
IEEE TRANSACTIONS ON COMPUTERS 1

Optimal Binning for Genomics

Andrea Gulino, Abdulrahman Kaitoua and Stefano Ceri

Abstract—Genome sequencing is expected to be the most prolific source of big data in the next decade; millions of whole genome
datasets will open new opportunities for biological research and personalized medicine. Genome sequences are abstracted in the form
of interesting regions, describing abnormalities of the genome. The parallel execution on the cloud of complex operations for joining
and mapping billions of genomic regions is increasingly important. Genome binning, i.e. partitioning of the genome into small-size
segments, adapts classic data partitioning methods to genomics; region distributions to bins must reflect operation-specific correctness
rules. As a consequence, determining the optimal bin size for such operations is a complex mathematical problem, whose solution
requires careful modeling. The main result of this paper is the mathematical formulation and solution of the optimal binning problem for
join and map operations in the context of GMQL, a query language over genomic regions; the model is validated by experiments
showing its accuracy and sensitivity to the variation of operations’ parameters. We also optimize sequences of operations by inheriting
the binning between two consecutive operations and we show the deployment of GMQL and the tuning of the proposed model on
different cloud computing systems.

Index Terms—Big data applications, Query processing, Genomics, Partitioning algorithms, Optimization.

F

1 INTRODUCTION

Next Generation Sequencing (NGS), a high-throughput,
massively parallel technology for reading the DNA, has
made gigantic steps in the last 10 years. The cost of pro-
ducing a complete human sequence dropped to 1000 US$
in 2015 [30] and is expected to drop below 100 US$ in the
next 2-3 years. Each sequence produces raw data in the form
of short reads of genome strings, whose storage requires
about 200 GByte; between 100 million and 2 billion human
genomes will be sequenced by 2025 [39], thereby generating
the biggest big data problem for the mankind.

Technological development brings about new methods
for extracting signals from the genome, and this in turn
helps us in better understanding the genome. Our concept
of genome has evolved, from a long string of 3,2 billions
of base pairs to a living system producing signals, to be
integrated and interpreted. Signals include variants (posi-
tions or regions of the genome where the code of an indi-
vidual differs from the reference genome), gene expression
(measuring gene activity in protein transcription) and peaks
of expression (positions of the genome with an increase of
short reads which indicate specific biological events, such as
the binding of a protein to the DNA).

Signals are produced as result of long and complex bio-
informatics pipelines. In particular, analysis of NGS data
is classified as primary, secondary and tertiary1. Primary
analysis is essentially responsible of producing raw data.
Secondary analysis is responsible of producing the so-called
processed data, by extracting (calling) the signal from raw
data and aligning them to the reference genome. Thou-
sands of processed datasets are becoming available at large
sequencing centers, are being assembled by large interna-

• A. Gulino and S. Ceri are at the Dipartimento di Elettronica ed Infor-
mazione e Bioingegneria, Politecnico di Milano, Italy; A. Kaitoua is at
DFKI Berlin. E-mail: {firstname.lastname}@polimi.it

1. http://blog.goldenhelix.com/grudy/a-hitchhiker%E2%80%99s-
guide-to-next-generation-sequencing-part-2

tional consortia and made available for secondary research
use; they include the Enciclopedia of DNA Elements (EN-
CODE) [20], The Cancer Genome Atlas (TCGA) [45], and
the 1000 Genomes Project [1].

Tertiary analysis is responsible of exploring, querying
and integrating processed data, so as to give answers to
complex biological and clinical questions, ultimately yield-
ing to personalized medicine. So far, very few systems
are specifically dedicated to tertiary data analysis. Among
them, SciDB, a scientific database produced by the spinoff
company Paradigm4 [7] and DeepBlue, produced by the
BluePrint consortium [5].

We are currently developing a new, holistic approach for
tertiary data analysis. Our approach is based on a new, high-
level query language, called GenoMetric Query Language
(GMQL) [28], which enables building new datasets from a
repository of existing datasets, using algebraic operations.
Our approach is truly multidisciplinary, as it combines data
modeling and management, big data, cloud computing,
systems architecture and parallel algorithms. The current
implementation of GMQL is available since March 2016 at
CINECA supercomputing site2.

In a previous paper [23] we presented our framework
for the parallel implementation of GMQL operations on
the cloud and the algorithms for the implementation of
domain-specific GMQL operations using Flink [8] and Spark
[9]. These algorithms use binning, i.e. a partitioning of the
genome into portions of equal size so as to enable par-
allelism, but we did not address the problem of binning
optimization. GMQL has been so far using a single bin size
for each operation, set at the beginning of query execution.

In this paper, we solve the problem of determining the
optimal binning of JOIN and MAP, the most important
domain-specific GMQL operations: together with SELEC-
TION and PROJECTION, they allow defining a particular

2. GMQL-V2, http://www.gmql.eu/interfaces/

IEEE TRANSACTIONS ON COMPUTERS 2

class of GMQL programs, denoted as conjunctive GMQL
programs, which constitute the core of the language and are
used by most applications. We present analytical models
for determining the optimal bin size of each operation
independently, and then an approach to the optimization of
consecutive operations within conjunctive GMQL queries.
In order to predict the optimal models, we also introduce
genomic profiling, which takes into account the specificity
of genomic datasets. The combination of profiling and bin
optimization, included within the latest release of GMQL,
provides a comprehensive approach to query optimization
for tertiary data management in genomics, whose applica-
bility goes beyond GMQL. We show some examples where
a small underestimation or overestimation of the bin size
doubles the execution time.

The remaining of this paper is structured as follows. In
order to make this paper self-contained, Section 2 summa-
rizes the GMQL data model, the JOIN and MAP operations,
and the strategy for binning the genome as a function of the
specific JOIN and MAP conditions. Together with the data
model and operations we also introduce the definition and
evaluation of their profiles, while the detailed implementa-
tion of JOIN and MAP operations using Flink and Spark is
omitted, and can be found on [23]. Section 3 then presents
the analytical models for computing the optimal bin size of
JOIN and MAP, and Section 4 provides the validation of the
models both on synthetic and real datasets, with a sensitiv-
ity analysis showing the dependency of the optimal choice
of binning from the query parameters. Section 5 describes
the optimization of sequences of operations, achieved by
reusing bin assignments; Section 6 describes the deployment
of GMQL over clouds. Finally, we present the related work
and conclusions.

2 GENOMIC DATA MODEL AND OPERATIONS

In this section, we summarize the GMQL data model and
the JOIN and MAP operations, which are the essential
ingredients of conjunctive GMQL queries.

2.1 Region-Based Data Model

In this paper, genomic information is organized within
DNA regions, i.e. portions of the genome placed within
one chromosome and further characterized by a start and
stop position, and possibly by a strand, i.e. the direction
of reading of the DNA. Regions are aligned with respect
to a reference genome, therefore regions are related to each
other by a single system of coordinates. Every region carries
a value which describes the signal associated with the region
- hence, it can describe mutations, gene expression, peaks of
expressions, or other interesting properties of the genome.
In general, the region value is complex and is associated
with a given signature.

The regions which are produced by a given experimental
condition (e.g. a specific DNA treatment for a given cell)
are contained within a file or sample. We then collect into
collections, called datasets, samples that are produced by
the use of the same technology - hence, their value has
the same signature. Datasets are named and each sample
within a dataset has a unique identifier. Each dataset has

TABLE 1: Parameters of dataset profiles

Feature Description
S Number of samples in a dataset
L Size of the region schema
Ni Number of regions in sample i
w Average region length
u Useful space

a schema, which is a list of typed attributes. The first five
attributes, describing the sample’s identity and region’s co-
ordinates, are fixed (Sample-ID, Chromosome, Start,
Stop, Strand) while the subsequent attributes describe
the region’s value and depend on the specific technology
used for the experiment 3.

