired way.

4.2 Synchrony Effect under RoRo

Under RoRo, the incoming requests are not necessarily
served in order of arrival, but in the order determined by
the round-robin assignment of access slots.

Again, we assume that bsk are run as contenders. If
δmin = 0, all contenders always have a request pending in
the queue. Hence, the only parameter that determines who
is granted access to the bus is the current priority order. This
is better illustrated in Figure 5 (see the δmin = 0 rows). As
shown, c0, c1 and c2 always have requests in the queue,
either in service or still pending. Notably, ri+1 from c3
becomes the highest priority request when δr+1 = ubd = 9.
We also observe that γr+1 = ubd only when δr+1 = 0.
Otherwise, γr+1 traverses all values from ubd − 1 down to
0 consecutively in a round-robin fashion as δr+1 increases.
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Fig. 5: Contention delay γ as a function of δ (RoRo). In each
cycle priorities are those at the start of the cycle, prior to
arbitration. Shaded cells in the priority rows correspond to
requests not in the queue.

Hence, if δmin = 0, running a bsk as scua would suffice
to observe the highest contention consistently for all of its
requests. However, as we noted before, the general case is
δmin > 0, owing, for example, to the DL1 cache latency.

Figure 5 also shows the case for δmin = 2. In it, vacant
positions in the request queue are marked with shaded cells
in the priority rows.

In general, assuming 0 < δmin ≤ ubd (as is often the case
in reality) so that 100% bus utilization can be reached, then
γ stays exactly the same as if δmin = 0. This is so because
δmin only effects the contents of the request queue. Hence,
ri+1 can only incur γr+1 < ubd. Moreover, if δ is constant
for all of the scua’s requests, then γ is also constant. This
observation is of crucial importance in our methodology, as
we discuss in the next section.

In the scenario where all contenders are bsk, γ can be
described with the following equation:

γRoRo(δ) =

{
ubd if δ = 0
(ubd− (δ mod ubd)) mod ubd otherwise

(4)
In general, δ depends on δmin and the particular scua. An

arbitrary scua may observe different values of δ and so little
can be concluded about actual contention. Alternatively,
running a bsk as scua, we observe exactly γ = ubd − δmin

for all requests. In fact, it is hard to determine the actual
value of δmin even when cache latencies are known, since
some pipeline stages may delay the access of DL1 misses to
the bus. Hence, nothing can be concluded for certain about
whether the highest contention has been observed or how
far the observation is from the highest extreme.

Taking stock of the synchrony effect, we now present a
measurement-based method which computes a ubdm guar-
anteed to be a safe approximation of the ubd for COTS
multicore hardware shared resources, specifically the bus
and memory controller, arbitrated with round-robin or FIFO
policies.

5 DERIVING THE UBD FOR THE BUS

In this section, we first describe the strategy we follow. Then
we show how it can be implemented and applied in practice
for the bus in our reference architecture, considering both
FIFO and RoRo arbitration. Finally, we summarise some
architectural issues of relevance.

5.1 Nop-Based Methodology
As captured with Equations 3 and 4, when using bsk as
contenders, the synchrony effect causes the amount of con-
tention suffered by any request to be a function of δ.

We use that notion to construct a new bsk, illustrated
in Figure 6(a), which we call bsk-nop. In the bsk-nop we
intersperse low-latency (nop) operations between the (load)
instructions that access the bus. The effect of those nops is to
delay the injection time of each request to the bus, which
modifies the δ value accordingly. Hence, whereas in the
bsk, constituted of consecutive contending requests, we have
δ = δmin, if we add just one (for the sake of example) nop
in between loads, we obtain δ = δmin + δnop, where δnop is
the delay added by one nop.

(a) bsk-nop ... (b) msk-nop

Fig. 6: Code of rsknop implementations: bsk-nop and msk-nop

By varying the number k of nop instructions inserted
between load operations, each resulting bus request expe-
riences a different δk. Figure 7 shows this effect for FIFO
with δmin = 1, which manifests as a saw-tooth profile. An
analogous phenomenon occurs for RoRo, see Figure 9.

