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Abstract—Energy and power are key challenges in high-performance computing. System energy efficiency must be significantly
improved, and this requires greater efficiency in all subcomponents. An important target of optimization is the interconnect, since
network links are always on, consuming power even during idle periods. A large number of HPC machines have a primary interconnect
based on Ethernet (about 40% of TOP500 machines), which, since 2010, has included support for saving power via Energy Efficient
Ethernet (EEE). Nevertheless, it is unlikely that HPC interconnects would use these energy saving modes unless the performance
overhead is known and small. This paper presents PerfBound, a self-contained technique to manage on/off-based networks such as
EEE, minimizing interconnect link energy consumption subject to a bound on the performance degradation. PerfBound does not
require changes to the applications and it uses only local information already available at switches and NICs without introducing
additional communication messages, and is also compatible with multi-hop networks. PerfBound is evaluated using traces from a
production supercomputer. For twelve out of fourteen applications, PerfBound has high energy savings, up to 70% for only 1%
performance degradation. This paper also presents DynamicFastwake, which extends PerfBound to exploit multiple low-power states.
DynamicFastwake achieves an energy–delay product 10% lower than the original PerfBound technique.

Index Terms—Energy Efficient Interconnects, Energy Efficient Ethernet, Fast-Wake, Deep-Sleep
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1 INTRODUCTION

Energy and power are key challenges in high-
performance computing. Top HPC machines require
many megawatts of power, incurring millions of dollars in
energy costs. The proposal by DARPA in 2008 envisioned
an exaflop supercomputer by 2018 with a power budget of
about 20MW. The top supercomputer as of November 2016
the Sunway TaihuLight with 93PF in performance, which
consumes 15MW of power. Substantial improvements in
energy efficiency and power consumption are therefore
required to reach 1EF within the 20MW goal by 2018–2020.

High-performance interconnects are known to consume
a significant portion of the total system energy: up to
12% at full load, and more when the CPU and memory
are not fully loaded [7]. Of this, up to 65% is due to
the interconnect links, which are essentially always on,
continually transmitting signals for link alignment and
synchronization [10], and consuming full power even when
idle [8], [11]. Advances in the energy efficiency of compute
and memory will only increase the proportion of system
energy consumed by the interconnect.

There are clear opportunities for interconnect energy
savings, due to the network behavior of HPC applications.
While HPC applications require a high-performance inter-
connect, to support their peak communications demand,
their average utilization of the network is low. Several pro-
posals attempt to exploit this opportunity to save energy [7],
[8], [17], [20], [26]. These proposals are built upon one of
the following underlying mechanisms. The first approach is
on/off-based networks, where the links are powered down
during idle periods. An important example of this approach
is IEEE 802.3az Energy Efficient Ethernet (EEE) [4], [10].
Approved in 2010, EEE was primarily designed to save
network power consumption in homes, offices and data cen-

tres. Alternatively, bandwidth-tunable links adapt the network
bandwidth to the communication requirements, reducing
the frequency or number of channels when demand is low,
thereby reducing the power consumption. InfiniBand is an
important example, which implements variable bandwidth
as well as varying the number of active 1× links [7].

Figure 1 presents the system share of interconnects in the
Top500 list [3] over the past five years, specifically from June
2011 to June 2016. It is clear that Ethernet and InfiniBand
dominate the TOP500 list, each with about 40% share. It
is also interesting to note that dip and recovery of Ethernet
(1G+10G) seen between June 2014 and June 2016 comes from
the falling in the number of machines using 1G Ethernet and
the rapid growth in the adoption of 10G. A similar rate of
adoption can be expected from the upcoming 40/100 Gb/s
Ethernet standards.

Although EEE is built into the standards and therefore
available for use in HPC, it is likely to be disabled by default
until its performance overheads and energy savings are
well understood. Effective use of EEE-based power saving
mechanisms is especially important in HPC since, while
saving power, these techniques also introduce an increase
in network latency [9], which could lead to an unacceptable
increase in execution time. Although energy efficiency is in-
creasingly important in HPC, the primary design objective is
still performance, so energy saving mechanisms are unlikely
to be adopted unless their overheads are controlled.

The Energy Efficient Ethernet protocol was proposed
in 2008 for 10 Gb/s and lower Ethernet speeds with an
on/off-based power saving mode known as Deep-Sleep.
The current Ethernet task force in charge of standardizing
40 and 100 Gb/s Ethernet is now adopting EEE alongside
an additional sleep state, known as Fast-Wake, trading off
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Fig. 1: Top500 Interconnect System Share [3]

higher energy consumption for a faster wake-up time.
This paper presents PerfBound1 and its extension Dy-

namicFastwake, both on/off control mechanisms for net-
work links that adjust link parameters for energy savings
while bounding the performance overheads to acceptable
levels. PerfBound works to control link on/off states such
that its effect on performance is controlled while saving
energy. PerfBound has been shown to work well using
the original sleep mode of EEE, Deep-Sleep. Recent analy-
sis [13], on the other hand, shows that a combination of both
Deep-Sleep and the newly introduced Fast-Wake, provide
an opportunity for larger energy savings compared to Deep-
Sleep alone. The analysis [13] shows that higher energy
savings are only possible through a careful configuration
of Fast-Wake and Deep-Sleep parameters. Furthermore, it
finds that incorrect configurations could lead to both lower
energy savings and higher performance overheads. In light
of this, this paper shows how simple modifications to the
original PerfBound [12] mechanism could allow for control-
ling both Deep-Sleep and Fast-Wake. The results presented
show that DynamicFastwake consumes 10% lower energy
at the same performance, compared to PerfBound using a
single sleep mode, Deep-Sleep.

The mechanisms, PerfBound and DynamicFastwake,
discussed in this paper have the advantage of being self-
contained and application agnostic, in that the applica-
tion is not modified and all decisions are taken locally at
the links, without any additional communication between
nodes and/or switches. The only parameter required is an
acceptable overhead of performance. In this paper it is set
to 1%, but it should be clear how this can be changed for
lower target overheads. Furthermore, the ideas presented
are applicable to non-Ethernet based systems that rely on
an on/off-based system for link energy proportionality.

In summary, in order for HPC to adapt energy-
proportional interconnects, it is crucial that any resulting
performance overheads are controlled. In this regard, this
paper discusses EEE on HPC, PerfBound and DynamicFast-
wake, relating these proposals for link energy savings in
the context of controlled performance degradation. Enabling
EEE with controlled performance overheads could directly
improve energy savings of the large number of machines
in the Top500 list that use Ethernet, as shown in Figure 1.

1. PerfBound was originally published at the International Supercom-
puting Conference 2014 [12]

In focusing on EEE, the results and ideas proposed in this
paper could benefit vendors and the Ethernet task-force in
designing for HPC. Although this work does not directly
discuss InfiniBand, the results should also be applicable
to projecting energy savings and controlling performance
overheads of bandwidth-tunable links.

2 BACKGROUND

2.1 Energy Efficient Ethernet (EEE) with Deep-Sleep

The Internet and specifically data centers accounted for 1.1%
to 1.5% of global energy consumption in the year 2010, num-
bers that have doubled since 2005 [5]. The increasing energy
cost of Internet infrastructure and data centers encouraged
a push for energy efficiency across the computing spectrum.

To address the above, the IEEE 802.3az Energy Effi-
cient Ethernet (EEE) Task Force was established, which
subsequently in the year 2010, published the standard for
Ethernet energy efficiency [4], [10]. The goal of the standard
was to reduce the contribution of network devices to the
national power budget, especially since large sections of
the Internet and data center infrastructure are built using
Ethernet [10]. After considering various proposals, includ-
ing adaptively changing the link rate and bandwidth, the
task force adopted the proposal known as Low Power
Idle (LPI) [4], [10].

