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A Scalable Near-Memory Architecture for
Training Deep Neural Networks on Large

In-Memory Datasets
Fabian Schuiki, Michael Schaffner, Frank K. Gürkaynak, and Luca Benini, Fellow, IEEE

Abstract—Most investigations into near-memory hardware accelerators for deep neural networks have primarily focused on inference,
while the potential of accelerating training has received relatively little attention so far. Based on an in-depth analysis of the key
computational patterns in state-of-the-art gradient-based training methods, we propose an efficient near-memory acceleration engine
called NTX that can be used to train state-of-the-art deep convolutional neural networks at scale. Our main contributions are: (i) a loose
coupling of RISC-V cores and NTX co-processors reducing offloading overhead by 7× over previously published results; (ii) an
optimized IEEE 754 compliant data path for fast high-precision convolutions and gradient propagation; (iii) evaluation of near-memory
computing with NTX embedded into residual area on the Logic Base die of a Hybrid Memory Cube; and (iv) a scaling analysis to
meshes of HMCs in a data center scenario. We demonstrate a 2.7× energy efficiency improvement of NTX over contemporary GPUs
at 4.4× less silicon area, and a compute performance of 1.2 Tflop/s for training large state-of-the-art networks with full floating-point
precision. At the data center scale, a mesh of NTX achieves above 95% parallel and energy efficiency, while providing 2.1× energy
savings or 3.1× performance improvement over a GPU-based system.

Index Terms—Parallel architectures, memory structures, memory hierarchy, machine learning, neural nets

F

1 INTRODUCTION

MODERN Deep Neural Networks (DNNs) have to be
trained on clusters of GPUs and millions of sample

images to be competitive [1]. Complex networks can take
weeks to converge during which the involved compute
machinery consumes megajoules of energy to perform the
exa-scale amount of operations required. Inference, i.e. eval-
uating a network for a given input, provides many knobs
for tuning and optimization. Substantial research has been
performed in this direction and many good hardware ac-
celerators have been proposed to improve inference speed
and energy efficiency [2]. The training of DNNs is much
harder to do and many of these optimizations do no longer
apply. Stochastic Gradient Descent (SGD) is the standard
algorithm used to train such deep networks [3]. Consider
Figure 1 which shows the data dependencies when training
a simple neural network. While inference is concerned only
with finding y, training aims at finding the gradients (∆θ)
which introduces a data dependency that requires us to
temporarily store the output xi, y of every layer. This also
prevents optimizations such as fusing activation or sub-
sampling functions with the preceding layer.

While it has been shown that inference is robust to low-
ering arithmetic precision [2], the impact of fixed-point or
reduced-precision floating-point (FP) arithmetic on training
is not yet fully understood (see Section 5). Until additional
light is shed on the topic, a training accelerator must sup-
port 32 bit FP arithmetic to be able to compete with the
ubiquitous GPU. Existing accelerators require a significant
amount of custom silicon and often additional memory and
computational resources to function. In this paper we show
that a processing system embedded in the Logic Base (LoB)
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Figure 1. Data dependency graph of the forward pass (above) and
backward pass (below). f, g, h are DNN layers, L is the loss function,
x1, x2, x3 and θ1, θ2, θ3 are the layer activations and parameters. The
backward pass introduces a data dependency between the first node f
and the last node df . Thus intermediate activations need to be stored.

of a Hybrid Memory Cube (HMC) is a competitive and
scalable option for training DNNs in the data center. The
proposed architecture is based on the earlier NeuroStream
(NS) [4] inference engine which introduced the concept of
streaming coprocessors based on nested hardware loops and
address generators to HMC. We show that such corproces-
sors can be extended to training workloads and be made
more efficient by increasing their level of autonomy. High
overall data center-level energy efficiency can be achieved
by distributing training over multiple such HMCs. The key
contributions of this paper are:

1) A compute architecture featuring a few RISC-V cores
loosely coupled with several NTX co-processors (1:8 ra-
tio) capable of managing computation and L1 memory
access. One RISC-V core can manage 8 NTX with a re-
duced number of instructions, hence the von Neumann
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bottleneck is relaxed without compromising flexibility
(Section 2).