5.2 Bsk-nop for FIFO
Figure 7 uses Equation 3 to plot γ as a function of δmin = 1.
We see there that the values taken by γ = ubd − δmin pe-
riodically repeat every lbus cycles. This repetitive behavior
reflects the fact that the requests issued by bsk-nop over lbus
cycles find decreasing contention load in the queue, until
a contending request issued by one bsk running in parallel
on another core is queued again. The maximum contention
delay experienced is γ = ubd − δmin, hence systematically
inferior to ubd, since once a contending request is serviced,
it takes δmin cycles for a new request to be enqueued. At
that time, contention is highest when the contenders are
bsk, and amounts to the theoretical worst case (ubd) minus
the progress performed during δmin cycles. Observing the
saw-tooth shape in Figure 7, we see that its period is equal
to lbus. The maximum of the corresponding function is:
(Nc−1)× lbus−δmin. In this case, ubd corresponds to Nc−1
periods of the function. For instance, if we consider the
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Fig. 7: Saw-tooth behavior for FIFO with δmin = 1.

Fig. 8: Timeline of the FIFO scenario for different k nop instruc-
tions: a) k = 0, b) k = 1, c) k = 2.

example in Section 4.1 whereNc = 4, δmin = 2 and lbus = 3,
the saw-tooth will range between 7 and 5 cycles, and it will
repeat every lbus = 3 cycles. Thus, ubd = lbus×(Nc−1) = 9.
As shown, although we cannot observe the actual ubd, we
can accurately infer it based on measurements with our
methodology.

Figure 8 illustrates this phenomenon, for lbus = 2,
δrsk = δmin = 1, and an increasing number of inserted
nops, with δnop = 1. We start from scenario a), where we
assume δrsk = δmin = 1 and we see that the request issued
from core c3, where the scua runs, suffers a contention of
γ(δrsk) = 5 cycles. In scenarios b) and c), we show the
effect of increasing the number of nop instructions inserted
between load operations in all contenders. In scenario b), we
see that γ(δrsk + δnop) = 4, whereas in scenario c), core c3
loses its turn for access to the bus, which increases its γ to
5 cycles again and shows the periodicity of γ as a function
of lbus, where lbus = 2 × δnop in this case. For higher nop
counts, scenarios a), b) and c) repeat.

Fig. 9: Saw-tooth behavior for RoRo with δmin = 1.

Fig. 10: Timeline of the RORO scenario for different k nop
instructions: a) k = 0, b) k = 2, c) k = 4, d) k = 6.

5.3 Bsk-nop for RoRo

Figure 9 shows the variation in the contention delay in-
curred with RoRo, as captured with Equation 4. The con-
tention value reaches ubd − 1 at most, which, for δmin > 0,
occurs periodically at every ubd cycles.

This phenomenon is better illustrated in Figure 10, again
for lbus = 2, δrsk = δmin = 1, and an increasing number
of inserted nops, with δnop = 1. We start from scenario
a), where the request issued from core c3, where the scua
runs, suffers a contention delay of γ(δrsk) = 5 cycles. In
scenarios b)-f), we show the effect of increasing the number
of nop instructions inserted between load operations in all
contenders. In scenario b), γ(δrsk + δnop) decreases down to
4. Through the scenarios c)-f), γ(δ) keeps decreasing as the
number k of inserted nop instructions increases from 1 to 5.
In scenario g), when k = 6, the situation becomes the same
as in scenario a).

The following observations are made: (i) for ubd ≥
δmin > 0, we have γ ≤ ubd − 1, as per Equation 4; (ii)
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the variation of γ is periodic, with period ubd, independent
of δmin; and, more importantly, (iii) the exact value of ubd
can be inferred from the period of γ(δ), which varies with
k: this holds true for any δmin as long as δmin ≤ ubd.

5.4 Applying the Rsk-nop Method
Our method to determine the ubd requires carrying out
several experiments using rsk-nop as scua and normal rsks
as contenders. rsk-nop(k) is parametrized by varying, incre-
mentally, the number k of nop instructions inserted between
the operations that access the bus.

We run rsk-nop(k) against Nc−1 instances of rsk, record-
ing its observed execution time, etscscua(k), and computing
the increment from its execution in isolation, etisolrsk−nop.

dbus(k) = etrskrsk−nop(k)− etisolrsk−nop (5)

Plotting the values of dbus(k) for a range of k, we see
a saw-tooth behavior, with period ubd. Assume now that
the closest extremes of that period correspond to ki and kj
respectively. With that in mind, for FIFO we have:

ubdFIFO =(Nc − 1)× lreqFIFO where
lreqFIFO =|ki − kj | : (ki 6= kj) and (dbus(ki) = dbus(kj))

(6)
For RoRo, the ubd can be computed as the period of the

resulting saw-tooth shape of dbus.

ubdRoRo = |ki − kj | : (ki 6= kj) and (dbus(ki) = dbus(kj))
(7)

5.5 Deriving Lmax
bus

The magnitude of the ubd depends on two factors: the
number of rounds that the request has to wait to gain access
to the shared resource of interest (denoted Nc − 1); and
the longest possible service time from it (denoted lmax

bus ). In
the measurement-based approach presented in this work,
specialized rsks have to be designed to incur a lmax

bus re-
sponse time. In our reference architecture, that duration is
determined by whether the accesses to the bus are reads or
writes, and hits or misses in the L2. In [12], we empirically
determine, for the processor of interest, that read hits to the
L2 use the bus for 9 cycles, read misses for 7 cycles, and
writes for 1 cycle, regardless of whether or not they miss in
L2. In our methodology we secure a lmax

bus response time by
causing all memory operations in the rsk to be read hits to
the L2.