2.1.1 Profiles
Profiles are used in order to quantitatively define the prop-
erties that better characterize a genomic dataset from the
point of view of query optimization, whose main aspect
is the determination of the optimal bin size. Table 1 lists
the main profile parameters. They include some typical
counters, such as the number of samples S, the size of
the region’s schema L, and the number of regions in each
sample Ni. Therefore, the initial size of each dataset is given
by:

size(DS) =
∑
i

(L×Ni)

Specific parameters which are needed in a region-based
calculus are: w (average region length) which is essential for
computing the selectivity of join predicates, and u (useful
space), that measures the amount of space in a sample that is
actually occupied by some regions, since the initial and final
parts of chromosomes are typically empty. By assuming
that, in a sample, regions within each chromosome are
uniformly distributed along a single interval of coordinates,
the useful space u is computed as:

u =
∑
c∈C

Mc −mc

where C is the set of distinct chromosomes appearing in
the sample, Mc and mc are respectively the maximum and
minimum coordinates of regions belonging to chromosome
c. We opted for a single parameter per sample instead
of chromosome-specific parameters so as to keep profiling
more manageable.

We assume that profiles are available for each initial
dataset. We estimate the profiles of intermediate result pro-
duced by a query by applying heuristics to its input profiles.
Each heuristic models the transformations performed by an
operator of the language to its input datasets. In one case
of join, since no heuristic is available, we must dynamically
reprofile the result (see Section 2.2.2).

2.2 Conjunctive GMQL Programs

A GMQL query is a sequence of GMQL operations with the
following structure:

3. The GMQL data model includes also metadata attributes as a
fundamental concept, but they are not required for explaining optimal
binning, hence we omit their description; see [28].

IEEE TRANSACTIONS ON COMPUTERS 3

<var> = operation(<parameters>) <vars>

where each variable stands for a GMQL dataset. Operations
are either unary (with one input variable) or binary (with
two input variables) ad produce a result variable. The result
variable corresponds to a new dataset consisting of several
samples, whose content is computed by the operation; in
particular, sample identifiers are either inherited by the
operands or generated by the operation.

Most GMQL operations are extensions of classic rela-
tional algebra operations, twisted to the needs of genomics.
In [28], we demonstrated the expressive power and flexi-
bility of GMQL through multiple biological examples, in-
cluding finding distal bindings in transcription regulatory
regions, associating transcriptomics and epigenomics, and
finding somatic mutations in exons. Compared with lan-
guages which are currently in use by the bioinformatics
community, GMQL is declarative (it specifies the structure
of the results, leaving its computation to each operation’s
implementation) and high-level (one GMQL query typically
substitutes for a long program embedded within a program-
ming language such as R or Python).

The core of GMQL is constituted by the classical op-
erations of SELECT, PROJECT and JOIN, extended by the
MAP operation - used to generate query results which are
suitable for further data analysis. SELECT and PROJECT are
rather standard4. Hence, we briefly summarize only JOIN
and MAP; we also describe how the profile of their results
can be computed.

2.2.1 Join
The JOIN operation applies to two datasets, respectively
called anchor and experiment, and produces a result sam-
ple for every pair of samples of the operand datasets,
whose identifier is obtained by applying a hash function
to the identifiers of the operand samples. The coordinates
of resulting regions are computed according to four region
composition options: LEFT and RIGHT project resulting
regions over the left or right operand dataset, INT produces
their intersection and CONCAT produces their concatena-
tion. Thus, the join operation produces results that can
grow quadratically both in the number of samples and of
regions. Hence, it is the most critical GMQL operation from
a computational point of view.

The regions within each result sample are generated
from the regions of the operand samples that satisfy a geno-
metric predicate, based on the notion of genomic distance.
Distance is defined as the number of bases between the clos-
est opposite ends of two regions. Intersecting regions have
distance less than 0, adjacent regions have distance equal
to 0. If two regions belong to different chromosomes, their
distance is undefined (and predicates based on distance fail).

A genometric predicate is a sequence of distal condi-
tions, defined as follows:
• UP/DOWN denotes the upstream and downstream direc-

tions of the genome. They are interpreted as predicates

4. SELECT and PROJECT enable selecting samples and regions, or
projecting parts of the region value; their profile evaluation requires
to compute S, Ni and L respectively. The first selection causes also
the loading of samples, thus S and Ni are precisely computed from
sample-specific parameters at the end of loading.

Fig. 1: Example of Map and Join input and output
datasets visualized through the Integrated Genome Broswer
(http://bioviz.org). Genomic regions are all in the positive
strand.

that must hold on the region of the experiment; UP is true
when it is in the upstream genome of the anchor region5.
When this clause is not present, distal conditions apply
to both the directions of the genome.

• MD(K) denotes the minimum distance clause; it selects the
K regions of the experiment at minimal distance from
the anchor region. When there are ties (i.e. regions at the
same distance from the anchor region), regions of the
experiment are kept in the result even if they exceed the
K limit.

• DLE(N) denotes the less distance clause; it selects all the
regions of the experiment such that their distance from
the anchor region is less than or equal to N bases.

• DGE(N) denotes the greater distance clause; it selects all
the regions of the experiment such that their distance
from the anchor region is greater than or equal to N
bases.

Genometric clauses are composed by strings of distal con-
ditions. They define a search space for each anchor region,
i.e. intervals of coordinates in which the closest ends of an
experiment region must fall in order to satisfy the predicate
(see Section 3.1).

A genometric predicate is well-formed only if it in-
cludes the less distance clause. We expect all clauses to
be well formed, possibly because the clause DLE(Max) is
automatically added at the end of the string, where Max
is a problem-specific maximum distance. As discussed in
[23], the DLE and UP/DOWN clauses are commutative with
the other clauses and can be pushed at the beginning of
the string, thus delimiting the search space. After clause
rewriting, the clauses appearing in the predicate before the
MD clause - if present - are denoted as first-step clauses; they
include a DLE clause and may include a DGE and a UP/DOWN
clause.

Example 2.1. Consider the following query:

A = SELECT() D1;
E = SELECT() D2;
R = JOIN(DLE(40),DGE(15); output:RIGHT) A E;

computed on the following anchor and experiment datasets:

5. Upstream and downstream are genomic predicates. For regions of
the positive strand, UP is true for those regions of the experiment whose
right end is lower than the left end of the anchor, and DOWN is true
for those regions of the experiment whose left end is higher than the
right end of the anchor. For the negative strand, ends and inequalities
are exchanged.

IEEE TRANSACTIONS ON COMPUTERS 4

D1 : chromosome, start, stop, strand
chr1 100 130 +
chr1 260 290 +

D2: chromosome, start, stop, strand
chr1 100 120 +
chr1 150 180 +
chr1 200 230 +
chr1 250 270 +
chr1 280 300 +

The result, shown in the third track of Fig. 1, is made of
those experiment regions whose genomic distance from an
anchor region was between 15 and 40 bases:

R: chromosome, start, stop, strand
chr1 150 180 +
chr1 200 230 +

2.2.2 Profiles Estimation for Join Results

Profiles of intermediate result are computed by applying
heuristics to the input profiles; each heuristic models the
transformations performed by an operator of the language
to the features of its input datasets6.

The output profile of the result of a join operation is
estimated from the profiles of its input variables with the
heuristics presented in the following. The notation i 1 j is
used to denote the output sample generated by joining the
i-th anchor sample with the j-th experiment sample:
• The number of regions in output is estimated as:

Ni1j = Ni · s · δj

where s is the length of the search space, while δj is an
estimation for the region density of the j-th experiment
sample:

δj =
Nj
uj

• Other features are estimated depending on the
coord-gen option, as follows:

– If coord-gen = LEFT, then:

(w, u)i1j = (w, u)i

– If coord-gen = RIGHT, then:

(w, u)i1j = (w, u)j

– If coord-gen = INT, then we use the following
upper bound:

(w, u)i1j = (min(wi, wj),min(ui, uj))

– The CAT option is much less used in the queries; it
requires reprofiling7.

