
0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2779480, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 00, NO. 0, SEPTEMBER 0000 1

Optimizing Soft Error Reliability through
Scheduling on Heterogeneous Multicore

Processors
Ajeya Naithani, Stijn Eyerman, Lieven Eeckhout

Abstract—Reliability to soft errors is an increasingly important issue as technology continues to shrink. In this paper, we show that
applications exhibit different reliability characteristics on big, high-performance cores versus small, power-efficient cores, and that there
is significant opportunity to improve system reliability through reliability-aware scheduling on heterogeneous multicore processors. We
monitor the reliability characteristics of all running applications, and dynamically schedule applications to the different core types in a
heterogeneous multicore to maximize system reliability. Reliability-aware scheduling improves reliability by 25.4% on average (and up
to 60.2%) compared to performance-optimized scheduling on a heterogeneous multicore processor with two big cores and two small
cores, while degrading performance by 6.3% only. We also introduce a novel system-level reliability metric for multiprogram workloads
on (heterogeneous) multicores. We provide a trade-off analysis among reliability-, power- and performance–optimized scheduling, and
evaluate reliability-aware scheduling under performance constraints and for unprotected L1 caches. In addition, we also extend our
scheduling mechanisms to multithreaded programs. The hardware cost in support of our reliability-aware scheduler is limited to 296
bytes per core.

F

1 INTRODUCTION

A S technology shrinks and operation voltage decreases, the
amount of charge in a transistor’s gate reduces, which in-

creases the probability that a charged element or radiation can flip
the content of a bit, a phenomenon referred to as a soft error [2],
[3], [4]. A higher soft error probability implies a shorter mean time
to failure, or reduced dependability. A significant body of work
seeks at improving resilience to soft errors, see for example [3],
[5], [6], [7], [8], [9].

To the best of our knowledge, how heterogeneous chip-
multiprocessors (HCMPs) affect reliability is a largely unexplored
topic. HCMPs enable high performance and high power/energy-
efficiency by scheduling applications to big, high-performance
cores versus small, low-power cores based on the applications’
characteristics [10], [11]. Industry examples of single-ISA het-
erogeneous multicores include ARM’s big.LITTLE [12], NVidia’s
Tegra [13], and Intel’s QuickIA [14]. Prior work in scheduling
for HCMPs focused on optimizing performance [15], energy
efficiency [16], and power efficiency [17], [18]. However, no prior
work has explored scheduling for reliability on HCMPs.

An HCMP features different core types, with each core type
exposing different performance and soft error vulnerability char-
acteristics. A big out-of-order core features substantially more
transistors, and is therefore more vulnerable to bit flips than a
small core. On the other hand, a big core executes an application

• A. Naithani and L. Eeckhout are with the Department of Electronics and
Information Systems, Ghent University, Belgium. Stijn Eyerman is with
Intel Belgium; this work was done while at Ghent University.

• This paper is an extension of “Reliability-Aware Scheduling on Hetero-
geneous Multicore Processors” by the same authors [1], presented at the
2017 International Symposium on High-Performance Computer Architec-
ture (HPCA). This paper includes several novel contributions over the
HPCA paper including (i) trade-off analysis between reliability-, power-
and performance-optimized scheduling, (ii) reliability-aware scheduling
under performance constraints, (iii) reliability-aware scheduling for multi-
threaded workloads, and (iv) reliability-aware scheduling while taking into
account soft error vulnerability in the L1 caches.

faster, reducing its exposure to soft errors between launching and
finishing the application. The difference in soft error vulnerability
across core types and applications opens opportunities for schedul-
ing to improve system reliability.

In this paper, we propose reliability-aware scheduling for
HCMPs. The scheduler monitors reliability on either core type for
all of the co-running applications, and schedules the applications
to big and small cores for improved overall system reliability.
The scheduler adapts to dynamic phase changes in the workload,
while relying on a novel soft error vulnerability metric, called
System Soft Error Rate (SSER), for quantifying system reliability
of multiprogram workloads on (heterogeneous) multicores. The
scheduler leverages a counter architecture to track occupancy in
various hardware structures. The hardware cost for the counter
architecture amounts to 904 bytes per core for the baseline version;
the area-optimized version requires as little as 296 bytes per core.
Reliability-aware scheduling reduces system soft error rate by
32% on average (and up to 55.6%) for four-program workloads on
an HCMP with two big and two small cores compared to random
scheduling, while yielding similar performance. Compared to
performance-optimized scheduling, soft error rate is reduced by
25.4% on average (and up to 60.2%), while degrading perfor-
mance by 6.3% only.

This journal paper is an extension upon the previously pub-
lished paper at the 2017 HPCA conference [1]. In the conference
paper, we showed that our scheduler performs well across core
count, number of big versus small cores, and frequency settings.
In this journal paper, we explore the trade-off in reliability-,
power- and performance-optimized scheduling; we demonstrate
how to extend reliability-aware scheduling under performance
constraints, i.e., we optimize reliability while not degrading
performance by more than a predefined threshold; we evaluate
reliability-aware scheduling for multi-threaded workloads and
conclude that there is limited opportunity because of the homoge-
neous nature of data-parallel workloads; finally, we demonstrate
the applicability of reliability-aware scheduling even in the case

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2779480, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 00, NO. 0, SEPTEMBER 0000 2

where L1 caches are not protected and scheduling needs to take
into account the vulnerability to soft errors in the L1 caches.

Overall, we make the following contributions in this work:

• We analyze the difference in reliability characteristics
between big and small cores.

• We show the potential for optimizing reliability through
scheduling on HCMPs.

• We define a novel metric, System Soft Error Rate (SSER),
for assessing reliability to soft errors for multiprogram
workloads on (heterogeneous) multicores.

• We propose a dynamic online reliability-aware scheduler
to optimize reliability in HCMPs (under performance
constraints).

• We experimentally evaluate reliability-aware scheduling
and show that our scheduler is able to significantly reduce
vulnerability to soft errors.

The remainder of this paper is organized as follows. Section 2
analyzes the reliability characteristics in an HCMP, and shows that
there is significant potential for reliability-aware scheduling. In
Section 3, we propose the SSER metric for quantifying the soft er-
ror rate of multiprogram workloads. In Section 4, we then describe
our reliability-aware scheduler. After detailing our experimental
setup in Section 5, we evaluate and analyze our proposed scheduler
in Section 6. We explore the trade-offs between performance-
, power- and reliability-optimized scheduling in Section 7. We
further evaluate reliability-aware scheduling under performance
constraints (Section 8); we evaluate reliability-aware scheduling
using multi-threaded workloads (Section 9); and we incorporate
L1 cache vulnerability in our scheduler (Section 10). Finally, we
describe related work (Section 11) and conclude (Section 12).

2 MOTIVATION

We first analyze the difference in vulnerability to soft errors
across core types, and then show the potential for reliability-aware
scheduling using an offline oracle approach.

2.1 Terminology
Before doing so, we first introduce some terminology. An ACE
bit (architecturally correct execution) is a bit in the processor
that will cause an error during program execution when flipped,
affecting user-visible state (program crash or wrong output). We
assume each bit in the processor pipeline holding state of a correct-
path and non-nop instruction to be ACE; i.e., all bits in the issue
queue, load/store queue, reorder buffer, physical register file, and
functional unit holding state of a correct-path, non-nop instruction
are considered ACE. Structures that improve performance but do
not affect functional correctness (e.g, a branch predictor) do not
contain any ACE bits. ACE bit count (ABC) is defined as the total
number of ACE bits over the entire execution of a program.

The architectural vulnerability factor (AVF) [3] is the fraction
of ACE bits to the total number of bits in a structure, core
or the whole processor. AVF is application-dependent, as some
applications occupy more or fewer entries in the core structures,
and/or have more or fewer wrong-path instructions. Soft error rate
(SER) is the average number of errors (on ACE bits) that occur
per unit of time, e.g., 0.01 errors per day, and is the reciprocal of
the mean time to failure (MTTF), e.g., 100 days. Intrinsic fault
rate (IFR) is the probability for a single one-bit error per second,
or, in other words, the average number of errors per unit of time

0

5

10

15

20

25

30

35

40

45

50

g
o

b
m

k

g
cc

sj
en

g

b
zi

p
2

m
cf

p
er

lb
en

ch

as
ta

r

n
am

d

d
ea

lI
I

li
b

q
u

an
tu

m

p
o

v
ra

y

x
al

an
cb

m
k

h
2

6
4

re
f

so
p

le
x

o
m

n
et

p
p

h
m

m
er

g
am

es
s

to
n

to

lb
m

g
ro

m
ac

s

sp
h

in
x

3

b
w

av
es

ca
lc

u
li

x

m
il

c

w
rf

le
sl

ie
3

d

G
em

sF
D

T
D

ca
ct

u
sA

D
M

ze
u

sm
p

A
V

F
 (

%
)

big-core small-core

Low Medium High

Fig. 1: AVF for the SPEC CPU2006 benchmarks on a big out-of-
order and a small in-order cores. The benchmarks are sorted by
their AVF on the big core.

in a single one-bit cell, e.g., 10−6 per day; IFR depends on the
technology and the environment. As such, SER can be calculated
as the number of ACE bits per unit of time times IFR. Assuming
IFR is constant, ABC is therefore proportional to SER.

Formally, ABC, AVF and SER of a program running on a
processor core with N bits is defined as:

ABC =
N∑
i=1

(ACE cycles for bit i) (1)

AVF =
ABC

N × Total cycles
(2)

SER =
ABC

Total cycles
× IFR. (3)

2.2 Reliability versus Core Type

It is commonly known that different core types in a heterogeneous
multicore processor exhibit different performance and power char-
acteristics. However, different core types also exhibit differences
in reliability.

There are basically three contributors to the reliability of an
application running on a core:

• The size of the structures in the core that hold architecture
state and are required to guarantee functional correctness.
These include the register file, functional units, issue
queue, reorder buffer (for an out-of-order processor), etc.
The larger these structures are, the higher the probability
for an error in those structures. This first contributor is
thus determined by the design itself.

• The fraction of the architecturally relevant structures that
an application occupies, i.e., AVF. Some applications oc-
cupy only a small fraction of these structures, or have
a lot of non-architecturally relevant instructions (nops
and wrong-path instructions). The smaller the occupied
fraction is, the smaller the error probability. This second
contributor depends on the workload.

• The performance of the application on that core type. If
an application executes faster, it will finish sooner, and
therefore it will be less vulnerable to errors.