5.6 Multicycle Nop Operation
So far we have assumed that δnop = 1. This is indeed the
case in most architectures, since nop instructions do not
have input/output dependencies and use the fast integer
pipeline, if present. In the unlikely case that δnop > 1,
varying the number of nop instructions in the scua will be
equivalent to sampling the saw-tooth behavior shown in
Figures 7 and 9. If the value of δnop can be determined, then
we can obtain the saw-tooth period easily. Otherwise, we
infer δnop as follows: we use a rsk whose loop body solely
includes k nop instructions, as many as possible without

causing misses in the instruction cache; at that point, by
dividing the observed execution time of that rsk by k, we
obtain a very accurate measure of δnop.

5.7 Summary

The method we have illustrated in this section empirically
derives ubdm, requiring little in the way of knowledge about
the underlying architecture, which is in fact very rarely
available as public documentation.

Let us summarize the essence of our contribution at this
point. First, we tested our approach for the bus, under FIFO
and RoRo, and we have shown it to work. Second, our
approach requires knowing the type of instructions that may
generate requests to the bus, which is typically documented
in the processor’s manuals. Third, we can claim confidence
in the ubdm obtained with our method for two reasons. On
the one hand, Nc − 1 cores running a rsk should suffice to
raise the bus utilization up to 100%, also considering the
handshaking overhead. This can be ascertained using the
performance monitoring counter support provided by most
COTS processor architectures (the Cobham Gaisler NGMP,
for instance, provides registers 0x17 and 0x18 to measure
per-core and cumulative bus utilization [9]). On the other
hand, we have shown how the user can gauge δnop, which
is needed to determine the saw-tooth period.

The derived bound, ubdm, can be used by STA as ubd
by adding it compositionally to the access time to the bus
considered without contention [17]. With MBTA, instead the
user must determine an upper bound nr to the number of
requests that the scua issues to the bus. The ETB of the scua
is then padded with the quantity nr × ubdm.

6 UBD FOR THE MEMORY CONTROLLER

In this section we show how to empirically derive the ubd
for the memory controller. In our reference architecture,
the L2 forwards its misses to a request queue located in
front of the memory controller. Each core has one entry
in that request queue, which therefore has 4 positions. On
an L2 miss, a split command is sent to the bus to stall the
core that caused the miss, until the corresponding memory
request has been served. In the meanwhile, the other cores
can continue working. To determine which pending request
accesses memory, the memory controller implements two
arbitration policies, FIFO and RoRo, which we discuss below
in isolation.

Before we do that, though, we must clarify an inner
detail of consequence. Assume that, at a given point in time,
the request queue is full, so that it contains Nc requests.
Once one of those requests, ri, has been served, two actions
occur. First, a new request rj from another core is granted
access to memory. Second, the core that issued ri (and has
now resumed working) may miss again in L2 and therefore
cause a request r′i to be stored in the request queue of the
memory controller. As an L2 access is faster than a memory
access, it is fair to assume that, in general, r′i gets stored in
the request queue before rj is served.

As a building block to our measurement-based analysis,
we use the msk concept outlined in Figure 2(b). This kernel
causes a continuous stream of misses in DL1 and in L2, with
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each such request going to memory. Following the same
methodology as for the bus, we generate a variant of this
kernel, called msk-nop, which inserts a variable number of
nop instructions in between cache accesses (cf. Figure 6(b)).

6.1 Msk-nop for FIFO
Using msk as scua, under FIFO arbitration, we must consider
that the time to serve a memory request is longer than the
time it takes for the scua to reach memory with another
request ri+1 after its previous request has been served.
When ri+1 reaches memory, it is preceded by exactly Nc−1
pending requests, one for every other core, which all run
msk. Nc − 2 of those requests are still awaiting service,
whereas one of them has begun to be serviced for a duration
that corresponds to the δmin factor for memory. We can
therefore see that this scenario is analogous to the one we
have seen for the bus under FIFO, shown in Figure 3 for
δmin > 0. The extent of contention captured in that case is
high, but not enough to observe a ubd contention effect.