6. JOIN and MAP can be preceded by a meta-join condition
which imposes an equi-join on categorical metadata attributes
(e.g. CancerType, CellLine, Antibody, PatientId). When
the meta-join condition is present, it selects pairs of samples with
identical values of the categorical attributes. In this paper, we disregard
meta-joins; in GMQL they are computed before JOIN and MAP, and
profiles are suitably adapted.

7. Reprofiling is not too expensive as it is performed when data are
already loaded in memory.

2.2.3 Map

MAP is a binary operation over two datasets, respectively
called reference and experiment. Let us consider one refer-
ence sample, with a set of reference regions. The operation
computes, for each sample in the experiment, new values
produced by aggregation functions over the values of the
experiment regions that intersect with each reference region;
we say that experiment regions are mapped to reference regions.
The operation produces a regular structure, called genomic
space, where each experiment sample is associated with a
row, each reference region with a column, and each matrix
entry is a single value. Thus, a MAP operation allows a
quantitative reading of experiments with respect to the ref-
erence regions; when the biological function of the reference
regions is not known, MAP helps in extracting the most
interesting regions out of many candidates.

Example 2.2. Consider the following query:

A = SELECT() D1;
E = SELECT() D2;
R = MAP() A E;

computed on the same datasets used in Example 2.1. The
result, shown in the fourth track of Fig. 1, is made of the
reference regions with the count of overlapping experiment
regions:

R : chromosome, start, stop, strand, count
chr1 100 130 + 1
chr1 260 290 + 2

2.2.4 Profiles Estimation for Map Results

The profiles of result samples of a Map operation are simply
inherited from the first operand:

(N,w, u)ij = (N,w, u)i

3 OPTIMAL BINNING

Genome binning refers to the subdivision of the genome
into small, identical partitions or bins. A similar partitioning
method is used by the UCSC Genome Browser [24] in
order to speed up the loading of samples within a genome
browser window. Binning algorithms are reviewed in the
related work section.

The process of binning splits every chromosome of the
genome into several bins of equal size b. For each chromo-
some, bins are progressively numbered starting from 0; the
i-th bin spans from b× i to b× (i+1)−1 ; a genome position
placed at i bases from the chromosome start is assigned to
the bin β(i) = bi/bc.

In this section, we consider each map and join oper-
ation separately. At execution time, the optimal bin size
is computed for each operation, and then the regions of
each operand’s sample are assigned to the bins. In the next
section, we will describe an optimization that applies to
chains of join and map operations.

IEEE TRANSACTIONS ON COMPUTERS 5

Fig. 2: Four search space topologies

3.1 Optimal Binning for Join

The join implementation strategy, discussed in [23], occurs
by first considering the distal conditions of the first-step
clauses (as defined in Section 2.2.1); this part of the compu-
tation is the most expensive as it requires computing all the
matching pairs, while the subsequent computation, when
present, selects some of them into the result. Therefore,
binning optimization is concerned with the search space as
defined by the first-step clauses.

The computation of the optimal bin size occurs as fol-
lows:

1) First, we estimate how many regions of an experiment
sample are assigned to bins - see formula (1).

2) Next, we estimate how many regions of an anchor sam-
ple are assigned to bins. Anchor regions are replicated
to several bins in order to properly capture the distal
conditions by means of region intersection. Depending
on the structure of genometric predicates, we obtain
four cases. In the first three cases, the estimate is sum-
marized by using formulas which just differ for a term
- see formula (2).

3) Next, we discuss the fourth case in which the search
space has a gap, and we introduce a correction to the
estimate, which has two distinct cases depending on a
comparison between the bin size and the length of the
gap - see formula (3).

4) Next, we compute the total number of regions that are
assigned to bins - see formula (4) - and the total number
of pairs of regions produced at all the bins - see formula
(5). The join cost is a linear combination of these totals -
see formula (7). The rationale of the cost function is that
each choice of binning generates a need of replicating
regions to bins, evaluated by the first counter, and of
joining regions within bins, evaluated by the second
counter.

5) Finally, we obtain the optimal bin size by minimizing
the cost function. This yields to a single formulation in
the first three cases and to four different formulations
in the fourth case.

We start with the estimate of data replication depending
on the bin size. We denote as ρ(b) the number of regions
contained in a binned sample with a bin of size b.

Binning of the experiment dataset produces a copy of
the experiment region for each bin that the region intersects.
The number of regions in a binned experiment sample can

be estimated as:

ρE(b) = NE +NE ·
w − 1

b
(1)

Intuitively, the binned sample will contain at least the num-
ber of regions in the original sample (NE), plus a number
of replicates that depends on the ratio between the region
length (w) and the bin size (b).

Anchor regions are replicated to every bin intersecting
with its search space. Depending on the genometric predi-
cate provided by the user, the search space assumes 4 differ-
ent topologies, represented in Fig. 2 and here explained:
• Q1 : when only DLE(k) is present, the search space is

the contiguous interval [rleft−k, rright+k], where rleft
and rright denote the coordinates of the left and right
ends of the region. With a query of this type, the length
of the search space associated to a generic anchor region
of length w can be computed as:

l1 = 2 · k + wA

• Q2 : when only DLE(k)and the stream clause UP (DOWN)
are present, the search space is the contiguous interval
[rleft − k, rleft]

(
[rright, rright + k]

)
. With a query of

this type, the length of the search space associated to
a generic anchor region is simply:

l2 = k

• Q3 : when DLE(k), DGE(h) and the stream clause UP
(DOWN) are present, the search space is the contiguous
interval [rleft − k, rleft − h]

(
[rright + h, rright + k]

)
.

With a query of this type, the length of the search space
associated to a generic anchor region of length w can be
computed as:

l3 = k − h

• Q4 : when DLE(k), DGE(h) but no stream clause is
present, the search space is no more a single contiguous
interval. Indeed, in this case the search space is made of
two disjoint symmetric intervals of length l3, i.e. same
length of the previous case, separated by a gap of length
γ = 2 · h+ wA.
If the query is of type Q1|2|3, i.e. the search space asso-

ciated to each anchor region is a single contiguous interval,
the number of regions in a binned reference sample can be
computed as:

ρA1|2|3(b) = NA +NA ·
l1|2|3 − 1

b
(2)

this equation is similar to equation (1), where the average
region length is replaced with the average search space
length.

When the query is of type Q4 the search space is made of
two distinct intervals each having length l3. In general, we
could always estimate the number of regions in the binned
sample as double the amount of regions estimated when the
query is of type Q3:

ρA4(b) = 2 · ρA3(b)

However, when the bin size is greater than the gap
length, i.e. when b > γ, the previous expression counts
twice the replicates generated by the search space at the

IEEE TRANSACTIONS ON COMPUTERS 6

bin associated to the gap, therefore above that threshold we
need a different estimation. However, for b > γ the length
of the gap can be ignored, i.e. we can assume that the search
space is the single contiguous interval [rleft − k, rright + k];
hence we can estimate the number of regions in a binned
anchor sample as we did in case Q1, i.e.:

ρA4
(b) = ρA1

(b)

Therefore, the amount of regions in a binned anchor
sample with a query of type Q4 is estimated with the
following piecewise-defined continuos function:

ρA4
(b) =

{
2 · ρA3

(b) if b ≤ γ
ρA1

(b) if b > γ
(3)

that has a derivative discontinuity in γ.
The total number of regions in the binned datasets (both

anchor and experiment) can be computed as:

τ1(b) =
SA∑
i=1

ρAi(b) +
SE∑
i=1

ρEi(b) (4)

where SA (SE) denotes the number of samples in the an-
chor (experiment) dataset and ρAi(b) (ρEi(b)) is the number
of regions in the i-th binned anchor (experiment) sample.