2) An optimized data path in the NTX for high-precision
convolutions and gradient propagation coupled with
an effective TCDM/DMA data transfer hardware that
eliminates area and power overhead of large caches, by
leveraging the predictability of DNN memory patterns
(Section 3).

3) Significant computational capabilities at no additional
silicon area cost in the LoB of a HMC, which we show
to outperform GPUs and other accelerators in terms of
silicon and energy efficiency (Section 4).

4) A competitive scaling to meshes of HMCs that can
replace existing GPU-based solutions in a data center
setting, the improved efficiency of which translates to
an increase in computational power and significant sav-
ings in power, cooling, and equipment cost (Section 4).

The remainder of this paper is organized as follows:
Section 2 describes the proposed hardware architecture
and Section 3 shows the execution model of DNN layers.
Section 4 presents experimental results and comparisons to
other accelerators. The remaining sections describe related
and future work, and provide a conclusion.

2 ARCHITECTURE

The LoB of a HMC offers a unique opportunity to intro-
duce a Processor-in-Memory (PiM) as depicted in Figure 2.
The memory dies are subdivided into vertically connected
vaults, with individual memory controllers on the LoB.
Traffic between the serial links and vaults is transported by
the means of an efficient all-to-all network [5], [6]. Our archi-
tecture consists of multiple processing clusters attached to a
crossbar, which thus gain full access to the entire memory
space of the HMC. The architecture was chosen to offer the
same bandwidth as in [4] such that the interconnect offers
the full bandwidth required by the aggregate cluster ports.
The memory cube is attached to a host CPU or other cubes
via the four serial links. The on-chip network is responsible
for arbitration of traffic between the serial links, the DRAM,
and the PiM. This arbitration can be prioritized such that
external memory accesses from the serial links are given
priority over internal ones originating in the processing
system. It also allows requests from the PiM to be routed
to the serial links for inter-HMC communication.

2.1 Processing Cluster

We combine a general purpose RISC-V processor core [7]
with multiple NTX FP streaming co-processors. Both op-
erate on a 128 kB TCDM which offers a shared memory
space with single-cycle access. The memory is divided into
32 banks that are connected to the processors via a low-
latency logarithmic interconnect. These form a cluster which
also contains a DMA engine that is capable of transferring
two-dimensional planes of data between the TCDM and
the HMC’s memory space. This solution has proven to be
more area and energy efficient than implicit caches, and the
DMA can anticipate and time block data transfers precisely,
thereby hiding latency. The RISC-V processors perform ad-
dress calculation and control data movement via the DMA.

Table 1
Arithmetic error comparison between a conventional float32 FPU and

the NTX 32 bit FMAC unit, for a full 3 × 3 convolution layer of
GoogLeNet [1], with respect to a common baseline (64 bit float).

Implementation RMSE Relative Error

Maximum Median

Intel CPU (float32) 1.83 · 10−7 5.42 · 10−3 9.40 · 10−8

NTX (32 bit FMAC) 1.08 · 10−7 1.19 · 10−7 5.97 · 10−8

Actual computation is performed on the data in the TCDM
by the NTX co-processors which we describe in the next
section.

Address translation is performed either in software or
via a lean Memory Management Unit (MMU) with Transla-
tion Look-aside Buffer (TLB) as described in [5]. This allows
the PiM to directly operate on virtual addresses issued by
the host. If there are multiple HMCs attached to the host,
care must be taken since the PiMs can only access the
memory in the HMC that they reside in. An additional
explicitly managed memory outside the clusters, labeled
“L2” in Figure 2, holds the RISC-V binary executed by the
processors and additional shared variables. The binary is
loaded from DRAM.

2.2 Network Training Accelerator (NTX)
The computations involved in training DNNs are highly
regular. To leverage this feature we developed NTX, a FP
streaming co-processor that operates directly on the TCDM.
Conceptually the NTX co-processor is similar to the one
presented in [4], but it is a complete redesign optimized
for performance and training. The streaming nature of the
co-processor alleviates the need for a register file and corre-
sponding load/store instructions. The architecture of NTX
is depicted in Figure 3. It consists of four main blocks: (i) the
FPU containing the main data path, (ii) the register interface
for command offloading, (iii) the controller that decodes the
commands and issues micro-instructions to the FPU, and
(iv) the address generators and hardware loops.