Low Power Idle, which is now known as Deep-Sleep,
is an extension to Ethernet that allows the link to switch
between “sleep” and “wake” modes on demand, in
order to save energy. Deep-Sleep (or LPI) was considered
straightforward to implement, because it freezes the state
of the transceiver whenever the link enters sleep and it
restores the state when it wakes [4]. In Deep-Sleep mode,
the link is periodically refreshed and is not completely
switched off. Arrival of a frame at the transmitter side
of a link triggers the signaling of a wake-up transition to
return to active mode. Frame transmission can start once
the transceiver and receiver PHYs are both active. At the
next hop, any arriving frames have to be buffered whenever
the next link is in sleep or in the process of waking up. The
IEEE 802.3az standard was published for 10Gb Ethernet,
and the wake-up and sleep timings specified are 4.48µs
and 2.88µs respectively, with about 90% energy savings at
low power mode compared with active [1].

2.2 Energy Efficient Ethernet (EEE) with Fast-Wake

Subsequent standardization efforts, which focused on the
specifications for 40Gb, 100Gb and 400Gb backplane and
optical Ethernet, adopted the energy savings mechanisms
from EEE. In this process, the IEEE 802.3bj task force in
charge of 100Gb Backplane and copper cable standard-
ization introduced an additional sleep state known as
Fast-Wake [2]. In comparison with Deep-Sleep, Fast-Wake
has a higher energy consumption and a faster wake-up time.

The motivation for the Fast-Wake mode came from the
relatively high wake-up time of Deep-Sleep, whose effect
on performance would be more pronounced at higher link
speeds. The possible increase in latency due to Deep-Sleep
was considered to be too high, so Deep-Sleep was expected
to be disabled for 100Gb links. The long wake-up delay
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Fig. 2: Example timeline illustrating various low power
and Stall-Timer states of an EEE link

in the original EEE standard comes from signaling compo-
nents, specifically the Physical Medium Attachment (PMA)
and Physical Medium Dependent (PMD) components in
the PHY, that are required to synchronize the transmitting
and receiving links before data transmission. In the case
of Fast-Wake, while some components are powered down,
the PMA and PMD remain active, continually transmitting
signals between transceiver and receiver, thereby maintain-
ing synchronization. This allows for a link wake-up in a
few hundred nanoseconds, rather than in microseconds.
Specifically, studies show that the link could wake from
Fast-Wake mode in 250 ns with energy savings of about 40%,
compared to an active link [14].2

2.3 Energy Efficient Ethernet in HPC

While EEE provides specifications for turning links on and
off, the mechanisms to decide when to do so are left to
the vendor. Early evaluations proposed the use of Frame
Buffering, also known as Packet coalescing [11], which
buffers frames that arrive while the link is in sleep. The
link is woken after a certain number of frames arrive or
a time-out expires, in an attempt to amortise the wake-up
energy over multiple frames. With appropriate frame limits
and time-outs, the technique was shown to bring links
closer to energy proportionality. This mechanism was,
however, proposed for Internet and data-center workloads
that could tolerate significant increases in transmission
latency caused by buffering frames [10], [11].

HPC applications are characterized by long compute pe-
riods (where the network is idle) fragmented by short bursts
of communication. These short bursts however, require peak
bandwidth and are generally latency sensitive. Buffering

2. Recent specifications show that Deep-Sleep may not yet be com-
patible with Optical Transport Network (OTN) based optical networks,
but Deep-Sleep is expected to be incorporated into these devices in the
future.

frames for 100µs, as recommended for Internet and data-
center workloads [10], [11], can cause high and unacceptable
performance overheads in HPC. For this reason, an effective
mechanism for HPC has been the Stall-Timer,3 which, in-
stead of buffering frames, leaves the link on (while idle)
for a defined period after every frame transmission. This
ensures that subsequent frames can be transmitted without
incurring any wake-up delay.

Figure 2 illustrates the working of the above described
mechanisms using an EEE-based on/off link. In Figure 2(a),
the link remains active during frame transfer, which is
followed by a state change that turns off the link, reducing
power consumption to 10%. The later frame arrival during
Deep-Sleep requires a Full-Wake (4.48µs) to activate the
link before transmission. Figure 2(b) is similar, except that
the link powers down to Shallow-Sleep, which has a higher
power consumption of 60%. In return, the link powers back
to active mode much faster, doing so in a few hundred
nanoseconds. Figure 2(c) and (d) show the working of Stall-
Timers. In both cases, the link remains on at 100% after
frame transmission, as opposed to Figure 2(a) where the link
initiates the state change to Deep-Sleep immediately. In Fig-
ure 2(d), the frame that arrives before the Stall-Timer expires
can be transmitted immediately, with no wake-up delay.
Further details of Stall-Timer and the relationship between
link energy and performance are discussed in Section 4.

A large share of TOP500 systems (about 40%) use
1Gb or 10Gb Ethernet. This popularity of Ethernet in
HPC, coupled with the need for energy proportionality,
makes a strong case for using the devices’ inherent power-
saving techniques. Products supporting Fast-Wake may
be deployed in HPC systems within a year,4 but without
further investigation, Fast-Wake will likely be disabled
by default, since, although energy efficiency is important,
performance is the primary design objective for HPC.
It is important, therefore, to design and employ control
algorithms that maintain a low performance overhead. To
this end, the insights presented in this paper could help
vendors in designing EEE technology for HPC.

3 METHODOLOGY

The experiments and analysis in this paper were done using
the Dimemas cluster simulator, which has been found to
be accurate to within 10% and validated against production
supercomputers, including Blue Gene/L, P, Q, and three
generations of the MareNostrum supercomputer [28],
[29], [30]. The network model was modified to support
a hierarchical network, with on/off links as specified by
the EEE standard. The simulation infrastructure is driven
by traces, which record CPU intervals and MPI events,
measured from a real execution on the MareNostrum II
supercomputer. The CPU intervals are scaled by relative
CPU performance. Link energy consumption is modeled as

3. The Stall-Timer essentially stalls the link from going to sleep
immediately after a frame transfer.

4. The standards supporting Fast-Wake are IEEE 802.3bj and 802.3bm,
for 40Gb/100Gb backplanes and optical Ethernet, respectively, ratified
as recently as March 2015, and IEEE 802.3bs for 400Gb, which is
expected to be ratified in 2017. Switches that support EEE, targeting
data centers, were commercially available within a year from the date
of standardization.
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TABLE 1: HPC WORKLOADS USED IN THIS STUDY

Name Num. Class Descriptionnodes

ALYA [31] 256 Biology Biomechanics
BT, CG, MG [32] 256 Fluid Dynamics NAS Parallel Benchmarks
SP, LU [32] 64 Fluid Dynamics NAS Parallel Benchmarks
CPMD [33] 128 Chemistry Molecular Dynamics
GADGET [34] 128 Astrophysics Dark-matter simulation
GROMACS [35] 128 Biology Biomolecular dynamics
LINPACK [36] 256 Benchmark Linear algebra solver
MILC [37] 128 Physics Subatomic Interactions
NAMD [38] 64 Biology Biomolecular simulations
PEPC [39] 64 Mathematical Parallel Coulomb Solver
QUANTUM [40] 128 Chemistry Nanomaterials modeling
WRF [41] 128 Meteorology Weather Forecasting Model

100% when “on” or during transition between on/off states,
60% in Fast-Wake mode and 10% in Deep-Sleep mode.

The simulator is configured to model a cluster with a
three-level hierarchical network. Applications are executed
on 64, 128 or 256 nodes, grouped into 8, 16, or 32 nodes
per rack, respectively, forming eight racks in total. Nodes
are connected to the top-of-rack switch (level 0), which is
in-turn connected to a two-level fat tree (4-ary 2-tree). The
architecture of the network and the link bandwidths are
shown in Figure 3. The network is statically routed with cut-
through flow-control and full-duplex links (each direction
of which can be turned on and off separately). The routing
decision uses a static choice of shortest path between source
and destination (if there are multiple equal-cost paths, the
route is chosen based on the destination address).

