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Abstract. This paper focuses on parallel hash functions based on tree modes of
operation for an inner Variable-Input-Length function. This inner function can be
either a single-block-length (SBL) and prefix-free MD hash function, or a sponge-
based hash function. We discuss the various forms of optimality that can be ob-
tained when designing parallel hash functions based on trees where all leaves
have the same depth. The first result is a scheme which optimizes the tree topol-
ogy in order to decrease the running time. Then, without affecting the optimal
running time we show that we can slightly change the corresponding tree topol-
ogy so as to minimize the number of required processors as well. Consequently,
the resulting scheme decreases in the first place the running time and in the sec-
ond place the number of required processors.
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1 Introduction

A mode of operation for hashing is an algorithm iterating (operating) an underlying
function over parts of a message, under a particular composition method, in order to
compute a digest. A hash function is obtained by applying such a mode to a concrete
underlying function; we then say that the former is constructed on top of the latter.
Usually, when the purpose is to process messages of arbitrary length, the underlying
function may be a fixed-input-length (FIL) compression function, a block cipher or a
permutation. However, there may also be an interest in using a sequential (or serial)
hash function as underlying function, in order to add to it other features, like coarse-
grained parallelism. The resulting hash function must satisfy the usual properties of
pre-image resistance (given a digest value, it is hard to find any pre-image producing
this digest value), second pre-image resistance (given a message my, it is hard to find a
second message mo which produces the same digest value), and collision resistance (it
is hard to find two distinct messages which produce the same digest value). A sequential
hash function can only use Instruction-Level Parallelism (ILP) and SIMD instructions
[1920]. A cryptographic hash function has numerous applications, the main one is its
use in a signature algorithm to compress a message before signing it.



The most well known sequential hashing mode is the Merkle-Damgérd [14125]] con-
struction which can only take advantage of the fine-grained parallelism of the operated
compression function. If such a low-level ”primitive” can benefit from the Instruction-
Level Parallelism, by using also SIMD instructions, the outer algorithm iterating this
building block could benefit from a coarse-grained parallelism. This parallelism can
be employed in multithreaded implementations. Suppose that we have a collision-free
compression function taking as input a fixed-size data, f : {0,1}2Y — {0,1}".
By using a balanced binary tree structure, Merkle and Damgard [14124] show that
we can extend the domain of this function so that the new outer function, denoted
H :{0,1}* — {0,1}", has an arbitrary sized domain and is still collision-resistant.
Note that if the function f is a sequential hash function, the purpose of this tree structure
is merely the addition of coarse-grained parallelism.

A construction using a balanced binary tree allows simultaneous processing of mul-
tiple parts of data at a same level of the tree, reducing the running time to hash the mes-
sage from O(n) to O (logn) if we have O(n) processors [14124]. If we want to further
reduce the amount of resources involved, we can use one of the following rescheduling
techniques:

— Each processor is assigned the processing of a subtree (in the data structure sense)
having logn leaves. There are approximatively n/logn such subtrees. The pro-
cessing of the remaining ancestor nodes, at each remaining level of the tree, is
distributed as fairly as possible between the processors. An example is depicted in
Figure[]

— An alternative solution is, at each level of the tree, to distribute as fairly as possible
the node computations among O (n /log n) processors.
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Fig. 1. Example of the computation of the root node in (9(log n) time using O(n / log n) pro-
cessors. The message to hash is of size n = 16. In Phase 1, the computation of each hash subtree
containing 4 = log, 16 leaves is assigned to each processor. The first subtree is assigned to
processor Py, the second one to processor P», the third one to processor P; and the last one to
processor P;. A fine-grained allocation is then performed in Phase 2.

The number of processors is then reduced by a factor log n and the asymptotic run-
ning time is conserved (with, nevertheless, a multiplicative factor 2). In this paper we
are not interested in tradeoffs between the amount of used resources and the running
time but instead we study optimal algorithms in finite distance. More precisely, we de-



termine the hash tree structures which give the best concrete (parallel) time complexity
for finite message lengths.

A tree structure is notably used in parallel hashing modes of Skein [16], BLAKE2 [4]
or MD6 [29]. To give some examples, Skein uses a tree whose topology is controlled
by the user thanks to three parameters: the arity of base level nodes which is a power of
two; the arity of other inner nodes, which is also a power of two, and a last parameter
limiting the height of the tree. MD6 uses a full (but not necessarily perfect) quater-
nary tree, in the sense that an inner node has always four children. Some fictive leaves
or nodes padded with O are added so that a rightmost node has the correct number of
children. Like Skein, MD6 offers a parameter which serves to limit the height of the
tree.

Some proposals [3031126] consider that a tree covering all the message blocks is
not a good thing, because the number of processors should not grow with the size of
the message. For instance, the domain extension parallel algorithm from Sarkar et al.
[30.31426] uses a perfect binary tree of processors, of fixed size. This perfect binary tree
of compression/hash function calls can be seen as a big compression function, sequen-
tially iterated over large parts of the message. In other words only the nodes computa-
tions performed in the tree can be done in parallel. The number of usable processors
is a system parameter chosen by the issuer of the cryptographic form when hashing
the message. The value of this parameter has to be reused by the recipients, for in-
stance when verifying a signature. Thus, this one limits the scalability and the potential
speedup. In this paper we consider that the scalability and the potential speedup should
be independent of the characteristics (configuration) of the transmitting computer.

Bertoni et al. [9l11] give sufficient conditions for a tree-based hash function to en-
sure its indifferentiability from a random oracle. They propose several tree hashing
modes for different usages. For example we can make use of a tree of height 2, defined
in the following way: we divide the message in as many parts (of roughly equal size) as
there are processors so that each processor hashes each part, and then the concatenation
of all the results is sequentially hashed by one processor. To divide the message in parts
of roughly equal size, the algorithm needs to know in advance the size of the message.
Bertoni et al. propose also a variant which still makes use of a tree having two levels and
a fixed number of processors, but this one interleaves the blocks of the message. This
interleaving offers a number of advantages, as it allows an efficient parallel hashing of
a streamed message, a fairly equal distribution of the data processed by each processor
in the first level of tree (without prior knowledge of the message size), and a correct
alignment of the data in the processors’ registers. This kind of solution is suitable for
multithreaded and SIMD implementations [[18]]. In this paper we study theoretically op-
timal speedups, and, as a consequence, the message to hash is supposed to be already
available.

Our concern in this paper is with hash tree modes using an underlying variable-
input-length (VIL) function that needs [ invocations of a lower level primitive to pro-
cess a message of [ blocks, where a block and the hash output have the same size. To
make such a complexity concrete, we choose to use a single-block-length (SBL) hash
function as underlying function and to focus on the prefix-free Merkle-Damgard con-
struction from Coron et al. [[13]]. We make this choice for two reasons: first, we need a



hash function whose mode of operation is proven indifferentiable from a random oracle
(when its underlying primitive is assumed to be ideal). Second, assuming that we have
applied the prefix-free encoding [13]] and another encoding [9/11] to identify the type of
input in the tree, it is possible to precompute a constant number of hash states, making
the aforementioned complexity possible. Note that, even if we take this construction
as an example, the possible use of a sponge-based function will be discussed. In this
work, we aim to show that we can improve the performance of a hash tree mode of
operation by reworking the tree-structured circuit topology. While we focus on the case
of trees having all their leaves at the same depth, we are interested in minimizing the
depth (parallel time) of the circuit and the width (number of processors involved). This
kind of work has been done for parallel exponentiation in finite fields [32,34/112236]]
where the multiplication operator is both associative and commutative. In the case of
parallel hashing, the considered operator can be a FIL (Fixed-Input Length) compres-
sion function. This is quite different since we do not have these two properties and we
need to cope with other problems (the space consumption of a padding rule, a length
encoding, or other information bits). To the best of our knowledge, it is the first time
that the problem of optimizing hash trees is addressed. The main interest of this paper
is the methodology provided. The results can be presented as follows:

— The first result is an algorithm which optimizes the tree topology in order to de-
crease the depth. We first show that a node arity greater than 5 is not possible and
then we prove that we can construct such an optimal tree using exclusively levels
of arity 2 and 3.

— Without affecting this optimal depth, we show that we can change the correspond-
ing tree topology in order to decrease the width as much as possible. In particular,
we show that for some message lengths [, the width can be decreased to [1/5].