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2779480, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 00, NO. 0, SEPTEMBER 0000 3

0%

20%

40%

60%

80%

100%

g
o
b
m

k
g
cc

sj
en

g
b
zi

p
2

m
cf

p
er

lb
en

ch
as

ta
r

n
am

d
d
ea

lI
I

li
b
q
u
an

tu
m

p
o
v
ra

y
x
al

an
cb

m
k

h
2
6
4
re

f
so

p
le

x
o
m

n
et

p
p

h
m

m
er

g
am

es
s

to
n
to

lb
m

g
ro

m
ac

s
sp

h
in

x
3

b
w

av
es

ca
lc

u
li
x

m
il

c
w

rf
le

sl
ie

3
d

G
em

sF
D

T
D

ca
ct

u
sA

D
M

ze
u
sm

p

BASE BRANCH I-FETCH RESOURCE-STALLS L3 DRAM

Fig. 2: Normalized CPI stacks for the SPEC CPU2006 bench-
marks on a big out-of-order core.

Now consider a big out-of-order core and a small in-order
core in an HCMP. Obviously, the big core has larger structures
than the small core. As a result, a big core is likely to expose
more vulnerable state than a small core. However, the degree
of vulnerability also depends on structure occupancy which is a
function of the application and its performance.

2.3 Application Sensitivity

Applications exhibit varying degrees of sensitivity to soft error
vulnerability. AVF is an insightful metric to understand an appli-
cation’s vulnerability to soft errors. Figure 1 shows AVF for the
SPEC CPU2006 benchmarks on a big out-of-order core as well
as a small in-order cores. (See Section 5 for details regarding our
experimental setup.) The benchmarks are sorted by their AVF on
the big core. AVF accounts for all the ACE bits in the processor
during the entire execution. In particular, if an ACE instruction
occupies 64 bits in the reorder buffer (ROB) for 16 cycles, this
amounts to 1024 ACE bits. This way of measuring incorporates
structure size, occupancy and execution time. As expected, AVF is
higher for the big out-of-order core compared to the small in-order
core; this is because a big core holds more architecture state. Note
however that in spite of the fact that AVF is higher on the small
core than the big core for the left-most benchmark, gobmk, it is
still less vulnerable to soft errors on the small core because of the
smaller structure size, i.e., N is smaller.

The applications appearing on the right-hand side of the graph
are most sensitive to reliability-aware scheduling, i.e., when sched-
uled on the big core, AVF (and thus SER) increases significantly
compared to running on the small core. Applications appearing
on the left-hand size are less sensitive, i.e., the increase in SER
on the big core is not as high, and thus if given the choice,
scheduling these applications on a big core rather than a small core
will not increase overall system soft error rate as much. Figure 1
classifies the benchmarks into three categories based on their big-
core AVF: high, medium and low. We will use this classification
for analyzing the performance of our reliability-aware scheduler
across workload types in the evaluation section.

It is interesting to relate the AVF graph to the normalized CPI
(cycles per instruction) stacks shown in Figure 2. A CPI stack
quantifies the fraction of cycles spent doing useful work (i.e.,
the base component) plus a number of adders or components to
represent ‘lost’ cycles because of resource stalls, branch mispre-
dictions, instruction cache misses, last-level cache (LLC) misses
and main memory accesses. Note that the benchmarks are ordered

0

10

20

30

40

50

60

70

%
lo

ss
/g

ai
n

sorted workloads

%STP loss %SER gain

Fig. 3: Percentage STP loss and SER gain for an oracle reliability-
optimized scheduler relative to a performance-optimized scheduler
for four-program workloads on an HCMP with two big cores and
two small cores.

the same way as in Figure 1. The benchmarks on the left-hand
side exhibit low AVF primarily because of their relatively high
front-end miss components. Front-end miss events, such as branch
mispredictions and instruction cache misses, cause the pipeline
to be drained and hence there is relatively little vulnerable state
in the processor. The benchmarks on the right-hand side on the
other hand have a high AVF because they exhibit high occupancy
in various back-end structures of the pipeline for a variety of
reasons. Some benchmarks (e.g., milc) are memory-intensive:
a load operation accessing main memory typically blocks the
head of the reorder buffer, which causes the ROB to fill up, and
which leads to significant ACE state while servicing the mem-
ory operation. Other high-AVF benchmarks (e.g., zeusmp) are
compute-intensive: high IPC and high MLP is achieved by having
high occupancy in various back-end queues. Yet other benchmarks
experience resource stalls in the back-end structures because of
L1 data cache misses, L2 cache misses, limited ILP (i.e., chains of
dependent instructions) which cause the ROB and issue queues to
fill up with instructions. Note that there are a number of memory-
intensive benchmarks (e.g., mcf and libquantum) that exhibit
low AVF. This is because these benchmarks suffer from branch
mispredictions which lead to a large number of un-ACE wrong-
path instructions in the ROB underneath memory accesses.

The take-away message from this analysis is that there exists
no simple workload characteristic (e.g., compute-intensive versus
memory-intensive) to determine how sensitive a workload is with
respect to reliability. Instead, it depends on how AVF-intensive an
application is, which is a result of complex interactions among
various workload characteristics and the underlying microarchi-
tecture. This suggests that reliability-aware scheduling needs a
dynamic mechanism to monitor an application’s reliability on
either core type in a heterogeneous multicore and adjust the
schedule accordingly.

2.4 Oracle Reliability-Aware Scheduling
To quantify the potential of reliability-aware scheduling, we per-
form the following experiment. We simulate each application on
both core types in isolation, and record performance and SER.
We then consider all combinations of four applications on a
heterogeneous multicore processor with two big and two small
cores. Of the six possible schedules, we select the one with the
highest performance (expressed in system throughput (STP) [19]),

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2779480, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 00, NO. 0, SEPTEMBER 0000 4

and the one with the lowest total SER. (See the next section for
the metric we use to quantify SER for a multiprogram workload.)
We assume no interference in shared resources, and consider the
performance and SER numbers from the isolated experiments.
This leads to an oracle offline schedule. Figure 3 shows SER
reduction and performance loss for the SER-optimized schedule
normalized to the performance-optimized schedule. Clearly, the
reduction in SER is much higher than the loss in performance,
resulting in an average 27.2% reduction in SER (and up to
62.8%) while degrading performance by 7% on average. This
result demonstrates the significant potential and motivates our
study on reliability-aware scheduling for heterogeneous multicore
processors.

3 RELIABILITY METRIC FOR
MULTIPROGRAM WORKLOADS

Reliability is commonly quantified using soft error rate (SER), i.e.,
the number of errors per unit of time. This works fine for single-
program workloads, but falls short for multiprogram workloads,
as we will explain in this section; we then subsequently propose a
novel system-level reliability metric for multiprogram workloads
on (heterogeneous) multicores.

With T as the total execution time (total cycles in Equation 3),
let us recap the definition of soft error rate (SER) for single-
program workloads:

SER =
ABC

T
× IFR. (4)

In other words, SER computes the number of ACE bits per unit of
time multiplied by the intrinsic fault rate. As long as we measure
SER for a single-program workload by running (a well-defined
section of) the workload to completion, we can safely evaluate
reliability using SER because the unit of work is constant.

3.1 System Soft Error Rate

SER breaks down for multiprogram workloads. We cannot simply
add up SER numbers for each of the applications in a multipro-
gram workload because some applications are inherently more
vulnerable to soft errors than others — adding raw SER numbers
would give too much weight to fast running applications and too
little weight to slow running applications. This is similar to per-
formance metrics for multiprogram workloads, i.e., adding plain
IPC numbers gives more weight to high-IPC applications. The
fundamental problem here is that SER does not take into account
the impact of performance on the error rate: lower performance
makes the application run longer, increasing the probability for an
error during its execution.

The solution is to weight per-application SER with the slow-
down incurred because of multiprogram execution. Application
slowdown is defined as the execution time of an application on
the (heterogeneous) multicore divided by its execution time on
a reference machine (e.g., an isolated big core). A slowdown
of 1 means that the application executes equally fast as on the
reference machine; a slowdown of 2 means that the application
takes twice as long under multiprogram execution compared to
isolated execution. We then define weighted SER (wSER) of an
application in a multiprogram workload as follows:

wSER =
ABC

T
× T

Tref
× IFR =

ABC

Tref
× IFR (5)

TABLE 1: Examples illustrating the SSER metric.
(a) homogeneous multicore: SSER=2

SER slowdown wSER
benchmark A on big 1 1 1
benchmark B on big 1 1 1

(b) homogeneous multicore: SSER=3
SER slowdown wSER

benchmark A on big 1 2 2
benchmark B on big 1 1 1

(c) heterogeneous multicore: SSER=1.5
SER slowdown wSER

benchmark A on small 1/8 4 0.5
benchmark B on big 1 1 1

with ABC and T the ABC and execution time of the application
in the multiprogram workload, respectively; and Tref the execu-
tion time of the application on an isolated reference core (e.g.,
a big core in a heterogeneous multicore). In other words, wSER
weights the application’s SER during multiprogram execution with
its slowdown compared to isolated execution. This is to account
for the fact that if the application runs longer during multiprogram
execution (which is what you would expect because of interference
in shared resources), it gets exposed to soft errors for a longer time.

Summing the weighted SER values for the individual appli-
cations in a multiprogram workload then yields our novel system
soft error rate (SSER) metric:

SSER =
n∑

i=1

wSERi =
n∑

i=1

ABC i

Ti,ref
× IFR (6)

which quantifies the total weighted SER across all the applications
in the multiprogram workload. SSER gives bigger weights to
slow-running applications in the multiprogram workload mix, and
smaller weights to fast-running applications. This is to account
for the fact that slow-running applications will be exposed to soft
errors for a longer time, hence we scale their per-application SER
proportionally with their relative slowdown.

3.2 Illustrative Examples

We now illustrate the intuitive and system-level meaning of SSER
using a couple examples, see also Table 1. Consider a homoge-
neous multicore with two big cores, and assume that the two co-
running applications do not interfere with each other, i.e., they
both run equally fast on the homogeneous multicore compared
to isolated core execution, see example (a) in Table 1. Assume
further that per-application SER is not affected by multiprogram
execution. SSER equals 2 in this case, which makes perfect sense:
the system’s vulnerability is twice as high on the homogeneous
multicore compared to isolated execution because we now have
two co-running applications.

Assume now that one application slows down by a factor of 2
(e.g., because of hardware interference) and the other application
is not affected at all, see example (b) in Table 1. In this case, SSER
equals 3, i.e., a weighted SER of 1 for the application that does
not slow down, plus a weighted SER of 2 for the application that
slows down by a factor two. This makes intuitive sense because it
takes two times as long for the slow application to get the same
amount of work done, and therefore the slow application is twice
as vulnerable.