Using msk-nop as scua allows us to explore a range of γ
whose period extends to lmem. During that duration, the
number of pending requests that precede ri+1 is exactly
Nc − 1 for lmem − δmin cycles, and Nc − 2 for δmin cycles.
Plotting the observed γ as a function of the nop instructions
inserted in the msk-nop used as scua, we would see the exact
same shape as shown in Figure 7, except with a different
scale.

6.2 Msk-nop for RoRo
Analogously to the case of FIFO arbitration, if we use an msk
as scua, whenever a request ri+1 reaches memory after its
previous request has been served, it is preceded by exactly
Nc−1 requests. One of those pending requests has begun to
be serviced for δmin cycles: this means γ = ubd − δmin. We
can therefore see that this scenario is analogous to what we
saw for the bus with RoRo, as shown in Figure 5(δmin > 0).
Once again, ubd contention is not observed.

Using msk-nop as scua, we obtain the ”sawtooth plot”
depicted in Figure 9, in which γ ranges between ubd − 1
and 0, which allows us to the derive ubd for the memory
controller analogously to what we do for the bus under
RoRo.

6.3 Deriving Lmax
mem

As for the bus, the response time of requests to main
memory, which is required to determine lmax

mem, may vary.
As noted in [15], [21], the duration of a DRAM request
in general depends on: i) the memory mapping scheme,
which defines the mapping of physical addresses from the
processors to the actual memory blocks in the memory
devices; ii) the row-buffer policy; iii) the type of the request;
and iv) the type of the predecessor request.

The response time to a memory request depends on
the type of request, the target page (bank and rank), and
the same set of parameters for the immediately preceding
request. For instance, serving a request of a given type is
typically faster when the preceding request is of the same
type (i.e., Read-After-Read or Write-After-Write) than other-
wise, and obviously influenced by whether the accesses go

to the same bank and rank or not. In the same line, access
to open pages (i.e. hitting in the row-buffer) is faster than to
close pages that have to be loaded back in the row-buffer.

Those effects have been thoroughly studied in the litera-
ture [15], [21] and are typically well documented in DRAM
specifications [13], [29], [30].

Based on this information, msk can be designed to cause
the service time to equal lmax

mem. All it takes is to alternate the
types of operations, and to set the address of the accesses to
target the desired bank and rank in accord with the mem-
ory row-buffer managing policy and the memory mapping
scheme in place.

6.4 Memory Refresh

An intuitive solution to deal with memory refreshes consists
in factoring the refresh delay tRFC in the ubd. However, this
solution is exceedingly pessimistic, as it considers that every
individual request is affected by a refresh operation.

With measurement-based approaches instead, the exe-
cution time observations taken on the real platform already
naturally account for the impact of refreshes. Depending on
how measurements align with refresh periods, the number
of refreshes that can affect the execution time may be just
one more than those actually observed. Hence, it is enough
to pad the observed execution time with tRFC .

Another solution is possible when a ∆cont factor is used
to compositionally increase the task’s WCET, determined in
isolation, with the contention overhead on access the bus
and the memory computed without considering refreshes.
In that case, the number NREF of refresh operations oc-
curring during ∆cont can be easily computed with the fol-
lowing recurrence relation: N (k+1)

REF =
⌈

∆cont+Nk
REF×tRFC

tREFI

⌉
,

where tREFI is the rate at which refresh commands [13]
are sent to all banks, and tRFC is the number of cycles that
a refresh command takes to complete. In fact, the impact of
refresh operations can just be added to the computed WCET,
without having to be captured in the computation of the ubd.
The value to add is given by (1 + NREF ) × tRFC , where
NREF is the fixed-point solution of the above equation.

6.5 Side Effects of Bus Contention

When deriving the ubd for memory, we must consider that
the access requests to it may also compete for the bus, thus
incurring some further delay effects. In general however,
bus contention is much lower than memory contention,
hence the former cannot mask the latter during observation
runs. Moreover, owing to the synchrony effect discussed
earlier (which originates from the fact that the msk issue
requests at constant rate), the bus access requests corre-
sponding to memory accesses are served in the bus with
the same frequency as the service rate of memory, but with
lower occupancy. Assume for example that lmem = 10
cycles and lbus = 2 cycles. In that case, we could have
memory requests served at cycles [2..11] for core c0, at cycles
[12..21] for core c1, at cycles [22..31] for core c2, and so forth,
and bus requests at cycles [0..1] for core c0, at cycles [10..11]
for core c1, at cycles [20..21] for core c2, and so forth.