2.3 FMAC and FPU
The FPU in NTX can perform fast FMAC operations with
single-cycle throughput. It is based on a Partial Carry-Save
(PCS) accumulator which aggregates the 48 bit multiplica-
tion result at full fixed-point precision (≈300 bit). After accu-
mulation the partial sums are reduced in multiple pipelined
segments. In order to reach an operating frequency above
1.5 GHz in 28 nm (SS 125◦C 1.0 V), two segments are suffi-
cient. The employed format has been aligned with IEEE 754
32 bit floats. The wide accumulator and deferred rounding
allows NTX to achieve higher precision than conventional
floating-point units (FPUs) for reduction operations such
as convolutions. Analysis has shown that in a full 3 × 3
convolution layer of GoogLeNet [1] the Root Mean Squared
Error (RMSE) of NTX is 1.7× lower than that of a 32 bit FPU,
with respect to a common baseline (64 bit float). See Table 1.

The FMAC unit allows NTX to compute inner/outer
product and vector addition/multiplication. An additional
comparator, index counter, and ALU register enable vari-
ous additional commands such as finding minima/maxima,
ReLU, thresholding and masking, and copy/memset.
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NTX NTXNTXNTX

up to 1 TB/s

NTX 16 (small)
m=16 clusters
n=1 cores per cluster
k=8 NTXs per cluster
NTX @ 1.5 GHz

NTX 64 (big)
m=64 clusters
n=1 cores per cluster
k=8 NTXs per cluster
NTX @ 1.5 GHz

Figure 2. Top-level block diagram of one HMC enhanced with m processing clusters. The LoB contains the vault controllers, main interconnect, and
the four serial links that lead off-cube. The proposed processing clusters attach directly to the main interconnect and gain full access to the HMC’s
memory space and the serial links. Each cluster consists of a DMA unit, a TCDM, and one or more RISC-V processor cores augmented with NTX
streaming co-processors. We designed the NTX to operate at 1.5 GHz, while the remaining additions to the system operate at 750 MHz.

NTX

Figure 3. Block diagram of the NTX accelerator. It contains 5 hardware loops; 3 address generator units; a double-buffered command staging area in
the register interface; a main controller; and a FPU with a comparator, index counter (for argmax calculations) and a fast FMAC unit. The employed
depths for all FIFOs are indicated and have been determined in simulations for a TCDM read-latency of 1 cycle.

2.4 Hardware Loops and Address Generation

At the core of address generation in NTX are the five
Hardware Loops (HWLs). Each loop is managed by a 16 bit
counter that has a programmable maximum count register
Ni. Additionally, the counter can be explicitly enabled or
disabled, and it has a signal indicating whether the counter
has reached its maximum value and is about to reset to
zero. To support nesting, each counter is enabled by the
previous counter’s "done" signal. The first counter (L0) is
only disabled upon a pipeline stall. The "done" signal of
the last counter (L4) indicates that all loop iterations have
been performed. The enable signals of all counters are
concatenated into a 5 bit output.

Three Address Generation Units (AGUs) allow NTX to
keep track of three pointers into memory. Each unit consists

of a 32 bit register holding the address and an adder. The
address is incremented by one of five programmable step
sizes pi, each of which corresponds to one of the hardware
loops. The enabled counter with the highest index dictates
the chosen stride. This allows addresses of the form

A = Abase + i0s0 + i1s1 + i2s2 + i3s3 + i4s4 (1)

to be calculated, but using only one addition per cycle. The
conversion from strides si to step sizes pi is trivial:

p0 = s0 (2)
pi = si − (Ni−1 − 1) · pi−1 (3)

where Ni is the iteration limit of an HWL. This conver-
sion can be performed by the controlling CPU core when
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Figure 4. A 3 × 3 convolution running on one cluster. The periods of activity of the RISC-V processor and the DMA unit are shown as blocks,
the activity of the co-processors is indicated as the number of active NTXs. The processor and DMA are busy during 58.2% and 28.2% of the
computation, respectively. The utilization of the co-processors is given as percent of maximum throughput. The efficiency of the TCDM is given as
the percentage of memory requests serviced per cycle; the remaining requests stall due to conflicts. The system has a banking factor of 1.8.