Consider now a heterogeneous multicore, see example (c) in
Table 1. Assume that the application that runs on the small core
experiences a slowdown of 4 while its SER reduces by a factor of

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2779480, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 00, NO. 0, SEPTEMBER 0000 5

8 compared to running on the big core (we expect lower SER on
the small core because it holds less state than on the big core). As
a result, its weighted SER equals 0.5, i.e., the application is slowed
down by a factor of 4 but it is 8 times less vulnerable to soft errors
per unit of time, hence it is only half as vulnerable for getting
the work done. SSER thus equals 1.5. Note that SSER in example
(c) is smaller than for the homogeneous multicore examples (a)
and (b); this is due to the fact that even though the benchmark
running on the small core slows down substantially, it exposes far
fewer ACE bits, which leads to a net reduction in overall system
vulnerability.

4 RELIABILITY-AWARE SCHEDULING

Having demonstrated the potential for reliability-aware scheduling
and having derived the SSER metric for quantifying system-level
reliability, we now describe our sampling-based reliability-aware
scheduler for heterogeneous multicores. We assume that we can
measure the performance of each application on each core (e.g.,
the number of instructions executed during the last scheduler
quantum), and the number of ACE bits in each structure (i.e.,
ACE bit count or ABC over the past quantum), which we both
need to compute SSER. We quantify the hardware overhead for
measuring ABC later in this section; we start by explaining the
scheduling algorithm.

4.1 Scheduling Algorithm
The scheduler starts with an initial sampling phase to collect
performance and ABC information for each application on either
core type. If the number of big cores equals the number of small
cores, this requires two sampling quanta: we first put one half of
the applications on a big core and put the other half on a small
core in the first sampling quantum, and we invert this schedule
in the next sampling quantum, i.e., the applications running on a
big core are moved to a small core, and vice versa. If the number
of big cores is not equal to the number of small cores, e.g., 1
big core and 3 small cores, more quanta are needed to sample
each application on each core type (4 sampling quanta in this
example). After this initial sampling phase, the scheduler follows
the algorithm described in Algorithm 1.

The algorithm first verifies whether the sampled data is recent.
If an application has run for 10 consecutive scheduling quanta on
the same core type, a sampling phase is triggered: the application
is scheduled on the other core type by swapping it (during a short
sampling quantum) with the application that is running for the
most consecutive quanta on the other core type. By doing so, the
scheduler ensures that the sample data is up-to-date, adapting to
potential phase changes.

If all applications have recently sampled data for both core
types, the scheduler calculates the weighted SER (wSER) for each
application if we were to schedule them on the other core type than
they are currently scheduled on. It then selects the application
with the highest wSER reduction and the application with the
smallest wSER increase, and checks whether swapping the two
applications leads to a net overall SSER reduction. If so, the
applications are swapped, and the next couple is checked. If no
global SSER reduction can be obtained, the current schedule is
maintained for the next quantum. After finishing a quantum, the
sample data is automatically updated.

We need to sample both performance and ABC, because
the SSER metric needs both. Sampling ABC requires hardware

Algorithm 1 Sampling-based reliability-aware scheduler. (n is the
number of applications.)

1: sampleRequired = false
2: quantumNumber = 0
3: lastSampledAt = 0
4: while true do
5: if quantumNumber ≤ 2

or (quantumNumber − lastSampledAt) == 10 then
6: sampleRequired = true
7: end if
8: if sampleRequired == true then
9: startSamplingPhase()

10: lastSampledAt = quantumNumber
11: sampleRequired = false
12: continue
13: end if
14: for i = 1 to n do
15: reduction[i] = getWeightedSERReduction(i)
16: coreAssigned[i] = false
17: for j = i+ 1 to n do
18: maxReduction[i,j]= 0
19: end for
20: end for
21: for i = 1 to n do
22: for j = i+ 1 to n do
23: if coreType[i] == coreType[j] then
24: continue
25: end if
26: if (reduction[i] − reduction[j]) >

maxReduction[i,j] then
27: maxReduction[i,j] =

reduction[i] - reduction[j]
28: end if
29: end for
30: end for

{sortedReductions contains an array of n maxReductions[i,j] in
their decreasing order}

31: sortedReductions[n] = sortMaxReductions()
32: for k = 1 to n do
33: currReduction[i,j] = sortedReductions[k]
34: if currReduction[i,j] > 0

and coreAssigned[i] == false
and coreAssigned[j] == false then

35: switchCoreTypes(i,j)
36: coreAssigned[i]= true
37: coreAssigned[j]= true
38: end if
39: end for
40: for i = 1 to n do
41: ABC[i] = getCurrentQuantumABC(i)
42: IPC[i] = getCurrentQuantumIPC(i)
43: end for
44: quantumNumber++
45: end while

support to compute occupancy in all relevant processor structures,
as we will describe in the next section. Sampling performance
can be done by counting the number of instructions executed per
quantum — we sample at fixed time quanta (1 ms in our setup).
This involves a basic performance counter that is implemented in
most recent processors. To compute an application’s slowdown,
we take the big core as the reference core. Because we have no
reference performance data of an isolated big core execution, we
assume that the sampled big core performance is a good proxy for
reference core performance. Note that the sampled value is subject
to interference in the shared resources (e.g., shared cache and
memory) because other programs are co-running while sampling.

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2779480, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 00, NO. 0, SEPTEMBER 0000 6

0

5

10

15

20

0 20 40

A
C

E
 b

it
s

(i
n

 B
il

li
o

n
s)

time (ms)

0

5

10

15

20

0 20 40 60 80
A

C
E

 b
it

s
(i

n
 B

il
li

o
n
s)

time (ms)

Fig. 4: ABC over time for calculix and povray when exe-
cuted in isolation on a big core (on the left) and as a two-program
workload on one big core and one small core under reliability-
aware scheduling (on the right).

It is important for a sampling-based scheduler to limit sam-
pling overhead. On the other hand, we need to sample for a suffi-
ciently long period of time to obtain stable sampling information.
This is why we make a distinction between a sampling quantum
and a scheduler quantum. We set the scheduler quantum to 1 ms in
all of our experiments, and the sampling quantum to one tenth the
scheduler quantum or 0.1 ms. All results in the evaluation section
include sampling overhead.

Figure 4 illustrates how our reliability-aware scheduler reacts
to time-varying execution behavior; each dot represents ABC per
1 ms. The left graph shows ABC over time for calculix and
povray when executed in isolation on a big core; the right
graph shows ABC when executed concurrently on an HCMP with
one big and one small core. When run in isolation, povray
experiences almost constant ABC; calculix on the other hand
experiences a big drop in ABC towards the end of its execution.
When co-executed on the HCMP, calculix is scheduled on the
small core initially due to its high big-core ABC compared to
povray. Upon the phase change in calculix, the scheduler
responds by migrating the two applications. The multi-program
workload case also illustrates sampling overhead: sampling is
initiated once every 10 scheduler quanta for one tenth of the quan-
tum, so we sample one percent of the time. Sampling incurs the
drops and spikes in the ABC curves for povray and calculix,
respectively. (Note that the curves include data points for the
scheduling quanta and the sampling quanta, i.e., ten scheduling
quanta of 1 ms each followed by a sampling quantum of 0.1 ms.)

4.2 Hardware Overhead

As mentioned in the previous section, computing ABC in support
of our reliability-aware scheduler requires hardware support. For
an out-of-order core, we need counters for the five major struc-
tures, including the ROB, issue queue, load/store queue, register
file and functional units. Furthermore, we also need to factor
out wrong-path and nop instructions. We propose the following
hardware additions. Per ROB entry, we keep two extra counters:
one for recording the dispatch time of an instruction (i.e., the
time it is inserted into the ROB), and one for recording the issue
time (i.e., the time the instruction starts executing). These counters
should be large enough to cover the maximum number of cycles an
instruction resides in the ROB; we set the size of the counter to be

12 bits (maximum of 4096 cycles). At the time the instruction
commits — which ensures that it is a correct-path instruction
— we can deduce the time this instruction spent in each of the
architecturally relevant structures:

• The time spent in the ROB is the commit time minus the
dispatch time.

• The time spent in the issue queue is the issue time minus
the dispatch time.

• For a load or store instruction, the time spent in the
load/store queue is the commit time minus the dispatch
time — we model an architecture where load/store queue
entries are allocated at dispatch time.

• The time the physical output register of an instruction is
ACE is the commit time minus the finish time (which is
the issue time plus its execution latency). Note that all
architectural registers are ACE all of the time.

• The time spent in a functional unit is the functional unit’s
execution latency.

At the commit stage, where we keep one counter for each of the
five structures, we add the per-instruction occupancy in each of
the five structures to the respective overall counters. By doing
so, the counters keep track of the accumulated occupancy in
the respective structures. At the end of a quantum, total ABC
is calculated as the accumulated occupancy times the number of
bits per entry — the multiplication is done by the scheduler in
software.

The total hardware overhead amounts to:

• Two 12-bit counters per ROB entry, which amounts to
3072 bits for a 128-entry ROB.

• One 32-bit counter per profiled structure, which amounts
to 160 bits for 5 counters (with one counter per structure).
32 bits is sufficient for the quantum size in our setup (2.6
million cycles at 2.6 GHz, and at most 128 entries per
structure).

• Additional functional units for calculating occupancy and
adding them to the counter. We need 5 adders per instruc-
tion in the data path (one per structure), and since up to 4
instructions can commit per cycle, this requires 20 adders
in total.

Total hardware overhead thus equals 3,232 bits plus 20 adders.
Extrapolation from [20] suggests that a 32-bit adder consumes
about 1,200 transistors. One SRAM cell contains 6 transistors, so a
rough equivalence relation is 200 SRAM bits for one 32-bit adder.
So, in total the hardware overhead of this baseline implementation
equals 7,232 bits or 904 bytes.

