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1Faculty of Electrical Engineering and Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague

2CISTER/INESC TEC and ISEP
3Corporate Research, Robert Bosch GmbH, Germany

Abstract—The complexity of embedded application design is
increasing with growing user demands. In particular, automotive
embedded systems are highly complex in nature, and their
functionality is realized by a set of periodic tasks. These tasks
may have hard real-time requirements and communicate over
an interconnect. The problem is to efficiently co-schedule task
execution on cores and message transmission on the interconnect
so that timing constraints are satisfied. Contemporary works
typically deal with zero-jitter scheduling, which results in lower
resource utilization, but has lower memory requirements. This
article focuses on jitter-constrained scheduling that puts con-
straints on the tasks jitter, increasing schedulability over zero-
jitter scheduling.

The contributions of this article are: 1) Integer Linear Pro-
gramming and Satisfiability Modulo Theory model exploiting
problem-specific information to reduce the formulations complex-
ity to schedule small applications. 2) A heuristic approach, em-
ploying three levels of scheduling scaling to real-world use-cases
with 10000 tasks and messages. 3) An experimental evaluation
of the proposed approaches on a case-study and on synthetic
data sets showing the efficiency of both zero-jitter and jitter-
constrained scheduling. It shows that up to 28% higher resource
utilization can be achieved by having up to 10 times longer
computation time with relaxed jitter requirements.
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I. INTRODUCTION

The complexity of embedded application design is increasing
as a multitude of functionalities is incorporated to address
growing user demands. The problem of non-preemptive co-
scheduling of these applications on multiple cores and their
communication via an interconnect can be found in automo-
tive [4], [43], avionics [20] and other industries. For instance,
automotive embedded systems (e.g. contemporary advanced
engine control modules) are highly complex in nature, and their
functionality is realized by a set of tightly coupled periodic
tasks with hard real-time requirements that communicate
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with each other over an interconnect. These tasks may be
activated at different rates and execute sensing, control and
actuation functions. Additionally, these embedded applications
are required to realize many end-to-end control functions within
predefined time bounds, while also executing the constituent
tasks in a specific order. To reduce the cost of the resulting
system, it is necessary to allocate resources efficiently.

The considered problem is illustrated in Figure 1a, where
tasks a1, a2, a3, a4 are mapped to Cores 1 to 3, where each
core has its local memory and communicate via a crossbar
switch. This architecture is inspired by Infineon AURIX
TriCore [1]. The crossbar switch is assumed to be a point-
to-point connection that links an output port of each core
with input ports of the remaining cores. Although there is no
contention on output ports since tasks on cores are statically
scheduled, scheduling of the incoming messages on the input
ports must be done to prevent contention. Moreover, there are
two chains of dependencies, indicated by thicker (red) arrows,
i.e. a1 → a5 → a2 and a3 → a6 → a4. Note that although
this example contains 6 resources to be scheduled, the only
input port that must be scheduled in this case is the one of
Core 3, since there are no incoming messages to other cores.

The time-triggered approach, where the schedule is computed
offline and repeated during execution is commonly used in
scheduling safety-critical systems. However, contemporary
time-triggered works mostly consider zero-jitter (ZJ) schedul-
ing [11], [40] also called strictly periodic scheduling, where the
start time of an activity, (i.e., task or message) is at a fixed offset
(instant) in every period. If there are two consecutive periods
in which the activity is scheduled at different times (relative to
the period), we call it jitter-constrained (JC) scheduling. On
one hand, ZJ scheduling results in lower memory requirements,
since the schedule takes less space to store and typically needs
less time to find an optimal solution. On the other hand, it puts
too strict requirements on a schedule causing many problem
instances to be infeasible, as we later show in Section VI.
This may lead to increasing requirements on the number of
employed cores for the given application, and thus makes the
system more expensive. Even though some applications or even
systems are restricted to being ZJ, e.g. some systems in the
avionics domain [3], many systems in the automotive domain
allow JC scheduling [16], [36]. Therefore, this article explores
the trade-off between JC and ZJ scheduling. Although not all
activities have ZJ requirements, some of them are typically
sensitive to the delay between consecutive occurrences, since
it greatly influences the quality of control [13]. Assuming0018-9340 c© 2017 IEEE
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Fig. 1. Multi-periodic scheduling problem description with examples of ZJ and JC solution, where a5 is a message between a1 and a2 and a6 is a message
between a3 and a4.

constrained jitter instead of ZJ scheduling allows the resulting
schedule to both satisfy strict jitter requirements of the jitter-
critical activities and to have more freedom to schedule their
non-jitter-critical counterpart.

An example of the JC schedule for the problem in Figure 1a
assumes that activities a1, a2 and a5 have a required period of
9 time units, while a3, a4, and a6 must be scheduled with a
period of 6. The resulting JC schedule is shown in Figure 1b
with a hyper-period (length) of 18 time units, which is the
least common multiple of both periods. Hence, activities a1,
a2 and a5 are scheduled 2 times and activities a3, a4, and a6
are scheduled 3 times during one hyper-period, defining its
number of jobs, i.e. activity occurrences. Note that activities
a2 and a5 are not scheduled with zero-jitter since a2 in the
first period is scheduled at time 7, while in the second period
at time 5 (+9). Similarly, a5 is scheduled at different times
in the first and second periods (4 and 2(+9), respectively). In
contrast, Figure 1c illustrates that using ZJ scheduling results
in collisions between a2 and a4 on Core 3, and between a5 and
a6 in the crossbar switch. Moreover, an exact approach (see
SMT formulation in Section IV) can prove that the instance
is infeasible with ZJ scheduling. Thus, if an application can
tolerate some jitter in the execution of activities a2 and a5
without unacceptable quality degradation of control, then the
system resources could be utilized more efficiently, as shown
in Figure 1b.

The three main contributions of this article are: 1) Two
models, one Integer Linear Programming (ILP) formulation
and one Satisfiability Modulo Theory (SMT) model with
problem-specific improvements to reduce the complexity and
the computation time of the formulations. The two models are
proposed due to significantly different computation times on
problem instances of low and high complexity, respectively.
The formulations optimally solve the problem for smaller
applications with up to 50 activities in reasonable time.
2) A heuristic approach, called 3-LS, employing a three-step
approach that scales to real-world use-cases with more than
10000 activities. 3) An experimental evaluation of the proposed
solution for different jitter requirements on a synthetic data sets
that quantifies the computation time and resource utilization
trade-off and shows that relaxing jitter constraints allows to
achieve on average up to 28% higher resource utilization for
the price of up to 10 times longer computation time. Moreover,
the 3-LS heuristic is demonstrated on a case study of an engine
management system, which it successfully solves in 43 minutes.

The rest of this article is organized as follows: the related
work is discussed in Section II. Section III proceeds by

presenting the system model and the problem formulation.
The description of the ILP and SMT formulations and their
computation time improvements follow in Section IV. Section V
introduces the proposed heuristic approach for scheduling
periodic activities, and Section VI proceeds by presenting
the experimental evaluation before concluding the article in
Section VII.

II. RELATED WORK

There are two approaches to solve the periodic scheduling
problem with hard real-time requirements: 1) Event-Triggered
(ET) Scheduling [12], where scheduling is performed during
run-time of a system, triggered by events, and 2) The Time-
Triggered (TT) Scheduling that builds schedules offline that
are provably correct by construction. The TT scheduling is
commonly adopted in safety-critical systems, due to the highly
predictable behavior of the scheduled activities, simplifying
design and verification [27].

Even though this article targets the TT approach, the survey
of related work would not be complete without mentioning
articles that consider the ET paradigm. A broad survey of works
related to periodic (hard real-time) scheduling is provided by
Davis and Burns in [12]. Next, Baruah et al. [6] introduce the
notion of Pfair schedules, which relates to the concept of ZJ
scheduling while scheduling preemptively, i.e. where execution
of an activity can be preempted by another activity. Similarly
to the ZJ approach that requires the time intervals equal to
execution times of activities to be scheduled equidistantly
in consecutive periods as a whole, Pfair requires equidistant
allocation, while scheduling by intervals of one time instant. On
the non-preemptive scheduling front, Jeffay at al. [23] propose
an approach to schedule periodic activities on a single resource
with precedence constraints. The problem of co-scheduling
tasks and messages in an event-triggered manner is considered
in [22], [25], [42]. However, these works do not consider jitter
constraints, as done in this article.