NTX Commands:

Figure 5. The structure of nested loops in C code that can be directly
offloaded to NTX (a), and an overview of the supported commands and
their throughput (b).

programming a command, for example as part of a driver
library.

Figure 5a shows the pseudo code structure of nested
loops that NTX can natively perform. The number of loops
(outer level), position of the accumulator initialization (init
level), and position of the accumulator write back (store
level) are fully programmable. The AGUs provide addresses
for the memory reads and writes depicted. The operation
performed by the FPU always occurs in the innermost loop
body and can be configured to be one of the commands
listed in Figure 5b.

2.5 Offloading Support
Offloading to NTX has been enhanced with respect to the
earlier NeuroStream (NS) [4] inference engine to signifi-
cantly improve efficiency in training workloads. The three
improvements in offloading are: (i) a command staging area,
(ii) an increased number of hardware loops, and (iii) a
third address generator. The following paragraphs briefly
explains the impact of each.

(i) In NS, configuration of addresses, strides, loops, and
the initialization of the accumulator are performed via a

Table 2
Comparison of the number of offloads necessary and execution time of
an offloaded command for NTX and NeuroStream (NS) [4], for different

convolution layers of GoogLeNet [1]. NS requires one offload per
output pixel, whereas the increased number of hardware loops and the
third address generation unit of NTX allow it to compute many output

pixels per offloaded command.

Kernel Output Offloads Busy Cycles per Offload

NS NTX NS NTX

7x7x3 112x112x64 802 816 64 147 1 843 968
3x3x64 56x56x192 602 112 192 576 1 806 336
1x1x256 28x28x64 50 176 64 256 200 704
1x1x512 14x14x192 37 632 192 512 100 352

command register. This register is mapped into the con-
trolling CPU’s memory space and the written commands
are pushed into a FIFO. This allows the CPU to enqueue
configuration updates while a computation is still ongoing.
The computation itself is also a command which is popped
off the FIFO only upon completion. This also implies that
the FIFO needs to be deep enough to hold all commands
necessary to configure the next computation, lest the CPU
has to stall. NS used depth 8 for these FIFOs, causing the
CPU to stall frequently.

NTX improves on this by exposing the configuration
registers as a memory-mapped "staging area". As such
the CPU can directly address and modify the registers.
A computation is launched by writing to the command
register, which is special in the sense that it causes the
entire configuration to be copied to an internal "shadow"
register. This allows the CPU to immediately go ahead and
configure the next operation without disturbing the current
one. Furthermore, parts of the configuration that do not
change between commands need not be written again since
the staging area is persistent. It is worthwhile noting that
the size of the staging area and its shadow copy in NTX is
roughly the same as the command FIFO and the correspond-
ing registers in NS, but the former offer significantly higher
ease of use. All NTX controlled by a core are also accessible
via a broadcast address, which further reduces offloading
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time for configuring common parameters.
(ii) We observe that a convolution as it appears in DNNs

has six nested loops: three that iterate over each output
pixel, and three to perform the per-pixel reduction of the
input dimensions (3D input and output, 4D weights). NS
offers three hardware loops, which allows the 3D per-pixel
reduction to be expressed in one command. To compute the
first convolution of GoogLeNet [1] which has a 7 × 7 × 3
kernel and yields a 112 × 112 × 64 output, 802816 offloads
need to be issued by the CPU each of which ideally takes
only 147 cycles. This leaves only few cycles to coordinate
DMA transfers and configure the next command, thus lim-
iting the number of NeuroStreams that can be controlled by
one CPU.

NTX improves on this by increasing the number of
hardware loops to five. This allows multiple output pixels
to be calculated with one offload. For the aforementioned
convolution, this translates to only 64 offloads that need
to be issued, each of which ideally takes 1843968 cycles.
In practice the size of the offloaded computation is now
bounded by the tile size that fits into the TCDM, thus the
CPU only needs to issue one offload per NTX per tile.
This reduces the control overhead of NTX to almost zero.
The CPU is now free to do more elaborate data transfers,
for example issuing multiple small DMA transfers to copy
slices of a tensor and performing zero-padding, thus not
requiring that the data be laid out in memory in a zig-
zag tiling fashion as described in [4]. This is an important
improvement, since such a tiling cannot be maintained
during training without significant data reshuffling between
layers, which would severely reduce the energy efficiency
and inflate bandwidth. Table 2 shows this effect for select
convolutions in GoogLeNet [1].