To reduce the hardware overhead for the big core, the sched-
uler can use ACE bit information of the ROB only. We choose
the ROB, because it is a central structure, containing a lot of
useful state, and all other structures contain a subset of the
instructions in the ROB. This is confirmed by the ACE bit count
(ABC) stacks shown in Figure 5 for the one-billion instruction
workloads considered in this study. ABC stacks represent the
breakdown of the total occupancy of a core in its microarchitecture
structures. ROB ABC correlates very well with overall core ABC
(correlation coefficient of 0.99) and contributes to almost half of
the total occupancy of the core across all benchmarks. In other
words, ROB ABC can serve as a proxy for the overall core ABC,
which allows for correct scheduling decisions to be made using
relative ABC numbers across applications. (When using ROB-
ABC instead of core-ABC in our final scheduler, we find it to be

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2779480, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 00, NO. 0, SEPTEMBER 0000 7

0

2

4

6

8

10

12

14

g
o

b
m

k

g
cc

sj
en

g

b
zi

p
2

m
cf

p
er

lb
en

ch

as
ta

r

n
am

d

d
ea

lI
I

li
b

q
u

an
tu

m

p
o

v
ra

y

x
al

an
cb

m
k

h
2

6
4
re

f

so
p

le
x

o
m

n
et

p
p

h
m

m
er

g
am

es
s

to
n
to

lb
m

g
ro

m
ac

s

sp
h

in
x

3

b
w

av
es

ca
lc

u
li

x

m
il

c

w
rf

le
sl

ie
3
d

G
em

sF
D

T
D

ca
ct

u
sA

D
M

ze
u

sm
p

A
C

E
 b

it
s

(i
n

 T
ri

ll
io

n
s)

ROB functional units issue queue register file load queue store queue

Fig. 5: ABC stacks for the out-of-order core.

within 0.7% for four-program workloads running on 2 big and 2
small cores. Therefore, this is a worthwhile optimization.) For this
implementation, we only need the dispatch time per ROB entry (12
bits times 128 entries equals 1,536 bits), one ROB ACE counter
(32 bit) and 4 adders, resulting in a total of 2,368 bit equivalents
or 296 bytes in total for this area-optimized implementation.

For the small in-order core, we only keep track of the fetch
time. Because all instructions need to go through all stages, and
each stage has a similar buffer for each instruction, we can calcu-
late the time between fetch and writeback of each instruction as a
way to account for the number of ACE bits in the pipeline buffers.
In addition, we add the functional unit ACE bits by multiplying
the latency of the operation by the size of the functional unit. This
requires 10 fetch time counters (5 stages times 2 instructions per
stage) at 10 bits per counter (the time an instruction spends in the
in-order core is usually less than in an out-of-order core), and one
32-bit total ACE counter. This amounts to 132 bits and two adders
in total, resulting in 532 bit equivalents or 67 bytes.

5 EXPERIMENTAL SETUP

Because there is no way of evaluating architectural vulnerability
on real hardware, we evaluate our scheduler through simulation.
We use Sniper 6.0 [21], a parallel, high-speed, and cycle-level x86
simulator for multicore systems that has been validated against real
hardware; we assume the most detailed simulation model available
in Sniper. We augment Sniper with ACE bit counters to count the
number of ACE bits in the different structures. For the big out-of-
order core, we count ACE bits in the ROB, issue queue, load/store
queue, register file and functional units. Similarly, for the small in-
order core, we count ACE bits in the fetch, decode, register read,
execute and write-back stages. Nops and wrong-path instructions
are assumed to be non-ACE. Table 2 shows the configurations
of the big out-of-order and the small in-order core types, as well
as the bit counts per entry in each structure (taken from Nair et
al. [22]). Note that we assume the same cache hierarchy for the
small and big cores; however, in Section 10 where we focus on L1
cache vulnerability, we will vary the cache size of the small core
to study the sensitivity to the cache hierarchy.

The overhead for saving and restoring microarchitectural
state to support core migration plus the overhead of weighted
speedup/SER calculation is conservatively modeled as 20 µs.
The impact of cache warming (including cache-to-cache transfer
latency) is modeled faithfully in the simulator. The overall impact
of the different overheads on system throughput is less than 0.5%
for both the performance- and reliability-optimized schedulers.

TABLE 2: Big and small core configurations.

Big core Small core
Frequency 2.66 GHz 2.66 GHz
Type out-of-order in-order
ROB size 128, 76 bit/entry -
Issue queue size 64, 32 bit/entry 4, 32 bit/entry
Load queue size 64, 80 bit/entry -
Store queue size 64, 144 bit/entry 10, 144 bit/entry
Pipeline width 4 2
Pipeline depth 8 stages 5 stages

(front-end only) 2 × 76 bit/stage
Functional units 3 int add (1 cyc) 2 int add (1 cyc)

1 int mult (3 cyc) 1 int mult (3 cyc)
1 int div (18 cyc) 1 int div (18 cyc)
1 fp add (3 cyc) 1 fp add (3 cyc)
1 fp mult (5 cyc) 1 fp mult (5 cyc)
1 fp div (6 cyc) 1 fp div (6 cyc)

Register file 120 int (64 bit) 16 int (64 bit)
96 fp (128 bit) 16 fp (128 bit)

L1 I-cache 4-way 32 KB, 2 cyc 4-way 32 KB, 2 cyc
L1 D-cache 8-way 32 KB, 4 cyc 8-way 32 KB, 4 cyc
Private L2 cache 8-way 256 KB, 8 cyc 8-way 256 KB, 8 cyc
Shared L3 cache 16-way 8 MB, 30 cyc
Memory BW 25.6 GB/s, lat 45 ns

We create multiprogram workloads from the SPEC CPU2006
benchmarks. We construct 1 billion instruction SimPoints [23] for
each benchmark. We categorize benchmarks into three groups,
based on their big-core AVF, see also Figure 1. The eight bench-
marks with the highest AVF are classified in the high sensitivity
group (H); the eight benchmarks with the lowest AVF are clas-
sified as low sensitivity (L); and the 13 remaining benchmarks
have medium sensitivity (M). For the two-program combinations,
we make 6 categories of mixes: HH, HM, HL, MM, ML and
LL. We randomly generate 6 workloads in each category, while
making sure that each benchmark occurs at least once; this results
in 36 evaluated workloads. For the four-program combinations,
we take the same 6 mix categories by doubling the benchmark
categories: HHHH, HHMM, HHLL, MMMM, MMLL and LLLL,
and again generate 6 workloads in each category. We do not du-
plicate individual benchmarks, i.e., HHHH contains four different
benchmarks. We do another doubling round for the eight-program
combinations.

We evaluate the four-program workloads on a symmetric
HCMP configuration consisting of 2 big and 2 small cores (2B2S).
The standard quantum time is 1 ms. For each experiment, the
longest running application executes its full 1 billion instruction
SimPoint, and the faster running applications are restarted until the
end of the experiment. For the applications that restart, we record
performance and wSER across all repetitions of that application.
The reason is that the longer running application could enter a
new phase near the end of its execution, causing the schedule
to change, which in turn impacts the other applications. Taking
results from the first execution only for the repeating applications
would not cover these changes in the schedule.

Note that in this work we assume a fixed DRAM access
latency. We evaluate the impact of this assumption on the results
reported in this paper by also considering a variable latency
DRAM model that includes different banks and ranks, an open-
page policy, and different latencies for accessing an open versus
closed page. We notice that the variable-latency DRAM model
leads to significant differences in absolute IPC and ABC for
the individual benchmarks. However, there was no significant

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2779480, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 00, NO. 0, SEPTEMBER 0000 8

(a) Reliability (SSER)

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
S

S
E

R
 n

o
rm

al
iz

ed
 t

o
 r

an
d

o
m

sorted workloads

 performance-optimized reliability-optimized

(b) Performance (STP)

0.8

0.9

1.0

1.1

1.2

S
T

P
 n

o
rm

al
iz

ed
 t

o
 r

an
d

o
m

sorted workloads

 performance-optimized reliability-optimized

Fig. 6: System soft error rate (a) and system throughput (b) for
reliability- and performance-optimized scheduling normalized to
random scheduling for all four-program workloads on an HCMP
with 2 big cores and 2 small cores.

difference in terms of the overall reliability and performance for
the evaluated schedulers when executing multiprogram workloads
on an HCMP. The reason is that the relative differences between
the evaluated schedulers remains unaffected when changing the
details of the DRAM model.

6 EVALUATION

We evaluate the following three schedulers:

• The random scheduler, for each time slice, randomly
selects the applications to run on the big core(s).

• The reliability-optimized scheduler optimizes SSER using
the algorithm described in Section 4.

• The performance-optimized scheduler optimizes system
throughput (STP) [19] or weighted speedup, using the
same sampling-based scheduling algorithm optimizing for
STP rather than SSER.

In this section, we focus on the results for the 2B2S configuration.
We refer the interested reader to the conference paper [1] for
more detailed analysis and results across different core counts,
asymmetric HCMP configurations and different clock frequencies
for the big versus small cores. In addition, we also studied the
impact of using only ROB ACE bits to steer scheduling as well as
the impact of the sampling period.

6.1 2B2S Results
Figure 6 evaluates system soft error rate (SSER) and system
throughput (STP) for the reliability- and performance-optimized

schedulers, normalized to the random scheduler, for four-program
workloads running on a 2B2S HCMP. SSER is a lower-is-better
metric, while STP is a higher-is-better metric. Each dot represents
a workload; the workloads are sorted by SSER and STP, respec-
tively.

The reliability-optimized scheduler significantly and consis-
tently improves reliability, i.e., SSER reduces by 32% on average
and up to 55.6% compared to the random scheduler; and by 25.4%
on average and by up to 60.2% compared to the performance-
optimized scheduler. Reliability-aware scheduling effectively de-
termines which applications are most vulnerable to soft errors
and puts those applications on the small cores to improve overall
system reliability.

The performance-optimized scheduler also reduces SSER over
the random scheduler (by 7.3% on average). This improvement
is substantially smaller and, moreover, it is not consistent, i.e.,
reliability decreases for a number of workloads. The reason for the
(average) improved reliability is the apparent correlation between
performance and reliability.

In terms of performance, the reliability-optimized scheduler
yields similar performance to the random scheduler (half of
the workloads are worse, half are better, resulting in an av-
erage near 0% difference), and degrades performance by only
6.3% on average (and by 18.7% at most) compared to the
performance-optimized scheduler. The performance improvement
of performance-optimized scheduling over random scheduling is
in line with prior work [15].

6.2 Analysis by Workload Category
Figure 7 shows the same results as Figure 6 but now groups the
results per workload category, with the categories defined based on
big-core AVF, see Section 2.3. The largest improvement in system
reliability is observed for the workload category that includes
high-AVF applications and low-AVF applications (see HHLL).
This does not come as a surprise: the high-AVF applications are
scheduled on the small cores to reduce overall system reliability,
while scheduling the low-AVF applications on the big cores.
The workload categories with less divergent application behav-
ior (HHMM and MMLL) also show substantial improvements
in reliability, though not as high as for the HHLL category.
Here, again, reliability-aware scheduling is able to schedule the
applications with high AVF (relative to the other applications in
the mix) on the small cores and vice versa. For the workload
categories with similarly AVF-sensitive applications (all H, M or L
applications), we observe modest improvement in reliability. The
reliability-aware scheduler makes the correct scheduling decisions
in terms of AVF, i.e., it schedules applications with the highest
AVF on the small cores and vice versa. Nevertheless, this leads
to a small improvement in system reliability because of the
lower system performance compared to performance-optimized
scheduling, which tempers the improvement in soft error rate —
remember that SSER weights relative per-application slowdown.