— We also provide an algorithm which optimizes the number of processors at each
step of the hash computation. We prove that eleven tree topologies are possible.

— With the assumption that the message size is Pareto-distributed, we estimate the
relative frequency of each tree topology using the Monte Carlo method.

— Finally, we show that by using a SBL hash function as underlying function and
by assuming a constant number of precomputed values, these optimisations can be
applied safely.

Suppose that the processing of one block of the message by the underlying function
costs one unit of time. A binary tree is not necessarily the structure which gives the
best running time. Figure 2| shows two different tree topologies for hashing a 6-block
message. The binary tree depicted in (2a) gives a (parallel) running time of 6 units
while the rightmost one with a different arity at each level, depicted in (Zb), gives a
running time of 5 units. Furthermore, one may note that for messages of length less that
5 blocks, the use of the topology has no utility compared to a purely sequential
mode (i.e. a completely degenerated binary tree).

In what follows, we suppose the use of variable-input-length (VIL) compression
functions (or hash functions) having a domain space {0,1}*" for z > 2 and a fixed
length range space {0, 1}". We also assume that such a function has an ideal compu-
tational cost of = units when compressing x blocks of size N bits. In other words, if
we consider a tree of calls of this function, the computation of a node having k children



(a) Non optimal tree (b) Optimal tree

Fig. 2. Tree hashing with a 6-block message. The hash tree on the left requires 2 units of time to
process each level, while the one on the right requires 3 units of time to process the base level
and 2 units of time to process the root node.

(i.e. k blocks) has a cost of k£ units. Such a computational cost is realist. For instance,
the UBI transformation functio used in the hash function family Skein [16] performs
x calls to the tweakable block cipher Threefish to compress a data of length x blocks.
Assuming a hash tree of height h and x; the arity of level ¢ (for i = 1...h), we define
the parallel running time to obtain the root node value as being Zle x;.

The paper is organized in the following way. In Section 2 we give background in-
formation and definitions. In Section 3, we first describe the approach to minimize the
running time of a hash function. Then, we give an algorithm to construct a hash tree
topology which achieves the same optimal running time while requiring an optimal
number of processors. We also show that we can optimize the number of processors at
each step of the hash computation. This leads to eleven possible tree topologies, whose
probability distribution is empirically analyzed in Section[d] We propose in Section 5 a
concrete tree-based hash function that safely implements these optimizations. Finally,
in Section 5, we conclude the paper.

2 Preliminaries

2.1 Tree structures

Throughout this paper, we use the conventiorﬂ that a node is the result of a function
called on a data composed of the node’s children. A node value (or chaining value) then
corresponds to an image by such a function and a child of this node can be either an
other image or a message block. We call a base level node a node at level 1 pointing
to the leaves representing message data blocks. The leaves (or leaf nodes) are then at
level 0. Then, a tree of nodes of height h has h + 1 levels. We define the arity of a level
in the tree as being the greatest node arity in this level.

A k-ary tree is a tree where the nodes are of arity at most k. For instance, a tree with
only one node of arity k is said to be a k-ary tree. A full k-ary tree is a tree where all

3 UBI stands for Unique Block Iteration, the sequential operating mode used in Skein. The UBI
transformation function refers to the application of this mode to the underlying tweakable
compression function, itself based on the tweakable block cipher Threefish.

* This corresponds to the convention used to describe Merkle trees.



nodes have exactly k children. A perfect k-ary tree is a full k-ary tree where all leaves

have the same depth.

(a) Ternary tree, or (2, 3)-aries tree

A T

(b) Full (2, 3)-aries tree

LN

(c) Full and perfect ternary tree, also seen
as a full and perfect (3, 3)-aries tree

Fig. 3. Examples of trees

We also define other “refined” types of tree. We say that a tree is of arities
{k1,ka,...,k,} (we can call it a {ki, ka,...,k,}-aries tree) if it has n levels (not
counting level 0) whose nodes at the first level are of arity at most k;, nodes at level 2
are of arity at most ko, and so on. We say that such a tree is full if all nodes at the first
level have exactly k; children, all nodes at level 2 have exactly k- children, and so on.
As before, we say that such a tree is perfect if it is full and if all the leaves are at the
same depth. Some examples are depicted in Figure[3]

A tree of nodes has a corresponding tree of f-inputs having one less level. For in-
stance, the simple tree of nodes of height 1 and arity 3 has 2 levels and 4 nodes: one root
node and 3 children which are the message blocks. Its corresponding tree of f-inputs
has a single level containing a single f-input. This f-input consists of the concate-
nation of the message blocks and some meta-information bits. This representation is
further defined in the following subsection

2.2 Security of tree-based hash functions

In this section (and in Subsection , we represent a hash tree as a tree of f-input, as-
suming that a single inner function f is operated in the outer hash function, denoted H.
This is the representation adopted in [9410] to prove the desired security properties. We
recall that a tree of f-inputs has one less level compared to a tree of nodes.



A f-input is a finite sequence of bits from the following elements: message bits,
chaining value bits (i.e. bits coming from a f-image), and frame bits (bits which are
fully determined by the hash algorithm and the message size). In a tree of f-inputs,
there are pointers from children to their corresponding parent. When a chaining value
is present in a formatted f-input, it is pointed by another f-input which is considered
as its children. Each f-input has an associated index which locates it in the tree. In
addition, we need to define, for a tree T" of f-inputs, its corresponding tree template Z
which has the same topology, where the corresponding f-inputs have the same lengths
and the frame bits match the corresponding bits in 7', but where message and chaining
value bits are not valuated. Thus, a tree template is fully determined by the message
size and the parameters of the tree mode algorithm. This tree template is used by the
tree hash mode to instantiate the tree of f-inputs, by valuating progressively message
bits and chaining value bits.

A tree T of f-inputs is said to be compliant with a tree hash mode 7 if the latter
can produce a tree of f-inputs whose corresponding tree template is compatible with
it (its topology, the frame bits and the sizes of its f-inputs match those of T'). A tree
T of f-inputs is said to be final-subtree-compliant with 7 if the latter can produce a
tree of f-inputs whose proper subtree (i.e. contaning at least the root f-input) has a
corresponding tree template with which 7" is compatible.

Bertoni et al. [9110] give some guidelines to design correctly a tree hash mode
T operating an inner hash (or compression) function f. They define three sufficient
conditions which ensure that the constructed hash function 7, which makes use of an
ideal hash (or compression) function f, is indifferentiable from an ideal hash function.
Besides, they propose to use particular frame bits in order to meet these conditions. We
refer to [9U10] for the detailed definitions, and we give here a short description for each
of them:

— message-completeness: suppose we have a tree of f-inputs produced by the tree
hash mode. There is an algorithm A,,¢s5qge Which, among the bits in the tree,
uniquely determines the message. This requires that each message bit is processed
at least once by f. The message can be reconstructed correctly if, given the se-
quence of bits of a f-input, we can identify those which are message bits, and we
are able to say what their positions in the message are. Generally, only the end of
the message is problematic. To cope with this, dedicated frame bits can be used
such as a reversible paddini] for the message or a coding of the message length.
The running time of A;nessqge should be linear in the total number of bits in the
tree.

3 Since a hash function processes an entire number of blocks (whose size N depends on the
underlying primitive), a reversible padding is an efficient way of revealing the end of the
message. This consists in applying to the message M, whatever its length, a function pad
which returns a bit-string of length a multiple of N. Such a padding has to be reversible, i.e.
there is a function unpad such that unpad(pad(M)) = M for all messages M. A well-
known technique consists in appending the bit ”1” to the end of the message, followed by the
minimum number of bits ”0”, so that the total bit-length of the padded message is a multiple
of N.



— tree-decodability: intuitively, given a tree T of f-inputs generated by 7, it is im-
possible to extract a final proper subtree T’ of T which could have legitimately
been generated by 7. In other words, given such a subset of f-inputs, we are able
to say whether there is a missing input or not. More formally, this property is sat-
isfied by 7 if there are no trees of f-inputs which are both compliant and final-
subtree-compliant with it, and there is a decoding algorithm A je.oqe that can parse
the tree progressively on subtrees, starting from the root f-input, to retrieve frame
bits, chaining value bits and message bits unambiguously. Also, when terminating,
Agecode must decide if the tree is compliant, final-subtree-compliant, or incompli-
ant with 7. The running time of Age.oq. should be linear in the total number of bits
in the tree.