The TT approach attracted the attention of many researchers
over the past twenty years for solving the problem of periodic
scheduling. The pinwheel scheduling problem [19] can be
viewed as a relaxation of the jitter-bounded scheduling concept,
where each activity is required to be scheduled at least once
during each predefined number of consecutive time units. If
minimizing number of jobs, the solution of the pinwheel
problem approaches the ZJ scheduling solution, since it tends
to have an equidistant schedule for each activity. Moreover,
the Periodic Maintenance Scheduling Problem [5] is identical
to ZJ scheduling, as it requires jobs to be executed exactly a
predefined number of time units apart.



Considering works that formulate the problem similarly,
some authors deal with scheduling only one core [17], [33],
while others focus only on interconnects [7], [14]. These works
neglect precedence constraints and, in terms of scheduling, con-
sider each core or interconnect to be scheduled independently,
unlike the co-scheduling of cores and interconnects in this
article. The advantage of co-scheduling lies in synchronization
between tasks executing on the cores and messages transmitted
through an interconnect that results in high efficiency of the
system in terms of resource utilization. Steiner [40] introduces
precedence dependencies between activities, while dealing with
the problem of scheduling a TTEthernet network. However,
Steiner assumes that all activities have identical processing
times, which in our case will increase resource utilization
significantly.

Some works deal with JC scheduling without any constraints
on jitter requirements, which is not realistic in the automotive
domain, since there can be jitter-sensitive activities. Puffitsch et
al. in [36] assume a platform with imperfect time synchroniza-
tion and propose an exact constraint programming approach.
Abdelzaher and Shin in [2] solve a similar problem by applying
both an optimal and a heuristic branch-and-bound method.
Furthermore, the authors in [35] consider the preemptive
version of our problem that makes it impossible to apply
their solution to problem considered in this article, since some
activities can be scheduled with interruption.

Jitter requirements are not considered in the problem
formulations of [32] and [37], where the authors propose
heuristic algorithms to deal with the co-scheduling problem.
Finally, in [13] the authors solve the considered problem with an
objective to minimize the jitter of the activities using simulated
annealing, while we rather assume jitter-constrained activities
with no objective to optimize. Note that these approaches with
JC assumption are heuristics and the efficiency of the proposed
methods have not been compared to optimal solutions.

There also exist works that schedule both tasks and
messages, while assuming ZJ scheduling. Lukasiewycz and
Chakraborty [29] solve the co-scheduling problem assuming the
interconnect to be a FlexRay bus, which results in a different set
of constraints. Their approach involves decomposing the initial
problem and solving the smaller parts by an ILP approach to
manage scalability. Besides, Lukasiewycz et al. in [30] solve
the co-scheduling problem by introducing the preemption into
the model formulation. Moreover, Craciunas and Oliver [11]
consider an Ethernet-based interconnect and solve the problem
using both SMT and ILP. However, ZJ scheduling results in
a larger number of required cores, as shown in Section VI.
In summary, this work is different in that it is the first to
consider the periodic JC co-scheduling problem with jitter
requirements and solves it by a heuristic approach, whose
quality is evaluated by comparing with the exact solution for
smaller instances.

III. SYSTEM MODEL

This section first introduces the platform and the application
models used in this article. Then, the mapping of activities to
resources is described, concluded by the problem statement.

A. Platform Model
The considered platform comprises a set of homogeneous

cores on a single multi-core Electronic Control Unit (ECU)

with a crossbar switch, as shown in Figure 1a. This is similar
to the TriCore architecture [1]. The crossbar switch provides
point-to-point connection between the cores, and input ports
act as communication endpoints and can receive only a single
message at a time. We assume that tasks on different cores
communicate via the crossbar switch that writes variables in
local memories of the receiving cores. On the other side, intra-
core communication is realized through reading and writing
variables that are stored in the local memory of each core. The
set of m resources that include m

2 cores and m
2 crossbar switch

input ports is denoted by U = {u1, u2, · · · , um}. Moreover, the
cores are characterized by their clock frequency and available
memory capacity.

Although this work focuses on multi-core systems with
crossbar switches, the current formulation is easily extensible
to distributed architectures with multiple single-core processing
units, connected by a bus, e.g. CAN [8]. Furthermore, assuming
systems with fully switched networks, e.g. scheduling of time-
triggered traffic in TTEternet [39] leads to a similar scheduling
problem. However, scalability of the solution presented below
may be problematic in such case due to the increased number of
entities to schedule, since each message needs to be scheduled
on every network segment. The possible extension of this article
in this direction can be found in [18], where scheduling of only
communication is done unlike the co-scheduling considered in
this article.

B. Application Model

The application model is based on characteristics of realistic
benchmarks of a specific modern automotive software system,
provided in [28]. We model the application as a set of periodic
tasks T that communicate with each other via a set of messages
M , transmitted over the crossbar switch. Then A = T ∪M ,
denotes the set of activities, which includes both the incoming
messages on the input ports of the crossbar switch and the
tasks executed on the cores. Each activity ai is characterized
by the tuple {pi, ei, jiti} representing its period, execution
time and jitter requirements, respectively. Its execution may
not be preempted by any other activity, since non-preemptive
scheduling is considered. The release date of each activity
equals the start of the corresponding period and the deadline is
the end of the next period. This deadline prolongation extends
the solution space. The period of a message is set to the period
of the task that sends the message. Additionally, execution
time of messages on the input ports correspond to the time it
takes to write the data to the local memory of the receiving
core. Thus, since the local memories are defined by both
their bandwidth and latency, execution time for each message
ai ∈ M is calculated as ei = szi

bnd + lat, where szi is the
size of the corresponding transmitted variable given by the
application model, while bnd is the bandwidth of the memory
and lat is its latency given by the platform model. This is
similar to latency-rate server concept [31].

Cause-effect chains are an important part of the model. A
cause-effect chain comprises a set of activities that must be
executed in a given order within predefined time bounds to
guarantee correct behavior of the system. As one activity can
be a part of more than one cause-effect chain, the resulting
dependency relations are represented by a directed acyclic graph
(DAG) that can be very complex in real-life applications [34],
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Fig. 2. An example of the resulting precedence relations, where activities
in DAG 1 have period 6, activities in DAG 2 have period 9 and activities in
DAG 3 have period 18.

such as automotive engine control. Similarly to [11] and [21],
activities of one cause-effect chain are assumed to have the
same period. More generalized precedence relations with
activities of distinct periods being dependent on each other can
be found in e.g. [15] . Thus, the resulting graph of precedence
relations consists of distinct DAG’s for activities with different
periods, although not necessarily only one DAG for each
unique period. The set of precedence relations between the
activities is characterized by an adjacency matrix with elements
AG = {gi,l} of dimension n × n where gi,l = 1 if activity
ai must finish before activity al can start. An example of a
precedence relation is shown in Figure 2, which includes the
activities from Figure 1. Note that many activities may not
have any precedence constraints, since they are not part of any
cause-effect chain. For instance, it could be simple logging
and monitoring activities.

Lastly, each cause-effect chain has an end-to-end deadline
constraint, i.e. the maximum time that can lapse from the
start of the first activity till the end of the execution of the
last activity in each chain equal to two corresponding periods.
However, as the first activity in each chain can be scheduled at
the beginning of the period at the earliest and the last activity
of the chain at the end of the next period at the latest, the
end-to-end latency constraint is automatically satisfied due to
release and deadline constraints of the activities. Therefore,
end-to-end latency constraints do not add further complexity
to the model.

C. Mapping of Tasks to Cores

The mapping map : A → U , map = {map1, · · · ,mapn}
of tasks to cores and messages to the memories is assumed
to be given by the system designer, which reflects the current
situation in the automotive domain, for e.g. engine control. Note
that for the previously discussed extension to fully switched
network systems, both mapping and routing (i.e. define path
through the network for each message) that respect some
locality constraints are necessary. Since mapping influences
routing and therefore message scheduling, for such systems it
is advantageous to solve the three steps at once, as it is done
e.g. in [41].