(iii) To allow NTX to calculate multiple pixels in the
output image with one offload, we added a third address
generator to maintain a pointer for autonomously writing
back multiple results to memory. This in contrast to NS [4]
which requires an explicit command from the CPU to store
the accumulated value.

3 NTX EXECUTION

The combination of RISC-V processors and dedicated FP
streaming co-processors makes our architecture very flex-
ible. It is a many-core platform with explicitly managed
scratchpad memories, where data copies are performed by a
DMA engine and bulk computations by NTX co-processors
in parallel to a running program. The proposed architecture
allows for entire DNN training batches to be performed
completely in memory, without intervention from a host
outside the HMC, as follows. Starting from a reference im-
plementation of a training step in C or C++, nested loops of
the form described in Section 2 are amenable to acceleration
on NTX. This includes the bulk operation of all DNN layers.
These loops are replaced by an offload sequence consisting
of writes to the eight staging areas. Furthermore, the input
and output data of each loop nest must be tiled and data
movement appropriately scheduled, as described below.

Figure 4 shows the execution of one tile of a 3 × 3
convolution on NTX. The RISC-V core first configures and
launches the main computation on NTX, then controls the
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Figure 6. Irregularity introduced by stride in stencil operations such as
convolution and max pooling. With a stride of one (left), all input cells
contribute to the same number of output cells. With a stride of three
(right), input cells contribute to one, two, or three output cells.

DMA to write back the output of the previous tile and
read the input of the next one. Additional tasks such as
zero padding and address computation are performed in the
background. The short period of NTX idleness in between
tiles is due to the core using the NTX to initialize the next
tile, which is a quick command that terminates faster than
the core can configure the next big computation.

3.1 Memory and Tiling
As described in Section 2 and [4], [5], the core and NTX
operate directly on a scratchpad memory inside the cluster.
A DMA unit in conjunction with a lean MMU is used to
copy data from DRAM into cluster memory, where the
accelerators operate on them. This mechanism is similar
to how caching works on CPUs/GPUs, but is explicitly
managed by the programmer.

The scratchpad memory in the cluster is limited in size.
To evaluate an entire convolution layer for example, the
input and output data are tiled to fit into memory. The tiles
need to overlap in the convolution case. The DMA unit can
run in parallel to the computation and is used to write back
previous results and read next inputs while a computation
is ongoing (double buffering), as can be seen in Figure 4. In
[4] the authors made use of 4D tiling, which requires that
the data is already laid out in such a tiled fashion in DRAM,
including replication of the overlapping areas. This allows
the DMA to copy a tile in a single consecutive transfer,
requiring little control by the core. For training this scheme
is infeasible, since forward and backward passes require
different tile sizes, and the data would need to be retiled
after several subsampling layers to maintain a sufficient tile
size. This retiling translates into no-op movement of data,
which wastes bandwidth and energy.

The improved offloading scheme described in Section 2.5
and increased independence of NTX compared to [4] frees
up significant RISC-V core resources. This allows us to now
store tensors in memory as dense chunks of FP values,
without any replication or tiling pre-applied. To transfer
tiles, we task the core with issuing multiple DMA transfers,
each of which copies one consecutive stripe of data. Zero
padding can also be performed by the core in this way.
Hence we can drop the requirement of the data being laid
out in memory in a pre-tiled fashion.

3.2 Strided Stencil Operations
A stride greater than one in stencil operations such as
convolution and pooling causes an irregularity during train-
ing. For example, a strided convolution can be thought
of as a regular convolution where a subset of the output
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pixels are discarded. The backward pass correspondingly
can be represented roughly as a sparse convolution where
the discarded pixels are 0. For efficiency reasons we would
like to skip multiplications with 0, effectively leveraging the
sparsity of the problem. However NTX cannot change the
number of summands within the course of one operation, so
we must perform convolutions that have a constant number
of operations required per pixel. This does not hold for
strided convolutions in the backward pass, where the input
derivative contains contributions from a varying number of
output pixels. See figure Figure 6. We observe that we can
subdivide the pixels of the input derivative into different
categories: Each pixel subset can be computed as a regular
convolution with a subset of the filter weights, and the
overall result can be found by interleaving the subset results.
This scheme allows us to decompose a sparse convolution
(as found in the derivative of strided convolutions) into
multiple dense convolutions each contributing a subset of
the result pixels.