7 PERFORMANCE VERSUS POWER CONSUMPTION
VERSUS RELIABILITY

There is an important trade-off between performance, power and
reliability, as corroborated by a recent study [24]. In the previous
section, we focused on performance and reliability. However,
changing the workload schedule on a heterogeneous multicore
also affects power consumption. Therefore, in this section, we

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2779480, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 00, NO. 0, SEPTEMBER 0000 9

(a) Reliability (SSER)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

HHHH HHMM HHLL MMMM MMLL LLLL

S
S

E
R

 n
o

rm
al

iz
ed

 t
o
 r

an
d

o
m

random performance-optimized reliability-optimized

(b) Performance (STP)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

HHHH HHMM HHLL MMMM MMLL LLLL

S
T

P
 n

o
rm

al
iz

ed
 t

o
 r

an
d

o
m

random performance-optimized reliability-optimized

Fig. 7: SSER (a) and STP (b) on a 2B2S system per workload
category.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1B1S 2B2S 4B4S 1B1S 2B2S 4B4S

n
o

rm
al

iz
ed

 t
o

 r
an

d
o

m

random performance-optimized reliability-optimized

chip-level power total system power

Fig. 8: Impact on chip-level and total system power consumption.

first evaluate how reliability-aware scheduling affects power con-
sumption. We then subsequently explore the trade-off between
scheduling for performance, power and reliability.

7.1 Impact of Reliability-Aware Scheduling on Power
Figure 8 quantifies the impact on chip-level power (including L3)
and total system power (processor plus DRAM) with increasing
core count. We use McPAT [25] to quantify power consumption.
The bottom line is that reliability-optimized scheduling reduces
chip-level and system power by 6% and 6.2% on average, respec-
tively, relative to performance-optimized scheduling. The reason
is that performance-optimized scheduling puts applications on
a big core for performance reasons although this may increase
power consumption. For example, a memory-intensive application

0.0

0.2

0.4

0.6

0.8

1.0

1.2

STP SSER chip-level

power

total system

power

n
o

rm
al

iz
ed

 t
o

 r
an

d
o

m

random performance-optimized
reliability-optimized power-optimized

Fig. 9: Comparing performance-, reliability- and power-optimized
schedulers for all four-program workloads on an HCMP with 2 big
cores and 2 small cores. All results are normalized to the random
scheduler.

with high degrees of MLP will be scheduled on the big core to
improve performance [15]; this will lead to an increase in power
consumption. The reliability-aware scheduler on the other hand
schedules this workload on the small core to reduce soft error
vulnerability, also reducing power.

7.2 Trade-Offs in Performance-, Power- and Reliability-
Optimized Scheduling

We implemented a power-optimized scheduler to evaluate the im-
pact of optimizing for power on reliability. The power-optimized
scheduler, alike our reliability- and performance-optimized sched-
ulers, is a sampling-based scheduler. The scheduling decision
is based on the energy consumed by each core per quantum.
Note that an ideal power- or reliability-optimized schedule can
be achieved by scheduling workloads on small cores in a se-
quential manner. However, all our scheduling policies maintain
the fundamental assumption that no core remains idle while an
HCMP is executing a multiprogram workload. Figure 9 shows
the relationship among power, performance and reliability when
we execute four-program workloads on 2 big and 2 small cores.
Optimizing power always leads to performance degradation, and
also leads to an overall improvement in reliability (by 12.2%
on average) compared to random scheduling. Benchmarks such
as cactusADM and hmmer expose a large state inside the big
core, causing high vulnerability and power consumption. Such
benchmarks are scheduled on a small core to improve both power
and reliability. For such benchmarks, optimizing for power also
leads to an improvement in reliability, and vice versa, optimizing
reliability also improves power.

There are several workloads for which a reliability-optimized
schedule is different from a power-optimized schedule. For exam-
ple, milc and sjeng run on different core types for reliability
and power when they co-run. Compared to milc, sjeng incurs
much higher power on the big core compared to the small core.
Therefore, for power, it is always scheduled on the small core.
On the other hand, milc is a memory-intensive benchmark that
maintains a large vulnerable state inside the core while waiting for
long-latency memory requests to complete. Since the difference in
SER for sjeng is small between the big and small cores, the
reliability-optimized scheduler runs milc on the small core and
sjeng on the big core.

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2779480, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 00, NO. 0, SEPTEMBER 0000 10

The key take-away from the results reported in Figure 9 is that
there is a trade-off between performance-, power- and reliability-
optimized scheduling. Performance-optimized scheduling leads
to high performance, but also leads to high power consumption
and soft error vulnerability. Power-optimized scheduling min-
imizes power consumption, however this comes at a cost in
performance. Reliability to soft errors slightly improves under
power-optimized scheduling compared to performance-optimized
scheduling. Reliability-optimized scheduling improves reliability
by a significant margin while being on par with random scheduling
in terms of performance and power consumption.

8 RELIABILITY-AWARE SCHEDULING UNDER PER-
FORMANCE CONSTRAINTS

So far, we assumed that the goal is to optimize reliability while
considering performance after the fact, i.e., we schedule appli-
cations to core types to optimize for reliability and we pay the
cost this may incur in terms of performance. In many systems
however, performance is more important than reliability, and
one may not be willing to pay an average 6.3% performance
degradation compared to performance-optimized scheduling, even
if this improves reliability by 25.4% on average, as previously
reported. Although reliability is an important concern, one may
not want to incur a performance hit by more than a predefined
limit, say 2%, but within this constraint one may yet want to
improve reliability. In this section, we explore reliability-aware
scheduling under performance constraints.

With a minimum acceptable performance level specified, we
propose to augment the scheduler with a mechanism to dynam-
ically switch between the reliability- and performance-optimized
modes at runtime. The decision to choose either of the two modes
depends on the requirements of the system and the workload
under execution. If reliability is of utmost importance — for
example, in systems working at higher altitudes in space —
the goal should be to optimize for reliability. In such cases,
running in the reliability-optimized mode suits the best. However,
when performance is the key concern and performance is not
allowed to drop below a certain performance level relative to
performance-optimized scheduling, the scheduler should switch to
the performance-optimized mode once the performance is about to
drop below the specified level.

8.1 Scheduling Mechanism
To achieve performance above a specified level, we need to keep
track of performance while improving reliability. At the end of
every scheduling quantum, we estimate performance (i.e., STP)
for all possible schedules and discard the schedules not meeting
our performance criterion. Of the remaining schedules, we choose
the schedule with the lowest SSER as the schedule for the next
quantum. If an application continues to run on a particular core
type for 10 consecutive scheduling quanta (1 ms each), a sampling
phase (0.1 ms) is triggered to account for the possibility of a phase
change in the application behavior.

8.2 Evaluation
To evaluate reliability-aware scheduling under performance con-
straints, we consider reliability (SSER) and performance (STP) for
four-program workloads on a 2B2S system under various perfor-
mance constraints, see Figure 10. We start with the performance-
optimized scheduler (shown on the left) and gradually increase the

allowable performance degradation. Eventually, when there is no
performance constraint, we end up with the reliability-optimized
scheduler (shown on the right). When the performance limit is
set at x%, the STP of the four-program workload must never
be degraded by more than x% at any point during the execution
compared to the performance-optimized schedule. For example,
when the performance limit is set at 4%, and the highest possible
STP of a four-program workload in a scheduler quantum is 3.0
on a 2B2S system, then the scheduler should map applications
in such a manner that the STP does not degrade below 2.88
(4% degradation of 3.0). This constraint is met every quantum
and ensures that the workload will not experience an overall
performance degradation by more than 4%; in fact the average
performance degradation is typically smaller than the performance
limit that was set.

The results in Figure 10 indicate a clear trend — increasing
the allowable performance limit increases the performance degra-
dation while at the same time improving reliability, as expected. At
small performance limits, the improvement in reliability is limited
and so is the impact on performance. The reason for the small
impact is the limited number of opportunities for choosing an
alternative schedule. In particular, there are six possible mappings
for a four-program workload on two big and two small cores:
BBSS, SSBB, BSBS, SBSB, BSSB and SBBS; where a B
and S represents the respective application running on the big
versus small core, respectively. One of these schedules is the
performance-optimized schedule. The scheduler has limited op-
portunity to choose a schedule other than the one that optimizes
performance while remaining within 2% of the performance-
optimal schedule. However, it may still successfully pick such
a schedule in very few cases.

Increasing the performance limit provides more flexibility to
the scheduler and the improvement in reliability is also higher.
In particular, the average gain in SSER for a limit of 5% and
10% equals 13.5% and 23.5%, respectively. Note that performance
is still better than the random scheduler for these performance
levels. As the limit is further increased, the scheduler starts to
choose schedules that are more similar to the ones chosen by the
reliability-optimized scheduler. For the 20% and 50% performance
limits, the numbers are very close to the reliability-optimized
scheduler — an average improvement in reliability of 32% at the
cost of a 1% performance degradation compared to the random
scheduler. Overall, we conclude that the improvement in reliability
is always much higher than the degradation in performance. The
higher the allowable performance degradation, the higher is the
improvement in reliability; the actual limit, however, can be
adjusted by the system administrator or end user based on the
requirements.

9 MULTI-THREADED WORKLOADS

So far, we considered multiprogram workloads composed out
of single-threaded programs, for which we observed the highest
improvements in reliability for workload mixes consisting of
diverse applications, i.e., high-AVF applications running con-
currently with low-AVF applications; the smallest improvements
are observed for workload mixes composed out of applications
with similar AVF characteristics. We now consider multi-threaded
workloads. Most multi-threaded workloads are data-parallel in
which all threads execute the same code on different portions of
the data. As a result, all threads exhibit similar execution behavior.

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2779480, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 00, NO. 0, SEPTEMBER 0000 11

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ra
n

d
o
m

p
er

fo
rm

an
ce

-

o
p

ti
m

iz
ed 2

%

3
%

4
%

5
%

1
0

%

2
0

%

5
0

%

re
li

ab
il

it
y
-

o
p

ti
m

iz
ed

n
o

rm
al

iz
ed

 t
o

 r
an

d
o
m

SSER STP

Fig. 10: Average reliability (SSER) and performance (STP) rela-
tive to the random scheduler for reliability-aware scheduling under
performance constraints, for four-program workloads on a 2B2S
system.