To get a mapping for the problem instances used to validate
the approaches in this article, a simple ILP model for mapping
tasks to cores is formulated the following way. The variables
qi,j ∈ {0, 1} indicate whether task i = 1, · · · , |T | is mapped
to resource j = 1, · · · , m2 (qi,j = 1) or not (qi,j = 0). Note
that we consider only Cores as resources and tasks on cores as
activities while mapping. The mapping tries to balance the load,
which is formulated as a sum of absolute values of utilization
differences on two consecutive resources in Equation (1). Since

the absolute operator is not linear, it needs to be linearized by
introducing the load variables bj ∈ R in Equations (2) and (3).

Minimize:
∑

j∈1,..,m2

bj (1)

subject to:

bj ≥
∑

i=1,··· ,|T |

ei
pi
· qi,j −

∑
i=1,··· ,|T |

ei
pi
· qi,j+1, j = 1, · · · , m

2

(2)

bj ≥
∑

i=1,··· ,|T |

ei
pi
· qi,j+1 −

∑
i=1,··· ,|T |

ei
pi
· qi,j , j = 1, · · · , m

2
.

(3)
Moreover, each task must be mapped to a single resource, as
is stated in Equation (4).∑

j=1,··· ,m2

qi,j = 1, i = 1, · · · , |T |. (4)

Note that this mapping is not considered a contribution of this
article, but only a necessary step to provide a starting point
for the experiments, since the benchmark generator does not
provide the mapping.

D. Problem Statement
Given the above model, the goal is to find a schedule with

a hyper-period H = lcm(p1, p2, · · · , pn) with lcm being the
least common multiple function, where the schedule is defined
by start times sji ∈ N of each activity ai ∈ A in each period
j = 1, 2, · · · , ni, where ni = H

pi
. The schedule must satisfy the

periodic nature of the activities, the precedence relations and
the jitter constraints. The considered scheduling problem can
be categorized as multi-periodic non-preemptive scheduling of
activities with precedence and jitter constraints on dedicated
resources.

The formal definition of a zero-jitter schedule is the follow-
ing:

Definition 1 (Zero-jitter (ZJ) schedule): The schedule is a
ZJ schedule if and only if for each activity ai Equation (5)
is valid, i.e. the difference between the start times sji and
sj+1
i in each pair of consecutive periods j and j + 1 over the

hyper-period is the same.

sj+1
i − sji = pi, j = 1, 2, · · · , ni − 1. (5)

Zero-jitter scheduling deals exclusively with ZJ schedules. If for
some activity and some periods j and j +1 Equation (5) does
not hold in the resulting schedule, we call it jitter-constrained
(JC) schedule.

The scheduling problem, where a set of periodic activities
are scheduled on one resource is proven to be NP-hard in [9] by
transforming from the 3-Partition problem. Thus, the problem
considered (both ZJ and JC) here is also NP-hard, since it is a
generalization of the aforementioned NP-hard problem.

IV. EXACT MODELS

Due to significantly different timing behavior of the models
on problem instances with varying complexity (see Section VI),
both SMT and ILP models are formulated in this article.
Moreover, the NP-hardness of the considered problem justifies
using these approaches, since no polynomial algorithm exists



to optimally solve the problem unless P=NP. This section
first presents a minimal SMT formulation to solve the problem
optimally, then continues with a linearization of the SMT model
to get an ILP model. It concludes by providing improvements to
both models that exploit problem-specific knowledge, reducing
the complexity of the formulation and thus the computation
time.

A. SMT Model
The SMT problem formulation is based on the set of

variables sji ∈ {1, 2, · · · , H}, indicating a start time of job j of
activity ai. Following the problem statement in Section III-D,
we deal with a decision problem with no criterion to optimize.
The solution space is defined by five sets of constraints. The
first set of constraints is called release date and deadline
constraints and it requires each activity to be executed in a
given time interval of two periods, as stated in Equation (6).

(j − 1) · pi ≤ sji ≤ (j + 1) · pi − ei, (6)
ai ∈ A, j = 1, · · · , ni.

The second set, Constraint (7), ensures that for each pair of
activities ai and al mapped to the same resource (mapi =
mapl), it holds that either aji is executed before akl or vice-
versa. These constraints are called resource constraints. Note
that due to the extended deadline in Constraint (6), the resource
constraints must be added also for jobs in the first period with
jobs of the last period, since they can collide.

sji + ei ≤ skl ∨ skl + el ≤ sji ,
s1i + ei +H ≤ snl

l ∨ s
nl

l + el ≤ s1i +H,

ai, al ∈ A : mapi = mapl, j = 1, ..., ni, k = 1, ..., nl.

(7)

For the ZJ case, it is enough to formulate Constraints (7)
for each pair of activities only for jobs in the least common
multiple of their periods, i.e. j = 1, · · · , lcm(pi,pj)

pi
and k =

1, · · · , lcm(pi,pj)
pl

. Moreover, the problem for ZJ scheduling is
formulated using n variables. One variable s1i is defined for
the first job of each activity and other jobs are simply rewritten
as sji = s1i + pi · (j − 1).

The next set of constraints is introduced to prevent situations,
when two consecutive jobs of one activity collide. Thus,
Constraint (8) introduces precedence constraints between each
pair of consecutive jobs of each activity, considering also the
last and the first job.

sji + ei ≤ sj+1
i ,

sni
i + ei ≤ s0i +H,

ai ∈ A, j = 1, · · · , ni − 1.

(8)

Next, due to the existence of cause-effect chains, precedence
constraints that are based on the previously mentioned AG

matrix are formulated in Equation (9).

sji + ei ≤ sjl , (9)
ai, al ∈ A : gi,l = 1, j = 1, · · · , ni.

The jitter constraints can be formulated either in terms of
relative jitter, where we bound only the difference in start
times of jobs in consecutive periods or in terms of absolute
jitter, bounding the start time difference of any two jobs of

an activity. Experiments have shown that defining jitter as
absolute or relative does not significantly influence the resulting
efficiency. The difference in terms of maximal achievable
utilization is less than 1% on average with relative jitter showing
higher utilization. Therefore, further in the paper we use the
relative definition of jitter. Note that the results for absolute
jitter formulation do not differ significantly from the results
presented in this article. The formulation of relative jitter is
given in Equation (10), where the first constraint deals with
jitter requirements of jobs inside one hyper-period and the
second one deals with jobs crossing a border between two
hyper-periods.

|sji − (sj−1i + pi)| ≤ jiti,
|s1i +H − pi − sni

i | ≤ jiti
j = 2, · · · , ni : j > k, ai ∈ A.

(10)

B. ILP Model
The formulation of the ILP model is very similar to the SMT

model described above. The main difference in formulation
is caused by the requirement of linear constraints for the ILP
model. Thus, since Equations (6), (8) and (9) are already
linear, they can be directly used in the ILP model. However,
resource Constraints (7) are non-linear and to linearize them,
we introduce new set of decision variables that reflect the
relative order of each two jobs of different activities:

xj,ki,l =

{
1, if aji starts before akl ;
0, otherwise.

Therefore, resource constraints are formulated by Equation (11),
which ensures that either aji is executed before akl (the first
equation holds and xj,ki,l = 1) or vice-versa (the second equation
holds and xj,ki,l = 0). However, exactly one of these equations
must always hold due to binary nature of xj,ki,l , which prevents
the situation where two activities execute simultaneously on
the same resource. Note that we use 2 ·H in the right part of
the Constraints, since the maximum difference between two
jobs of distinct activities can be maximally 2 ·H due to release
date and deadline constraints.

sji + ei ≤ skl + 2 ·H · (1− xj,ki,l ),

skl + el ≤ sji + 2 ·H · xj,ki,l ,

ai, al ∈ A, j = 1, ..., ni, k = 1, ..., nl.

(11)

Furthermore, to formulate the jitter constraints (10) in a linear
form, the absolute value operator needs to be eliminated. As a
result, Equation (12) introduces four sets of constraints, two
for the jobs inside one hyper-period and two for the jobs on
the border.

sji − (ski + (j − k) · pi) ≤ jiti,
sj+1
i − (sji + (j − k) · pi) ≥ −jiti

(s1i +H − pi)− sni
i ≤ jiti

(s1i +H − pi)− sni
i ≥ −jiti

j, k = 1, · · · , ni : j > k, ai ∈ A.

(12)

Unlike the time-indexed ILP formulation [26], where each
variable yi,j indicates that the activity i is scheduled at time



j (having H · n variables), the approach used here can solve
problems with large hyper-periods when there are fewer jobs
with longer execution time. Hence, it utilizes only njobs +
njobs·(njobs−1)

2 with njobs =
∑n

i=1 ni variables, which is a
fraction of the variables that the time-indexed formulation
requires for this problem.