— final- f-input separability: whatever the tree T' of f-inputs generated by 7, we can
distinguish between a root f-input and any other f-input. Such a property is useful
to prevent length extension attacks. One straightforward way to fulfil this property
is by means of domain separation between this final (root) f-input and other f-
inputs, e.g. by augmenting them with a frame bit identifying them as such.

These conditions ensure that no weaknesses are introduced on top of the risk of
collisions in the inner function. For instance, with tree-decodability, an inner collision
in the tree is impossible without a collision for the inner function. Andreeva et al. have
shown in [23]] that a hash function indifferentiable from a random oracle satisfies the
usual security notions, up to a certain degree, such as pre-image and second pre-image
resistance, collision resistance and multicollisions resistance.

2.3 Definition of the inner hash function

For our inner function, the hash functions based on the Merkle-Damgard construction,
such as MD5, SHA-1 or SHA-2, have to be discarded. First, these functions cannot em-
ulate a random oracle and we need this property to construct a tree-based hash function,
constructed on top of it, which is still indifferentiable from a random oracle [10]]. Sec-
ond, for efficiency purposes, we want the inner function to have a running time linear in
the number of blocks of the message. When MD-strengthened padding is applied, the
size of the message is appended to its end. This makes it difficult to obtain a running
time perfectly linear in the number of blocks. As we will see, the prefix-free Merkle-
Damgard construction from Coron et al. [13] is a solution to both these problems.

Our inner hash function, based on the prefix-free MD construction, iterates a SBL
(Single-Block-Length) compression function, i.e. whose output length is the same as
the message block length. We use the compression function ¢ : {0, 1}2Y — {0,1}¥
based on a IN-bit block cipher with a [V-bit key, such as the Davies-Meyer compression
function: ¢(z,y) = Ey(x) @ « where z is the previous hash state and y is a block of
the message. Such a hash function [13], denoted f, consists in applying the plain MD
construction to a prefix-free encoding of the message input.



The considered inner function f.
INPUT: message m.
OUTPUT: hash value.

1. The message m is padded with 10" where r is the minimum number (possibly
zero) of bits 0 such that its bitlength is a multiple of V.
2. The N-bits encoding of the number of blocks is prepended to the message (prefix-
free encoding step).
The message is parsed into k blocks m1, ma,..., my of size N bits.
4. The plain MD mode is applied on these k blocks.
Let yo = O (or a fixed IV value).
Fori = 1to k doy; « c(yi—1,m;).
Return y;, € {0, 1},

W

At first sight, due to the padding and the prefix-free encoding, this hash function
requires j + 2 calls to the underlying compression function to process a message of
j N bits. In fact, the node arities of our tree topologies can be upper-bounded by a con-
stant. Thus, the first block of the prefix-free encoding of an input involved in our trees
has a constant number of possible values, and their possible corresponding hash states
y1 can be precomputed. Assuming a constant number of precomputed hash states, the
running time of this hash function is then reduced to j + 1 calls to the underlying prim-
itive. Hence, it is explained in the subsection above that before applying the function f,
domain separation bits have to be added to the input. Bertoni et al. [10] have stated that
2 bits is sufficient. The number of distinct domain separation codes can then be consid-
ered small. For domain separation purposes, we choose to prepend a code of N — 1 bits
to the message so that there is no extra bits 0 due to the padding operation. With this
second “large” encoding, the first bit of the message is at the end of the second block.
Then, the running time is still j + 1 when the possible values of y; are precomputed.
Since the number of distinct domain separation codes is small and that only one bit of
the message is in the second block, we can precompute the possible values of yo (in-
stead of y1) so as to reduce the running time of f to j units of time. Further details will
be provided in Section 5]

A hash function that performs one call to a SBL compression function to process
one block of the (padded) message is also called a SBL hash function.

On the use of other SBL compression functions. Chang et al. [12] have extended the
work of Coron et al. by checking if other hash functions using this prefix-free MD
construction are still indifferentiable from an RO. It turns out that sixteen of the PGV
(Preneel Govaerts Vandewalle [27]) compression functions yield sound hash functions.
Again, these hash functions divide the message in blocks of the same size than the di-
gest.

On the use of a sponge-based hash function as inner function. The function f can be
a sponge-based hash function [8]] if the message block and output sizes are equal. This
constraint can be fulfilled by setting the rate (also denoted V) of this sponge function to



the output size. Let us suppose that we use a function having the same padding rule than
Keccak [7]. This padding rule consists in adding to the end of the message the bitstring
10*1 where 0* is the minimum number of bits 0 such that the padded message has a
size a multiple of N. Hence, we choose to use N — 2 bits for the prepended domain
separation codes so that the padded message ends with the two bits 11. With this large
encoding, the first two bits of the message are at the end of the first block. Taking into
account these overheads, the running time of f is 7+ 1 to process a message of j blocks.
Some precomputations can be done to reduce the running time of f to j units of time.
Further details will be provided in Section [5]

About the padding overhead in other designs. The UBI transformation function of
Skein [[16] is collision resistant and requires exactly j calls to the tweakable block-
cipher Threefish to process a message of j blocks. Indeed, when the message size is
already a multiple of N, a flag in the tweak indicates whether or not the message is
padded. Such a design choice is also present in the BLAKE?2 [4] hash function.

2.4 Parallel computation model

We make the assumption that the number of processors is equal to the number of nodes
at the first level of the tree. Once the nodes have been computed at a given level, the
processors are reused to process the next (upper) level.

We use the classic PRAM (Parallel Random Access Machine) model of computa-
tion [[17]], assuming the strategy EREW (Exclusive Read Exclusive Write). When deal-
ing with hash trees, this model can indeed be restricted to this strategy: we do not need
that two processors write simultaneously into the same memory location, nor that a
same data can be read simultaneously by two or more processors. In the context of par-
allel hashing, it serves a priori no purpose to process twice a same message block or
chaining value.

Let us denote by L; the list of nodes at level ¢. Given the definitions of a level arity
and of our inner hash function, the parallel running time to process a hash tree of height
h is equal to

h
ity (Nod
;Ng}eaexLi arity (Node),

where the function arity() returns the arity of a node. The total work to process a hash
tree is equal to

h
Z Z arity (Node).

i=1 Node€L;

In other words, this quantity corresponds to the running time when it is executed se-
quentially (i.e. by a single processor).



3 Optimization of hash trees for parallel computing

3.1 Minimizing the running time

In order to optimize the running time of a tree mode, we make a certain degree of flex-
ibility on the choices of node arities. We can note immediately that allowing different
node arities in a same level of the tree provides no efficiency gains. Worse, the running
time may be less interesting since a tree level processing running time is bounded by
the running time to process the node having the highest arity. This observation suggests
that, in order to hope a reduction of the tree processing running time, node arities at
the same level need to be set to the same ValueE] while allowing arities to vary from one
level to another. Therefore our strategy allows a different arity at each level of the tree.

Let us denote [ the block-length of a message. The problem is to find a tree height
h and integer arities x1, T2, ..., Ty such that Z?Zl x; is minimized. When constructing
a hash tree having its leaves at the same depth, we seek integers x1, x2, ..., 5 such that
[T---[[l/z1]/22] -+ ]/xn] = 1. Since we have

[ [T ] foo] -1 en] = [1 (2122 2n)]

for (strictly) positive integers (x;);=1...», any solution to the problem must necessarily
satisfy the following constraints:

h h
[z >1and (Hm) Jxj <1 Vje[l,hn]. (1)
i=1 i=1

Note that if a solution (z1, z2, . .., ) does not satisfy the second contraint in (1)),
this means that a better solution exists. A solution to this problem is a multiset of arities.
First, we show that, in a non-asymptotic setting, a perfect ternary tree comes closer to
optimality than a perfect binary tree. Then we examine the case of trees having different
arities at each level.

First of all, we can start by considering the i and x; (for¢ = 1. .. h) as real numbers.
Thus, we have to minimize the summation of z; subject to the constraint that their
product is . We know that the minimum is reached when the x; are equal to the same
number, which we will denote z. So we have z" = [, that is z = I7%. We must now
determine A so that hl% is minimized. The calculation of a derivative shows that this
minimum is reached for A = In(l), which implies = e. Consequently, we can wonder
what the best solution is between a perfect binary tree and a perfect ternary tree. The
comparison of these two cases is done in Appendix [A|and shows that beyond a certain
message size | (I = 22%), a perfect ternary tree gives a better running time than a perfect
binary tree. In fact, as the present general study shows, a tree having different level
arities can give better results.