After anchor regions and experiment regions are joined
in each bin the overall number of joined couples can be
estimated as:

τ2(b) =
X

b
·
(SA∑
i=1

ρAi(b)

uAi/b
·
SE∑
i=1

ρEi(b)

uEi/b

)
(5)

where X
b is the estimation of the total number of bins, ρAi (b)uAi(ρEi (b)

uEi

)
is an estimation of the amount of regions from the i-

th binned anchor (experiment) sample contained in a single
bin and SA (SE) is the number of anchor (experiment)
samples. X estimates the length of the space occupied by
both anchor and experiment regions to be joined together
and is computed as:

X = min

(
maxi=1..SA(uAi),maxi=1..SE (uEi)

)
(6)

We express the cost function as a linear combination of
τ1(b) and τ2(b):

c(b) = α1 · τ1(b) + α2 · τ2(b) (7)

where α1 and α2 are tuning parameters whose estimation is
discussed in Section 6.

The optimal bin size b∗ for cases Q1|2|3 can be simply
found minimizing the cost function, i.e

b∗1|2|3 = argmin
b

c(b)

and the expression of the optimal bin size is:

b∗1|2|3=

(
α1
α2
·
∑SA
i=1NAi ·(l1|2|3−1)+

∑SE
i=1NEi ·(wEi−1)

X·
∑SA
i=1

NAi
uAi
·
∑SE
i=1

NEi
uEi

+

+

∑SA
i=1

NAi
·(l1|2|3−1)

uAi
·
∑SE
i=1

NEi
·(wEi−1)

uEi∑SA
i=1

NAi
uAi
·
∑SE
i=1

NEi
uEi

)1/2

(8)

For case Q4 , the optimal bin size is computed in the
following way:
• if b∗3 ≤ γ and b∗1 ≥ γ : the minimum is:

b∗4 =

{
b∗3 if c3(b

∗
3) < c1(b

∗
1)

b∗1 if c3(b
∗
3) ≥ c1(b∗1)

• if b∗3 > γ and b∗1 ≥ γ : the minimum is:

b∗4 = b∗1

• if b∗3 ≤ γ and b∗1 < γ : the minimum is:

b∗4 = b∗3

• if b∗3 > γ and b∗1 < γ : this is a limit case since the
minimum equals the critical point:

b∗4 = γ

3.2 Optimal Binning for Map

The computation of the optimal bin size for a map operation
occurs as follows:

1) First, we estimate how many regions of reference and
experiment datasets are produced by binning. Such
computation is simple - same as formula (1) for join.

2) Next, we compute the total number of regions that
are assigned to bins - same as formula (4) for join -
and the complexity of sorting and comparing regions -
see formula (10). The map cost is obtained as a linear
combination of these totals - see formula (12). Similarly
to the Join, the rationale of the cost function is that each
choice of binning generates a need of replicating regions
to bins, evaluated by the first counter, and of comparing
regions within bins, evaluated by the second counter.

3) Finally, we obtain the optimal bin size by minimizing
the cost function.

Evaluating data replication for a Map is simple: both
reference and experiment regions are replicated in the bins
they intersect. Therefore, the number of regions in binned
reference and experiment samples is estimated in both cases
as in (1 for join, i.e.:

ρRi(b) = NRi +NRi ·
wRi − 1

b

ρEi(b) = NEi +NEi ·
wEi − 1

b

and the total number of regions in the binned datasets (both
reference and experiment) can still be estimated as in (4) for
join, i.e.:

τ1(b) =
SR∑
i=1

ρRi(b) +
SE∑
i=1

ρEi(b) (9)

Compared with join, the map operation is simpler; the al-
gorithm used to compare reference and experiment regions
in each bin, described in [23], uses merge-sort, whose com-
plexity, as a function of the bin size, can be approximated
by:

IEEE TRANSACTIONS ON COMPUTERS 7

τ2(b)=
X
b ·
[(∑SR

i=1
ρRi (b)

uRi/b

)
· log2

∑SR
j=1

ρRi (b)

uRi/b

+
∑SE
i=1

ρEi (b)

uEi/b
· log2

ρEi (b)

uEi/b

]
(10)

where X
b is an estimation of the total number of bins,(∑SR

i=1
ρRi (b)

uRi/b

)
· log2

∑SR
j=1

ρRi (b)

uRi/b
is the complexity of sorting

reference regions, that are sorted within each bin indepen-
dently on their sample, and

∑SE
i=1

ρEi (b)

uEi/b
· log2

ρEi (b)

uEi/b
is the

complexity of sorting experiment regions sample by sample
within each bin. X is again computed as:

X = min

(
maxi=1..SR(uRi),maxi=1..SE (uEi)

)
(11)

The cost function is again a linear combination of τ1(b)
and τ2(b):

c(b) = α1 · τ1(b) + α2 · τ2(b) (12)

where α1 and α2 are tuning parameters.
Again, finding the optimal bin size b∗ means looking for

the b that solves the minimization equation:

dc(b)

db
= 0

.
The development of the last equation, properly re-

arranged and approximated, is an equation of type:

α2h1 · log b+ α2h2 · b+ (α2h3 − α1h4) = 0 (13)

where h1|2|3|4 are constant terms derived from the dataset
profiles. As argued in the Appendix, there is no elementary
solution for (13), but we can resort to an expression of
the optimal bin size that uses the Lambert-W function, an
ubiquitous mathematical tool [53]. Denoting with W the
Lambert W function, the solution of (13) can be expressed
as:

b∗ =
h1
h2
·W

(h2
h1
· e

α1
α2

h4
h1
−h3h1

)
4 EXPERIMENTS

4.1 Join
We validated the model by means both of synthetic and
of real datasets; synthetic datasets were generated by start-
ing from profiles, while real datasets were extracted from
genomic repositories. In general, all predictions are very
accurate, and show that the cost model is extremely precise
in predicting the execution time of computations, both with
synthetic and with real datasets. As the cost model does not
include the prediction of constant terms, we visualize the
predicted cost curve so that costs and times are referred to
the same scale, by setting the predicted cost at the optimal
predicted bin size to be identical to the execution time for
that bin size; we then repeat the testing for variable bin
sizes and plot the corresponding execution times against
the estimated cost; continuous lines represent the estimated

Fig. 3: Comparison of real and predicted execution time and
optimal bin size for the JOIN operation on synthetic datasets
that differ in the number of anchor samples SA.

costs and dashed lines represent the measured execution
times, obtained by connecting the discrete execution times
measured for given bin sizes. A red square marker denotes
the position of the predicted optimal bin size for a query..
Tests were executed on an Amazon EMR Cluster made
of one master node and five instances of type m3.2xlarge;
execution times are expressed in seconds.

TABLE 2: Profile features used as baseline

Feature Value
SA 1
SE 5
N 25 · 104
w 100
u 5 · 107

Synthetic data were generated by considering a single
interval of regions and a profile baseline shown in Table
2; region lengths were generated by using a Gaussian dis-
tribution centered on the mean value w. We then changed
the baseline by one dimension at a time, diagrams 3 to 5
illustrate interesting cases associated to three dimensions.

Figures 3 and 4 show that by rising the number of
anchor and of experiment samples the optimal bin size does
not change, as expected. However, the execution time is
significantly different. They also show that a correct estimate
of the optimal bin size is most relevant with larger datasets,
as the curves (both in the estimated and computed cases)
show a significant slope. In Fig. 3, where the optimal bin
size corresponds to about 3000 bases, a choice of bin size
of 50 vs 5000 bases yields to doubling execution; largest bin
sizes correspond to extremely inefficient or possibly non-
terminating executions.

Figure 5 shows that the optimal bin size changes as a
function of the change in distal conditions. It also shows the
most dramatic change in execution time, as the execution
time associated with the optimal binning and a distance of
500 is about 10 seconds whereas the execution time with a
distance of 50, 000 rises up to about 10 minutes. Instead,
execution time is less influenced by the average region
length when it is below the bin size, and similarly it is
less influenced by the number of regions (the corresponding
diagrams are omitted).