The system and network parameters were chosen to em-
ulate a high-end HPC system based on analysis of systems
in the TOP500 list. Each node is a two-socket high-end CPU
with 225GF (based on June 2012 TOP500 list machines with
two Intel Xeon sockets). The switch latency is configured
at 320 ns for the first hop and 80 ns for subsequent hops
to emulate about 1µs in end-to-end worst-case network
latency. Edge links are configured at 20 Gb/s, and the higher
two levels are 40 Gb/s and 100 Gb/s respectively. Wake-
up and sleep timers for low power states were obtained
from Energy Efficient Ethernet specifications and were set
to 4.48µs and 2.88µs for Deep-Sleep [4], [10] and 250 ns
for Fast-Wake [14] respectively. Fourteen HPC applications
(shown in Table 1) were used for analysis in this paper.
The original traces were large, on the order of hundreds
of gigabytes, so simulation was done for a few iterations
of the outer loop. The original traces were obtained from
the applications executed over as many nodes as possible
depending on system availability.

4 MOTIVATION

DynamicFastwake automatically adjusts two Stall-Timers
subject to a bound on the performance overhead. Before dis-
cussing DynamicFastwake and how PerfBound was modi-
fied to control two Stall-Timers, this section discusses the
motivation behind this work.

4.1 Performance overheads and wake-up delays

Although the EEE standard defines mechanisms for en-
tering and leaving the sleep mode (Low Power Idle), it
does not define how to decide when to do so. A naive,

  

Switches Duplex links

Level 0

Level 1

Level 2

Nodes

Duplex links 20Gb/s Duplex links 100 Gb/s
Duplex links 40Gb/s Switch Node

Fig. 3: Network organization used in the discussion and
analysis of PerfBound, Fast-Wake and Double PerfBound

and aggressive, technique is to always turn the link off
as soon as it becomes idle and to turn it back on only
on demand. There is, however, a trade-off between energy
savings and performance overhead: aggressive techniques,
such as the above save more energy but may introduce
too much network latency, whereas conservative techniques
incur a low performance overhead but they achieve little
energy savings.

One difficulty in HPC is that different applications re-
act differently to increases in latency. Figure 4 shows a
sensitivity analysis of application performance to wake-up
latency, assuming the naive management technique. The x-
axis is the wake-up latency (which for EEE is 2.88µs/link).
The least latency-sensitive applications, including Quantum
and BT, can potentially tolerate an aggressive energy saving
technique, since the naive approach incurs only about 2%
performance overhead. In contrast, GROMACS and NAMD
are seen in the figure to have unacceptable performance
degradation, with their execution time roughly doubled, so
they require a rather conservative energy saving scheme.

There are two questions related to the management of
on/off links: when to turn the link off, and when to turn
it back on. An ideal solution, which obtains maximum
energy savings, would turn the link off immediately after
each message and turn it back on at the correct time in
anticipation of the next message (if the idle period is shorter
than the sum of the sleep and wake times, then the link is,
of course, not switched off). This scheme, however, requires
an accurate and precise prediction of the arrival time of the
next message. If the prediction is wrong, then, either the link
is woken up too late, incurring a performance overhead, or
too soon, wasting potential energy savings.

A simple mechanism that can work well is to turn the
link off only after a specific duration of idle time, which
we call the Stall-Timer, and to turn it back on when the
next message arrives. The naive approach described above
corresponds to Stall-Timer=0. Our previous study [9] found
that this mechanism can work well in HPC. Since different
applications have different sensitivities to increases in laten-
cies, the optimal value of the Stall-Timer depends on the ap-
plication. PerfBound, discussed in Section 5, automatically
determines the correct Stall-Timer to obtain high energy



5

1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90

Performance overhead vs Link Wake-up Time

0ns
200ns

400ns
600ns

800ns 1 s 2 s 4 s 6 s 8 s
10 s

20 s
40 s

60 s
80 s

100 s
200 s

400 s

Link wake-up time

1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14

ALYA
BT
CG

FT
GADGET
GROMACS

LINPACK
LU
MG

MILC
NAMD
PEPC

QUANTUM
SP
WRF

No
rm

al
ize

d 
Ex

ec
ut

io
n 

Ti
m

e
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wake-up delay.

savings subject to a target performance bound. Section 6,
proposes DynamicFastwake, which extends PerfBound to
control the multiple Stall-Timers.

The first key insight, in the development of PerfBound,
is that, since every time the link is switched off one message
will later be delayed by the wake-up time, the performance
overhead is approximately proportional to the number of
times that the link is switched off. This is an approxima-
tion, since the method cannot track chains of dependencies
among nodes. Tracking dependency chains requires either
that the user or compiler annotates the application, or that
additional messages are sent by the run-time system and
monitored by the switches. Either approach adds complex-
ity, with the result that such a proposal would be unlikely
to be adopted in practice. On balance, as the results show,
the approximation is generally sound, and the PerfBound
approach gives the right compromise. The performance
overhead bound translates to a fixed number of messages,
per unit time, that can be delayed. The following heuris-
tics ensure that this number of delayed messages is not
exceeded, and that the right choice of messages to delay
is made, to get the high energy savings.

4.2 Understanding the overhead of link wake-up and
idle time predictability
In order to make overhead-aware decisions for link energy
savings, it is important to first understand how wakeup la-
tencies translate to performance overheads. Figure 4 showed
how different applications have different sensitivities to
wake-up latencies. To look at this question in more detail,
we evaluated the sensitivity of application overheads to
wake-up delays. From this point in this paper, we refer to
“message inter-arrival periods” as idle link events.5

Figure 5 shows a sensitivity analysis plot relating the
Stall-Timer value, on the x-axis, to application performance.
The Stall-Timer causes wake-up delays to only be incurred
by messages that arrive after the Stall-Timer expires, during
which the link is idle. Hence, if the Stall-Timer value is zero,
then all messages would be delayed by the wake-up latency
whereas if the Stall-Timer value is infinite, no messages
would be delayed. At low values, as seen in Figure 5,
nearly all messages have a wake-up overhead, causing large

5. In this paper, we term any duration during which no data is
transmitted over a link as an idle link event.
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Fig. 5: Application performance overhead as Stall-Timer
is varied - normalised to execution over an always on
network.

increases in the application execution time. However, as the
Stall-Timer value is increased, the number of messages that
are delayed reduces, and the overheads are seen to drop
down to zero. This essentially makes the case for a Stall-
Timer, which causes only messages that arrive after idle
durations larger than itself to be delayed, for use in con-
trolling performance overheads. Figure 5 therefore shows
how a relationship between overheads and Stall-Timer can
be established. Hence, if an acceptable level of performance
overhead for an application is 5% (say), then Figure 5 could
be used to determine an application-dependent static value
for a Stall-Timer. For application LU, for instance, we can see
that an appropriate value of the Stall-Timer would be 50µs.
In this case, the link remains on for the first 50µs in each
idle period, saving power on all idle link events that are
longer than 50µs, but maintaining performance overhead
inside the specified bound of 5%.

The HPC application behavior can be understood in
greater detail, from the perspective of idle link events, by
looking at the heatmaps in Figure 6. All sub-figures show
the length of the current idle link event on the x-axis and
the length of the next idle link event on the y-axis, for
LINPACK and BT according to the title. Figures 6(a) and
6(c) are colored according to the number of events, whereas
Figures 6(b) and 6(d) are colored according to the total idle
time contributed by those events. That is, if in Figure 6(a)
there are 100 events in position (2ms, 2ms), then their total
idle time would be 200ms. The idle link event heat-map
gives a sense of the most common idle durations and the
total idle time is helpful in understanding how the idle time
translates to energy savings. The results present averages
across all edge links in the network.