Let us remind that node arities are not allowed to vary in a same level (same stage)
of the tree. A level of the tree is said to be of arity a when all nodes at this level are of
arity at most a. Given an optimal tree (in the sense of the running time) for hashing, we
can ask what the possible arities are for its levels. We have the following Theorem:

® Except maybe the rightmost node which may be of smaller arity.



Theorem 1. For a hash tree whose running time is optimal, the following statements
hold:

— It can be comprised of levels of arity 2, 3, 4, or 5. Higher arities are not possible.
— It can be constructed using only levels of arity 2 and 3.

Proof. We prove these two assertions separately:

— We first show that levels of arity a with @ > 7 lead to trees having a suboptimal
running time. Indeed, any node of arity @ > 7 can be replaced by a tree of arity
2 having a better running time. We simply have to note that 2[log, a| < a for all
a > 6, meaning that a a-ary tree of height 1 can be advantageously replaced by a
binary tree of height [log, a]. In contrast, for all nodes of arity a with a € [3, 6]
and for all 7 € [2,5] we have i[log, a] > a. Finally, a node of arity 6 can be
replaced by a {3, 2}-aries tree, since 2 - 3 = 6, thereby reducing the running time
to 2 + 3 = 5 units.

— As regards the second assertion, a node of arity 5 can be replaced by a tree of arities
{3,2}, since 2 - 3 = 6 > 5. This transformation does not change the running time
since 2+ 3 = 5. Finally, a node of arity 4 can be replaced by a binary tree of height
2 for a running time which is still unchanged.

O
An optimal tree has not necessarily a single topology. Firstly, a solution satisfying
constraints (I) can be defined as a multiset of arities since we can permute them. For
instance, suppose a tree has three levels with the first level of arity 3, the second one of
arity 2 and the last one (that is, the root node) of arity 3. We can permute these arities so
that the first level is of arity 2 and the latter two levels of arity 3. If this new tree has the
same running time, its topology has however changed. Secondly, we can find examples
where different multisets of arities lead to trees of optimal running time. For instance,
if we consider a 7-block message, the multisets of arities {2, 2,2}, {3,3} and {4, 2}
allow the construction of trees having the optimal running time (see Figure ). We can,
however, construct optimal trees by restricting the set of possible arities. We have the
following theorem:

Theorem 2. Let a message of length | blocks and let © be the lowest integer such that
3% > 1. Let us note x € [0, 2] the value which minimizes the product 3*=*2% under the
constraint 3'""2% > [. There exists an optimal tree (in the sense of optimal running
time) which has v — x levels of arity 3 and x levels of arity 2. More precisely, we can
state the followings:

- Ifl<3i < %l then a ternary hash tree is optimal for a running time of 3i.

- If %l <3 < %l then an optimal hash tree has i — 1 levels of arity 3 and one level
of arity 2, for a running time of 2 + 3(i — 1).

— Otherwise %l < 3! < 31, and then an optimal hash tree has i — 2 levels of arity 3
and 2 levels of arity 2, for a running time of 4 + 3(i — 2).

Such an optimal tree maximizes the number of levels of arity 3.
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(a) (2,2, 2)-aries tree (b) (3, 3)-aries tree

(c) (4, 2)-aries tree

Fig. 4. Different topologies for a 7-block message

Proof. According to Theorem [I] a hash tree whose running time is optimal can be
constructed using only levels of arity 2 and levels of arity 3. We still need to find out
their numbers. If we have at least 3 levels of arity 2 then we can replace these 3 levels
by 2 levels of arity 3 (32 = 9 > 23 = 8). The running time to process 3 levels of arity 2
or 2 levels of arity 3 is 6. Therefore, it is always possible to construct optimal trees with
maximum 2 levels of arity 2. Let i be such that 3° > . From the parallel running time
standpoint, it is preferable to trade a level of arity 3 for a level of arity 2. This means that
the sought solution corresponds to the highest value z € [0, 2] such that 3-22% > .
The three assertions follow immediately. a

To determine the level arities of an optimal tree, we apply the following algorithm:

Algorithm 1.
INPUT: a message length .
OUTPUT: a multiset of arities minimizing the running time.

— We first compute i = [logl/log 3] and then z = |log(1/3)/log(2/3)].
— We return a multiset which consists of ¢ — z first levels of arity 3 and z last levels
of arity 2.

Examples. For messages of lengths | = 4,5 and 10 blocks respectively, Algorithm 1
returns the multisets of arities {2, 2}, {3, 2} and {3, 2, 2} respectively. The number of
processors is not optimized here. This aspect is addressed in the following section.

The result can be either a perfect tree where the number of leaves is greater than the
message length (the tree is said to be perfect since, on the one hand, nodes at a same
level are all of same arity, and, on the other hand, all the leaves are at the same depth), or
a truncated tree since it is possible to prune some right branches to remove this surplus
of leaves. In the rest of the paper, we refer to a truncated (x1, 22, . .., xp)-aries tree to
speak about a tree having a number of leaves equal to the message length and where the



nodes of the base level are of arity at most x1, nodes at the second level are of arity at
most x5 and so on.

As a last remark, since the hash function must be deterministic, the multiset of arities

must also be chosen deterministically as a function of the message size. For instance, we
can arrange in descending order the elements of the multiset of arities. The solution to
the problem of minimizing the running time is then uniquely determined as an ordered
multiset.
Performance improvements. We have seen that for a message of 6 blocks (see Figure[2),
the performance gain of an optimal tree compared to a binary tree is 20%. Figure [5a]
shows the running times of an optimal tree and a binary tree as functions of the message
size varying from 1 to 10 blocks. Figure [Sb| shows the speed gain obtained with an
optimal tree. The gain in time (or speedup gain) is computed as 100(7} /T, — 1) where
T}, is the running time of a binary tree and 7, the running time of an optimal tree. As
we can see, the gain differs from one message size to another. The gain can be greater
than 30% for very short messages but decreases quickly, to cap at 10%. As regards the
message size, although the diagram does not cover a sufficiently long range, one can
note a slight downward slope.

3.2 Minimizing the number of processors

In this section we look into how to minimize the number of required processors to ob-
tain the optimal running time. We have two cases to study, the trees having all leaves at
the same depth and the others. We fully treat the first case and we make a few observa-
tions regarding the second type of tree, which we intuitively sense to further reduce the
number of required processors.

At the outset, one may be interested in the maximum possible number of levels of
arity 5 or 4. We have the following Lemma:

Lemma 1. In a tree having an optimal running time the following statements hold:

— There can be up to 1 level of arity 5;
— There can be up to 6 levels of arity 4.

Proof. We prove these two assertions separately:

— Suppose that the tree has 2 levels of arity 5. We replace these 2 levels by 3 levels of
arity 3 since 3% = 27 > 52 = 25. The running time is improved since 3-3 = 9 <
2 -5 = 10. We can then state that 2 levels of arity 5 lead to a tree having a sub-
optimal running time.

— Now, let us look for a pair of minimum integers (i, ;) satisfying 3° > 4/ and
3 -4 < 4- 3. The first pair which satisfies these constraints is ¢+ = 9 and j = 7. We
can then replace 7 levels of arity 4 by 9 levels of arity 3 in order to decrease the
running time.
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Fig. 5. Performance comparison between an optimal tree and a binary tree

O

We have seen that it is possible to construct a tree optimizing the running time by
using only levels of arity 2 and 3. In what follows, we show how to deduce an optimal
tree minimizing the number of involved processors. Let us suppose that level arities
x1, T3 ..., Tp are noted in (no strictly) decreasing order so that x; is the arity of the
base level and xj, the arity of the last level, i.e. the arity of the root node. The trees
optimizing the running time, defined above, are not necessarily full in the sense that a
rightmost node at a given level can be of arity strictly lower than the arity of this level.
First, we note that for the trees constructed with Algorithm 1, the number of required
processors is equal to [1/3] in the best case, and equal to [I/2] when there are only
levels of arity 2. Moreover, according to Theorem [I] we know that a level arity cannot
be greater than 5. This means that in the best case, after optimization, the number of



required processors could be reduced to [1/5]. Thus, we could in the best case decrease
the number of processors by a factor of about 5/2.