When using msk-nop as scua, the issue of requests from
c0 is increasingly delayed until they collide in the bus with
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requests from c1. Under RoRo arbitration, this collision is
not an issue since which request is granted access to the
bus first has no impact on memory contention as long as all
contending requests reach memory before the correspond-
ing core becomes the highest priority contender in memory.
Under FIFO arbitration instead, if both requests are issued
to the bus at exactly the same cycle, whether one or the other
gets granted first may invert the order of access to memory
for one round. However, as long as the hardware behaviour
is deterministic, the shape of the plots will remain as in
Figure 7, and our approach to derive ubd will continue to
work correctly.

7 EVALUATION

We first present our experimental set-up. Subsequently, in
sections 7.2 and 7.3, we show how rsk-nop allows deriving
the ubd in the face of the synchrony effect. In that narration,
we first assume knowing the bus and memory controller
latency as well as the actual value of the correspond-
ing ubd. This information is instead assumed unknown in
Section 7.4, which demonstrates the applicability of our
methodology to a real COTS multicore.

7.1 Experimental Setup
We model a 4-core NGMP simulator [8] running at 200 MHz,
comprised of a bus that connects cores to the L2 cache and
an on-chip memory controller, see Figure 1. Each core has its
own private instruction (IL1) and data (DL1) caches. IL1 and
DL1 are 16 KB, 4-way with 32-byte lines. The shared second
level (L2) cache is split among cores, with each core receiv-
ing one way of the 256 KB 4-way L2. Hence, contention
only happens on the bus and the memory controller. DL1
is write-through and all caches use LRU replacement policy.
Our simulator model includes a closed-page 2-GB one-rank
DDR2-667 [29] memory, with 4 banks, burst of 4 transfers,
and a 64-bit bus that provides 32 bytes per access, which fits
a cache line. In our configuration, the longest service latency
for requests of any type is 23 cycles.

In a study that we carried out for the European Space
Agency, we assessed the performance fidelity of our sim-
ulator against a real NGMP implementation, the N2X [9]
evaluation board. To that end, we used a low-overhead real-
time kernel that allowed cycle-accurate observations and
run benchmark applications on it. The results we obtained
for the EEMBC benchmarks [22], a suite of real-world auto-
motive software functions, showed an average deviation of
less than 3%. For the HAWAII benchmark [5], an algorithm
used to process raw frames coming from the state-of-the-
art near-infrared (NIR) HAWAII-2RG detector, the deviation
reduced to less than 1%.

7.2 Synchrony Effect on the Bus
In order to show the robustness of the proposed methodol-
ogy, we evaluate it in the reference architecture as presented
above, as well as a in variant architecture (labeled as ref
and var respectively in following figures). In the latter, we
change DL1 and IL1 access latency to 4 cycles (instead of 1
cycle). This variation increases the minimum injection time
(δmin) of all bus-access instructions by 3 cycles.

TABLE 2: Randomly-generated workloads used for evalua-
tion

number the 8 4-task EEMBC-benchmark workloads
1 cacheb, puwmod, canrdr, rspeed
2 iirflt, cacheb, puwmod, canrdr
3 ttsprk, iirflt, cacheb, puwmod
4 aifirf, ttsprk, iirflt, cacheb
5 tblook, aifirf, ttsprk, iirflt
6 a2time, tblook, aifirf, ttsprk
7 basefp, a2time, tblook, aifirf
8 pntrch, basefp, a2time, tblook

For the purpose of showing how rsk-nop enables sound
valuations of the ubd to be inferred from ubdm, we use
the following timing information for both architectures.
A given request suffers maximum contention latency of
lbus = 9 cycles per contender: 6 cycles corresponding to the
L2 hit latency, and 3 cycles for bus transfer and arbitration
handover. Following Equation 1, this yields ubd = 27 cycles
for the bus.

In a first experiment, we run eight 4-task workloads
randomly generated with the EEMBC benchmarks, on the
ref architecture. The workloads are itemized in Table 2.

Figure 11(a) presents the histogram of the number of
contenders ready to send a request when the EEMBC bench-
mark in core c0 requests the bus to start a transaction under
FIFO (results for RoRo are analogous). The results obtained
for different workloads are quite similar so we omit them
here.

Most of the times, the requests issued by the EEMBC
benchmark in c0 find the bus empty or with just one
contender. Only occasionally, the EEMBC in c0 crosses ways
with 2 or 3 contenders. This provides empirical evidence
that real application workloads are not easily amenable to
generate scenarios in which the number of contending re-
quests is as high as the theoretical worst case. As workloads
or time-alignments results may vary, in fact, no a-priori
guarantees can be provided that requests align in the worst
possible way.