Figure 6 shows two different join executions, obtained
by varying three parameters: the number of anchor and
experiment samples and the search space. The figure shows

IEEE TRANSACTIONS ON COMPUTERS 8

Fig. 4: Comparison of real and predicted execution time and
optimal bin size for the JOIN operation on synthetic datasets
that differ in the number of experiment samples SE .

Fig. 5: Comparison of real and predicted execution time and
optimal bin size for the JOIN operation on synthetic datasets
that differ in the size of the search space.

that execution time does not differ too much in the interval
between the two optimal bin sizes (700 and 8000 bases
respectively), however a wrong choice of bin size easily
brings to suboptimal executions. In particular, by setting the
bin size to 200, execution time for the (1, 10, 50000) case
triples w.r.t the optimum; by setting the bin size to 30000,
execution time for the (10, 10, 500) case doubles.

In Section 3.1 we discussed the cost function of case
Q4 , which has a critical point in correspondence with the
derivative discontinuity of the estimate reported in formula
3. Figure 7 experimentally confirms the model, showing that
the discontinuity occurs at bin size 1200 - which separates
the experimental curve into two parts. In the experiment,
other parameters are: h = 500 and w = 100.

Fig. 6: Two different JOIN executions show different opti-
mality ranges for the bin size.

Fig. 7: Comparison of real and predicted execution times for
a query of topology Q4; note that the cost function has a
discontinuity at γ = 2 · h+ w, confirmed by the real case.

TABLE 3: Datasets’ features . S, N and w are averaged over
the number of samples.

Anchor Experiment
S 15 30
N 6.7 · 104 1.8 · 105
w 6.1 · 104 2.3 · 103
u 2.49 · 108 2.49 · 108

The real-life experiment was performed on large datasets
(450 sample pairs, each with 120 billion region pairs) and
by using a very large search space of 106 bases, so as to
stress-test our system (recall the discussion relative to Fig.
5). We used replicas of the RefSeq genes as anchor and
NarrowPeak ChIPseq datasets from Encode as experiments,
the corresponding profiles are shown in Table 3. The test in
Fig. 8 reports execution times in minutes; also in this case,
the estimate is very accurate, and in particular the optimal
bin size is almost identical in the two cases.

4.2 Map
Execution times of the map operation exhibit a steep de-
scent towards the minimum, followed by linear growth in
logarithmic scale after the minimum, which is due to the
presence of a logarithmic complexity in the cost function. In
this case, the underestimation of the optimal bin size causes
a strong rise of execution times, while its overestimation is
less critical.

In particular, Fig. 9 shows a shift in the cost function with
the growth of the average length of regions (from w = 10

Fig. 8: Comparison of real and predicted execution time and
optimal bin size for the JOIN operation on real datasets.

IEEE TRANSACTIONS ON COMPUTERS 9

Fig. 9: Comparison of real and predicted execution time and
optimal bin size for the MAP operation on synthetic datasets
that differ in the average length of regions w.

Fig. 10: Comparison of real and predicted execution time
and optimal bin size for the MAP operation on real datasets.

to w = 500); the shift causes the optimal bin size also to
increase (from 500 to 5000 bins), while in a join a difference
of average length of regions does not significantly change
the optimal bin size. As in join, execution time is influenced
by the number of reference and experiment samples, but
they do not cause significant changes of the optimal bin size
(diagrams omitted).

The real-life experiment was performed on the profiles
of Table 3. The test in Fig. 10 reports execution times in
seconds, as the corresponding map operation is not as
complex as the join (in particular, anchor regions in the map
are two orders of magnitude smaller the join search space
of 106 bases); the estimate is also in this case very accurate,
and in particular the optimal bin size is almost identical in
the two cases.

5 OPTIMIZING BINNING OVER SEQUENCES OF OP-
ERATIONS

So far we have discussed the individual optimization of
binning algorithms for two different domain specific opera-
tions, JOIN and MAP, but most conjunctive queries include
several such operations. In such case, binning optimization
may take into account several operations at the same time;
in particular, the most interesting option consists of keeping
the same binning of operands of consecutive operations. In
this section, we discuss when such option is possible (given
the semantics of operations) and convenient (as it incurs less
costs).

A GMQL query can be represented as a Directed Acyclic
Graph (DAG) in which vertices represent operations and

Fig. 11: DAG of a GMQL query; dashed edges denote
experiment datasets. Edges are labeled with the variable
(dataset) identifier.

edges represent dependencies among operations. In our
representation, an edge from v to u implies that the output
dataset of operation v is the input dataset of operation u.
Binary operations, such as JOIN and MAP, have two input
edges and one output edge. An example is shown in Figure
11, representing the DAG of the following query:

A = SELECT() FROM DS1;
B = SELECT() FROM DS2;
C = SELECT() FROM DS3;
D = MAP() A B;
E = JOIN(DLE(100); RIGHT) C D;
F = MAP() D E;
MTERIALIZE F INTO RES;

We can apply two different kinds of multi-operation
optimizations:
• Binning Reuse: when the same dataset is in input to

several operations, we can use the same binning for both
of them.

• Binning Chaining: when a dataset, produced as output
of a binary operation, is used in a following binary
operation, we can use for second operation the binning
produced by the first one, without rebinning.

From a semantic point of view, bin chaining opportunities
are summarized in Figure 12; it shows that:
• JOIN can get as input binned results for the experiment

dataset produced by a MAP or JOIN with RIGHT com-
position option: the anchor can be chained only in the
case when the producer operation is a JOIN with LEFT
composition option and the search space is identical.

• MAP can get as input binned results both for anchor and
experiments produced by either a MAP and or by a JOIN
with RIGHT composition option.
Figure 11 shows examples of both reuse and chaining: (i)

the dataset D, resulting after the MAP1 operation, is in input
to the JOIN and next chained to the MAP2 operation, hence
its binning can be reused by the MAP2 operation; (ii) the
datasets D and E, produced in output by MAP1 and JOIN
with RIGHT composition option respectively, are in input to
the MAP2, hence their binning can be chained.

The savings which can be obtained thanks to binning
reuse or chaining are essentially related to one of the two

IEEE TRANSACTIONS ON COMPUTERS 10

Fig. 12: Bin chaining with sequences of JOIN and MAP
operations.

Fig. 13: Bin choices with sequences of JOIN and MAP
operations.

terms counting the number of regions over the anchor (first
term) or experiments (second term) appearing in formula
(4) (for join) or (9) (for map). These are weighted by tuning
parameters α1, where α1 and α2 essentially trade data shuf-
fling and computational costs, in the overall cost formulas
(7) (for join) and (12) (for map). Thus the reduction of
costs incurring by reuse or chaining is properly computed
by omitting the appropriate term of formulas (4) or (9)
weighted by α1 - let’s denote such term as τ−. Hence,
decision about reusing/chaining a bin size b+ instead of the
optimal bin b∗ requires the following term to be positive:

c(b+)− c(b∗)− τ−(b+)

Figure 13 shows that the binning for MAP2 should con-
sider 3 options: (a) the optimal bin b∗; (b) the binning b1 that
is carried by the input D, in its double role of being reused
or chained, (c) the binning b2 that is carried by the input
E. The dashed curve shows the saving in the cost function
when the binning of the experiment dataset is omitted; the
optimal bin is b1 and the resulting saving over b∗, confirmed
by experiments, is about 12% .