We refer to these workloads as homogeneous workloads. Some
multi-threaded workloads however expose pipelined parallelism,
i.e., the outcome produced by one thread is the input for another
thread. These workloads are heterogeneous, i.e., different threads
execute different code. Based on the results obtained for the
multi-program workloads, we expect limited improvement for the
multithreaded workloads that are homogeneous, but we expect a
higher improvement for the heterogeneous workloads.

9.1 Metrics

For multiprogram workloads, the necessity for metrics such as
STP for performance and SSER for reliability arises from the
fact that co-executing programs affect each other’s performance.
However, for multithreaded workloads, execution time or start-to-
finish time correctly measures performance, i.e., this is the time
it take to get a unit of work done. Similarly, since the amount of
work performed by a multi-threaded program is fixed, SER is an
appropriate metric to quantify the vulnerability of a multi-threaded
program to soft errors. ABC of a multithreded program is the sum
of the ABC values for all threads. Once we know the overall ABC,
SER can be calculated as described in Section 2.

9.2 Performance-Optimized Scheduling

Identifying bottlenecks and improving performance of multi-
threaded workloads on multicore hardware is a challenging task,
especially on heterogeneous multicore processors, and a number
of prior works have focused on this problem, see for example [26],
[27], [28]. The challenge when executing multi-threaded work-
loads on multicore hardware is to make sure that all threads
make equal progress, i.e., all threads need to reach the end of
the execution or the next barrier at roughly the same time, or in
other words, the execution needs to be balanced. This may be
complicated because of negative interference in shared resources,
e.g., one thread may kick out another thread’s data from the shared
cache. Heterogeneous multicore processors further complicate
this, i.e., the thread(s) running on the big core(s) make much
faster progress than the one(s) running on the small core(s). One
solution is to make sure all threads get an equal share of the
big core cycles, i.e., by allowing all threads to run on a big
core alternately. This leads to a balanced execution, improving
overall application performance. This is typically a viable solution

TABLE 3: Multithreaded benchmarks from PARSEC and Rodinia.

Suite Benchmark Input size

Rodinia

backprop
bfs
cfd
hotspot
kmeans
srad

large
large
large
large
large
large

PARSEC

bodytrack
canneal
dedup
ferret
fluidanimate
swaptions

large
large
medium
medium
large
large

for homogeneous multi-threaded workloads, however, heteroge-
neous workloads need a more involved solution, i.e., we need to
make sure all threads make equal progress, as described by Van
Craeynest et al. [29]. There is a subtle but important difference
between equal share and equal progress. Equal share guarantees
the same number of big core cycles for all threads; equal progress
on the other hand guarantees that all threads benefit equally from
running on the big cores, e.g., if one thread benefits twice as
much from running on the big core, it will receive only half as
many cycles. Equal progress enables balanced execution even
for heterogeneous multi-threaded workloads. Van Craeynest et
al. [29] find that equal-progress scheduling is the best performing
performance-optimized scheduler, which we adopt accordingly in
this section.

9.3 Results
For our evaluation, we compare the reliability- and performance-
optimized schedulers on an HCMP with two big and two small
cores (2B2S). The two schedulers minimize SER and total ex-
ecution time, respectively. We also compare against a random
scheduler that randomly selects threads to run on the big cores.

9.3.1 Methodology
We need to consider a few subtle changes in the experimental
methodology for the multi-threaded workloads in comparison to
the multiprogram workloads. The scheduling quantum can be fixed
for the multiprogram workloads (e.g., 1 ms). However, this is not
appropriate for multi-threaded programs for which the number
of running threads may vary dynamically at runtime because of
sequential code sections and synchronization activity. Therefore,
a scheduler should only take into account the threads performing
useful work. When the number of active threads does not change
during the course of a 1 ms time interval, we fix the scheduling
quantum to 1 ms. In addition, a quantum starts (or ends) when a
thread changes from running to waiting and vice versa. In such
cases, the size of a quantum will be less than 1 ms. This flexibility
in quantum size is required to consider all running threads for
scheduling. Sampling is performed in a manner similar to what is
done for the multiprogram workloads — when a thread continues
to run for ten consecutive quanta on one core type, we trigger the
sampling phase for a period of 0.1 ms.

Another difference is that the number of active threads at
runtime can be less than the number of cores available in an
HCMP. This may lead to certain cores remaining idle for some
time during program execution. When there is a possibility of
a core remaining idle during a scheduler quantum, we utilize
as many big cores as possible to take advantage of their high

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2779480, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 00, NO. 0, SEPTEMBER 0000 12

(a) Reliability

0.0

0.2

0.4

0.6

0.8

1.0

backprop bfs cfd hotspot kmeans srad

S
E

R
 n

o
rm

al
iz

ed
 t

o
 r

an
d

o
m

random performance-optimized reliability-optimized

(b) Performance

0.0

0.2

0.4

0.6

0.8

1.0

1.2

backprop bfs cfd hotspot kmeans srad

ex
ec

u
ti

o
n
 t

im
e

n
o

rm
al

iz
ed

 t
o

 r
an

d
o
m

random performance-optimized reliability-optimized

Fig. 11: Reliability (a) and performance (b) for the Rodinia
benchmarks on a 2B2S system.

performance. For example, in a 2B2S system, if there are only
three active threads during a quantum, the two big cores will
always be running two threads and one small core will run the
third thread leading to one small core remaining idle.

We use benchmarks from the Rodinia [30] and PARSEC [31]
suites to evaluate our reliability-aware scheduler for multithreaded
workloads, see Table 3. We simulate the benchmarks that we were
able to successfully run on our simulator. We consider the parallel
portion of the benchmarks in the evaluation; the sequential phases
are run on the big core for highest performance. All benchmarks
except for ferret were executed on a 2B2S system. ferret
requires at least six threads (cores) for execution and therefore we
simulated six threads for ferret on an HCMP with three big
and three small cores (3B3S).

9.3.2 Rodinia

Figure 11 shows reliability and performance for the Rodinia
benchmarks for reliability-aware scheduling compared to random
and performance-optimized scheduling. The highest improvement
in soft error rate compared to both random and performance-
optimized scheduling is achieved for bfs (10%), followed by
kmeans (8.8%). The improvement is less significant for the other
benchmarks. Looking at performance, we observe that reliability-
aware scheduling is either performance neutral or degrades per-
formance. We note a one-to-one trade-off between reliability
and performance for most benchmarks. For example, for bfs,
reliability-aware scheduling improves reliability by 10% while
at the same time degrading performance by 10%. The reason
is that the Rodinia benchmarks are homogeneous data-parallel

(a) Reliability

0.0

0.2

0.4

0.6

0.8

1.0

bodytrack canneal dedup ferret fluidanimate swaptions

S
E

R
 n

o
rm

al
iz

ed
 t

o
 r

an
d

o
m

random performance-optimized reliability-optimized

(b) Performance

0.0

0.2

0.4

0.6

0.8

1.0

1.2

bodytrack canneal dedup ferret fluidanimate swaptions

ex
ec

u
ti

o
n
 t

im
e

n
o

rm
al

iz
e

to
 r

an
d

o
m

random performance-optimized reliability-optimized

Fig. 12: Reliability (a) and performance (b) for the PARSEC
benchmarks.

workloads, and hence there is limited opportunity to improve
reliability, as expected and argued above. The data-parallel nature
of the workloads is also the reason for similar performance
between the random and performance-optimized scheduling. For
some workloads (for example, cfd and srad), the performance-
optimized scheduler performs slightly worse than the random
scheduler because of sampling overhead. Our sampling-based
scheduler ensures that every thread gets to run on both core
types in the beginning, followed by periodic sampling every 10
quanta. This leads to slight disturbances and a small degradation
in performance compared to the random scheduler.

9.3.3 PARSEC

Figure 12 shows similar results for the PARSEC benchmarks. Two
of the PARSEC benchmarks are heterogeneous workloads, namely
ferret and dedup; all other benchmarks are homogeneous
data-parallel workloads. We observe similar results for the ho-
mogeneous PARSEC benchmarks as for the Rodinia benchmarks:
the improvement in reliability through reliability-aware scheduling
leads to an almost equally high degradation in performance (and
both are small). For one of the heterogeneous workloads, namely
ferret, we do observe an interesting result: the improvement
in reliability (11%) is higher than the degradation in performance
(7%), which is in line with the results and conclusion obtained for
the multiprogram workloads. Unfortunately, we do not observe
a similar result for dedup, the other heterogeneous benchmark.
Through detailed analysis using bottle graphs [32] of dedup’s
execution behavior (not shown because of space constraints), we
observe that there is a very high degree of parallel imbalance

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2779480, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 00, NO. 0, SEPTEMBER 0000 13

among the threads. One critical thread runs for a longer time
than all other threads put together. This leads to the other non-
critical threads remaining idle for most of the execution. Since our
scheduling policy never leaves a big core idle, the critical thread
is always running on the big core for all three schedulers, thus
leading to similar reliability and performance figures for all of
them.

The overarching conclusion from this section is that reliability-
aware scheduling has limited benefit for multi-threaded workloads.
The primary reason is that different threads typically execute
the same code and hence there is limited opportunity to exploit
diversity in AVF characteristics across the different threads. We
typically observe a one-to-one trade-off between reliability and
performance. Only in a limited number of cases, i.e., heteroge-
neous workloads with different threads that execute different code
and that exhibit different AVF characteristics, do we observe an
opportunity to improve reliability at the expense of a relatively
small performance degradation.

10 INCORPORATING UNPROTECTED L1 CACHES

Protection techniques based on Error Detecting Codes (EDC) and
Error Correcting Codes (ECC) incur chip area, power and possibly
latency overheads, and are typically applied to the cache levels
beyond the L1 caches [33]. Several prior works estimate and
mitigate soft errors of on-chip caches in general, and L1 caches in
particular, see for example [5], [33], [34], [35], [36], [37]. Recent
work also focuses on dynamically reconfiguring last-level caches
and improving reliability across cache hierarchy in the presence of
multibit soft errors [38], [39], [40]. Reliability-aware scheduling
as proposed in this paper works for the case in which the L1
caches are protected (which is what we assumed so far) as well as
for the case in which the L1 caches are not protected (which is the
subject of this section). In order for reliability-aware scheduling to
be able to incorporate L1 cache soft error vulnerability, we need
to also estimate and measure L1 cache soft error vulnerability.
In this section, we first explain our methodology to dynamically
compute the ACE Bit Count (ABC) for the L1 caches and then
evaluate how well reliability-aware scheduling performs taking
into account reliability of the core and L1 caches.