Incidentally, while for FIFO all contenders will be served
first at some point, in the case of RoRo the particular state
of the priority assignment determines whether those con-
tenders will be served before or after c0.

In a second experiment we run 4 bsk that constantly ac-
cess the bus. In this case, (see the pink and light grey bars in
Figure 11(a)), we observe that, for almost every arbitration
round, the number of contenders is Nc − 1 = 3. Hence, the
bsks reach their goal of causing maximum contention load
on the bus. Yet, owing to the synchrony effect, this ability
does not suffice to ensure that every individual request from
the scua incurs a ubd. As we have seen earlier, in fact, when
δmin > 0 for both FIFO and RoRo, the actual contention is
always inferior to ubd.

This experiment, in which we run 4 bsks, allows observ-
ing this phenomenon in more detail, measuring the actual
contention delay γi that each individual request issued by
c0 suffers. Figure 11(b) shows the histogram of γ under
the reference and the variant architecture. Results for FIFO
(shown in the figure) and RoRo (not shown in the figure)
are practically identical. We observe that the synchrony
effect causes almost all requests in each case to incur the
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(a) Histogram of contenders

(b) Histogram of access latency for bsk.

Fig. 11: Results for the bus for FIFO

same latency, since the injection time among requests is
the same. Moreover, we observe that the distance among
the (observed) ubdm and the actual ubd (27 cycles in this
case) varies across the two architectures: ubdm is 23 for
the var architecture and 26 for the ref one. This shows
that the approximation quality of ubdm varies as a function
of the δmin of the underlying architecture, which in turn
disqualifies the use of bsks as sound means to approximate
the ubd. As we saw earlier in fact, ubdm = ubd− δmin when
0 < δmin < lbus.

The 2% requests with different ubdm correspond to the
requests executed until all bsk get synchronized and those
requests at the beginning of the loop, due to the effect of
loop control instructions.

We may therefore conclude that, in the general case,
when the details about the latency of the bus are unknown,
the use of bsks does not allow estimating the ubd with
sufficient accuracy and confidence.

7.3 Synchrony Effect on the Memory
The same conclusions presented in the previous section for
the bus, also hold for the memory controller, where a request
may suffer a maximum contention of 23 cycles, whereby
ubd = (Nc − 1)× 23 = 69 cycles.

Our results, omitted for space constraints, confirm that:
i) using three msks, one per core contending with the scua,
suffices to ensure that more than 98% of the times any re-
quests issued by the scua find 3 pending contending requests
enqueued at the memory controller; ii) in both the reference
architecture and the variant one, the ubdm is 69 cycles.

7.4 Evaluation of the Bsk-nop Methodology for the Bus
For the evaluation of the bsk-nop methodology, for FIFO and
RoRo, we assume that no latency information is known.

FIFO: As shown in Section 5.1, to infer ubd, the injection
time can be varied by inserting nop instructions between
consecutive accesses of the rsk used as scua.

Fig. 12: Slowdown when executing bsk-nop as scua against 3
bsk co-runners with FIFO.

Fig. 13: Slowdown when executing bsk-nop as scua against 3
bsk co-runners with RoRo.

The Y-axis in Figure 12 shows the slowdown suffered
by bsk-nop with respect to its execution in isolation and the
horizontal axis represents the variation of γ as a function of
the number of nop instructions inserted.

The experimental results match those in Figure 7: the
period of each sawtooth is 9 cycles, which corresponds to
lbus. As discussed in Section 5.1, however, we have to take
into account Nc−1 periods. For instance, from the first peak
(cycle 10) until the fourth one (cycle 37), the difference is
exactly ubd = 37 − 10 = 27 cycles. Notably, the results for
the ref and var architectures are exactly the same, but the
absolute contention value decreases as δmin increases.

RoRo: Figure 13 shows the result of the same experiment
when the bus uses RoRo. As predicted in Figure 9, the slow-
down is sawtooth-shaped, with period ubd = 51− 24 = 27
cycles for var, and ubd = 54− 27 = 27 cycles for ref. Hence,
the period of the sawtooth is the same for both architectures,
which proves the robustness of our method in inferring the
ubd under different processor arrangements.

7.5 Evaluation of the Msk-nop Methodology for the
Memory

We now repeat the same experiment as for the bus, by
injecting nop instructions in the msk-nop used as scua. Since
ref and var yield analogous results again, we only report
those we obtained for the ref architecture.