6 CLUSTER EXECUTION

6.1 GDMS Deployment
The Genomic Data Management System (GDMS) manages
the execution of GQML queries over a single or several ma-
chines providing different interfaces to the user (web inter-
face and web services, command-line interface and several
programmng language-specific APIs). The most up-to-date

Fig. 14: Deployment of GDMS on a cluster provided by
Cineca.

implementation of GMQL is based on Apache Spark and
uses the Hadoop Distributed File System (HDFS) for parallel
execution over multiple machines. Our publicly accessible
version of the GDMS is deployed on a cluster provided by
the CINECA consortium according to the schema depicted
in Fig. 14, where the main components are:
• Cluster: made of three nodes (each having 40 vCPUs,

125GB RAM and 3TB disk) equipped with Spark and
Hadoop running on Ubuntu Xenial. One of the nodes
(labeled as master) receives submissions of the GMQL
command-line interface JAR with the query as its input
and drives the execution until results are stored back to
the HDFS.

• Web Server: provides web services and a web interface
to the users, transforming their query execution requests
into job submissions to the cluster. Moreover, the Web
Server, through a component called Repository Manager,
manages the public and private datasets stored in the
HDFS.
The system is easily portable to other cloud computing

infrastructures such as Amazon AWS, using any of the latest
emr releases supporting Spark 2.2.x ; in the simplest case
all you need to do is to submit the GMQL command-line
interface JAR to Spark with the desired data and query as
input.

6.2 Model Fitting

The two cost functions defined in the previous sections
showed the presence of some tuning parameters, namely
α1 and α2, that differ depending on the operation. These
parameter approximate, respectively, the time employed to
transform and shuffle a single binned region (α1) and the
time spent to compare a couple of binned regions (α2). The
processing time, on its turn, depends on several factors,
mostly related to the configuration of Spark and to the
hardware used to run each application (CPU speed, RAM,
number of cluster nodes, network speed and so on). Since
the number of factors that should be taken into account is
too large to build a separate analytical model, α1 and α2 are
treated as parameters to be tuned in each experimental set-
ting; we re-tune the parameters only when we significantly
change the configuration of Spark and/or the configuration
of the cluster. Our method used for parameter tuning is

IEEE TRANSACTIONS ON COMPUTERS 11

Fig. 15: Scaling of execution time by increasing the number
of core nodes, using optimal and suboptimal bin sizes.

based on gradient descent. Since our model is not designed
to predict the exact execution times of the cost function, but
rather its shape (the correct match would be only on the first
derivative), we compute the residuals on a normalized cost
function cN (b) which is next defined.

Given an experimental execution consisting of n points
(data pairs) (bi, ei), i = 1...n, where ei is the execution time
observed at bi, the normalized cost function cN (b) is:

cN (b) = c(b)−min c(b) +min(e1, e2, ..., en)

The optimal values of α1 and α2 are those minimizing the
following function:

J(α1, α2) =
1

2n

n∑
i=1

(
ei − cN (bi, α1, α2)

)2
For join, the initial values for α1 and α2, respectively 10−6

and 10−8, were computed greedily. Gradient descent is ap-
plied separately to different executions of the same operator,
changing data profiles and query options, on the same
execution environment, then the obtained optimal values
for α1 and α2 are averaged. Table 4 shows the values of
α1 and α2 computed for different environments; for those
experiments Spark was configured to maximize the usage
of available resources.

TABLE 4: Values of α1 and α2 for different environments
(join).

Site (v) Cores RAM [GB] Nodes α1 α2

AWS 16 61

1 1.5 · 10−6 7.5 · 10−8

2 1.0 · 10−6 4.1 · 10−8

4 0.6 · 10−6 2.0 · 10−8

gib 6 0.5 · 10−6 1.5 · 10−8

Cineca 24 80 3 0.4 · 10−6 1.2 · 10−8

Polimi 25 256 1 0.6 · 10−6 2.3 · 10−8

6.3 Scaling
In Fig. 15 we show how the execution time of a Join
operation scales increasing the number of nodes of a cluster
for optimal and suboptimal bin sizes. The experiments
were performed on a AWS cluster made of core instances
of type r3.2xlarge (16 vCores, 61 GiB memory) with the
maximizeResourceAllocation option set to true, so to maximize

the resources allocated for the job. In the experiment, we
join one reference sample with forty experiment samples,
setting DLE(1000) as genometric predicate; each sample
contains 200 · 103 regions (average region length 300 bases)
distributed on a useful space of 108 bases (interpreted as a
single chromosome); hence, potentially matching pairs are
1, 600, 000 · 106. The shorter execution time is about 40s,
obtained with 6 nodes and an optimal bin size around 3 ·103
bases. While adding nodes reduces execution times, it also
brings higher costs; in in our example, execution time with
2 nodes and optimal bin size is 55s, which can be considered
as acceptable for this query.

Suboptimal solutions in the bin size increase the amount
of processing, and more nodes are required to make the
execution time stable. As expected, the scaling of subopti-
mal solutions ”follows” the scaling of the optimal solution,
meaning that the ratio between suboptimal and optimal exe-
cution times remains constant independently on the number
of nodes. Therefore, the difference in time with respect
to an optimal solution becomes more remarkable when
less resources are available; optimal binning is then more
effective when GMQL runs locally or on a small cluster.
Moreover, here we can see that, with the same scaling factor
(102), a smaller bin size takes more time than a bigger bin
size. In general, smaller bin sizes increase replication so that
more data are present in memory and must be processed
by the operations preceding the final comparisons. Bigger
bin sizes, instead, minimize the replication, increasing the
number of final comparisons to perform; therefore they take
less memory but increase the CPU workload; depending
on the availability of cluster resources, bigger bin size are
preferable (like in this case).

7 RELATED WORK

Several cloud-based systems are concerned with the man-
agement of secondary analysis pipelines [2], [21] and sev-
eral cloud-based libraries provide the methods for those
pipelines [35] [31] [46]. Effective metadata management
for selecting samples using key-based NoSQL storage for
referring to genomic datasets is described in [50]. We next
concentrate on region processing, the most critical aspect of
ternary data management, and specifically with the tech-
nology used for massive region-based processing, with the
libraries supporting low-level region operations and with
high-level query languages.

7.1 Technologies for region processing

Genomic join and map operations require handling thou-
sands of reference and experiment samples, in turn con-
sisting of thousands of regions spanning over the whole
genome. Genomic region management could be considered
as a special case of spatial or temporal data management, for
which several scalable solutions exist. Among them, several
architectures show extremely good scalability, including
Simba [47], GeoSpark [49], Hadoop-GIS [3], Spatial Hadoop
[19], and Spatial Spark [48]. All these tools support range
query, one point KNN, and spatial join of two datasets,
while only Simba supports general KNN join. Internally,
they use a mix between R-Trees and map reduce algorithm,

IEEE TRANSACTIONS ON COMPUTERS 12

where data are partitioned based on initial scan or sampling,
then local index and global indexes are built [19], [27].

In comparison to spatial data, genomic data show three
main differences: (1) while in spatial data most queries are
geo-referenced and look for proximal data to a given point,
in genomics queries typically consider the whole genome,
with no notion of locality; (2) the arbitrary composition
of distal conditions in join clauses makes a direct use of
indexing schemes not applicable in finding all cases of
matching intervals (3) the same query can include several
cascaded join and map operations. Therefore, methods of
spatial data management contribute relevant background
but they cannot be directly applied, and binning is instead
commended.

Binning algorithms partition the join operands in order
to speed up the evaluation; the concept of binning was in-
troduced in [33], and genome binning are used in the UCSD
genome browser to speed up the loading of genomic regions
to the browser [24]; Afrati et al. [4] analyzed binning-based
algorithm in order to assess computation bounds. In [18] the
authors propose an algorithm based on data binning; our
algorithms differ from their proposal in the way we check
the intersection and avoid output duplicates. In our earlier
work [23] we explained the binning methods but we did not
discuss the optimal binning; therefore, [23] is an important
background of this paper, but the results reported in this
paper are new.