Given an optimal tree for the running time, the intent is to increase the arity of the
first level (base level) while decreasing arities of the following levels so that the sum of
the level arities remains constant and their product remains greater than or equal to [.
To solve this problem we propose in Appendix [B|two solutions (Algorithm 2a or 2b).
However, as will be discussed below, we can further optimize hash trees.

According to Theorem ] a level arity of a tree minimizing the running time cannot
exceed 5. Thus, Algorithm 2a (or Algorithm 2b) of Appendix [B]allows us to substitute
any sub-multiset A for another one, denoted A’, where the sum of arities remains the
same, and by trying to increase the arity of the base level up to 5. Consider, for in-
stance, a message of size [ = 95 blocks. With such a message size, Algorithm 1 returns
the multiset of arities Ag = {3, 3,3, 2,2} which defines a tree structure involving 32
processors. By applying Algorithm 2, we obtain the multiset A; = {4, 3, 3,3} which
reduces the number of involved processors to 24 while leaving the running time un-
changed.

What if the arity of each level is increased? As much as possible? We just saw that
we can increase the arity of the first level. It would also be preferable to increase the
arity of each level of the tree in order to free up the highest number of processors at
each step of the computation. An example is depicted in Figure[6]

= . .
One processor is saved during 2 units of time

Fig. 6. Two trees compressing a 20-block message, optimized both for the running time and the
number of involved processors. Both trees require 4 processors. Nevertheless, we note that the
right tree is the best choice. Indeed, the one on the left needs 4 processors during 5 units of time,
then 2 processors during 2 units of time, and finally one processor during 2 units of time. The
one on the right needs 4 processors during 5 units of time and then one processor during 4 units
of time.

While we propose an iterative algorithm in Appendix [B]to construct an optimal tree
maximizing the arity of each level, we also enumerate all possible cases in the following
Theorem:

Theorem 3. For any integer | > 32 there is an unique ordered multiset A of hy arities
5, hy arities 4, hg arities 3 and ho arities 2 such that the corresponding tree covers a
message size l, has a minimal running time and has first hy as large as possible, then hy
as large as possible, and then h3 as large as possible. More precisely, if i is the lowest



integer such that | < 3' < 3, this ordered multiset is such that:

|A| =i,hs =0,hy =0,hg =i, hg =0 if 1<3
|A| =i,hs =0,hg =1,h3 =i —2,hy =1 if %<3
|Al=i—1,hs =0,ha =3,hg=i—4,hy =0 if 8l <3
Al=i—1,hs=1,hg=1,h3=i—3,hy =0 if 2 <3
|A| =i,hs =0,hy =0,hz3 =i —1,hy =1 if 3L<3
|A| =i —1,h5 =0,hy =2,h3 =i —3,hy =0 if 20 < 3
|JAl=i—1,hs =1,hy =0,h3 =i —2,hy =0 if 2L <3
Al=i—1,hs=1hg=1h3=i—4,hy=1 if 8L <3
|Al=i—1,hs=0,ha=1,h3=i—2hy =0 if 2 <3
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Al =i—1,hs =0,hg =2,hg =i —4,hy =1 if 8L <3" < 2L,
Al =i—1,hs =1,ha=0,h3=i—3,hoy =1 if 2L <31 <3,

where the number hg is at least 1 in the first case and can be 0 in the other cases.

Proof. Let us start from the 3 cases of Theorem 2] which maximize the number of levels
of arity 3. For a given message length [, we consider the corresponding optimal tree (in
the sense of the running time). We denote by a the initial number of levels of arity 2
and by ¢ — a the initial (maximized) number of levels of arity 3. We want to transform
this tree in order to increase the arity of each level as much as possible, while leaving
the running time unchanged. According to Lemma |1| there can be one level of arity 5
and up to six levels of arity 4. Since we want to maximize the number of levels of arity
4 after having maximized the number of levels of arity 5, there cannot be more than one
level of arity 2. Thus, hs € [0,1], hy € [0,6] and he € [0, 1], meaning there shall be
at most 28 cases. Note that among these 28 cases, many may not be valid solutions. The
aim is to transform the initial product 2?3'~¢ into a product 2*3=9~4"5% where a
and b are respectively the number of levels of arity 2 and the number of levels of arity 3
that we have transformed, and u, v, w the number of levels of arity 5, 4, 2 respectively.
For each triple (hs = u, hy = v, hg = w) with u € [0,1], v € [0, 6] and w € [0, 1],
we can verify that there is a solution (a,b) with a an integer in [0, 2] and b a positive
integer such that 30 + 2a = 5u + 4v + 2w. We remark that 3b 4+ 2a can be rewritten
3bifa=0,3(b+1)+1ifa = 2, and 3b + 2 if ¢ = 1. Thus, all but one integers
are produced. We can also verify that this solution is unique. Indeed, let us suppose a
second solution (a’,’). Since 3b + 2a = 3b’ + 2a’, we have 3(b' — b) = 2(a’ — a),
meaning that 3 divides (a’ — a). This is impossible, unless ' = a. Such a solution must
satisfy 3:=¢~02w4v5% > | that is

3a+bl

3> )
= Qu/vgu

According to Theorem we have (3/2)?1 < 3' < min(3l, (3/2)%*11). Consequently,

if we have "
3atb] 3\
> mi —
uguge = min (31, (2> l) ,

, 3\ ! 3l ifa =2
where min <3l, <2> l) - { (3/2)a+ll ifa = 07 1’

(@)




this solution does not meet the constraint , and then cannot exist. Among the 28
cases, we observe that 13 of them are not valid solutions. Thus, we have 15 solutions,
denoted (u, v, w, a,b), for which we compute and sort the values 3%°1/(2%4v5%) so
that we can establish their domains of validity. We then obtain the fifteen following
cases:

|A| =i,hs =0,hy =0,h3 =i,hy =0 it 1<3 <
|A| =i, hs =0,hy =1,hg =i—2,hy =1 if 2 <3i<d
(S [Al=i—1,h5 =0,hg =3,hg =i—4,hy =0 if 3 <30 < 3L
|A|=i—1,hs =1, hg=1,hg=i—3,hy =0 if 2L <3' <3
|A|=i—1,hs =0,hg =4,hg =i—6,ho =1 if B <3" <3
|A| =i,hs =0,hy =0,hs =i —1,hy =1 it <3<
|A|=i—1,hs =0,hy = 2,h3 =i — 3,hy = 0 if %g3i<%;,
) |A|=i—1,hs =1,hy =0,h3 =i — 2,hy = 0 if %l§3%<%7
|Al=i—1,hs =0,hg =3,hg =i —5,ha =1 if 2L <30 <9
|Al=i—1,hs =1,hg =1, hg=i—4,hy =1 if @§3¢<%7
|Al=i—2,hs =0,hg =5,hg=i—T,hy =0 if 25 <3 <9,
Al=i—1,hs=0ha=1,h3=i—2hy=0if 2 <3" <3l
(am) Al =i —1,hs = 0,hy = 2,hg =i —4,hy =1 if 55 <3’ <3,
|Al=i—1,hs =1,hy =0,hg =i —3,hy =1 if 3 <3' <3,

10 .
|Al =i —2,hs =0,hy =4,hg =i —6,hy =0 if 2L <3 <3,
In accordance with Theorem [2] we have this grouping:

— Group I consists of the five cases ensuring a running time of 3i;
— Group II consists of the six cases ensuring a running time of 37 — 1;
— Group III consists of the four cases ensuring a running time of 3¢ — 2.

Now, we have to optimize the arities. In the first group, we delete the last case since
it decreases h; compared to the immediately preceding case. For the same reasons, we
delete in the second group the fourth and sixth cases. Again, in the last group, we need
to delete the last case. Overall, 11 cases are deduced by intersecting the intervals of
validity. a

Remark 1. The number of cases is lower when [ < 32. Their determinations are let to
the reader.

Remark 2. Let us consider a tree which is optimal in the sense of the theorem [3] If
we extract a final subtree by deleting one or several lower levels (at the bottom), the
resulting tree is still optimal. Indeed, let us suppose that the original tree has height h
and has [ leaves (for [ message blocks). If we delete the j lower levels, the resulting
tree has I’ = [I/(x1x2 - - - x;)] leaves and is already optimal for a number !’ of blocks.
If this form of local optimality does not exist, we can further optimize the original

tree. Indeed, let us suppose that a (x; 115 x; 425+ .., )-aries tree covers the number
of blocks !’ and improves either the running time or the number of processors (in the
sense of Theorem , compared to the (z;11,Zj42,...,xy)-aries tree. This means that

a (1,000, @), @041, T 4o, ..., T, )-aries tree is a better choice to process [ leaves.