LINPACK and BT are both typical examples of HPC ap-
plications, and the difference between Figures 6(a) and 6(c)
is in the clustering of idle link events. In the case of LIN-
PACK, in Figure 6(a), the events are clustered at around
10µs, while the events in BT are clustered at around 1ms.
Another key difference between these applications is clear
from Figures 6(b) and 6(d): the majority of the idle link
events of LINPACK are of 10µs, but most of its total idle
time comes from events that are longer than 10ms, even
though there are few of them. A similar behavior can be
seen in BT, where a small number of events longer than
10ms also contribute to a significant amount of total idle
time. The main difference for BT is that its most common
idle link event duration also contributes significantly to the
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Fig. 6: Idle Link Event distributions of LINPACK (a),(b)
and BT (c),(d). The heat maps show the number of events
(a),(c) and the total idle time (b),(d).

total idle time.
Comparing Figures 5 and 6, we can explain the observed

performance overheads. Firstly, note from Figure 5, that
the performance overhead of LINPACK remains at about
60% until the Stall-Timer is increased to 10µs, and it drops
to about 2% between 10µs and 100µs. Comparing that to
Figure 6(a), the performance overhead has clearly dropped
as the Stall-Timer crossed the cluster between 10µs and
100µs. In other words, if the link remains on for about
100µs, none of the events in the cluster in Figure 6(a)
would incur performance overheads. Similarly, in the case
of BT, comparing Figures 5 and 6(c), we can see that the
performance overhead of BT, starting from 2%, drops to near
zero at about 1ms; this correlates to the clustering found
at 1ms in Figure 6(c). BT has low performance overhead,
even at low values of the Stall-Timer, because, first, at low
threshold values in Figure 6(c), no events exist to incur
performance delays. Since, for BT, the number of events
that exist between 1µs and 1ms is low, the reduction in
the performance overhead is gradual. Secondly, for large
events, the ratio of event size to delay incurred is very low.
To illustrate, when a delay of 1µs is applied to an event of
1ms, the added delay corresponds to 0.1%. For LINPACK,
most events are clustered at 10µs, so if a 1µs delay is added
to them, each delay adds 10% of the idle time, translating to
large performance overheads.

The insights presented are important in the discussion of
PerfBound and its extension DynamicFastwake. The follow-
ing section discusses the primary motivations behind the
need for DynamicFastwake with an analysis comparison of
Fast-Wake and Deep-Sleep.

4.3 Stall-Timer for Deep-Sleep and Fast-Wake

Figure 7 illustrates the trade-off between execution time
and energy for Deep-Sleep alone in Figures 7 (A)(i) and
(ii) and Fast-Wake alone in Figures 7 (B)(i) and (ii). For all
four figures, the x-axis is a sweep of Stall-Timer values.
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Fig. 7: Energy and performance as a function of Stall-Timer

In Figures 7 (A)(i) and (B)(i), the y-axis is the execution
time, and for Figures 7 (A)(ii) and (B)(ii), the y-axis is
the link energy. The figures are all normalized for each
application referenced in Section 3, relative to an always-on
interconnect. Furthermore, the energy consumption is the
average across all edge links of the network, but the below
conclusions apply similarly for higher-level links.

With Figure 7, a comparison between Deep-Sleep and
Fast-Wake over HPC applications is presented. As discussed
previously, increasing the Stall-Timer value decreases the
execution time but it increases link energy.6,7 In Figure 7,
it is interesting to note that some applications benefit more
from either using Fast-Wake alone or Deep-Sleep alone, i.e.,
they have lower performance overhead and higher energy
savings with only either one of them. For example, for

6. Note that in Deep-Sleep and Fast-Wake, the links consume at least
10% and 60% energy respectively, as shown in Figures 7 (A)(ii) and
(B)(ii), and cannot save energy beyond that point.

7. In Figure 7 (A)(ii), a dip in the energy curve for GROMACS
between the Stall-Timer values 50µs and 500µs can be observed. This
is because at small values of Stall-Timers (less than 50µs) excessive
number of sleepwake transitions, which in addition to increasing
the execution time increases the energy consumption. Hence, curve
between 50µs and 500µs represents optimal points between higher
energy consumption due to increased execution time and lower energy
savings due to a large Stall-Timer.
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a performance overhead of 1%, NAMD with Deep-Sleep
consumes 85% energy, while with Fast-Wake, at the same
overhead, it consumes only 65% energy. Clearly, NAMD
benefits from using Fast-Wake alone. In contrast, PEPC at
the same 1% overhead consumes only 20% with Deep-Sleep,
while it consumes 60% with Fast-Wake. These examples,
along with GADGET, FT and QUANTUM, tend to have
better energy savings with Deep-Sleep while others such
as GROMACS, SP and MILC benefit more from Fast-Wake.
This analysis clearly makes a case for using an approach
that combines Deep-Sleep and Fast-Wake.

4.4 Stall-Timer for hybrid Fast-Wake + Deep-Sleep
Figure 8 shows the timeline of a link with hybrid Deep-
Sleep and Fast-Wake. In Figure 8(a), the link is initially
active and transmitting data, after which the link remains
on, consuming full (or 100%) power, until the Stall-to-
Shallow timer expires. When this happens, the link switches
to Shallow-Sleep, during which it consumes 60% energy.
The link remains in Shallow-Sleep state until the original
Stall-Timer expires, at which time it drops to Deep-Sleep,
consuming 10% power. The arrival of a frame during
Deep-Sleep triggers a full wake-up, before the link can
transmit the frame. Figure 8(b), shows the case where the
next frame arrives during the Shallow-Sleep period, so that
only a Fast-Wake is needed to quickly power up the link.

Figure 9 shows the energy–execution time trade-off
for the hybrid scheme. The x-axis is execution time and
the y-axis is average link energy (both normalized to
non-EEE). The blue line is for Deep-Sleep only, and is
a one-dimensional sweep of varying values of a single
Stall-Timer from small to large, as seen in Figure 7. The
scatter plot is an exhaustive search for the hybrid fast-
wake + Deep-Sleep scheme, covering the two-dimensional
space given by the two Stall-Timers. The dark line connects
the Pareto-optimal points from the scatter plot, which are
roughly the points with lowest energy consumption for a
given performance overhead.

Figure 9 is used to motivate the need for combining
Fast-Wake and Deep-Sleep using a sweep over the two-
dimensional space of Stall-Timer values. The following
sections describe how PerfBound and DynamicFastwake
automatically find the right values, and the evaluation of
these techniques is presented in Section 7. All applications
evaluated in this work show enormous potential for link
energy savings compared to the traditional always-on

network to which these results are normalized. Most
applications (as presented in Section 7) are similar to SP
and ALYA shown in Figure 9, saving between 50% to 80%
link energy at an overhead of 1%. This makes a strong case
for the use of these on/off schemes in HPC environments.

Comparison of the hybrid scheme to Deep-Sleep only, is
as follows. First, SP has a clear gap between Deep-Sleep only
and the hybrid Pareto-optimal curve, so that, for example
at an overhead of 1%, there are potential savings of 20%,
assuming that the appropriate Stall-Timer values can be
identified. Similar to SP, GROMACS is another example of
an application that benefits from the hybrid scheme with
12% better energy savings compared to Deep-Sleep. ALYA
on the other hand has about 5% improvement over Deep-
Sleep, but in particular emphasizes the need to carefully
choose the Stall-Timer values. In application SP, it can be
seen that a bad combination of Stall-Timers would result
in sub-optimal energy–performance, but it would still be
at least as good as Deep-Sleep. For ALYA, in contrast,
there are many combinations of Stall-Timer values that are
significantly worse, in both energy and performance, than
Deep-Sleep. Furthermore, for the same overhead, 1% say,
there are multiple pairs of Stall-Timers with large differences
in energy consumption among themselves. A bad choice
of Stall-Timers could result in up to 20% higher energy
consumption compared to the Pareto-optimal curve, and
15% worse than Deep-Sleep.

In summary, while significant energy savings are
available from using Deep-Sleep and Fast-Wake, Stall-
Timers must be carefully chosen. Their optimal values
are application-dependent, with potential values in a two-
dimensional space that includes points that are far from
being Pareto optimal. Moreover, for a given performance
overhead there are many choices of Stall-Timer pairs, each
consuming different amounts of energy. Hence, finding the
Pareto-optimal solution can only be done based on an
estimate of the energy consumption. The following sections
show how DynamicFastwake automatically finds optimal
Stall-Timer pairs for a given performance overhead bound
to minimize energy consumption.