FIFO: The vertical axis in Figure 14 shows the slowdown
in cycles, compared with execution in isolation. The hori-
zontal axis shows the number of nop operations inserted be-
tween memory accesses as shown in Figure 6(b) for the msk.
We can observe the same sawtooth shape as in Figure 12, but
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Fig. 14: Msk-nop methodology for FIFO.

Fig. 15: Msk-nop IL1-aware methodology for FIFO.

with larger scale. The shape reaches its peak with a period of
23 cycles when 2, 25, 48 and 71, ... nop instructions inserted,
which means lmem = 25− 2 = 23, as expected.

Beyond 71 nops, the results stop following the sawtooth
shape. We studied why that happens and concluded that at
that point, the number of nop instructions in the loop is large
enough to exceed the IL1 capacity, so that IL1 misses occur
at each iteration. In order to confirm this observation, we
repeated the experiment with a processor set-up in our sim-
ulator that comprises a perfect IL1, i.e. an IL1 in which all
accesses are hits. This is shown as ”L1 perfect” in Figure 14:
we observe that execution times follow the sawtooth shape,
confirming our hypothesis about the increase in the number
of conflicts in IL1. In order to solve this problem we propose
the following approach.

Instruction Cache-Aware Msk-nop Methodology. The
msk-nop methodology first adds a given number of memory
accessing operations (loads) in the main loop. This number
is usually high to reduce the overhead (in relative terms)
of the loop control applications, see Figure 2. In the msk
used for the experiments in the previous section, 50 load
operations were included in the loop body, whose memory
size therefore is around 200 bytes. When we add one nop
instruction between successive loads, the loop body doubles
in size. When the number of nop instructions between loads
reaches 80, the size grows to (50× 80)× 4 = 16, 000 bytes,
which equals the IL1 size. As shown in Figure 12, the results
start degrading just past that number of nop instructions.

To test the impact of having more than 80 nop in-
structions between load operations, we simply reduce the
number of load operations in the loop body such that its
size, taking into account the size of load operations and

Fig. 16: Msk-nop methodology for RoRo

Fig. 17: Msk-nop IL1-aware methodology for RoRo

the nop instructions between them, does not exceed the
instruction cache size (16KB in this case). For instance, we
place 50 loads in the loop for all experiments below 80 nop
instructions. Then, we reduce the load count down to 40
for all experiments until 100 nop instructions, and so forth,
always ensuring not to exceed the IL1 capacity.

With the new experiment in Figure 15 we can corrobo-
rate that ubdm = (49− 26)× 3 = 69 cycles, so ubdm = ubd.

RoRo: Figure 16 shows the results for RoRo with the
original msk-nop that can exceed the IL1 cache size. As for
FIFO, the shape degrades beyond 80 nop instructions, with
the difference that, in this case, deriving the ubd may not be
possible if we do not fix our msk-nop methodology. Again,
when making the IL1 perfect, the sawtooth shape obtained
is as expected, so we apply exactly the same solution as for
FIFO: we keep the loop size below the IL1 cache size at all
times. We do so with the experiment reported in Figure 17:
there we observe that the distance between two teeth of the
plot is exactly udbm = 136−67 = 69 cycles, so ubdm = ubd.

7.6 Summary

As shown, our methodology based on injecting nop oper-
ations in the corresponding rsk allows producing the saw-
tooth shapes needed to derive the ubd for both FIFO and
RoRo arbitration policies. Differences in the shape across
resources (bus and memory) only affect the scale of the
plots, but not their interpretation. Also, we have observed
that it is critically important to keep the size of the rsk small
enough to fit in IL1 to prevent IL1 misses from corrupt-
ing the observation results and consequently breaking our
methodology.



13

8 RELATED WORK

Timing analysis techniques can be broadly categorized into
Static and Measurement-Based Timing Analysis (STA and
MBTA respectively) [34].

STA relies on an accurate timing model of the hardware
under test. STA further creates a mathematical representa-
tion of the application, which is combined with the timing
model to derive bounds to the application’s timing behavior
on that hardware. STA places strong emphasis on soundness
and safeness guarantees, which allows it in principle to
conform with the requirements of safety and qualification
standards. However, the validity of the bounds depends
on the correctness of the hardware timing models, which
are difficult to develop and test. This is compounded by
the lack of timing information of processor implementa-
tions [2]. Even when hardware manufactures provide timing
information, experience shows that it can be inaccurate or
outdated with respect to the actual chip implementation.
For example, the FreeScale e500mc core documentation
alone comprises three revisions already, with considerable
changes among them [26]. In the case of multicores, this lack
of information affects the impact of contention that tasks
suffer in the access to shared hardware resources. All these
difficulties have caused real-time industry and even STA
tool providers to use measurement-based techniques [16] to
derive contention bounds, as done for the P4080 [17].