C. Computation Time Improvements

While the basic formulations of the SMT and ILP models
were presented previously, four computation time improvements
for the models are introduced here in order to reduce the
complexity of the formulation and computation time of the
solver. Note that the improvements do not break the optimality
of the solution.

The first improvement removes redundant resource con-
straints. Due to the release date and deadline constraints (6),
it is known that sji ∈ [(j − 1) · pi, (j + 1) · pi − ei] and
skl ∈ [(k − 1) · pl, (k + 1) · pl − el]. Therefore, it is necessary
to include resource constraints only if the intervals overlap.
This improvement results in more than 20% of the resource
constraints being eliminated, reducing the computation time
significantly since the number of resource constraints grows
quadratically with the number of activities mapped to a given
resource.

Instead of setting the release date and deadline Constraint (6),
the second improvement provides this information directly to
the solver. Thus, each constraint is substituted by setting the
lower bound of sji on (j − 1) · pi and the upper bound on
(j + 1) · pi − ei. Hence, instead of assuming the variables sji
in interval [1, · · · , H] and pruning the solution space by the
periodicity constraints, the solver starts with tighter bounds for
each variable. This significantly cuts down the search space,
thereby reducing computation time. Due to the different solver
abilities for SMT and ILP, this optimization is only applicable
to the ILP model.

We can further refine the lower and upper bounds of
the variables by exploiting the knowledge about precedence
constraints, which is the third improvement. For each activity
the length of the longest critical path of the preceding and
succeeding activities that must be executed before and after the
given activity, tb and ta respectively, are computed. First, the
values of t̂bi and t̂ai are obtained by adding up the execution
times of the activities in the longest chain of successors and
predecessors of the activity ai, respectively, as proposed by [10].
For the example in Figure 2, assuming the execution times of
all activities are equal to 1, t̂b1 = 0, t̂a1 = 2, t̂b6 = 1, t̂a6 = 1,
t̂b2 = 2, t̂a2 = 0. Additionally, the bounds can be improved by
computing the sum of execution times of all the predecessors,
mapped to the same resource, i.e.

tbi = max(
∑

l: l∈Predi, mapl=mapi

el, t̂bi )

tai = max(
∑

l: l∈Succi, mapl=mapi

el, t̂ai ),

where Predi and Succi denote the set of all predecessors and
all successors of activity ai, respectively.

For the example in Figure 2 and a single core, the resulting
values are the following: tb1 = 0, ta1 = 2, tb6 = 1, ta6 = 2, tb2 = 4,

ta2 = 0. Hence, the lower bound of sji can be refined by adding
tbi and the upper bound can be tightened by subtracting tai , i.e.
sji ∈ [(j − 1) · pi + tbi , (j + 1) · pi − ei − tai ]. This can also be
used in the first improvement, eliminating even more resource
constraints.

The fourth and final improvement removes jitter con-
straints (12) for activities with no freedom to be scheduled
with larger jitter than required. For instance, for jobs of a2
from Figure 2 with e2 = 1, tb2 = 4, ta2 = 0 and p2 = 9,
there are only 14 instants t, where it can be scheduled, i.e.
t ∈ {4, · · · , 17}. If jit2 ≥ 13, the jitter constraint can be
omitted since the activity can be scheduled only at 14 instants
due to the third improvement and it is not possible to have jitter
bigger than 13 time units and still respect the periodicity of the
activity. We denote by Ii the worst-case slack of the activity,
i.e. the lower bound on the number of time instants where
activity ai can be scheduled and we compute it according to
Equation (13). Hence, the jitter constraints are only kept in
the model if Inequality (14) holds, i.e. the activity has space
to be scheduled with larger jitter than required. We refer to an
activity satisfying Equation (14) jitter-critical. Otherwise, it is
a non-jitter-critical activity.

Ii = pi − (tb + ta + ei) (13)
jiti ≤ Ii − 2, ai ∈ A. (14)

Experimental results have shown that even on smaller problem
instances with 40-55 activities, the proposed improvements
reduce computation time by up to 30 times for ILP model
and 12 times for SMT model. Moreover, the first and the third
improvements result in the most significant reduction of the
computation time. However, when experimentally comparing
these two improvements, we see that the behavior is rather
dependent on the problem instance characteristics, as both the
first and the third improvements can be the most effective on
different problem instances.

V. HEURISTIC ALGORITHM

Although the proposed optimal models solve the problem
optimally, this section introduces a heuristic approach to solve
the problem in reasonable time for larger instances, possibly
sacrificing the optimality of the solution within acceptable
limits.

A. Overview
The proposed heuristic algorithm, called 3-Level Scheduling

(3-LS) heuristic, creates the schedule constructively. It assigns
the start time to every job of an activity in a given HP. Moreover,
it implements 3 levels of scheduling, as shown in Figure 3.
The first level inserts activity by activity into the schedule,
while removing some of the previously scheduled activities,
au, if the currently scheduled activity ac cannot be scheduled.
However, in case the activity au to be removed had problems
being scheduled in previous iterations, the algorithm goes to
the second level, where two activities that were problematic
to schedule, ac and au are scheduled simultaneously. By
scheduling these two activities together, we try to avoid
problems with a sensitive activity further in the scheduling
process. Simultaneous scheduling of two activities means that
two sets of start times sc and su are decided for activities ac and
au concurrently. The third scheduling level is initiated when



even co-scheduling two activities ac and au simultaneously
does not work. Then, the third level starts by removing all
activities except the ones that were already scheduled by this
level previously and its predecessors. Next, it co-schedules the
two problematic activities again. Note that although there may
be more than two problematic activities, the heuristic always
considers maximally two at once.

Having three levels of scheduling provides a good balance
between solution quality and computation time, since the effort
to schedule problematic activities is reasonable to not prolong
the computation time of the approach and to get good quality
solutions. Experimental results show that 94% of the time is
spent in the first scheduling level, where the fastest scheduling
takes place. However, in case the first level does not work, the
heuristic algorithm continues with the more time demanding
second scheduling level and according to the experimental
results it spends 3% of time in this level. The final 3% of the
total computation time is spent in the third scheduling level that
prolongs the computation time the most since it unschedules
nearly all the activities scheduled before. Thus, three levels
of scheduling is a key feature to make the heuristic algorithm
cost efficient and yet still able to find a solution most of the
time. As seen experimentally in Section VI, it suffices to find
a good solutions for large instances within minutes.

Note that the advantage of scheduling all jobs of one activity
at a time compare to scheduling by individual jobs lies in the
significantly reduced number of entities we need to schedule.
Hence, unlike the exact model that focus on scheduling jobs
for all of the activities at a time, the 3-LS heuristic approach
decomposes the problem to smaller sub-problems for one
activity. This implies that the 3-LS heuristic is not optimal and
is also a reason why it takes significantly less time to solve
the problem.

B. Sub-model

The schedule for a single activity or two activities at the same
time, respecting the previously scheduled activities is found by
a so called sub-model. The sub-model for one activity ai that
is non-jitter-critical (i.e. ai for which Inequality (14) does not
hold) is formulated as follows. The minimization criterion is
the sum of the start times of all ai jobs (Equation (15)). Note
that the activity index i is always fixed in the sub-model since
it only schedules a single activity at a time.

Minimize:
∑

j∈1..ni

sji (15)

The reasons for scheduling activities as soon as possible are
twofold. Firstly, it is done for dependent activities to extend
the time interval in which the successors of the activity can
be scheduled, thereby increasing the chances for this DAG
component to be scheduled. Secondly, scheduling at the earliest
instant helps to reduce the fragmentation of the schedule, i.e.
how much free space in the schedule is left between any two
consecutively scheduled jobs, resulting in better schedulability
in case the periods are almost harmonic, i.e. being multiples of
each other, which is common in the automotive domain [28].

The start time of each job j can take values from the set
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Fig. 3. Outline of 3-Level Scheduling heuristic.

Dj
i (Equation (17)), which is the union of intervals, i.e.