5 PERFBOUND: BOUNDING PERFORMANCE
OVERHEADS IN ON/OFF HPC LINKS

Section 4 provided several key insights, which we use as
the basis for the design of PerfBound. Firstly, the application
overhead is roughly proportional to the number of delayed
idle link events. Secondly, the application overhead can be
adjusted using the Stall-Timer. Thirdly, the best Stall-Timer
depends on the application, so the algorithm itself must
be dynamic, adaptive and application independent. Finally,
from an energy standpoint, it is best to delay the events of
longest duration.

Based on the above, this section introduces PerfBound
and PerfBoundRatio. The only parameter to the algorithms
is a limit on the acceptable performance degradation. For
the purpose of the exposition, we assume in the following
discussion that the limit is 1%, but it should be clear how to
make the bound into a parameter.

The overall approach is to first determine how many
idle link events can be delayed per unit time before the
overhead reaches 1%, and then to ensure that the right
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number of events are delayed and that they are the longest
ones. This is done by maintaining a histogram of the lengths
of the idle periods, and using it to dynamically adjust the
Stall-Timer value. This approach maintains the performance
bound without requiring any changes to the application.

5.1 Calculating the #events that can be delayed

We first analyze the case where there is a single hop between
two nodes. Since the overhead is assumed to come only from
delayed wakeup events, the maximum number of them that
can be tolerated, within a 1% bound, in a period of length X
is simply 0.01X/Tw, where Tw is the wakeup delay and
0.01 corresponds to the 1% bound. As X increases, the
total number of events that can be delayed also increases,
in proportion. This is the value used by PerfBound, when
configured with a local performance bound of 1%. The next
section will describe how the Stall-Timer is adjusted to delay
the correct number of events.

In a multi-hop network, each link in the route may
implement PerfBound, each contributing to the resulting
performance overhead. A three-level network has longest
routes containing three upward links and three downward
links, for a maximum hop count of six, so a single message
may incur six cumulative wakeup delays. Using the above
equation directly leads to a total overhead of up to 6%.

The simplest solution is to divide the global 1% perfor-
mance bound equally among the links, so that each link uses
PerfBound with a local performance bound of 0.166%. This
is, however, unnecessarily conservative. An application that
mainly communicates at Level 0 (say), would rarely incur
overheads at the upper levels, meaning that the overhead
is actually being constrained to 0.33%. Although a lower
overhead is better, all else being equal, the configured 1%
performance bound would probably have led to greater
energy savings.

PerfBoundRatio is the solution to multi-hop networks,
which is configured with a global performance bound.
It adapts dynamically to the locality of the application’s
communication pattern, using only the information that is

Level 2 L2
↗ ↘

Level 1 L10 L11
↗ ↘ ↘

Level 0 L00 L01 L02
↗ ↘ ↘ ↘

Nodes T S0 S1 S2

Fig. 10: Example network topology

TABLE 2: PERFBOUNDRATIO: EXAMPLE CALCULATION OF
LOCAL STATE, WHEN 50%, 40% AND 10% OF MESSAGES
REACH LEVELS 0, 1 AND 2, RESPECTIVELY.

Link Total Messages/level Proportion to level
messages L0 L1 L2 L0 L1 L2

T to L00 1000 500 400 100 0.5 0.4 0.1
L00 to S0 500 500 0 0 1.0 0 0

L00 to L10 500 0 400 100 0 0.8 0.2
L10 to L01 400 0 400 0 0 1.0 0
L01 to S1 400 0 400 0 0 1.0 0

L10 to L2 100 0 0 100 0 0 1.0
L2 to L11 100 0 0 100 0 0 1.0
L11 to L02 100 0 0 100 0 0 1.0
L02 to S2 100 0 0 100 0 0 1.0

available locally at the switch. In order to use PerfBound,
each switch must be given enough information about the
network topology to be able to calculate the level of the
highest switch in the route between any pair of source
and destination IP addresses. This may require specific
configuration, but for an HPC system, such configuration
is tolerable.

We explain PerfBoundRatio using the example three-
level network in Figure 10. The switches are labeled with the
level and a unique number; e.g. L11 is one of the switches in
level 1 and nodes are labeled T and S0 to S2. Let us assume,
node T transmits 1000 messages in total, to S0, S1 and S2, in
proportion 50%, 40% and 10%, respectively. In a real appli-
cation, all nodes will transmit, with different distributions
to various nodes, but the total counts are simply the sums
of the various contributions, and the algorithm still works.
It can be best understood by looking at a simple case.

Each link has four counters, one that counts the total
number of messages over the link, and three messages/level
counters, each corresponding to a level in the network. The
messages/level counter for level n counts the number of
messages seen whose highest level in the network is exactly
n. This information is summarized, for all links, in Table 2.
This table also shows the proportion of messages that go
to each level, found by dividing by the total number of
messages. For example, the link between L00 and L10 sees
all messages from T that go to either S1 or S2. There are 500
such messages, of which 400 go to S1, reaching level 1, and
100 go to S2, reaching level 2. The ratios of messages that
reach levels 0, 1 and 2, respectively, are 0, 0.8 and 0.2.

The key idea is to divide the global performance bound
according to the behavior of the communication traffic. Of
the 500 messages that are seen over the link between L00 and
L10, 80% of the messages that reach network level 1, have
four hops on their route, whereas the 20% of messages that
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Fig. 12: Stall-Timer convergence over time

reach network level 2, have six hops. The local performance
bound is therefore given by 0.8 × 0.01

4 + 0.2 × 0.01
6 . In this

equation, the weighing factors of 0.8 and 0.2 are given
by the message statistics, 0.01 is the global performance
bound, and the denominators are the numbers of hops on
the routes.

In general, for a particular link, let MC0 be the total
number of messages that reach maximum level 0, MC1 be
the total number that reach maximum level 1, and MC2
the total number that reach level 2. Let MC = MC0 +
MC1 + MC2 be the local total message counter. Then the
local performance bound (as shown in Table 2) for that link
is given by

l =
MC0

MC
.
0.01

2
+

MC1

MC
.
0.01

4
+

MC2

MC
.
0.01

6

5.2 Calculating the Stall-Timer Value
After calculating the total number of events that can be
delayed, per unit time, the final step is to determine the
Stall-Timer. As described in Section 3.2, the Stall-Timer is
the duration of time that the link must remain idle before it
is switched off.

The Stall-Timer is determined from a histogram of idle
link events. In detail, at the end of every idle link event, one
new data point is available. This data point is the length of
the previous idle link event. As shown in Figure 11, the bin
corresponding to this length is determined and its histogram
value is incremented. The histogram therefore keeps track
of the distribution of link idle interval lengths, and its total
mass increases over time.

The Stall-Timer is found by searching from the right-
hand side of the histogram; i.e. from the longest idle inter-
vals, until the correct total number of messages has been
found. That is, if the histogram has been collected for total
time X , then the previous section gives the number of
messages to delay as N = lX / Tw, where l is the local
performance bound. The threshold is given by the max-
point of the smallest bin that has a total of at most N
messages in all bins to its right.

The amount of work per message is constant and rather
small, since it is only necessary to update the histogram

and search for the correct value of the Stall-Timer. In our
experiments, the Stall-Timer value is updated after every
idle link event, but it can be updated less frequently if
desired. Alternatively, the algorithm can easily be optimized
to take advantage of the fact that the correct value of the
Stall-Timer seldom moves by more than one bin at a time.

Figure 12 shows three important characteristics of the
algorithm. The x-axis is time, or more accurately a sequence
number for the idle link event, and the y-axis is the value
of the Stall-Timer, measured for a particular, but arbitrary,
edge link (other edge links had similar behavior). Firstly, the
correct value of the Stall-Timer differs dramatically between
benchmarks—notice the logarithmic scale on the y-axis.
Secondly, most applications rapidly converge to a stable
value of the Stall-Timer, within just 200 events. This stable
value can be compared with the point in Figure 5 where the
overhead drops below 1%. Thirdly, for some benchmarks,
most clearly LU, the Stall-Timer value is seen to adapt to
varying application phases. The fast convergence of the
histogram allows for its periodic refresh in order to account
for major changes in application behavior. Refresh periods
for the histogram is discussed in more detail in Section 6.3.