3.3 Special Functions (exp, log, div, sqrt)

There is no dedicated hardware to evaluate special functions
such as division, exp, log, square roots, or arbitrary powers.
These are needed for the softmax layer or various forms of
normalization. As the number of such operations is typically
very low (in the order of a few thousands per training step),
it is feasible to implement them using iterative algorithms
on the NTX, calculating multiple results in parallel. We
found that for tens to hundreds of inputs, pipeline latency
can be hidden and the evaluation takes on the order of 30 to
100 cycles per element.

3.4 Communication across HMCs

The serial links in the HMC are accessible to the processor
cores and DMA units in each cluster. This allows a mesh
of HMCs to be programmed in a similar way as a two-
tiered network of compute nodes. Within the HMC, clusters
may exchange data via the DRAM and L2. Across HMCs,
the processor cores may cooperate to perform complex
systolic operations via the serial links. Section 4.9 provides
an example of this.

4 EXPERIMENTAL RESULTS AND ANALYSIS

In this section we evaluate the silicon and energy effi-
ciency of our proposed architecture and compare it against
NeuroStream, the most closely related other accelerator
[4]. Furthermore we investigate the effects of voltage and
frequency scaling and the impact of multiple logic dies per
memory cube. We conclude by comparing different NTX
configurations against existing accelerators and evaluate the
data center scale impact of our architecture.

4.1 Methodology

4.1.1 DRAM Power
We model the power consumption of the vault controllers,
DRAM dies, and HMC interconnect as the following rela-
tionship:

compute-bound memory-bound

head headtail tailDMA

NTX

Figure 7. Execution time of a kernel running on a cluster. See Sec-
tion 4.1.2 for a details. Tdseq corresponds to memory transfers that need
to happen before and after the main computation, e.g. first data fetch
and last data store. Tdpar corresponds to transfers that can happen in
parallel to the computation Tc. Shown are a compute-bound case where
Tc dominates, and a memory-bound case where Tdpar dominates.

Pdram(B) = 7.9 W +B · 21.5 mW s/GB,

where B is the requested bandwidth. We call this the
“DRAM” power. This model is based on the observation in
[4] that 7.9 W are consumed in a 1 GB cube under no traffic
into DRAM (50 nm, see Section 4.1.6). Under an average
traffic of 51.2 GB/s caused by their investigated workloads,
this increases to the reported 9.0 W, a bandwidth-dependent
power increase of 21.5 mW s/GB. These estimates are con-
servative and do not consider further power-saving mea-
sures, such as Voltage and Frequency Scaling (VFS) or power
gating of HMC components.

4.1.2 Cluster Power

We have synthesized our design for a 28 nm Fully Depleted
Silicon On Insulator (FD-SOI) technology using Synopsys
Design Compiler, which we also use to estimate power
based on simulation traces. The Register Transfer Level
(RTL) model was back-annotated with timing information
obtained from the synthesized design at 125 ◦C/1.0 V (slow-
slow corner). We execute the worst-case kernel in an RTL
simulation of the cluster, which gives us a cycle-accurate
picture of the computation. This is depicted in Figure 4,
and furthermore gives us an estimate of the cluster’s power
consumption, 165 pJ per clock cycle in this case. The worst-
case kernel is a convolution which makes full use of the
FPUs in the NTXs and has a high utilization of the DMA.
Memory-bound kernels consume less power, since the FPU
utilization is lower, reducing its power contribution. This
simulation also gives us realistic utilization efficiencies of
ηc = 84% and ηd = 87% for NTX and TCDM, respectively.