10.1 Estimating Cache Soft Error Vulnerability
Our methodology for calculating ACE Bit Count in the data and
tag arrays is based on the work done by Biswas et al. [5]. A
cacheline is ACE if its correctness is required for the correct
execution of a program. (Note we assume both the L1 D-cache
and L1 I-cache to be write-back caches.) For the data array, ABC
can be estimated as follows. There are four time intervals during
which a cacheline is ACE: fill-to-read, read-to-read, write-to-read
and write-to-evict. For the tag array, the correctness of a program
is affected only by the false-positive case, when an incorrect
cacheline is returned due to an error in the tag bits. Therefore, to
estimate ABC in this case, we implement the hamming-distance-
one analysis and conservatively assume that all (tag) entries of
a set are at a hamming-distance of 1 from the tag bits of the
requested memory address.

10.2 Hardware Overhead
The hardware cost for computing ABC for the L1 caches is
limited. There are 512 64 B cachelines in a 32 KB L1 cache.

0

2

4

6

8

g
o
b
m

k
g
cc

sj
en

g
b
zi

p
2

m
cf

p
er

lb
en

ch
as

ta
r

n
am

d
d
ea

lI
I

li
b
q
u
an

tu
m

p
o
v
ra

y
x
al

an
cb

m
k

h
2
6
4
re

f
so

p
le

x
o
m

n
et

p
p

h
m

m
er

g
am

es
s

to
n
to

lb
m

g
ro

m
ac

s
sp

h
in

x
3

b
w

av
es

ca
lc

u
li

x
m

il
c

w
rf

le
sl

ie
3
d

G
em

sF
D

T
D

ca
ct

u
sA

D
M

ze
u
sm

p

A
V

F
 (

%
)

cache-AVF total-AVF

Fig. 13: Cache-AVF and total-AVF for the SPEC CPU2006 bench-
marks on a big out-of-order core.

Assuming a quantum size of 1 ms, this amounts to 375,940 cycles
when running at 2.66 GHz. This is also the maximum number
of cycles a cacheline can be ACE. Accounting for this many
cycles requires 18.5 bits; assume 20 bits per cacheline. For each
cacheline, we keep track of the last access time. This amounts to
20 bits per cacheline ABC counter, or a total of 1280 bytes.

Whenever a cacheline is read/written/evicted, we update one
global cache-wide ABC counter. In the ‘worst’ case, the entire
cache can be ACE for one quantum, which implies that this cache-
wide ABC counter requires 36 bits. When a cacheline is read or
evicted, we add the difference between the current cycle count
(since the beginning of the scheduling quantum) and the cacheline
ABC counter to the global counter, and we replace the cache ABC
counter value with the current cycle count upon a read, eviction
and write. A 36-bit adder is equivalent to 250 bits, similar to what
is described in Section 4.2. The addition of ABC counters across
quanta can be done in software. The overall hardware cost for an
L1 cache amounts to 1314 bytes.

10.3 Impact of Caches on Soft Error Vulnerability
The impact L1 caches have on soft error vulnerability is quantified
in Figure 13: cache-AVF and total-AVF (that is, AVF for core plus
L1 caches; total-ABC is defined similarly) are shown for the SPEC
CPU2006 benchmarks; the benchmarks are sorted in the same
order as in Figure 1. (Note that the reported AVF values are much
smaller in Figure 13 compared to Figure 1; this is because the L1
caches are now included in the total structure size.) It is clear from
the figure that there is a strong correlation between total-AVF and
cache-AVF. This is primarily because total-ABC is dominated by
the L1 caches. The size of, or more precisely the architecture state
contained in, the L1 caches is ten times higher than the out-of-
order core — 64 KB versus almost 6 KB. In spite of the strong
correlation between cache-AVF and total-AVF, we observe that
the gap between both curves widens going from left to right in
Figure 13. This is because the benchmarks on the right-hand side
of the graph have higher core-AVF, as previously reported.

10.4 Results
Figure 14 shows results for reliability-aware scheduling when
ABC for the L1 caches is also taken into account. That is,
total-ABC is used in Algorithm 1 as well as in Equation 6 for
estimating SSER. We evaluate three cases while varying the size
of the L1 caches for the small core. In the first case, the L1

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2779480, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 00, NO. 0, SEPTEMBER 0000 14

(a) Reliability (SSER)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

small=big small=big/2 small=big/4

S
S

E
R

 n
o

rm
al

iz
ed

 t
o
 r

an
d

o
m

random performance-optimized reliability-optimized

(b) Performance (STP)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

small=big small=big/2 small=big/4

S
T

P
 n

o
rm

al
iz

ed
 t

o
 r

an
d

o
m

random performance-optimized reliability-optimized

Fig. 14: SSER (a) and STP (b) of four-program workloads on a
2B2S system with decreasing L1 cache size for the small cores.

caches for both the big and small cores are equal in size. In
other two cases, we reduce the size of the L1 caches for the
small core by a factor of 2 and 4, respectively. When the L1
cache size is equal between the big and small core, the impact
on reliability and performance is small. The reason is twofold:
(i) the total amount of vulnerable state is dominated by the L1
caches, as described above, and (ii) execution time on the small
core takes longer and as a result cachelines get exposed to soft
errors for a longer duration, further narrowing the difference in
vulnerable state between the big and small cores. Reducing the
size of the L1 caches in the small core, the difference in vulnerable
state increases between the big and small cores, which leads to
significant average improvements in SSER by 5% and 11% for
half the cache size and a quarter the cache size for the small
cores, respectively. Note that performance is largely unaffected
compared to random scheduling. These results demonstrate that
reliability-aware scheduling is beneficial even if the L1 caches
are unprotected and need to be taken into account as part of the
scheduling policy. In addition, reliability-aware scheduling is more
effective as cache size differs between the big and small cores.

11 RELATED WORK

We now discuss related work in processor reliability, as well as
recent work in scheduling for HCMPs.

11.1 Monitoring, Modeling and Improving
Reliability
Processor reliability is a growing concern, and a significant body
of prior work targets decreasing the occurrence of soft errors, ei-

ther through radiation-hardened circuit design [6], error detection
and correction mechanisms [7], or architectural techniques [8],
[9]. Our scheduling technique is orthogonal to these approaches,
and provides additional reliability improvements.

Other researchers have studied monitoring and modeling re-
liability for processor design (e.g., where to add error detection)
and online reliability estimation (e.g., to find out when to enable
an architectural error reduction technique that may also incur a
performance hit). One way to evaluate soft error reliability is
through fault injection, and to monitor what fraction of faults
lead to incorrect program executions [41]. Mukherjee et al. [3]
propose ACE bit analysis as an alternative to fault injection to
evaluate the reliability in architecture studies. They also introduce
the concept of AVF. Biswas et al. [5] show how to measure AVF
for address-based structures. Sridharan and Kaeli [42] propose
to split AVF into PVF (program vulnerability factor) and HVF
(hardware vulnerability factor), which can be determined inde-
pendently. Other prior work models AVF through regression on
performance counters [43], [44], or through analytical mechanistic
modeling [22]. Nair et al. [45] develop a methodology for creating
AVF-stressing benchmarks, providing a processor AVF upper
bound.

No prior work has studied reliability characteristics of
HCMPs, or has considered HCMP scheduling as a way to improve
reliability. We are also the first to propose a system-level reliability
metric for multiprogram workloads.

11.2 Scheduling Heterogeneous Multicores
Kumar et al. [10], [11] advocate single-ISA heterogeneous multi-
cores to improve energy and power efficiency. Many proposals ad-
vocate scheduling compute-intensive applications on the big cores,
because they show the highest performance improvement [46],
[47], [48]. Van Craeynest et al. [15] show that memory-intensive
applications can also show important performance gains on big
cores if they are able to exploit more memory-level parallelism.
Other proposals focus on optimizing energy efficiency [16] or
power efficiency [17], [18]. Recent proposals [49] exploit redun-
dant multithreading to improve overall dependability of multicore
systems by mapping tasks onto different cores. We are the first to
improve reliability on HCMPs through scheduling.

12 CONCLUSION

Applications exhibit different soft error reliability characteristics
on big, out-of-order cores versus small, in-order cores. This
provides considerable opportunity to improve system reliability
through scheduling on HCMPs. We propose a reliability-aware
scheduler that samples the reliability characteristics of running
applications on either core type, and dynamically schedules ap-
plications on big versus small cores to improve overall system
reliability. We propose a novel system-level reliability metric,
system soft error rate (SSER), that weights per-application SER
by their relative slowdown to account for the difference between
small and big core performance. The proposed scheduler leverages
a low-overhead (296 bytes per core) counter architecture to track
hardware occupancy.

Reliability-aware scheduling improves system reliability by
25.4% on average and up to 60.2% compared to performance-
optimized scheduling, while degrading performance by 6.3%
only. Moreover, as a side effect, reliability-aware scheduling
reduces power consumption by 6.2% on average compared to

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2779480, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 00, NO. 0, SEPTEMBER 0000 15

performance-optimized scheduling. We evaluate the trade-off be-
tween reliability-, power- and performance-optimized scheduling;
we demonstrate reliability-aware scheduling under performance
constraints; we evaluate reliability-aware scheduling for multi-
threaded workloads; and we demonstrate the ability to take un-
protected L1 caches into account.

REFERENCES
[1] A. Naithani, S. Eyerman, and L. Eeckhout, “Reliability-aware scheduling

on heterogeneous multicore processors,” in Proceedings of the 23rd IEEE
Symposium on High Performance Computer Architecture (HPCA), 2017,
pp. 397–408.

[2] R. C. Baumann, “Radiation-induced soft errors in advanced semiconduc-
tor technologies,” IEEE Transactions on Device and Materials Reliabil-
ity, vol. 5, no. 3, pp. 305–316, 2005.

[3] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor,” in Proceedings of the
36th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2003, pp. 29–40.

[4] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi,
“Modeling the effect of technology trends on the soft error rate of
combinational logic,” in Proceedings of the International Conference on
Dependable Systems and Networks (DSN), 2002, pp. 389–398.

[5] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. S. Mukherjee, and
R. Rangan, “Computing architectural vulnerability factors for address-
based structures,” in Proceedings of the 32nd Annual International
Symposium on Computer Architecture (ISCA), 2005, pp. 532–543.

[6] T. Calin, M. Nicolaidis, and R. Velazco, “Upset hardened memory
design for submicron CMOS technology,” IEEE Transactions on Nuclear
Science, pp. 2874–2878, 1996.

[7] M. Nicolaidis, “Design for soft error mitigation,” IEEE Transactions on
Device and Materials Reliability, vol. 5, no. 3, pp. 405–418, 2005.

[8] N. K. Soundararajan, A. Parashar, and A. Sivasubramaniam, “Mech-
anisms for bounding vulnerabilities of processor structures,” in Pro-
ceedings of the 34th Annual International Symposium on Computer
Architecture (ISCA), 2007, pp. 506–515.