A line sweep algorithm is implemented in BEDOPs and
BedTOOLS [29], [34] to compare two files (corresponding to
our reference and experiment files), by sorting them on the
start of the interval and then sweeping the two files sequen-
tially, comparing the intervals and finding the intersections.
BEDTools incorporates the genome-binning algorithm used
by the UCSC Genome Browser in the search for overlapping
regions; in [15] we show that region intersection between
two samples in GMQL has slightly better performance than
BEDTools. GMQLs use of binning is much more complex
from a system’s perspective, as it is implemented in the
cloud environment to support implicit iteration over thou-
sands of sample pairs.

We recently proposed bi-dimensional binning as an alter-
native to mono-dimensional binning; with such approach,
every region is modeled as a point in a bidimensional space,
and join or map condition can be expressed as intersection
of points with suitable arrays. The method has been applied
to a SciDB implementation of GMQL, as discussed in [14],
showing some improvement of performance; in our future
work, we plan to test the feasibility of the bi-dimensional
approach with Spark.

7.2 Libraries for region management

BEDTools and BEDOPS apply to the BED format, i.e. to a for-
mat based on regions similar to GDM; a functional compari-
son of these tools with GMQL is published as supplemental
material to [28]. They can be used from within software
environments for bioinformatics (e.g., BioPerl, BioPython, R
and Bioconductor), but are not designed for cloud computing.

Other works have proposed the embedding of query
processing functions within libraries that can be integrated
within programs. In particular, [32] presents a rather elegant

mathematical formalism, based on set algebra, delivered as
the Genomic Region Operation Kit (GROK) library. In compar-
ison, GROK supports lower-level abstractions than GMQL
and some low-level operations (e.g., flipping regions) that
are not directly supported by GMQL, but they must be
embedded into C++ programming language code. GROK
is unsuitable for parallelization and does not deal with
metadata. Recently, BigDataScript [17] was developed; it
embeds some high-level relational concepts.

7.3 High-level Query Languages
SciDB is an open-source system for scientific data manage-
ment supporting an add-on specifically dedicated to tertiary
data analysis [7], [12]. SciDB queries are programmed using
the Array Functional Language (AFL), a query language
where each operation is defined as a function that receives
as input either one or two arrays and produces as output
one array; operations can be nested. The database engine
of SciDB is based on the array data model; it is designed
to work on a cluster of nodes, exploiting data distribution
and parallelism. Arrays are divided into chunks; an hash
function uses the dimension values associated to each chunk
in order to assign it to a specific node of the cluster; by using
this method, called Multidimensional Array Clustering, every
query processing operation is mapped to specific chunks
and executed in parallel at the nodes where such chunks
are allocated. A comparison of SciDB with our Spark-based
implementation is provided in [13]; our binning-based join
implementation has better performances, whereas SciDB
appears superior for selection and aggregation operations
which take advantage of the array-based architecture.

Deepblue [5] is the query language used for accessing
the BLUEPRINT data repository; the language expressions
combine metadata and region-based predicates and con-
structors, although with a limited expressive power when
compared to GMQL.

Several query languages compare more closely to GMQL
as they introduce a relational paradigm into genomic com-
puting; among them, [36] [10] [40] [52]; none of them deals
with metadata thereby lacking the ability to constructively
assign metadata to query results, a distinguishing feature
of GMQL. Genomic Query Language (GQL), presented in
[10], [25], applies to raw data and includes genomic fea-
ture calling this approach creates reproducibility issues
when compared to more conventional pipelines. Signal
Track Query Language (STQL), presented in [52], is instead
focused on ternary analysis, hence is closer in design to
GMQL. STQL has a rich set of relational operators and
highly expressive predicate calculus on distal conditions; it
is directly implemented using map-reduce and Hive over
Hadoop1, whereas GMQL is implemented on Spark over
Hadoop2. GMQL adds to the query language several APIs,
repositories and language interfaces, whereas STQL execu-
tion in [52] is described from within a Web-based interface.

IEEE TRANSACTIONS ON COMPUTERS 13

8 CONCLUSION

In this paper, we presented the mathematical formulation of
the optimal binning problem for join and map operations on
genomic regions; we validated the model through a rich set
of experiments that show the model’s accuracy and sensitiv-
ity to the variation of query parameters, using both synthetic
and real datasets; we stressed the join operation at work
with very demanding parameters (450 sample pairs, each
with 120 billion region pairs tested for minimal distance of
10 million bases).

We demonstrated with several examples that execution
time doubles with a relatively small error in the choice of
bin size, and a big error may even lead to cases where
execution cannot be completed, as resources are exhausted.
We also discussed the optimization of sequences of opera-
tions, showing that binning chaining or reuse can introduce
significant savings (in the example we discussed, order of
12%). Finally, we discussed the deployment of GMQL to
two cloud environments and discussed the estimation of the
parameters α1 and α2, whose ratio influences the determi-
nation of the optimal bin size. Full GMQL (with metadata
and region support) is deployed in a public network at
Cineca8. We are planning an incubation of the GMQL project
within Apache, so as to provide a strong community of users
and developers.

We are using GMQL in advanced biological research
and for deploying services to be used by the community
of biologists and clinicians; discussions are ongoing (as of
January 2018) for the inclusion of GMQL within the tools
supported by FireCloud [21], a genomic data processing
system integrated with GoogleStore, hosted by the Broad
Institute. We are also developing a large repository of public
data, constructed by integrating and curating data from
ENCODE [20], TCGA [45] and other sources; our first step
in this direction is the consolidation of an integrative con-
ceptual model for the relevant metadata attributes of several
public sources, presented in [11].

ACKNOWLEDGMENTS

This research is supported by the ERC Advanced Grant
GeCo (Data-Driven Genomic Computing), 2016-2021.

REFERENCES

[1] 1000 Genomes Consortium. An integrated map of genetic vari-
ation from 1,092 human genomes. Nature, 491, 56-65, November
2012.

[2] Adam. http://www.bdgenomics.org/
[3] A. Ablimit et al. Hadoop gis: a high performance spatial data

warehousing system over mapreduce. Proceedings VLDB, 6.11
(2013): 1009-1020.

[4] F. Afrati and J. Ullman. Bounds for Overlapping Interval Join of
Map Reduce. Workshop Proceedings, EDBT/ICDT, 2015.

[5] F. Albrecht et al. DeepBlue Epigenomic Data Server: Programmatic
Data Retrieval and Analysis of the Epigenome. Nucleid Acids
Research, 44/W1, 2016.

[6] A. Alekseyenko et al. Nested Containment List (NCList): a new
algorithm for accelerating interval query of genome alignment and
interval databases. Bioinformatics 23.11, 1386-1393, 2007.

[7] Anonymous paper, Accelerating Bioinformatics Research with
New Software gor Big Data to Knowledge (BD2K), Paradigm4 Inc.,
2015 (downloaded from: www.paradigm4.com).

8. http://www.bioinformatics.deib.polimi.it/GMQL/interfaces/

[8] Apache Flink. http://flink.apache.org/
[9] Apache Spark. http://spark.apache.org/
[10] V. Bafna et al. Abstractions for genomics.Commun. ACM, 56(1):83-

93, 2013.
[11] A. Bernasconi et al., Conceptual Modeling for Genomics: Building

an Integrated Repository of Open Data. in Proc. Conceptual Model-
ing (ER) Conference, Valencia, Nov. 2017.

[12] P. G. Brown. Overview of SciDB: large scale array storage, process-
ing and analysis. Proc. ACM-SIGMOD, 963-968, 2010.

[13] S. Cattani et al. Evaluating big data genomic applications on SciDB
and Spark. Proc. Web Engineering Conference, Rome, IT, 2017.

[14] S. Cattani et al. P. Bi-Dimensional Binning for Big Genomic
Datasets. Proc. Beyond Map Reduce Workshop, co-located with ACM-
Sigmod, Boston, May 2017.

[15] S. Ceri at al. Data management for heterogeneous genomic
datasets. IEEE/ACM Transactions on Computational Biology and
Bioinformatics DOI: 10.1109/TCBB.2016.2576447, 2016.