Let us now consider trees having a number of leaves equal to the message length.
Having a multiset of arities arranged in descending order, that we denote
A = {x1,72,...,24}, the number of nodes of level i is [I/(z122...x;)]. One im-
portant thing is the number of nodes of the base level. We have the following Corollary:

Corollary 1. Let the message size be | > 2 and let i be the lowest integer such that
3" > 1. The number of processors required to process such a message is:

— (/313" € [I, L[U[ZL, 22,
- [1/4] i3 € (%, SO, 2[u[%, 2,

oai o 127l Bl 9l by 127l ant
- [U/5143" € [55, 5 L[5, T[V[5, 3L
Proof. These results follow immediately from Theorem 3] O

An other important thing is the minimization of the total work done by the hash tree
algorithm for the processing of a single message. Since we are interested in hash trees
having an optimal running time for a given message size I, we apply Theorem 2]or [3]to
retrieve a topology. For a perfect (z1, zo, ...,z )-aries tree constructed thanks to this
theorem, the rotal work is:

Wi =2ah +TpTh—1 + ThTh—1Th—2 + -+ + ThTh—1 ... T2T1.

We notice that [[--- [[l/z1]/x2] -] /xi] = [I/(x122 - x;)] for (strictly) positive
integers (z),=1...;. Consequently, fora (z1, 2, . . ., 5, )-aries truncated tree constructed
thanks to this theorem, the total work is:

Wtr,l =[]+ H/Jﬁl—l =+ ]—l/(xlxg)] —+ -4 U/(l‘ll’g . ..xh_l)].

This quantity is necessarily greater than or equal to /. Regarding truncated trees
minimizing the running time, Theorem [3|indicates a topology which minimizes the rotal
work, by first choosing x; as large as possible, then choosing 2 as large as possible,
and so on.

Remark 3. Decreasing the total work consists in decreasing as much as possible the
number of nodes (apart from the number of leaves). We have to check if the multi-
sets provided by Theorem |3| are preferable to others. Let us suppose that, for a given
message size [, we have a (non-ordered) multiset minimizing the running time. Let us
also suppose that at least one order of this multiset minimizes the total work. We can
show that, among all the possible orders, this is the one represented in decreasing order
which minimizes the total work. We denote such a solution by (z1, 22, ..., z,) with
x; > z;41. Indeed, for a given message size [ and for any random permutation 7 of the
indices [[1, h], we have 213 ... 3 > Tr(1)Zr(2) - - - Tr(s) forall i < h. Thus, summing
left sides and right sides from the & inequalities, we have E; Y (zze .. 2y)] <

Z; /(@ r)Zr(2) - - Tx(jy)|. When this ordered multiset cannot be derived from
Theorem [3| we show that the transformations performed in its proof can further de-
crease the total work. We recall that the composition of five types of transformation



can lead to the eleven cases of this theorem. These transformations change the follow-
ing pairs of arities (3, 3), (2,2), (3,2), (4,3) and (4,4) into (4,2), (4), (5), (5,2) and
(5, 3) respectively. It is sufficient to show that each of these transformations can reduce
the total work:

— Case (2,2) — (4): We indeed have [1/4] < [1/2] + [1/(2-2)].

— Case (3,2) — (5): We indeed have [1/5] < [1/3] + [1/(3-2)].

- Case (3,3) — (4,2): Since [I/4] + [1/8] < 1/4+1/8+2and /3 +1/9 <
[1/3] + [1/(3 - 3)1 we can show that [1/4] + [1/(4-2)] < [1/3] 4+ [1/(3 - 3)]
for [ > 29. As regards the other values of [, it appears that this inequality does not
hold for [ = 9, but we remark that this message length is not concerned by such a
transformation.

— Case (4,3) — (5,2): By the same reasoning, we can show that [1/5]+[1/(5-2)] <
[1/41+[1/(4-3)] forl # 11 and [ # 12. We then remark that a message of length
[ =11 or 12 blocks cannot be covered by a (5, 2)-aries tree.

- Case (4,4) — (5,3): Again, we can show that [I/5] + [I/(5-3)] < [l/4] +
[1/(4-4)] for | # 16. We remark that a length of | = 16 cannot be covered by a
(5, 3)-aries tree.

4 About the distribution of cases

For the purpose of minimizing the number of processors at each step of the computation,
we apply Theorem [3] There are 11 possible cases and we would like to estimate their
distribution. We then perform an empirical estimation with a Monte Carlo simulation.
Numerous papers have analysed the distribution of file sizes, and more particularly
the sizes of files transferred accross a network. It is shown that the average size of
transferred files is about 10KB [33!356l], and we observe that the Pareto distribution is
the predominantly used model [6/15135121] to fit the datasets, with a shape parameter p
generally estimated between 1 and 2, and a /location parameter v estimated by hand or
as a function of the average file size (using the mean formula). For this simulation, we
use the Pareto model with p = 1.5 and v = 10* - (p — 1)/p bytes in order to generate
a sample of 108 byte sizes. We initialize 11 counters c¢pt; = 0 fori = 1,...,11. With
the assumption of a 32-byte block size, we perform the following operations for each

generated byte-size:
1. We compute v = 3[log([byte-size/32])/ log 3] :
2. We check which one of the following cases is satisfied: Case 1 l <o < %l,
Case 2: % < v < 8l Case 3: 8 <y < 2h: Case 4: 2 < v < 25 Case 5: & <

o 20> 20
v < 21Z)Z,Case6 M <y < 9z ;Case 7: 2 < v < 8 Case 8: Ef&]’ < < o
Case 9: 9 < v < 8; Case 10: 8” <v< %’, Case 11: 21 <o < 3I;

The index of the satisfied case is denoted 7
3. We increment cpt;.

The relative frequency of the i-th case is then cpt;/10° for i = 1,...,11. These es-
timations are made using R software [28]] with the VGAM library [37]. According to
Corollary (1} it follows that the number of required processors is [1/3] with probability
of about 19.1%, [1/4] with probability of about 33.1%, and [l/5] with probability of
about 47.8%. The relative proportions of each individual case are depicted in Figure
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Fig. 7. Proportions for the eleven cases of Theorem[3] The bars are drawn in decreasing order of
frequency. The notation Tr(a1,a2,...,ar) stands for a tree having arities a1, ag, ..., ap from the
base level to the root node.

5 Applying our optimizations safely

Suppose that we have 4 different inner functions fgr., f1, fr and fgy with the follow-
ing properties:

- fr:{0,1}9¥ — {0,1}" for¢g > 2and t € {BL, I, F, SN}.

— Without precomputation, they have the same running time of ¢ + 2 units of time
when compressing ¢ message blocks of size IV bits.

— With a constant number of precomputations, they have the same running time of ¢
units of time when compressing ¢ message blocks.

— They behave like independent random oracles.

In the hash tree construction we propose, we use fpy, to compute base level nodes, fr
to compute inner nodes, fr to compute the root node. If the tree is of height one, there
is only one node computed using fsy. In order to simulate four independent func-
tions, we use the same inner function f but with domain separation. Indeed, since f
behaves like a random oracle, by construction the functions fgr (x) = f(100V3|x),
fr(@) = f(0007=2|[z), fr(x) = f(010N~?|z) and fon(2) = f(1107~?||z) behave
like independent random oracles.

Since f is based on the prefix-free MD construction, the first block encodes the
number of blocks of the message, comprised between 2 and 5. Due to the domain sep-
aration codings, the second block contains the bitstring b;b20" ~3m1; where the 1-bit



values b; and by depend on the type of processed input, and m; is the first bit of the
input. Overall, we have to precompute 16 hash states (resulting from the processing of
these two blocks) in order to obtain an inner function having a running time equals to
the node arity.

On the precomputations costs induced by the use of a sponge function. The first block
merely consists of the bitstring by by0N ~%mq1m12 where the 1-bit values b; and by are
as above, and m11 and myo are the first two bits of the message input. Again, we have
to precompute 32 hash states (resulting from the processing of only one block) in order
to obtain an inner function having a running time equal to the node arity.