6 DYNAMICFASTWAKE: EXTENDING PERFBOUND
TO MULTIPLE SLEEP STATES

This section presents DynamicFastwake, an extension to
PerfBound to control hybrid Fast-Wake + Deep-Sleep whose
benefits were outlined in Section 4. The discussion in this
section primarily focuses on a single-hop two node system
for simplicity, however it should be clear how PerfBound-
Ratio can directly be applied for use in multi-hop networks.

6.1 Extending the histogram to support hybrid Fast-
Wake + Deep-Sleep
The previously mentioned PerfBound heuristic discusses
how a target number of delayed messages can be mapped to
a single Stall-Timer value. This is done using a histogram8

that records for each link, the lengths of their idle periods.
Figure 13 reproduces the histogram discussed in Section 5
to compare with the operation of DynamicFastwake. With
PerfBound, Stall-Timer values are found by searching from
the right-hand side of the histogram, starting from the
longest idle period, until the target number of messages has
been counted. With hybrid Fast-Wake and Deep-Sleep, the
number of messages to delay is not fixed, as it depends on
how many messages cause a wake from Fast-Wake, each
incurring a delay of TFW, and how many wake from Deep-
Sleep, each incurring a delay of TDS. The first step should
therefore identify the total of the wakeup times, TD = lX ,
rather than the number of messages to delay.9

8. In this study, the possible Stall-Timer values are divided logarith-
mically into one hundred bins between 1µs to 100ms. Increasing the
number of bins will allow for finer-grain Stall-Timer choices, but exper-
iments with larger histograms showed no major benefit. A hardware
timer tracks in microseconds the duration of link idle periods (after
the frame buffer is empty). When a new frame arrives, the histogram is
updated. All idle periods less than 1µs are ignored since the Stall-Timer
is likely to be larger than 7µs (sleep + wake time of a EEE link is 7µs).

9. X is the total time the histogram was collected and l is the local
overhead performance bound. The local performance overhead bound
could be calculated in the same way as PerfBoundRatio as described in
Section 5.1.
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Figure 13(B) shows how the idle period histogram is
used by DynamicFastwake. Instead of a single Stall-Timer,
the algorithm must determine two Stall-Timers, Stall-to-
Shallow and Stall-to-Deep. Similarly to Figure 13(A), the
left of the histogram has short idle intervals, of length less
than Stall-to-Shallow, during which the link remains active,
at 100% power, and there is no wake-up penalty. In the
middle of the histogram are intervals larger than Stall-to-
Shallow but less than Stall-to-Deep, during which the link
(eventually) enters Shallow-Sleep, consuming 60% power
but later incurring a Fast-Wake penalty of TFW. The right
of the histogram has intervals longer than Stall-to-Deep,
during which the link enters Deep-Sleep, consuming just
10% power but later incurring the full penalty of TDS.

6.2 Stall-Timer Search for DynamicFastwake

The search for the optimal pair of Stall-Timer values is
illustrated in Figure 14. The two-dimensional space on the
left of the figure contains all potential pairs of Stall-Timer
values. Only the pairs in the lower-right triangle are valid,
since Stall-to-Shallow must always be less than or equal to
Stall-to-Deep. The (pink) region in the lower-left contains
valid Stall-Timer pairs that should be excluded because
the estimated performance overhead is greater than the
link’s local performance bound, l. The algorithm then
chooses the acceptable solution with the greatest estimated
energy savings. As indicated at the right, and explained

Algorithm 1 DynamicFastwake search algorithm
BD = DMAX . Stall-to-Deep bin index
BS = 0 . Stall-to-Shallow bin index
EBEST = 0 . Best energy savings so far
BBEST = (BD, BS) . Best Stall-Timers so far
do

Calculate Toverh and Esav
if Toverh < TD then . Acceptable, so Move left

if Esav > EBEST then
EBEST = Esav
BBEST = (BD, BS)

end if
BD = BD − 1

else . Rejected, so Move up
BS = BS + 1

end if
while BS ≤ BD
return BBEST

in detail below, the performance overhead and energy
savings are estimated using histograms derived from that
of Figure 13(B). Also, two “monotonicity” properties, also
described below, mean that the search is one-dimensional,
not two, and this is suggested by the (green) arrow.

The performance overhead is estimated using the
idle period histogram of Figure 13(B), illustrated at the
bottom-right of Figure 14 and marked (1). Given the two
Stall-Timer values, the histogram is used to determine the
number of idle periods that are followed by a Fast-Wake,
denoted MFW, and the number of idle periods followed
by a full-wake, denoted MDS. The estimated overhead is
then Toverh = MFW · TFW + MDS · TDS. The first step of
DynamicFastwake calculated the total acceptable wakeup
time as TD = lX , so the Stall-Timer pair is excluded
whenever this bound is exceeded; i.e. if Toverh > TD.
Otherwise, the pair of Stall-Timers give an acceptable
solution, although it may not be optimal in terms of energy.

The energy savings are estimated as shown at the top-
right of Figure 14 and marked (2). This step is done using the
energy histogram, which measures the total idle time in each
bin, and is proportional to the energy savings, rather than
the idle period histogram, which measures the number of
idle intervals in the bin, and was proportional to the perfor-
mance overhead. In fact, instead of separately collecting the
energy histogram, we found that it was sufficient to approx-
imate it from the idle period histogram in Figure 13(B), sim-
ply by multiplying the number of idle periods in each bin by
the mid-point of the bin. If IFW is the total idle time in idle
periods followed by a Full-Wake, determined from the en-
ergy histogram, and IDS is the total idle time in idle periods
followed by a Deep-Sleep, also from the histogram, then the
energy savings are estimated to be Esav = 40

100IFW + 90
100IDS.

Combining the above, the optimal pair of Stall-Timers
is chosen to maximise Esav subject to Toverh ≤ TD, and this
can be naively done using a two-dimensional search over all
pairs of valid Stall-Timers.

The optimised one-dimensional search is given in
Algorithm 1. This algorithm manipulates the bin indexes
for the two Stall-Timers, labelled BD and BS, rather than
the Stall-Timers themselves. It starts with Stall-to-Deep at
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its maximum value (BD = DMAX) and Stall-to-Shallow
at zero (BS = 0). Whenever the performance overheads
are acceptable, then the best energy savings is updated if
necessary, and Stall-to-Deep is reduced (by decrementing
BD), moving to the left in Figure 14. If the overheads are too
high, then Stall-to-Shallow is increased (by incrementing
BS), moving up. The algorithm terminates when the Stall-
Timers cross, which is when the solution enters the invalid
upper-left triangle in Figure 14. Since it is always true that
0 ≤ BS ≤ BD ≤ DMAX, both Stall-Timers stay in bounds.

This algorithm can be proved to be correct, using two
“monotonicity” properties. These are easier stated if the
values of Stall-to-Shallow and Stall-to-Deep are abbreviated
as SS and SD, respectively. Firstly, if (SD, SS) is excluded be-
cause the overhead is too high, then clearly all (S′

D, S
′
S) with

S′
D ≤ SD and S′

S ≤ SS have smaller Stall-Timers, and there-
fore larger overheads, so they must be excluded also. Sec-
ondly, if (SD, SS) has acceptable overheads and the energy
savings have been estimated, then all (S′

D, S
′
S) with S′

D ≥ SD
and S′

S ≥ SS have larger Stall-Timers, and therefore smaller
energy savings, so they cannot be closer to optimal.10

Using these properties, the algorithm can be shown
to be equivalent to scanning the two-dimensional space
in Figure 14, starting from the lower-right, and moving
right-to-left then bottom-to-top, excluding pairs that do not
need to be checked due to the monotonicity relationships.
When a pair is rejected because the performance overheads
are unacceptable, then performance monotonicity implies
that all values to the left can be ignored, as the performance
overheads will also be unacceptable. Moreover, all values
one row up and strictly to the right can also be excluded
due to energy monotonicity applied to the previously
visited Stall-Timer pair. Hence the next potentially optimal
pair of Stall-Timers is found by moving up.