Dj
i = {[li,j1 , rj1] ∪ [li,j2 , ri,j2 ] ∪ · · · ∪ [li,jw , ri,jw ]},

ri,jo < li,jo+1, l
i,j
o ≤ ri,jo , j = 1, · · · , ni, o = 1, · · · , w − 1

(16)

and {li,j1 , ri,j1 , · · · , li,jw , ri,jw } ∈ Z2·w, where w is the number
of intervals in Dj

i and li,jo , ri,jo are the start and end of the
corresponding interval o. This set of candidate start times is
obtained by applying periodicity constraints (6) and precedence
constraints (9) to already scheduled activities and changing the
resulting intervals so that the activity can be executed fully
with respect to its execution time. Note that since we insert
only activities whose predecessors are already scheduled, all
constraints are satisfied if the start time of the job sji belongs
to Dj

i .
For the example in Figure 2 with all the execution times

equal to 1, with a single core, and with no activities scheduled,
D1

2 = {[0 ·p2+ tb2; 2 ·p2− ta2−e2−1]} = {[0+4; 18−0−1−
1]} = {[4; 16]}, which is basically the application of the third



improvement from Section IV. Now, suppose in the previous
iterations a18 is scheduled at time 4 and a110 is scheduled at
time 6. Then, the resulting D1

2 = {[5; 5] ∪ [7, 16]}, since a12
must be scheduled after a18 and it cannot collide with any other
activity on the core.

sji ∈ D
j
i , j = 1, 2, · · · , ni. (17)

Furthermore, similarly to the ILP model in Section IV, the
precedence constraints for consecutive jobs of the same activity
must also be added.

sji + ei ≤ sj+1
i ,

sni
i + ei ≤ s0i +H,

j = 1, 2, · · · , ni − 1

(18)

The pseudocode of the sub-model is presented in Algorithm 1.
As an input it takes the first activity to schedule a1, and the
optional second activity to schedule a2 together with their
requirements, and the set of intervals D. If a2 is set to an
empty object, the sub-model must schedule only activity a1.
In case a1 is non-jitter-critical, this scheduling problem can
be trivially solved by assigning sji = li,j1 and checking that
it does not collide with the job in the previous period. If it
does, we schedule this job at the finish time of the previous
job if possible, otherwise at the end of the resource interval it
belongs to. If the start time is more than the refined deadline of
this job from Section IV-C, the activity cannot be scheduled.

It is clear that this rule will always result in a solution,
minimizing (15) if one exists. Moreover, if for some job sji ,
the interval Dj

i is empty, then there is no feasible assignment of
this activity to time with the current set of already scheduled
activities. On the other hand, when a1 is jitter-critical, the

Input: a1, a2, D
if a2 = NULL then

if a1 is non-jitter-critical then
S = minx∈Di x : Constraint (18) holds;

else
S = ILP (a1, D);

end
else

S = ILP (a1, a2, D);
end
Output: S

Algorithm 1: Sub-model used by 3-LS heuristic

sub-model is enriched by the set of jitter constraints (12) and
the strategy to solve it has to be more sophisticated. The
sub-model in this case is solved as an ILP model, which
has significantly shorter computation times on easier problem
instances in comparison to SMT, as shown experimentally in
Section VI. This is important for larger problem instances
where sub-model is launched thousands of times, since the
heuristic decomposes a large problem to many small problems
by scheduling jobs activity by activity. Although this problem
seems to be NP-hard in the general case because of the non-
convex search space, the computation time of the sub-model is
still reasonable due to the relatively small number of jobs of one
activity (up to 1000) and the absence of resource constraints.

We formulate Constraint (17) as an ILP in the following
way. First, we set lj1 ≤ s

j
i ≤ rjw defined earlier in this section,

and for each ri,jt and li,jt+1 two new Constraints (19) and a
variable yi,j,t ∈ {0, 1} are introduced, which handles the “∨”
relation of the two constraints similarly to the variable xj,ki,l
from the ILP model in Section IV.

sji + (1− yi,j,t) ·H ≥ li,jt+1

sji ≤ r
i,j
t + yi,j,t ·H

(19)

Finally, when the sub-model is used to schedule two activities
at once, i.e. a2 is not an empty object, Criterion (15) is changed
to contain both activities, and the resource constraints (11) for
a1 and a2 are added. The resulting problem is also solved as
an ILP model, but similarly to the previous case takes rather
short time to compute due to small size of the problem. Note
that the 3-LS heuristic also utilizes the proposed computation
time improvements for the ILP model from Section IV and
always first checks non-emptiness of Dj for each job j before
creating and running the ILP model.

C. Algorithm
The proposed 3-LS heuristic is presented in Algorithm 2.

The inputs are the set of activities A, the priority rule Pr that
states the order in which the activities are to be scheduled
and the rule to choose the activity to unschedule Un if some
activity is not schedulable with the current set of previously
scheduled activities. The algorithm begins by initializing the
interval set D for each aji as Dj

i = {[(j − 1) · pi + tbi ; j · pi −
tai − ei − 1]} (line 2). Then it sorts the activities according to
the priority rule Pr (line 3), described in detail Section V-D.
The rule always states that higher priority must be assigned to
a predecessor over a successor, so that no activity is scheduled
before its predecessors. Note that the first part of the first level
of scheduling is similar to the list scheduling approach [44].

In each iteration, the activity with the highest priority ac in
the priority queue of activities to be scheduled Q, is chosen
and scheduled by the sub-model (line 7). If a feasible solution
S is found, the interval set D is updated so that all precedence
and resource constraints are satisfied. Firstly, for each al that is
mapped to the same resource with ac, i.e. mapl = mapc, the
intervals in which ac is scheduled are taken out of Dl. Secondly,
for each successor al of activity ac the intervals are changed as
Dj

l = Dj
l \{[0, Sj + ec−1]}, since a successor can never start

before a predecessor is completed. Next, the feasible solution
is added to the set of already scheduled activities, represented
by their schedules Sch, and Q is updated to contain previously
unscheduled activities, if there is any. If the current activity ac
is not schedulable, at least one activity has to be unscheduled.
The activity to be unscheduled au is found according to the rule
Un and this activity with all its successors are taken out of Sch
(line 15). Next, the set of intervals D is updated in the inverse
manner compared to the previously described new activity
insertion. To prevent cyclic scheduling and unscheduling of the
same set of activities, a set R of activities that were problematic
to schedule is maintained. Therefore, the activity to schedule
ac has to be added to R (line 17) if it is not there yet. In case
the activity to be unscheduled is not problematic, i.e. au 6∈ R,
the algorithm schedules ac without au scheduled in the next
iteration. Otherwise, the second level of scheduling takes place,
as shown in Figure 3. In this case, the sub-model is called to
schedule ac and au simultaneously (line 20) and the set of two
schedules S are added to Sch.



Input: A
1 Sch = ∅, R = ∅, Scratch = ∅;
2 D.initialize();
3 Q = sort(A, Pr);
4 while |Sch| < |A| do
5 ac = Q.pop();
6 / / Schedule ac alone
7 S = SubModel(ac, NULL, D);
8 if SubModel found feasible solution then
9 / / Add previously unscheduled act ivi t ies to Q

10 Q.update();
11 Sch.add(S) ; // First scheduling level
12 D.update();
13 else
14 au = getActivityToUnschedule(Sch, Un);
15 Sch = Sch \ {au ∪ au.suc};
16 D.update();
17 R.add(ac);
18 if R.contains(au) then
19 / / Schedule ac and au simultaneously
20 S = SubModel(ac, au, D) ;
21 if SubModel found feasible solution then
22 Sch.add(S) ; // Second level
23 else
24 / / Leave in Sch only act ivi t ies from

Scratch and predecessors of ac and
au

25 Sch = Scratch ∪ ac.pr ∪ au.pr;
26 D.update();
27 S = SubModel(ac, au, D);
28 if SubModel found feasible solution then
29 Sch.add(S) ; // Third level
30 D.update();
31 Scratch.add(ac, au, ac.pr, au.pr);
32 else

Output: FAIL
33 end
34 end
35 end
36 end
37 end

Output: Sch
Algorithm 2: 3-Level Scheduling Heuristic

Sometimes, even simultaneous scheduling of two problematic
activities does not help and a feasible solution does not exist
with the given set of previously scheduled activities Sch. If
this is the case, we go to the third level of scheduling and try
to schedule these two activities almost from scratch, leaving
in the set of scheduled activities Sch only the set Scratch
of activities that were previously scheduled in level 3 and
the predecessors of ac and au (line 29). The set Scratch
is introduced to avoid the situation where the same pair of
activities is scheduled almost from scratch more than once,
which is essential to guarantee termination of the algorithm. At
the third scheduling level, the algorithm runs the sub-model to
schedule ac and au with a smaller set of scheduled activities
Sch. In case of success, the obtained schedules S are added to
Sch (line 29) and ac together with au and their predecessors
ac.pr and au.pr are added to the set of activities Scratch,
scheduled almost from scratch. If the solution is not found at
this stage, the heuristics fails to solve the problem. Thus, the
3-LS heuristic proceeds iteration by iteration until either all
activities from A are scheduled or the heuristic algorithm fails.
Note that the same structure of the algorithm holds for both
ZJ and JC cases.