MBTA executes the program on the real platform under
stressful conditions and collects measurement observations
from it. Those measurements are later reconditioned to
approximate an upper bound to the program’s WCET. For
instance, the longest observed execution time, or high wa-
termark, is recorded and inflated with a safety margin (e.g.
20%) pre-determined based on expert knowledge. For multi-
cores, the reliability of results obtained with MBTA depends,
among other factors, on ensuring that the measurement
runs cause the application to incur maximum contention
(ubd) on all of its accesses to all hardware shared resources.
Resource-stressing kernels (rsk) [23] are used to gauge the
contention occurring on access to certain shared resources in
parallel processor architectures. They are also used in [7] to
characterize the NGMP [8] and in [16] to study the Freescale
P4080.

The authors of [1] analyze the impact of resource shar-
ing in multicores and critique the confidence that one can
obtain with rsk. We acknowledge the need to increase the
confidence on the results provided with rsk, which in fact
is the focus of this paper by proposing the rsk-nop-based
methodology.

The authors of [28] highlight a counter-intuitive behavior
with a RoRo-based multicore: the execution time of a task
running against a given number of cores can be smaller than
when running against less cores. Our work nails down the
prime reason behind this particular behavior, namely the
synchrony effect, and takes advantage of it to derive the
ubd.

WCET estimates for various arbitration policies have
been derived in the past for RoRo [19], TDMA [14], a
RoRo-inspired group-based policy called MBBA [4], and
even comparatively [10]. The authors of [27] propose a
method based on Performance Monitoring Counters (PMC)

to compute WCET estimates with measurement-based tim-
ing analysis, when the ubd for a RoRo bus is known.

All these works assume knowledge about the bus timing,
whether the slot sizes or the maximum transfer times. Our
work requires no knowledge about that.

In the conference version of this paper [6], we concen-
trated on RoRo arbitrated buses. In this work, we extend our
methodology in two directions: we cover another common
arbitration policy (FIFO) and provide solutions for another
shared resource (memory). Moreover, we also analyze the
timing interactions of different hardware shared resources
such as the bus and memory access. While the methodology
proposed in this paper is assessed against the NGMP pro-
cessor, we expect it to apply for other processors that embed
fully non-blocking caches and out-of-order execution like
the ARM Cortex A9 and A15.

Whereas in our reference architecture each core can have
a single outstanding request to the L2, thereby exploiting
memory-level parallelism among tasks, other architectures
allow multiple outstanding requests per core to the L2 to
be stored until service. In the latter case, the rsk should
be designed to ensure that the L2 request buffer saturates
so that each request actually takes lmax

res to be served. Out
of order execution, which is a challenge per se for timing
analysis, can be accounted for in the design of the rsk so that
it does not affect the intended behaviour. The fact that rsks
use only nop instructions and memory operations should
ease that fix.

It is worth noting that, at present, the real-time sys-
tems industry predominantly uses multicores to consolidate
multiple independent applications on the same chip. Those
applications either share no data at all or, if they do, the
sharing happens off-chip (e.g. in memory). This trend re-
flects the fact that current timing analysis techniques expect
the last-level cache to be partitioned among cores, precisely
to prevent data sharing. Hence, while it is clear that, in the
long run, parallel (as opposed to partitioned) programming
will become mainstream for real-time systems, this is still a
recent (and very active) area of research, not yet ready for
industrial use. For this reason, in this work we can safely
assume that the application programs are partitioned across
cores and do not share data, so that the coherence mecha-
nism does not perturb the execution-time measurements.

9 CONCLUSIONS

The lack of information about the internal working of
modern COTS processors makes the use of measurement
observations the sole viable means to infer the timing pa-
rameters required to dimension the worst-case execution
time of application programs.

For the bus and the memory, which are highly shared
resources in multicore hardware, the parameter of interest
is the maximum contention delay that a request can suffer
on access, which we call upper-bound delay, ubd.

The level of trust that can be placed in the execution
time bounds derived for application programs running on
COTS multicore processors depends on the soundness of
the analysis technique in use and the accuracy of the timing
parameters that it employs, including the ubd for buses and
memory.
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In this paper we have presented a measurement-based
methodology that requires no knowledge on the timing
parameters for access to the bus and memory resources,
and yet is able to derive their ubd soundly and tightly.
This ability increases the confidence in the execution-time
bounds computed for application programs running on
COTS multicore processors that use FIFO or RoRo arbitra-
tion.
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