[9] C. Weaver, J. Emer, S. S. Mukherjee, and S. K. Reinhardt, “Techniques
to reduce the soft error rate of a high-performance microprocessor,” in
Proceedings of the 31st Annual International Symposium on Computer
Architecture (ISCA), 2004, pp. 264–275.

[10] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen,
“Single-ISA heterogeneous multi-core architectures: The potential for
processor power reduction,” in Proceedings of the 36th International
Symposium on Microarchitecture (MICRO), 2003, pp. 81–92.

[11] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas,
“Single-ISA heterogeneous multi-core architectures for multithreaded
workload performance,” in Proceedings of the 31st Annual International
Symposium on Computer Architecture (ISCA), 2004, pp. 64–75.

[12] P. Greenhalgh, “Big.LITTLE processing with ARM
Cortex-A15 & Cortex-A7: Improving energy ef-
ficiency in high-performance mobile platforms,”
http://www.arm.com/files/downloads/big LITTLE Final Final.pdf,
2011.

[13] NVidia, “Variable SMP – a multi-core CPU ar-
chitecture for low power and high performance,”
http://www.nvidia.com/content/PDF/tegra white papers/Variable-
SMP-A-Multi-Core-CPU-Architecture-for-Low-Power-and-High-
Performance.pdf, 2011.

[14] N. Chitlur, G. Srinivasa, S. Hahn, P. K. Gupta, D. Reddy, D. Koufaty,
P. Brett, A. Prabhakaran, L. Zhao, N. Ijih, S. Subhaschandra, S. Grover,
X. Jiang, and R. Iyer, “QuickIA: Exploring heterogeneous architectures
on real prototypes,” in Proceedings of the International Symposium on
High Performance Computer Architecture (HPCA), 2012, pp. 1–8.

[15] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling heterogeneous multi-cores through performance impact
estimation (PIE),” in Proceedings of the 39th Annual International
Symposium on Computer Architecture (ISCA), 2012, pp. 213–224.

[16] A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman, R. Dreslinski,
T. Wenisch, and S. Mahlke, “Composite cores: Pushing heterogeneity
into a core,” in Proceedings of the ACM/IEEE International Symposium
on Microarchitecture (MICRO), 2012, pp. 317–328.

[17] T. S. Muthukaruppan, A. Pathania, and T. Mitra, “Price theory based
power management for heterogeneous multi-cores,” in Proceedings of the
19th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2014, pp. 161–176.

[18] Y. Zhu, M. Halpern, and V. J. Reddi, “Event-based scheduling for
energy-efficient QoS (eQoS) in mobile web applications,” in Proceedings
of the 21st International Symposium on High Performance Computer
Architecture (HPCA), 2015, pp. 137–149.

[19] S. Eyerman and L. Eeckhout, “System-level performance metrics for
multiprogram workloads,” IEEE Micro, vol. 28, no. 3, pp. 42–53, 2008.

[20] R. Uma, V. Vijayan, M. Mohanapriya, and S. Paul, “Area, delay and
power comparison of adder topologies,” International Journal of VLSI
design & Communication Systems (VLSICS), vol. 3, no. 1, 2012.

[21] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout, “An
evaluation of high-level mechanistic core models,” ACM Transactions on
Architecture and Code Optimization (TACO), vol. 11, no. 3, p. 28, 2014.

[22] A. A. Nair, S. Eyerman, L. Eeckhout, and L. K. John, “A first-order
mechanistic model for architectural vulnerability factor,” in Proceedings
of the 39th Annual International Symposium on Computer Architecture
(ISCA), 2012, pp. 273–284.

[23] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in Proceedings of the 10th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2002, pp. 45–57.

[24] K. Swaminathan, N. Chandramoorthy, C. Cher, R. Bertran, A. Buyuk-
tosunoglu, and P. Bose, “Bravo: Balanced reliability-aware voltage
optimization,” in Proceedings of the 23rd IEEE Symposium on High
Performance Computer Architecture (HPCA), 2017, pp. 97–108.

[25] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proceedings of
the IEEE/ACM International Symposium on Microarchitecture (MICRO),
2009, pp. 469–480.

[26] A. Bhattacharjee and M. Martonosi, “Thread Criticality Predictors for
Dynamic Performance, Power, and Resource Management in Chip Multi-
processors,” in Proceedings of the International Symposium on Computer
Architecture (ISCA), 2009, pp. 290–301.

[27] J. Joao, M. Suleman, O. Mutlu, and Y. Patt, “Bottleneck Identification
and Scheduling in Multithreaded Applications ,” in Proceedings of the
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2012, pp. 223–234.

[28] K. Du Bois, S. Eyerman, J. B. Sartor, and L. Eeckhout, “Criticality
Stacks: Identifying Critical Threads in Parallel Programs Using Synchro-
nization Behavior,” in Proceedings of the International Symposium on
Computer Architecture (ISCA), 2013, pp. 511–522.

[29] K. Van Craeynest, S. Akram, W. Heirman, A. Jaleel, and L. Eeckhout,
“Fairness-aware scheduling on single-ISA heterogeneous multi-cores,” in
Proceedings of the 22nd International Conference on Parallel Architec-
tures and Compilation Techniques (PACT), 2013, pp. 177–188.

[30] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous Comput-
ing,” in Proceedings of the IEEE International Symposium on Workload
Characterization (IISWC), 2009, pp. 44–54.

[31] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in Proceedings
of the International Conference on Parallel Architectures and Compila-
tion Techniques (PACT), 2008, pp. 72–81.

[32] K. Du Bois, J. B. Sartor, S. Eyerman, and L. Eeckhout, “Bottle Graphs:
Visualizing Scalability Bottlenecks in Multi-threaded Applications,” in
Proceedings of the ACM SIGPLAN International Conference on Object
Oriented Programming Systems Languages & Applications (OOPSLA),
2013, pp. 355–372.

[33] D. Sorin, Fault Tolerant Computer Architecture, ser. Synthesis Lectures
on Computer Architecture. Morgan and Claypool Publishers, 2009.

[34] A. Biswas, C. Recchia, S. S. Mukherjee, V. Ambrose, L. Chan, A. Jaleel,
A. E. Papathanasiou, M. Plaster, and N. Seifert, “Explaining cache SER
anomaly using DUE AVF measurement,” in Proceedings of the 16th
IEEE Symposium on High Performance Computer Architecture (HPCA),
2010, pp. 1–12.

[35] S. Mukherjee, J. Emer, T. Fossum, and S. K. Reinhardt, “Cache scrubbing
in microprocessors: Myth or necessity?” in Proceedings of the 10th
IEEE Pacific Rim International Symposium on Dependable Computing
(PRDC), 2004, pp. 37–42.

[36] G.-H. Asadi, V. S. Mehdi, B. Tahoori, and D. Kaeli, “Balancing perfor-
mance and reliability in the memory hierarchy,” in Proceedings of the
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2005, pp. 269–279.

[37] S. Wang, J. Hu, and S. G. Ziavras, “On the characterization and optimiza-
tion of on-chip cache reliability against soft errors,” IEEE Transactions
on Computer, vol. 58, no. 9, pp. 1171–1184, Sep. 2009.

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2779480, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 00, NO. 0, SEPTEMBER 0000 16

[38] F. Kriebel, S. Rehman, A. Subramaniyan, S. J. B. Ahandagbe,
M. Shafique, and J. Henkel, “Reliability-aware adaptations for shared
last-level caches in multi-cores,” ACM Transactions on Embedded Com-
puting Systems, vol. 15, no. 4, pp. 1–26, Aug. 2016.

[39] F. Kriebel, A. Subramaniyan, S. Rehman, S. J. B. Ahandagbe,
M. Shafique, and J. Henkel, “R2cache: Reliability-aware reconfigurable
last-level cache architecture for multi-cores,” in Proceedings of the In-
ternational Conference on Hardware and Software Codesign and System
Synthesis (CODES + ISSS), 2015, pp. 1–10.

[40] A. Subramaniyan, S. Rehman, M. Shafique, A. Kumar, and J. Henkel,
“Soft error-aware architectural exploration for designing reliability adap-
tive cache hierarchies in multi-cores,” in Proceedings of the International
Conference on Design, Automation and Test in Europe (DATE), 2017, pp.
37–42.

[41] X. Li, S. V. Adve, P. Bose, and J. A. Rivers, “Online estimation of
architectural vulnerability factor for soft errors,” in Proceedings of the
35th Annual International Symposium on Computer Architecture (ISCA),
2008, pp. 341–352.

[42] V. Sridharan and D. R. Kaeli, “Using hardware vulnerability factors to
enhance AVF analysis,” in Proceedings of the 37th Annual International
Symposium on Computer Architecture (ISCA), 2010, pp. 461–472.

[43] K. R. Walcott, G. Humphreys, and S. Gurumurthi, “Dynamic pre-
diction of architectural vulnerability from microarchitectural state,” in
Proceedings of the 34th Annual International Symposium on Computer

Architecture (ISCA), 2007, pp. 516–527.
[44] D. Lide, L. Bin, and P. Lu, “Versatile prediction and fast estimation of

architectural vulnerability factor from processor performance metrics,” in
Proceedings of the 15th International Symposium on High Performance
Computer Architecture (HPCA), 2009, pp. 129–140.

[45] A. A. Nair, L. K. John, and L. Eeckhout, “AVF stressmark: Towards an
automated methodology for bounding the worst-case vulnerability to soft
errors,” in Proceedings of the 43rd Annual International Symposium on
Microarchitecture (MICRO), 2010, pp. 125–136.

[46] J. Chen and L. K. John, “Efficient program scheduling for heterogeneous
multi-core processors,” in Proceedings of the 46th Annual Design Au-
tomation Conference (DAC), 2009, pp. 927–930.

[47] D. Koufaty, D. Reddy, and S. Hahn, “Bias scheduling in heterogeneous
multi-core architectures,” in Proceedings of the 5th European Conference
on Computer Systems, 2010, pp. 125–138.

[48] D. Shelepov, J. C. Saez Alcaide, S. Jeffery, A. Fedorova, N. Perez,
Z. F. Huang, S. Blagodurov, and V. Kumar, “Hass: a scheduler for
heterogeneous multicore systems,” ACM SIGOPS Operating Systems
Review, vol. 43, no. 2, pp. 66–75, 2009.

[49] K. Chen, J. Chen, F. Kriebel, S. Rehman, M. Shafique, and J. Henkel,
“Task mapping for redundant multithreading in multi-cores with relia-
bility and performance heterogeneity,” IEEE Transactions on Computer,
vol. 65, no. 11, pp. 3441–3455, Nov. 2016.