D. Priority and Unscheduling Rules

There are two rules in the 3-LS heuristic: Pr to set the
priority of insertion and Un to select the activity to unschedule.
The rule to set the priorities considers information about
activity periods P , activity execution times E, the critical
lengths of the predecessors execution before tb and after ta
and the jitter requirements jit. However, not only the jitter
requirements of the activity need to be considered, but also
the jitter requirements of its successors. The reason is that
if some non-jitter-critical activity would precede an activity
with a critical jitter requirement in the dependency graph,
the non-jitter-critical activity postpones the scheduling of the
jitter-critical activity, resulting in the jitter-critical activity not
being schedulable. We call this parameter inherited jitter of an
activity, computed as jitinheri = minaj∈Predi jitj . Using the
inherited jitter for setting the priority is similar to the concept
of priority inheritance [38] in event-triggered scheduling.

Thus, the priority assignment scheme Pr sets the prior-
ity of each activity ai to be a vector of two components
prioritysched = (min(Ii, jit

inher),max(Ii, jit
inher)), where

Ii is the worst-case slack of the corresponding DAG, defined
in Equation (13). The priority is defined according to lexico-
graphical order, i.e. by comparing the first value in the vector
and breaking the ties by the second. We compare first by the
most critical parameter, either jitter jitinheri or the worst-case
slack Ii, since those two parameters reflect how much freedom
the activity has to be scheduled and the activity with less
freedom should be scheduled earlier. This priority assignment
strategy considers all of the aforementioned parameters, by
definition outperforming the strategies that compare based on
only subsets of these parameters.

The rule Un to choose the activity to unschedule is a multi-
level decision process. The general rules are that only activities
that are mapped to the resource where activity ac is mapped are
considered and we do not unschedule the predecessors of ac.
Moreover, the intuition behind the Un rule is that unscheduling
activities with very critical jitter requirements or with already
scheduled successors should be done only if no other options
exist. The exact threshold for being very jitter-critical depends
on the size of the problem, but based on experimental results
we set the threshold of a high jitter-criticality level to the
minimum value among all periods. Thus, whether or not an
activity is very jitter-critical is decided by comparing its jitter
to the threshold value thresh = minai∈A pi.

The rule Un can hence be described by three steps that are
executed in the given order:

1) If there are activities without already scheduled successors
and with jiti ≥ thresh, choose the one with the highest
Ii.

2) If all activities have successors already scheduled, but
activities with jiti ≥ thresh exist, we choose the one
according to the vector priorityunsched = (number
of successors scheduled, Ii) comparing lexicographically.

3) Finally, if all activities have jit < thresh, the step
chooses the activity to unschedule according to the pri-
ority vector priorityunsched = (jitinher, Ii) comparing
lexicographically.

Step 1 is based on the observation that activities with very
critical jitter requirements are typically hard to schedule,



unlike those with no jitter requirements or less critical ones.
Besides, unscheduling many activities instead of one may
cause prolongation of the scheduling process and possibly
more complications with further scheduling of successors.
Moreover, since only activities of cause-effect chains are a
part of precedence relations, there are many activities with no
predecessors and successors that can be unscheduled. This
is typical for the automotive domain [28]. Step 2 allows
unscheduling of activities with already scheduled predecessors,
preferring to keep in the schedule activities with critical jitter
requirements. Step 3 states that if all of the activities have very
critical jitter requirements, the activity with the highest value
of inherited jitter should be unscheduled. In all three steps,
ties are broken by choosing the activity with higher worst-case
slack I value by the same intuition as in the Pr rule.

We have experimentally determined that comparing to the
unscheduling rule with only worst-case slack (Ii) considered,
the gain of the presented unscheduling rule is 5% more
utilization achieved on average.

VI. EXPERIMENTS

This section experimentally evaluates and compares the
proposed optimal models and 3-LS heuristic on synthetic
problems with jitter requirements set differently to show the
benefits of JC scheduling in terms of utilization. Furthermore,
we quantify the trade-off of additional cost in terms of memory
to store the schedule and increase in computation time versus
this gained utilization. Note that the goal of this section is to
show the advantages and disadvantages of the JC approach. The
experimental setup is presented first, followed by experiments
that evaluates the proposed exact and heuristic approaches
for different jitter and period requirements. We conclude by
demonstrating our approach on a case study of an Engine
Management System with more than 10000 activities to be
scheduled.

A. Experimental Setup
Experiments are performed on problem instances that are

generated by a tool developed by Bosch [28]. There are
five sets of 100 problem instances, each set containing 20,
30, 50, 100 and 500 tasks, respectively. The same problem
instance is presented with different jitter requirements. The
generation parameters for each dataset are presented in Table I,
and the granularity of the timer is set to be 1 µs. Message
communication times are computed for the considered platform
with the following parameters: bandwidth bnd = 400 MB/s
and latency lat = 50 clock cycles.

The mapping is found as described in Section III-C so that
load is balanced across the cores, i.e. the resulting mapping
utilizes all cores approximately equally. The resulting problem
instances contain 30-45, 50-65, 90-130, 180-250 and 1500-
2000 activities (tasks and messages) for sets with 20, 30, 50,
100 and 500 tasks, respectively.

While we initially assume a system with 3 cores connected
over a crossbar (resulting in 6 resources), inspired by the
Infineon Aurix Tricore Family TC27xT, the approach can scale
to a higher number of cores, as shown in Section VI-B4.

The metric for the experiments on the synthetic datasets
is the maximum utilization for which the problem instance
is still schedulable. The utilization is defined as ry =

TABLE I
GENERATOR PARAMETERS FOR THE SETS OF PROBLEM INSTANCES

Set |T | P [ms] Variable accesses Chains
per task per task

1 20 1, 2, 5, 10 4 4
2 30 1, 2, 5, 10 4 6
3 50 1, 2, 5, 10, 20, 50, 100 4 8
4 100 1, 2, 5, 10, 20, 50, 100 4 15
5 500 1, 2, 5, 10, 20, 50, 100 8 50

∑
ai∈A:mapi=y

ei
pi

on each resource y = 1, · · · , 6. To achieve
the desired utilization on each resource, the execution times
of activities are scaled appropriately. The experiments always
start from a utilization of 10%, increasing in steps of 1%,
solving until the approach is not able to find a feasible
solution. The last utilization value for which the solution
was found is set as the maximum utilization of the approach
on the problem instance. Although this approach to set the
maximum schedulable utilization may not be completely fair,
the utilization is monotonic in most cases. Therefore, we have
chosen to approximate the results by setting this rule to get
results that are easier to interpret.

Experiments were executed on a local machine equipped
with Intel Core i7 (1.7 GHz) and 8 GB memory. The ILP model
and ILP part of the 3-LS heuristic were implemented in IBM
ILOG CPLEX Optimization Studio 12.5.1 and solved with the
CPLEX solver using concert technology, while the SMT model
was implemented in Z3 4.5.0. The ILP, SMT and heuristic
approaches were implemented in the JAVA programming
language.

B. Results

First, the experiments compare the computation time of
the two optimal ILP and SMT approaches to show for
which problem instances it is advantageous to use each of
the approaches. Secondly, we evaluate trade-off between the
maximum achievable utilization and computation time of the 3-
LS heuristic and the optimal approaches for differently relaxed
jitter requirements. Thirdly, since memory consumption to
store the final schedule is also a concern, the trade-off between
solution quality and required memory is evaluated for systems
of different sizes. Finally, a comparison of different period
settings is presented to show the applicability of the approach
to different application domains and to evaluate the behavior
of both ZJ and JC approaches for periods set differently. A
time limit of 3 000 seconds per problem instance was set for
the optimal approaches to obtain the results in reasonable time.
Note that the best solution found so far is used if the time
limit is hit.