[16] M. Cereda et al. GeCo++: a C++ library for genomic features com-
putation and annotation in the presence of variants. Bioinformatics,
27(9):1313-1315, 2011.

[17] P. Cingolani et al. BigDataScript: a scripting language for data
pipelines. Bio-informatics, 31(1), 10-16, 2015.

[18] B. Chawda. Processing Interval Joins On Map-Reduce. Proc. EDBT,
463-474, 2014.

[19] A. Eldawy SpatialHadoop: A MapReduce framework for spatial
data. Proc. 31st Conference on Data Engineering (ICDE), 2015.

[20] ENCODE Project Consortium. An integrated encyclopedia of
DNA elements in the human genome. Nature, 489(7414):57-74,
2012.

[21] FireCloud. https://software.broadinstitute.org/firecloud.
[22] Google Genomics Could Platform. https://cloud.google.com/

genomics/
[23] A. Kaitoua et al. Framework for Supporting Genomic Operations,

IEEE-TC, 10.1109/TC.2016.2603980, 2016.
[24] W.J. Kent, The human genome browser at UCSC. Genome Res., 2002

Jun;12(6):996-1006.
[25] C. Kozanitis et al. Using Genome Query Language to uncover

genetic variation. Bioinformatics 30(1):1-8, 2014.
[26] R. M. Layer et al. Binary Interval Search: a scalable algorithm for

counting interval intersections, Bioinformatics ,29 (1), p1-7, 2013.
[27] M.-L. Lo. Spatial hash-joins. ACM SIGMOD Record Vol. 25 No. 2,

1996.
[28] M. Masseroli et al. GenoMetric Query Language: A novel ap-

proach to large-scale genomic data management. Bioinformatics,
doi: 10.1093/bioinformatics/btv048, 2015.

[29] S. Neph, et al. BEDOPS: high-performance genomic feature oper-
ations. Bioinformatics, 28(14):1919-1920, 2012.

[30] NIH National Human Genome Research Institute, DNA Sequenc-
ing Costs. http://www.genome.gov/sequencingcosts/

[31] H. Nordberg et al. BioPig: a Hadoop-based analytic toolkit for
large-scale sequence data. Bioinformatics, 29(23):3014-3019, 2013.

[32] K. Ovaska et al. Genomic Region Operation Kit for flexible pro-
cessing of deep sequencing data. IEEE/ACM Trans. Comput. Biol.
Bioinform., 10(1):200-206, 2013.

[33] J. M. Patel et al. Partition based spatial-merge join. ACM SIGMOD
Record, 25:2, 1996.

[34] A. R. Quinlan and I. M. Hall. BEDTools: a flexible suite of utili-
ties for comparing genomic features. Bioinformatics, 26(6):841-842,
2010.

[35] A. Roy et al. Massively Parallel Processing of Whole Genome Se-
quence Data: An In-Depth Performance Study, Proc. ACM-Sigmod,
May 2017, Chicago.

[36] U. Rohm and J. Blakeley. Data management for high-throughput
genomics. In Proc. CDIR, 1-10, 2009.

[37] A. Schumacher et al. SeqPig: simple and scalable scripting for large
sequencing data sets in Hadoop. Bioinformatics, 30(1):119-120, 2014.

[38] K. Shvachko et al. The Hadoop distributed file system. Proc. MSST,
1-10, 2010.

[39] Z. D. Stephens et Al.: Big Data: Astronomical or Genomical? PLoS
Biol 13(7), 2015.

[40] S. Tata et al. Periscope/SQL: Interactive exploration of biological
sequence databases. Proc. VLDB, 1406-1409, 2007.

[41] R. C. Taylor. An overview of the Hadoop MapReduce HBase
framework and its current applications in bioinformatics.BMC
Bioinformatics, 11(12):S1, 2010.

http://www.bdgenomics.org/
https://cloud.google.com/genomics/
https://cloud.google.com/genomics/
http://www.genome.gov/sequencingcosts/

IEEE TRANSACTIONS ON COMPUTERS 14

[42] J. Yu, GeoSpark: ”A Cluster Computing Framework for Process-
ing Large-Scale Spatial Data”. Proc. ACM SIGSPATIAL GIS 2015,
Seattle, 2015.

[43] R. Xin et al. Shark: SQL and Rich Analytics at Scale. Proc. ACM-
SIGMOD, 2013.

[44] W. Yu et al. Virtual Shuffling for Efficient Data Movement
in MapReduce. IEEE Transactions on Computers, 64(2), 2015,
doi:10.1109/TC.2013.216.

[45] J. N. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analy-
sis project. Nat Genet., 45(10):1113-1120, 2013.

[46] M. S. Weiwiorka et al. SparkSeq: Fast, scalable and cloud-ready
tool for the interactive genomic data analysis with nucleotide
precision. Bioinformatics, 30(18):2652-2653, 2014.

[47] D. Xie et al. Simba: Efficient in-memory spatial analytics. Proc.
ACM-Sigmod, 2016.

[48] S. You et al. Large-scale spatial join query processing in cloud.
Data Engineering Workshops (ICDEW), 2015.

[49] J. Yu et al.Geospark: A cluster computing framework for pro-
cessing large-scale spatial data. Proc. 23rd SIGSPATIAL Conf. on
Advances in Geographic Information Systems. ACM, 2015.

[50] S. Wang et al. High dimensional biological data retrieval optimiza-
tion with NoSQL technology. BMC Genomics, 15(Suppl 8), S3.

[51] M. Zaharia et al. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. Proc. USENIX, 15-
28, 2012.

[52] Zhu, X. et al. (2017) START: a system for flexible analysis of
hundreds of genomic signal tracks in few lines of SQL-like queries.
BMC Genomics, 18(1), 749.

[53] Katsimpiri C. et al. (2016) The Ubiquitous Lambert Function and
its Classes in Sciences and Engineering. In: Pardalos P., Rassias
T. (eds) Contributions in Mathematics and Engineering. Springer,
Cham

Andrea Gulino is a Ph.D. candidate at the
Dipartimento di Elettronica, Informazione e
Bioingegneria (DEIB) of Politecnico di Milano,
Milan, Italy. He received his master’s degree
with honor in Computer Science and Engineer-
ing from Politecnico di Milano in 2017. His re-
search interests include cloud computing, dis-
tributed systems, systems architecture and big
data processing.

Abdulrahman Kaitoua is a researcher in the
German Research Center for Artificial Intelli-
gence (DFKI). He received his Masters in Elec-
trical and Computer Engineering from the Amer-
ican University of Beirut (AUB), Lebanon, in
2013, and his Ph.D. with honor in Information
Technology from Politecnico di Milano in 2017.
His thesis was awarded by the Charafas Foun-
dation. His research interests include bioinfor-
matics, data bases, data mining, and big data
processing.

Stefano Ceri is Professor at the Dipartimento
di Elettronica, Informazione e Bioingegneria
(DEIB) of Politecnico di Milano. His research
has been generally concerned with extending
database technology; he has authored over 300
publications (H-index 74) and 15 books in En-
glish. He received two advanced ERC Grants, on
Search Computing and on Data-Driven Genomic
Computing (GeCo, 2016-2021). He received the
ACM-SIGMOD Innovation Award (2013) and is
an ACM Fellow.

	Introduction
	Genomic Data Model and Operations
	Region-Based Data Model
	Profiles

	Conjunctive GMQL Programs
	Join
	Profiles Estimation for Join Results
	Map
	Profiles Estimation for Map Results

	Optimal binning
	Optimal Binning for Join
	Optimal Binning for Map

	Experiments
	Join
	Map

	Optimizing binning over sequences of operations
	Cluster execution
	GDMS Deployment
	Model Fitting
	Scaling

	Related Work
	Technologies for region processing
	Libraries for region management
	High-level Query Languages

	Conclusion
	References
	Biographies
	Andrea Gulino
	Abdulrahman Kaitoua
	Stefano Ceri