5.1 An example of hash function
Given a message M, a hash tree mode could be the following:

1. Whatever the message bit-length is, we append to M a bit ”’1” and the minimum
number of bits ”0” so that the total bit-length is a multiple of N. The new message
is denoted M, and its total number of blocks of size N bits is [ = |My|2/N, where
| My|2 is the bitlength of Mj.

2. We apply Theorem[3|on [ to retrieve the height / of the tree and an ordered multiset
A of arities ay, as, ..., aj, (arranged in decreasing order). This step requires the
computation of logs I, which can be considered free.

3. If h = 1, we compute and return the hash value fsy(Mp). Otherwise, we go to the
following step.

4. We first split My into blocks My 1, Mo 2, ..., Mo, where: (i) 1 = [l/aq1]; (43) all
blocks but the last one are a; N bits long and the last block is between N and a1 N
bits long. Then, we compute the message

I
M1 = || fBL (M07j).

j=1

5. If h = 2 we go to step 6. Otherwise, for £ = 2 to h — 1, we perform the following

operations:
(a) We split My_, into blocks Mj,_y 1, Mr_1,2, ..., Mr_1,;, where: (3) l;, =

l/ (H?Zl aj)—‘; (47) all blocks but the last one are a;/NV bits long and the

last block is between IV and ay IV bits long.
(b) We compute the message

Ik
Mk = || f] (Mk—l,j)~

Jj=1

6. We compute and return the hash value fr(M),_1).

5.2 Security

Since our mode can be rewritten as if it was using only f, it suffices to check whether
the three conditions (seen in Section[2.2) are satisfied to prove soundness.



We first need to describe some rules regarding our mode:

Rule 0. The root f-input has a prepended code 010" =3 or 110V 3,

Rule 1. A f-input with a prepended code 010" ~2 has children having a prepended code
0N=1or10V-2,

Rule 2. A f-input with a prepended code 10" ~2 or 110" 2 has no children.

Rule 3. A f-input with a prepended code 00 has children having a prepended code
10N =2 or N1,

Rule A. A f-input must be (2 + kN)-bit long with an integer k& > 1.

Rule B. At a same level of the tree, the number of chaining values is the same for all the
f-inputs, except for the righmost one where this number may be smaller.

Rule C. At a same level of the tree, prepended codes are the same for all the f-inputs.

Note that the satisfaction of the rules 0, 1, 2, 3 and C imply that the leaves are at the
same depth. So, we do not need to define a rule to express this.

By construction our mode is final- f-input separable. Our mode is trivially message-
complete since it processes all message bits. Indeed, having the valuated tree of f-inputs
produced by 7, the algorithm A,,.sq4e reaches directly the base level f-inputs and re-
covers message blocks by discarding the frame bits, whether they serve as padding
purpose (in the rightmost f-input) or for identifying the type of f-input. This algo-
rithm runs in linear time in the number of bits in the tree. Finally, our mode is also
tree-decodable. Thanks to domain separation between base level f-inputs and other f-
inputs, we cannot find a tree which is both compliant and final-subtree-compliant. Given
only one f-input, the prepended coding allows its content to be recognized correctly.
We can then construct a decoding algorithm Age.,qe. Which runs in 2 phases: Phase 1
starts from the root f-input and fully determines the tree structure by recursively de-
coding each f-input. The size of a f-input determines the number of its children. This
phase terminates with the “correct” state CO if all the visited f-inputs respect the rules
defined above. This phase terminates with the “incorrect” state C1 if one of the rule 0,
2, A, B or Cis not respected. If Rule 1 is not respected it terminates with the “incorrect”
state C2. Otherwise, it terminates with the “incorrect” state C3. Phase 2 examines the
properties of the decoded tree by taking into account the termination state of the first
phase. The details of Phase 2 are the followings:

1. If the state is CO, it runs the A,,¢ssage algorithm in order to check the message size.
If for the corresponding number [ of blocks, Theorem 3]indicates a topology which
differs from the one that Phase 1 has just decoded, then it returns “incompliant”.
Otherwise, it returns “compliant”.

2. If the state is C1, it returns “incompliant”.

3. If the state is C2, the following examinations are made:

(a) If the tree seems incomplete with a single f-input, it checks, after having dis-
carded the prepended code, the number of blocks of size N bits. If there are
2, 3 or 4 blocks, then it returns “final-subtree-compliant”. Otherwise, it returns
“incompliant”.

(b) Otherwise, the coding is incompatible with the mode, and it returns “incompli-
ant”.



4. If the state is C3, this means that only the rule 3 is not respected. The following
examinations are then made:

(a) Ifthereisa f-input with a prepended code 00 which has a child with a prepended
code not equal to 10, then it returns “incompliant”.

(b) Otherwise, there is at least one missing f-input. We note i the maximum num-
ber of f-inputs visited on a path in this proper final subtree. The algorithm has
to check if its topology is consistent with Theorerrﬂ First, it establishes a sys-
tem of contraints regarding the arity of each level. If there is only one f-input at
a level which is not the root, and if it is the righmost onﬂ in the complete tree,
then the number of (message or chaining) blocks it contains defines a lower
bound for the arity of this level. Otherwise, the arity for this level has a single
possible value and the constraint is an equality. Having these h constraints, it
checks in Theorem [3] which cases (among the eleven) can satisfy these con-
traints. We denote by L the list of compatible cases and for each case j in L
we denote by a; the arity of the level ¢. For each case j in L, the algorithm
performs the following operations:

i. It completes this final subtree until its leaves are at the same depth h. It
performs this by (virtually) creating the missing f-inputs with a maximal
arity (i.e., even if a missing f-input at level 7 is the rightmost one in the
complete tree, it chooses its arity to be exactly a;).

ii. It counts the number [ of blocks covered by the completed subtree. If [
is in the domain of validity of the case j, then it returns “final-subtree-
compliant”.

A this point, no cases in L are suitable. This phase 2 finally returns “incompli-
ant”.

The total running time of A gecoqe is linear in the number of bits in the tree.

Remark 4. If prepending 2 bits is sufficient [10] for soundness, we could have used a
reduction to the Sakura coding [11] where meta-information bitstrings are longer. Using
Sakura coding allows any tree-based hash function to be automatically indifferentiable
from a random oracle, without the need of further proofs. According to the Sakura
ABNF grammar [11]], the number of chaining values (i.e. the number of children of a
f-input) is also coded in the formatted input to f. In our context and using this coding,
the number of ways to format the input to f (depending on its location in the tree
topology) is at least 10. A Sakura coding bit expresses the fact that the input is or is not
the last one (for the computation of the root hash). Another bit indicates whether the
input contains a message block or a certain number of chaining values (whose number,
2, 3,4 or 5, is also coded at the beginning of the input). Overall, this corresponds to
10 ways to format an input in our tree topology. This larger encoding and the fact to
have meta-information bits at the beginning (for prepended bits) and at the end of the
input (for appended bits) both complicates our construction and increases the number
of precomputed hash states.

" Meaning that it has to detect if this final subtree can be extracted from an optimal tree, in the
sense of this theorem.

8 A f-input is the righmost one in the complete tree if we see that it does not have a right sibling,
when looking at the retrieved topology by Phase 1.



Remark 5. Yet another solution is to use different I'Vs (Initial Values) instead of partic-
ular frame bits, as suggested in [[10/23]. We could use a free-IV hash function, like the
suffix-free-prefix-free hash function from Bagheri er al. [5]. The distinction between the
f-inputs would be done by using 4 distinct IVs: BL_IV for base level f-inputs, I_IV
for inner f-inputs, F_IV for the root f-input and SN_IV for a tree reduced to a single

f-input.

6 Conclusion

In this paper, we focused on trees having their leaves at the same depth. We have shown,
for a given message length, how to construct a hash tree minimizing the running time.
In particular, we have shown how to minimize the number of processors allowing such
a running time. The proposed construction makes use of a prepended coding for each
input to the inner function in order to satisfy the three conditions of Bertoni et al. [10].
Besides, our tree topologies could also be used in substitution of the tree hash mode of
Skein, provided that the tweaks to the UBI mode are carefully chosen for each node.
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A Comparison between a perfect binary tree and a perfect ternary
tree

Let [ > 2 an integer. Let hy the lowest integer such that 2"2 > [ and hs the lowest

integer such that 3”3 > . We assume that we use a perfect binary (or ternary) tree as in

the original Merkle (and Damgard) hash tree mode, i.e. the message is padded to obtain

a message size which is a power of 2 (or 3). The problem is to compare 2h9 and 3hs.
Any [ can be uniquely written

1=2%+u,
where u is an integer such that 0 < u < 2¥. Then

1 =2%(1 + a) where o = 2%

Ifa =0then ho = kelse ho =k + 1.