1) Comparison of the ILP and SMT models with different
jitter requirements: First of all, we compare the computation
time distribution for Set 1 and Set 2 (of smaller instance sizes
with 30-45 activities and 50-65 activities, respectively) for SMT
and ILP approaches with jitter requirements of each activity
ai ∈ A set to jiti =

pi

2 , jiti = pi

5 , jiti = pi

10 and jiti = 0.
Since the first problem instance from Set 3 was computing
for two days before it was stopped with no optimal solution
found for both SMT and ILP models, the experiments with
optimal approaches only use the first two sets. We will return



TABLE II
NUMBER OF PROBLEM INSTANCES OPTIMAL APPROACHES FAILED TO

SOLVE BEFORE TO TIME LIMIT OF 3 000 SECONDS

jiti
pi/2 pi/5 pi/10 0

Set 1 Set 2 Set1 Set 2 Set 1 Set 2 Set 1 Set 2
ILP 14 76 9 53 6 45 4 27
SMT 2 51 3 13 2 9 2 7

to the larger sets in Section VI-B3 when evaluating the 3-LS
heuristic.

The distribution is shown in the form of box plots [24], where
the quartile, median and three quartiles together with outliers
(plus signs) are shown. Outliers are numbers that lie outside
1.5×the interquartile range away from the top or bottom of the
box that are represented by the top and the bottom whiskers,
respectively. Note that outliers were also successfully solved
within the time limit.
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Fig. 4. Computation time distribution for the SMT and ILP models with
different jitter requirements for Set 1.

The number of problem instances from Set 1 and Set 2, that
the optimal approaches failed to solve within the given time
limit is shown in Table II. Moreover, Figure 4 displays the
computation time distribution on Set 1, where only problem
instances, that both the ILP and SMT solvers were able to
optimally solve all jitter requirements within the timeout period
are included. For Set 1, it is 82 (out of 100), and for Set 2, it
is 21 (out of 100) problem instances. The computation time
distribution for Set 2 in show a similar trend, but since the
sample is too small to be representative, we do not display
them.

The results in Table II show that for more difficult problem
instances the SMT model is significantly better than the ILP
model in terms of computation time, since it is able to solve
more problem instances within the given time limit. On the
other hand, the comparison on the problem instances that both
approaches were able to solve in Figures 4 indicates that the
ILP runs faster on simpler problem instances that can be found
at the bottom of the boxplots in Figure VI-B1. As one can see,
more relaxed jitter requirements result in longer computation
time, which is a logical consequence of having larger solution
space.

Thus, the SMT model is more efficient than the ILP model
for the considered problem on more difficult problem instances,
while the ILP model shows better results for simpler instances,
which justifies the usage of the ILP model in the 3-LS
heuristic. Besides, more relaxed jitter requirements cause longer
computation time for the optimal approaches. Therefore, the
SMT approach results are used for further comparison with
the 3-LS heuristic.

2) Comparison of the optimal and heuristic solutions with
different jitter requirements: Figure 5 shows the distribution of
the maximum utilization on Set 1 for SMT and 3-LS heuristic
with different jitter requirements. For comparison, we use
the solution with the highest utilization, while the low value
of initial utilization guarantees that at least some solution is
found. The time limit caused 3 problem instances in Set 1 not
to finish when using the SMT approach and these instances
are not included in the results. The results for Set 2 are similar
to that of Set 1, but due to small number of solvable instances
we do not show them. The results for the optimal approach
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Fig. 5. Maximum utilization distribution for the optimal SMT and 3-LS
heuristic approaches with different jitter requirements for Set 1.

shows that stricter jitter requirements cause lower maximum
achievable utilization. Namely, the average maximum utilization
is 89%, 75%, 69%, 61% for Set 1 and 95%, 81%, 74%, 67%
for Set 2 for the instances with jitter requirements equal to
half, fifth, tenth of a period and zero, respectively. Meanwhile,
the comparison of the 3-LS heuristic to the optimal solution
reveals that the average difference goes from 17% and 23% for
Set 1 and Set 2, respectively, with the most relaxed jiti = pi

2
to 0.1% for both sets with ZJ scheduling. This difference
for problem instances with more relaxed jitter requirements
is caused by very large complexity of the problem solved.
Furthermore, while the heuristic solves all problem instances in
hundreds of milliseconds, the SMT model fails on 62 problem
instances out of 200 within a time limit of 3 000 seconds.
This reduction of the computation time by the heuristic is
particularly important during design-space exploration, where
many different mappings or platform instances have to be
considered. In that case, it is not possible to spend too much
time per solution.

Hence, we conclude that heuristic performs better with
tighter jitter requirements and hence particularly well for ZJ
scheduling, resulting in an average degradation of 7% for all
instances. Moreover, unlike the SMT model, the 3-LS heuristic
always finds feasible solutions in hundreds of milliseconds,
hence providing a reasonable trade-off between computation
time and solution quality.

3) Comparison of the heuristic with ZJ and JC scheduling:
While the previous experiment focused on comparing the
optimal approach and the heuristic, therefore using only smaller
problem instances, this experiment evaluates the 3-LS heuristic
on all sets. Due to time restrictions, only two jitter requirements
were considered, jiti = pi

5 and jiti = 0. Figure 6 shows the
distribution of the maximum utilization for the 3-LS heuristic on
Sets 1 to 5. In all sets, 100 problem instances were used for this
graph. The results show that with growing size of the problem
instance, the maximum utilization generally increases. The



average difference in maximum utilization of the 3-LS heuristic
on the problem instances with JC and ZJ requirements is 15.3%,
9.7%, 8.6%, 4.2% and 7.5% for Sets 1 to 5, respectively, with
JC achieving higher utilization. The decreasing difference with
growing sizes of the problem is caused by the growing average
utilization. For instance, the average maximum utilization for
Set 5 is 89.1% for the problem instances with JC requirements
and 82.6% for the problem instances with ZJ requirements,
pushing how far the maximum utilization for the JC scheduling
can go. This tendency of increasing maximum utilization for
the ZJ scheduling can be intuitively supported by the fact that
more and more activities are harmonic with each other, which
results in easier scheduling. In reality, harmonization costs a
significant amount of over-utilization, especially when activities
with smaller periods are concerned. On problem instances
without harmonized activity periods the JC scheduling can
show notably better results for larger instances compared to
ZJ scheduling, as shown in Section VI-B5.
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Fig. 6. Maximum utilization distribution for the 3-LS heuristic with jitter-
constrained and zero-jitter requirements in sets with 20, 30, 50, 100 and 500
tasks.
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Fig. 7. Computation time distribution for the 3-LS heuristic with jitter-
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tasks.

Figure 7 shows the computation time of ZJ and JC using
the 3-LS heuristic. Similarly to the optimal approach, the 3-
LS heuristic takes longer to solve problem instances with JC
requirements due to the larger solution space. Specifically, the
average computation time for JC heuristic for Sets 1 to 5 are
0.3, 0.6, 3.6, 14.5 and 1003.6 seconds, respectively, while for
ZJ scheduling it is 0.15, 0.28, 1.6, 4 and 109 seconds. Thus,
solving a problem instance with JC requirements with 1500-
2000 activities takes less than 17 minutes on average, which is
still reasonable. Hence, the 3-LS heuristic with JC scheduling
provides better results, but requires more time than the 3-LS
heuristic with ZJ scheduling.

To summarize this experiment, JC scheduling is promising
in terms of maximum utilization, as it schedules with up to
55% higher resource utilization. Besides, the computation

time of the proposed heuristic is affordable even for larger
problem instances, while the optimal models fail to finish in
reasonable time already for much smaller instances. Moreover,
the proposed heuristic solves the problem instances with ZJ
requirements near-optimally with a difference of 0.1% in
schedulable utilization on average. Generally, the JC heuristic
provides more efficient solutions than the ZJ heuristic, while
requiring longer computation time.