Since BD −BS starts at DMAX, and it decreases by one in
each iteration of the loop, the number of iterations is simply
DMAX. This is a one-dimensional search with the same worst
worst case as the original PerfBound. It is also worth noting
that it is not necessary to recalculate Toverh and Esav from
scratch on each iteration, since, each iteration, only the con-
tributions from a single bin are changed. This optimization
is not included in Algorithm 1 for the sake of simplicity.

6.3 Stall-Timer Error Correction

This section describes a low-complexity feed-forward
control mechanism that improves the accuracy of PerfBound
and in extension of DynamicFastwake in reaching a target
performance overhead bound. As described above,
PerfBound translates its performance overhead bound to a
target number of messages that are allowed to be delayed
and then chooses Stall-Timer values to match this target.
Although the algorithm is reasonably accurate, the target
number of messages that can be delayed does not always
exactly match the actual number of messages delayed, as
observed at the links. This is mainly because of the discrete
nature of histograms. In particular, the Stall-Timers are
always chosen to be at a max-point of one of the bins.

10. The phrase “has acceptable overheads” is necessary because
when the overheads are large, increasing Stall-Timers may actually save
energy indirectly through a decrease in execution time.

20 40 60 80 100 120 140 160

Idle Period Sequence (Time)

0

200

400

600

800

1000

N
um

be
r 

of
 M

es
sa

ge
s

(A) Target, PerfBound and Error-corrected messages delayed

#Messages delayed with PerfBound after Error-correction

#Messages delayed with PerfBound
Target #Messages to delay

20 40 60 80 100 120 140 160

Idle Period Sequence (Time)

0

20

40

60

80

100

120

D
ev

ia
tio

n

(B) Deviation to Target #Messages

PerfBound
PerfBound Error-corrected

Fig. 15: Stall-Timer Error Correction and #Target messages
to actual messages delayed by PerfBound and Dynamic-
Fastwake for BT

Increasing the number of bins reduces the error, at the cost
of increased computation time.

Figure 15 (A) illustrates this tracking error, for
application BT. The dashed black line is the target number
of delayed messages, and the yellow line is the actual
number of messages delayed by PerfBound. As seen, there
is a consistent error of about 20%, with the actual number
of delayed messages lower then the target, meaning that
PerfBound achieves lower energy savings than it could
have. This tracking error was similarly observed in other
examined applications.

Figure 15 (B) plots the error, given by the difference
between actual number of messages delayed and target
number of messages delayed as presented in Figure 15 (A).
Here, zero represents no deviation between target and
actual number of messages delayed. It is clear from
Figure 15 (B) that this deviation increases without bound
for the previous PerfBound (in red).

This is solved with the use of a simple feed-forward
controller that monitors the difference between the actual
and target numbers of delayed messages. If this difference
exceeds a fixed value of twenty messages, it applies an offset
to the Deep-Sleep Stall-Timer to force the difference towards
zero. In Figure 15(A), the red line is the number of messages
delayed after this error correction and in Figure 15(B), the
red line shows the deviation from the target. As shown, the
error after correction stays close to zero.

Histogram Refresh: The possible Stall-Timer values in
this study were divided into 100 histogram bins between
1µs to 100ms. Increasing the number of bins would allow
for finer-grain Stall-Timer choices, but experiments with
larger histograms showed no major benefit. A hardware
timer tracks in microseconds the duration of link idle pe-
riods (after the frame buffer is empty). When the next frame
arrives, the histogram is updated. All idle periods less than
1µs are ignored since the Stall-Timer is likely to be larger
than 7µs (sleep + wake time of a EEE link is 7µs).

Although this discussion focuses on unit-time for sim-



12

plicity, histograms are refreshed in idle link events, e.g. every
20,000 idle link events, irrespective of the elapsed time or
application. Figure 12 shows that, for all applications, the
algorithm converges within 200 events, which is only 1% of
20,000, hence a negligible fraction. When a new application
begins, only the first refresh cycle has events from the old
application. In the worst case, at 4µs and 6 hops/message
incurred on all 20,000 events in the first refresh cycle, the
overhead is ≤ 480ms, which is negligible compared with
typical application execution times.

7 RESULTS

The performance–energy trade-offs for the DynamicFast-
wake algorithm are shown in Figure 16. These results were
obtained using the methodology and applications described
in Section 3. As for Figure 9, for each application, the x-
axis is the execution time and the y-axis is the average link
energy, both normalized to the corresponding values for an
always-on network. In these plots, moving down and/or
left is preferred, since this corresponds to decreasing energy
and/or improving performance, respectively. In practice,
the mechanism offers a trade-off between performance and
energy; hence the curves.

The baseline results are as follows. The dashed blue line
is a static sweep of a single Stall-Timer, and the large yellow
triangle is the result from PerfBound, configured for a per-
formance overhead of 1%. The smaller yellow triangles are
results for PerfBound configured for performance overheads
of 0.5%, 2%, 4% and 6%.

The Fast-Wake results are as follows. The dashed black
line is the Pareto-optimal curve from an exhaustive static
search over all pairs of Stall-Timers, obtained as explained
in the description of Figure 9. Finally, the large red square
is the result from DynamicFastwake configured for a
performance overhead of 1%. The small red squares are
obtained by varying the performance overhead parameter
as for PerfBound. This section focuses on discussing the
1% performance overhead configurations, which were
highlighted by the larger points. The conclusions from the
other configurations are similar.

Before further discussion of Fast-Wake and Dynamic-
Fastwake, it is important to visit the savings obtained from
Deep-Sleep and PerfBound alone. Deep-Sleep as seen in
Figure 16 already obtains more than 60% link energy savings
for nine out of the fourteen applications. PerfBound auto-
matically finds its energy-performance curve on the Deep-
Sleep curve, restricting performance overheads while also
obtaining the potential energy savings.

The first observation from Figure 16 for DynamicFast-
wake is that for ten of the fourteen applications it finds a
result on or below the static Pareto-optimal curve. Specifi-
cally, the DynamicFastwake curve overlaps the static Pareto-
optimal curve. Applications SP and MILC has Dynamic-
Fastwake values below the Pareto-optimal curve, indicat-
ing higher energy and lower performance overheads than
obtainable with a sweep. The reason for this is that all
links of a sweep are configured with a single fixed Stall-
Timer. An ideal sweep would vary the Stall-Timers for
all links independently, but this would have translated to
an enormous number of parameters to explore, which is
not feasible. Since PerfBound and DynamicFastwake are

independent and local to each link, the heuristics naturally
configure different Stall-Timers for each link, depending on
locally visible traffic and can thus be better than the sweeps.

In Figure 16, for a 1% overhead, SP shows about 20%
improvement in energy from DynamicFastwake. This was
the dangerous example discussed in Section 4.4, for which
the Stall-Timer speed contains values far from the Pareto-
optimal curve. DynamicFastwake for SP has its value on
the Pareto-optimal curve itself. Similarly, BT and MILC also
show high energy savings from DynamicFastwake. The 5%
higher energy saving potential observed for MG in Sec-
tion 4.4 is captured by DynamicFastwake. For application
ALYA however only 2% is saved from its possible 5%. Al-
though even ALYA, for performance overheads larger than
1%, have DynamicFastwake values overlapping the Pareto-
optimal curve. Section 4.4, specifically discusses ALYA for
its many combinations of possible Stall-Timer values that are
significantly worse than the Pareto-optimal curve or even
the Deep-Sleep sweep. To this end, for ALYA, both Dynam-
icFastwake and PerfBound have nearly optimal energy to
configured performance overheads. Similar to ALYA and
MG are applications, CG, WRF and GROMACS with the
similar 5% improvement in energy savings.

As remarked in Section 4.4, some applications, specifi-
cally GADGET, LINPACK and QUANTUM, have no oppor-
tunity to obtain additional energy savings from Fast-Wake.
Therefore, for the three applications where Fast-Wake offers
no additional energy savings, DynamicFastwake found the
same Pareto-optimal solution as PerfBound.