A1l Thecasea =0

In this case

klog(2
1= 2% hy =k hy = [ 8( )].

log(3)
Then
_ klog(2) N
77 log3)
where 0 < o < 1. We must compare 3h3 with 2hy, namely
F108(2) | o) with 2%,
log(3)
or log(2)
og a
3— with 2.
log(3) + K
log(2)

As «a is bounded by 1 and 3

] < 2, for k sufficiently large we have 3hs < 2hs.
0g

More precisely if £ > 28 then 3hs < 2hy, meaning that a perfect ternary tree gives a
better running time than a perfect binary tree. When 2 < k£ < 27, we compute the 27

values
T 3 [klog(2) _g
log(3)

k

and we look at the sign of the result:

— Fork=3s(s=1,---,9), aperfect binary tree and a perfect ternary tree give the
same result (7" = 0).

— For k =11,14,17,19, 20, 22, 23, 25, 26, a perfect ternary tree is better (7' < 0).

— Fork =2,4,5,7,8,10,13, 16, a perfect binary tree is better (7" > 0).



A2 Thecasea # 0
In this case ho = k + 1 and

_ [klog(2)  log(l+a)
h?"{log(s) log(3) 1

We must compare 3h3 to 2h. But:
3hs < 3log(2) 3log(2) 3

k.~ log(3)  klog(3) k

and oh )
2
— =24 .
k + k
3log(2) . .
S Toe(3) < 2, for k sufficiently large we have 3h3 < 2ho. More precisely for k > 27

then 3hs < 2ho, meaning that a perfect ternary tree gives a better running time than
a perfect binary tree. For any 2 < k < 26 and any u such that 1 < u < 2% we must
compute the sign of

| klog(2)  log (1+ 3%)
T Togs) T he®)

As R is an increasing function of u, it is sufficient to determine for any k£ < 27 the value
of u where the sign changes. This can be done by dichotomy. Results are in Table

— 2k — 2.

B Algorithms for reducing the number of processors

B.1 Reducing the number of processors at the base level

We propose two (different) algorithms to construct an optimal tree (in the sense of the
running time) which covers exactly [ blocks (the tree is not necessarily perfect) and
increases as much as possible the arity of the base level. The first solution consists to
check if there exists an optimal tree having a level of arity 5 or 4.

Algorithm 2a.

INPUTS: a message length [ and a multiset of arities (arranged in descending order)
minimizing the running time, denoted A = {1, z2, ..., 2|4}

OUTPUT: a multiset of arities (still sorted in descending order) minimizing the num-
ber of processors while leaving unchanged the running time.

Let ¢; the optimal running time for a message of size [, i.e. the sum of arities of A.
The algorithm proceeds as follows:

1. Use Algorithm 1 to construct a tree for a message length I’ = [1/5] and denote
by A’ the corresponding ordered multiset of arities. If ¢, = ¢;» + 5 then return the
multiset A” = {5, A’}, otherwise go to the following step.

2. Use Algorithm 1 to construct a tree for a message length I’ = [1/4] and denote
by A’ the corresponding ordered multiset of arities. If ¢; = ¢;+ + 4 then return the
multiset A” = {4, A’}, otherwise go to the following step.

3. Return A (which cannot be further optimized).




k=2 Sign = 0 for any u

k=3 Sign < 0 foru = 1 and Sign > 0foru > 1
k=4 Sign < 0foru < 11 and Sign > 0 foru > 11
k=5 Sign = 0 for any u

k=6 Sign < 0 foru < 17 and Sign > 0 foru > 17
k=T Sign < 0 for u < 115 and Sign > 0 for u > 115
k=38 Sign = 0 for any u

k=9 Sign < 0 foru < 217 and Sign > 0 for u > 217
k=10 Sign < 0 for any u

k=11 Sign < 0 for v < 139 and Sign = 0 for u > 139
k=12 Sign < 0 for u < 2465 and Sign > 0 for u > 2465
k=13 Sign < 0 for any u

k=14 Sign < 0 for u < 3299 and Sign = 0 for u > 3299
k=15 Sign < 0 for u < 26281 and Sign > 0 for u > 26281

k=16 Sign < 0 for any u

k=17 Sign < 0 for u < 46075 and Sign = 0 for v > 46075
k=18 Sign < 0 for any u

k=19 Sign < 0 for any u

k=20 Sign < 0foru < 545747 and Sign = 0 for u > 545747
k=21 Sign < 0 for any u

k=22 Sign < 0 for any u

k= 23| Sign < 0 foru < 5960299 and Sign = 0 for v > 5960299
k=24 Sign < 0 for any u

k=25 Sign < 0 for any u

k = 26|Sign < 0 for u < 62031299 and Sign = 0 for u > 62031299

Table 1. Comparison between a perfect binary tree and a perfect ternary tree. If Sign < 0 a
perfect ternary tree has a better running time. If Sign = 0 the two trees give the same running
time. Otherwise a perfect binary tree is better.




The second approach uses the following hints:

Hints. Let us note that if £ > 0, thena > b <= (a — k)b > a(b — k). Moreover,
if b < athen (b—1)(a+ 1) < ab. This suggests that a product of several numbers,
where the sum is constant, is maximized when these numbers are as close together as
possible. In order to decrease the product of arities as slowly as possible we use the fact
thatif ¢ > b > awehave (c+ 1)(b—1)a > (¢ + 1)b(a — 1).

Algorithm 2b.

INPUTS: a message length [ and a multiset of arities (arranged in descending order)
minimizing the running time, denoted A = {1, 2, ..., 2|4}

OUTPUT: a multiset of arities (still sorted in descending order) minimizing the num-
ber of processors while leaving unchanged the running time.

The algorithm proceeds as follows:

1. We start by replacing in A each pair of arities 2 by an arity 4 (leaving possibly
only one arity 2 in A). We sort A in descending order.
2. We repeat at most twice the following routine to determine the solution:
- Case |A] = 1: we return A.
- Case |[A] = 2:

e Case x; = 5: we return A.

e Casexy > 3,w9 > 3:if (x1+1)(wo—1) > Ithen A = {1+ 1,22 — 1},
otherwise we return A.

e Case x1 = 4, x5 = 2: we return A.

e Casexry = 3,29 =2:if 5 > [ then A = {5}. We return A.

- Case |[A] > 3:

e Case r; = 5: we return A.

o Casex; > 3,15 > 3,23 > 2:if (11 + 1)(w2 — 1) [[2L 25 > I then we
perform the following operations: (i) we add 1 to z; and we subtract 1
to x9; (i2) we replace a possible pair of arities 2 by an arity 4; (ii7) we
reorder A. If either the check fails or 1 = 5 then we return A.




B.2 Reducing the number of processors at all the levels

The following algorithm uses Algorithm 1 and 2 in order to compute a multiset of ari-
ties (sorted in descending order) minimizing the running time and the required number
of processors at each step of the computation.

1.

2.

Algorithm 3.

INPUT: a message length [.

OUTPUT: an ordered multiset of arities minimizing the running time and the required
number of processors at each step of the computation.

Let Ag = {x1,%2,...,7|4,|} be the multiset of arities returned by Algorithm 1. We
then use Algorithm 2 with a message of length / and the multiset Ay to compute
Fhe multiset of arities Ay = {f,25,..., 24, }. The rest of the algorithm proceeds
iteratively as follows:

We apply Algorithm 2 on inputs I = [I/2/ ] and A} = {5, ..., x| 4 |} to compute
the multiset A} = {«7, ..., xﬁm}. We setn = 1.

As long as one of the following termination conditions is not met, namely
(1) A(”)1 = A (ii) the highest number of levels of arity 4 has been reached

n+
(see Lemma; or (i4i) A;’Ql = &, we setn = n+ 1 and apply Algorithm 2 with
the inputs 1) = [l("*l)/x%")—‘ and A" = {955:3217 e .,a;l(zznn,l)l} to compute
the multiset Aiﬁzl = {a:ﬁffll), . 795‘(2;1))'}
The resulting multiset of arities A, = {7, 25, ... Lzt ngll), . ,xl(zgl))‘} mini

mizes the number of required processors at each step of the computation.
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