4) Evaluation of required memory and maximum utilization
trade-off with different number of cores: The trade-off between
maximum achievable utilization and the amount of memory
required to store the schedule is evaluated by this experiment.
Figure 8 shows the average maximum utilization achieved on
systems with different number of cores and with gradually
increasing percentage of JC jobs on 50 problem instances
from Set 2 (due to time restrictions). The jitter constraint is
set to jiti = pi

5 and the instances are solved to optimality.
Furthermore, the problem instances with different numbers
of cores are solved in steps of 5% of jobs with zero-jitter
requirement, which reflects how much memory is necessary to
store the schedule for such solutions. Note that the execution
times of the activities are scaled proportionally to the number
of cores so that each resource has a required utilization.
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Fig. 8. Utilization distribution for different percents of JC activities for
different architectures.

The results show that introducing more JC jobs and thus
increasing memory requirements for storing the final schedules
can significantly improve the average maximum utilization.
Namely, for the architecture with 4 cores, the maximum
utilization with all ZJ jobs is 61%, while relaxing jitter
requirements of half the jobs results in 69% utilized resources,
and relaxation all of the jobs increases the maximum utilization
to 76%. Concerning the required memory to store the schedule,
the problem instances with 4 cores on average contain 80 jobs
with JC scheduling and 49 jobs while scheduling in zero-jitter
manner. Thus, assuming we need 8 bytes to store the schedule
of one job, the memory overhead of relaxing jitter is 31 * 8 =
248 bytes, which is a reasonable price to pay for utilization
gain of 15% on average on each resource.

Concerning the increasing number of cores, the results
demonstrate that on average there is no significant dependency
on how much cores we have in the system. Hence, JC
scheduling can result in high utilization gain, although at the
cost of increased memory requirements to store the resulting
schedule.



5) Comparison of the different period settings: To show that
the approach is applicable to other domains, an experiment with
different period settings is performed. All problem instances
from Set 2 are solved monoperiodically (pi = 10 ms for each
activity ai ∈ A), or with harmonic periods (activities with
pi = 2 ms are changed to pi = 5 ms), or with initial periods
(i.e. with periods 1, 2, 5, 10 ms), or with non-harmonic periods
(with periods 2, 5, 7, 12 ms). Figure 9 displays the average
maximum utilization achieved by the 3-LS heuristic with ZJ
and JC scheduling (jiti = pi

5 ) on 100 problem instances from
Set 2. Since the optimal approach was not able to solve 7 out of
10 first instances with non-harmonic periods within the given
time limit, due to its complexity and extended hyper-period,
the optimal approach results are not included in the figure.
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Fig. 9. Utilization distribution for problem instances with different periods.

The results show that the maximum utilization for both ZJ
and JC is achieved when scheduling monoperiodically, which
is explained by having less possible collisions in the resulting
schedule. An interesting observation is that for JC scheduling
all other period settings on average resulted in very similar
maximum utilization, while the ZJ approach shows the variation
of 27% with non-harmonic periods, 62% with initial periods
and 65% with harmonic period set. Relative insensitivity of JC
scheduling to period variations can be caused by significantly
larger solution space due to relaxation of strict jitter constraints.
This allows to find solutions with high utilization even with
the non-harmonic period setting.

Besides, the same order of computation time distribution is
shown by different period settings, i.e. monoperiodic scheduling
is the fastest, while the problem instances in the non-harmonic
period set result in the longest computation time.

Thus, the proposed approach is applicable to other domains,
where the application periods have different degree of har-
monicity. Furthermore, increasing harmonicity of the period
set results in higher maximum utilization, lower computation
time and lower gain of JC scheduling in comparison with ZJ
scheduling in terms of maximum utilization.

C. Engine Management System Case Study
We demonstrate the applicability of the proposed 3-LS

heuristic on an Engine Management System (EMS). This
system is responsible for controlling the time and amount
of air and fuel injected by the engine by considering the values
read by numerous sensors in the car (throttle position, mass air
flow, temperature, crankshaft position, etc). By design, it is one
of the most sophisticated engine control units in a car consisting
of 1000-2000 tightly coupled tasks that interact over 20000 to
30000 variables, depending on the features in that particular
variant. A detailed characterization of such an application is

presented by Bosch in [28], along with a problem instance
generator that creates input EMS models in conformance with
the characterization.

We consider such a generated EMS problem instance,
comprising 2000 tasks with periods 1, 2, 5, 10, 20, 50, 100, 200
and 1000 ms and with 30000 variables in total, where each task
accesses up to 12 variables. There are 60 cause-effect chains
in the problem instance with up to 11 tasks in each chain. We
consider the target platform to be similar to an Infineon AURIX
Family TC27xT with a processor frequency of 125 MHz and
an on-chip crossbar switch with a 16 bit data bus running at
200 MHz, thus having a bandwidth of 16-bit x 200 MHz / 8
= 400 MB/s. The time granularity is 1 µs, and the resulting
hyper-period is 1000 ms. However, setting the hyper-period to
be 100 ms results in a utilization loss of less than 0.5%, arising
from shortening the scheduling periods of tasks with periods
200 ms and 1000 ms and over-sampling, which is a reasonable
sacrifice to decrease the memory requirements of the schedule.
The tool in [28] provides the number of instructions necessary
to execute each task, which is used to compute the worst-case
execution time with the assumption that each instruction takes
3 clock cycles on average (including memory accesses that
hit/miss in local caches).

The mapping of tasks to cores by the simple ILP described
in Section III requires minimally 3 cores with the utilization
approximately 89.6% on each core and approximately 30%
on each input port of the crossbar. Moreover, the resulting
scheduling problem has 10614 activities with 104721 jobs
for the JC assumptions in total. Neither SMT nor ILP can
solve this problem in reasonable time, but the JC heuristic
with jiti =

pi

5 for all ai solves the problem in 43 minutes.
By gradually introducing more activities ai with jiti = 0, we
have found a maximum value of 85% ZJ activities for which
the 3-LS heuristic is still able to find a solution, which takes
approximately 12 hours. Note that the computation time has
increased with introducing more ZJ activities due to more
restricted solution space. However, to store the schedule in the
memory for 0% ZJ jobs, 104721 * 8 = 818 Kbytes of memory
is required assuming that one job start time needs 8 bytes,
while with 85% ZJ jobs it is only 19394 * 8 = 152 Kbytes.
Thus, for realistic applications the optimal approaches take
too long, while the 3-LS heuristic approach is able to solve the
problem in reasonable time. Moreover, increasing the percent
of ZJ activities has shown to provide a trade-off between
computation time and required memory to store the obtained
schedule.

VII. CONCLUSIONS

This article introduces a co-scheduling approach to find
a time-triggered schedule of periodic tasks with hard real-
time requirements that are executed on multiple cores and
communicate over an interconnect. Moreover, precedence and
jitter requirements are put on these tasks due to the nature of
such applications in the automotive domain. To optimally solve
the considered problem, we propose both an Integer Linear
Programming (ILP) model and Satisfiability Modulo Theory
(SMT) model with computation time improvements that exploit
problem-specific information to reduce the computation time.
Furthermore, a three-step heuristic scheduling approach, called
3-LS heuristic, where the schedule is found constructively



is presented. The heuristic works in three levels, where the
scheduling complexity and the time consumption grow for each
level, providing a good balance between solution quality and
computation time.

We experimentally evaluate the efficiency of the proposed
optimal and heuristic approaches with jitter-constrained (JC)
requirements, comparing to the widely used zero-jitter (ZJ) ap-
proach and quantify the gain in terms of maximum utilization of
the resulting systems for the optimal and heuristic approaches.
The results show that JC scheduling by the optimal approaches
achieves higher utilization with an average difference of 28%
compared to optimal ZJ scheduling. Moreover, the experimental
evaluations indicate that SMT model is able to solve more
problem instances optimally within a given time limit than the
ILP model, while the ILP model shows better computation
time on simpler problem instances. We also show that the 3-LS
heuristic solves the problem instances with ZJ requirements
near-optimally. The computation time of the proposed heuristic
is acceptable even for larger problem instances, while the
optimal models fail to finish in reasonable time already
for smaller problem instances. Furthermore, the approach is
demonstrated on a case study of an Engine Management
System, where 2000 tasks are executed on cores, sending
around 8000 messages over the interconnect. Here, we show
that for realistic applications, the proposed SMT solution takes
too long and the 3-LS heuristic is able to find the solution
in reasonable time, providing a trade-off between required
memory to store the schedule and computation time depending
on percent of activities with zero-jitter requirements.
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