Figure 16 also presents the accuracy of DynamicFast-
wake in maintaining its configured performance overhead
bound. For twelve out of fourteen applications, the de-
viation from the configured performance overhead was
less than 1%. This error is potentially due to the inherent
application behavior. For example, when an application
ends immediately after a network long idle period, with
no further messages, an opportunity to delay messages
is lost. This is because, with the PerfBound heuristic, the
number of messages delayed and in extension incurred
performance overhead is proportional to time. A large idle
period introduces time that could potentially be used to de-
lay more messages for energy savings. This however cannot
be exploited if the application immediately ends with no
new impending messages. Hence in this scenario expected
overhead is slightly lower than the configured overhead
bound. Similarly a large burst of messages towards the end
of an application could introduce many delayed messages,
and may not give the heuristic time to react or adjust its
Stall-Timers to correspondingly control overheads caused
by the same. This may cause a small increase in over-
head compared to the bound. Two applications, specifically
NAMD and LU have higher overhead than the configured
bound but still less than 5% for the configured 1% bound.
These applications have high inter-message dependencies
that PerfBound does not account for in its calculation. For
a 1% target overhead, the average actual overhead across
all applications, including NAMD and LU, is 1.1% for
PerfBound, and 1.4% for DynamicFastWake.

Out of fourteen, DynamicFastwake saves 70% energy
for six applications and 40–70% for another six, with a
performance overhead bounded to only 1%. The two ap-
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plications that have lower than 40% energy saving, LU
and GROMACS both have high network usage. GROMACS
in specific is also latency sensitive and a bad choice of
Stall-Timers have the potential for large performance over-
heads [9]. While DynamicFastwake does not save energy
when the opportunity is limited, it still bounds performance
overheads.

Figure 17 compares the energy–delay product (EDP) for
DynamicFastwake and PerfBound, with applications con-
figured at a 1% performance overhead bound. Applications
GADGET, LINPACK and QUANTUM obtain no additional
benefit from Fast-Wake over Deep-Sleep, so their results
are not improved by DynamicFastWake. Applications CG,
MG, NAMD, PEPC show an improvement of between 5%
and 10%. Applications BT, SP, MILC and WRF show large
improvements over PerfBound of 35%, 25%, 30%, 12% re-
spectively. On average DynamicFastwake has EDP 10%
better than PerfBound.

As mentioned in the introduction, interconnects con-
sume about 12% of the system energy, and about 60% of
this is due to the interconnect links. This means that 7.2%
of the total system energy costs are due to the interconnect

links. DynamicFastWake saves 70% of the link energy, which
is 5% of the system energy. Assuming that the 1% increase
in execution time translates to a 1% increase in the energy
consumption of the rest of the system, which is pessimistic
as it ignores energy-proportionality of memory, CPUs and
GPUs, the overall saving in system energy consumption
from DynamicFastWake is therefore 4%. This is an improve-
ment of 0.4% over PerfBound alone.11

This 4% reduction in system energy consumption has
a significant impact on the total cost of ownership. For
example, a large-scale HPC system consuming 20 MW costs
about 20 million USD per year,12 which is a total of 80
million USD over a four-year lifespan [6]. This means that
adopting DynamicFastWake instead of the current approach
would provide 3.2 million USD in savings per machine over
its 4-year lifetime.13 The improvement of DynamicFastWake
over PerfBound is 0.57 million USD over its lifetime.

8 RELATED WORK

Jian Li, et al., [8] discuss on/off networks that use snoop
messages that arrive at the NICs as an indication of an
impending message. In nodes that have snoop-based
coherence, snooping messages would arrive at the link
before an impending message, which could be used to turn
the link on, before the actual arrival of the message. They
also propose the use of an always-on control network that
sends control signals through the routing path of a message
to wake up subsequent links. They further propose software
enhancements which would have programmers annotate

11. An improvement of 10% of link energy is 0.72% of system energy.
DynamicFastWake increased execution time by 0.3% above PerfBound,
so the overall saving in system energy is 0.4%.

12. The fastest TOP500 supercomputer consumes 22MW at
35PFLOPS, and an exaflop machine is expected to consume 20MW
to 60MW.

13. This is 4% of 80 million USD.
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the code signalling an impending message. Similarly,
Soteriou, et al., [15] show that on/off networks incur a large
performance penalty and hence, they propose software
mechanisms such as parallelizing compilers for network
power savings. Work by Saravanan, et al., [9], [13] analyzes
HPC applications over on/off based links. Their work
shows energy efficiency benefits in using on/off based
links, however applications can suffer from performance
overheads. R. Bertran, et al., [25], evaluate the power and
performance trade- offs on the Blue Gene/Q. Among other
results, their work shows that the links of Blue Gene/Q are
also ’always-on’ similar to that of Ethernet and InfiniBand.
Their work shows scope for the ideas presented in this paper
to be extended to non-Ethernet but on/off based networks.

Gupta, et al., in their work [19], show that opportunistic
sleeping of links is possible, but their technique increases
the mean latency. Vassos, et al., [17] discuss a design space
analysis for on/off based links. They propose using multiple
routing paths available in torus like networks to shut down
parts of the network during periods of low load. They evalu-
ate their proposal with message arrivals following a Poisson
process. Similarly, Alonso, et al., [18] propose shutting down
redundant links (sub-trees) in their fat-tree system to save
energy. These proposals do not discuss the performance
impact of bursty communications that are typical of HPC.

Silva, et.al., [16] target Data-Centers with evaluation of
Energy Efficient Ethernet based networks over MapReduce.
This work evaluates Stall-Timers to show low performance
or energy benefit with MapReduce clusters. The work shows
that MapReduce is not sensitive to latency and is not af-
fected by wake-up delays and in extension does not require
Stall-Timers. Similarly Ethernet evaluation reports [10], [11]
use synthetic benchmarks to evaluate on/off networks.
Relevant work on Energy Efficient Ethernet [4], [10], [11],
[21], [22], [23] provide detailed evaluations on EEE for its
potential for desktop and IT based systems, but they do
not target HPC workloads. Totoni, et al., [24] show that
not all links of a network executing an HPC application are
utilized, so they propose runtime techniques to find links in
the network that are never utilized, in order to turn them off.
Their work, however, does not adaptively turn on/off links.

D. Abts, et al., [7] proposed energy proportional
interconnects based on reducing the link rates of aggregated
links. In their approach, during periods of inactivity, link
rates are reduced to a lower link bandwidth to save energy.
B. Dickov, et al., [27] present power savings for InfiniBand
networks. They show similar energy saving potential
is available in HPC systems and use prediction based
methods to save link energy. Work by Kim, et al., [20]
evaluate energy proportional networks and compare links
based on dynamic voltage scaling and on/off links. They
show that dynamic voltage scaling in links causes a
significant increase in latency and show that on/off based
techniques perform comparatively better.

9 CONCLUSIONS

Energy consumption is a key challenge in high-performance
computing, but the primary goal will continue to be
performance. Mechanisms to reduce system energy
consumption will, therefore, only be employed if the impact

on performance is known and small. Switches and NICs
implementing the new Energy Efficient Ethernet standards,
with support for Fast-Wake, will soon be deployed in
HPC systems, but, without continued investigation, these
features will likely be disabled by default.

This paper PerfBound and DynamicFastwake, heuristics
to dynamically manage on/off links, minimizing the inter-
connect link energy consumption with a bound on the per-
formance degradation. PerfBound and DynamicFastwake
were evaluated using traces from a production supercom-
puter. For twelve of fourteen applications, the heuristics
presented finds energy/performance results on or below the
static Pareto-optimal curve. Overall, PerfBound obtained up
to 70% savings on link energy. Furthermore, DynamicFast-
wake achieves on top of PerfBound 10% better EDP. The pro-
posed techniques require no changes to the application, and,
since it uses only local information already available at the
switches and NICs, there is no additional communication. It
is also compatible with multi-hop networks. With the rati-
fication of Fast-Wake in March 2014 and 2015 for 40/100Gb
Ethernet, and the ongoing standardization effort for 400Gb
Ethernet, this work could help interconnect vendors to build
energy-efficient switches and NICs that target HPC.
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