4.1.3 Network Layer Energy

To evaluate applications, we model the execution of individ-
ual network layers. The computation and data movement
performed by a cluster is very predictable. For each network
layer we therefore compute the number of FP operations
necessary, as well as the amount of data that needs to be
transferred. The latter we further split into data that must
be moved before computation can start (head), data that
can be moved in parallel to the computation, and data that
must be moved once the computation completes (tail). This
closely models the double buffering possible by overlapping
operation of the DMA and NTX within the cluster. For each
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kernel we determine the execution time of the computation
(Tc) and DMA transfers (Tdpar, Tdseq) as:

Tc = Nc / ηc rc f [s] (4)
Tdpar = (Ddma −Dhead −Dtail) / ηd rd f [s] (5)
Tdseq = (Dhead +Dtail) / ηd rd f [s] (6)

where Tdpar represents DMA transfers that can run in par-
allel with computation and Tdseq those that need to happen
before and after. In more detail, Nc and Ddma are the total
number of compute operations performed and bytes trans-
ferred by the kernel; rc are the peak compute operations
per cycle of the cluster; and rd is the peak bandwidth
of the DMA per cycle. For the architecture with 8 NTXs
presented in Section 2, rc = 8 op and rd = 4 B. ηc and ηd
account for inefficiencies such as interconnect contentions
and are determined empirically from simulations. We then
formulate the execution time, requested bandwidth, and
power consumption of the kernel as:

Tcl = max{Tc, Tdpar}+ Tdseq [s] (7)
Bcl = Ddma / Tcl [B/s] (8)
Pcl = 165 pJ · f [W] (9)

See Figure 7 for a visual explanation. Note that we issue
DMA transfers in chunks of multiple kB and the engine is
capable of having multiple simultaneous transfers in flight.
This allows us to hide the latency into DRAM which we
estimate to be on the order of 40 core cycles. It is crucial that
we fully saturate the precious bandwidth into DRAM when
performing strided memory accesses, e.g. when transferring
a tile of a tensor. There the length of the tile’s innermost
dimension is critical, as it determines the length of one burst
accesses. Since we have full control over the tiling, we can
ensure that a tile has at least 8 elements along its shortest
dimension. This yields consecutive accesses of at least 32 B,
which is the minimum block size in an HMC [6].

4.1.4 Cube Power
Based on the above, we model the requested bandwidth,
power consumption, and energy efficiency of a kernel par-
allelized on a HMC with K clusters as

B = K ·Bcl [B/s] (10)
T = Tcl / K [s] (11)
P = Pdram(B) +K · Pcl [W] (12)
η = 2Nc / P T [flop/s W] (13)

The parallelization is achieved by distributing the tiles of
computation described in Section 3 across the clusters of a
cube.

4.1.5 Network Training Energy
We then model different layers of DNNs as the amount of
computation and data transfers necessary. This also gives
us a per-layer estimate of the number of parameters and
intermediate activations. We proceed to model each of the
investigated networks as a sequence of these layers, giving
us a realistic estimate for the execution time of the inference
and training steps of one image on the proposed architec-
ture, together with the associated bandwidth requirement.

We then further use the execution time and the cluster
and bandwidth-dependent DRAM/LoB power determined
above to estimate the overall energy required to process one
image.

4.1.6 Technology Scaling
We use internal comparisons and publicly available infor-
mation to estimate the effect of scaling down the technology
node of the LoB from the 28 nm FD-SOI process investigated
by us to a more modern 14 nm FinFET node [8], [9]. For
this change we observed across several designs an increase
of 1.4× in speed, a decrease of 0.4× in area, and 0.7× in
dynamic power dissipation.

To our knowledge there is no publicly available infor-
mation on the DRAM characteristics of HMCs. “SMCSim”
[5] assumes them to be similar to the MT41J512M8 device
by Micron, which is based on a 50 nm process. Given the
manufacturer and [10], the device seems to be a reasonable
reference for early HMCs. We estimate the DRAM technol-
ogy scaling factor for power consumption to be 0.87, by
comparing the supply currents and voltages of this device
to the newer 30 nm MT40A512M8.

4.1.7 GPU Efficiency Estimation
We estimate GPU efficiency based on the training time per
image measured by [11], [12]. For each network we compute
the amount of flop necessary per image based on our model
of the network. This yields an estimate of the actual through-
put in flop/s achieved. Assuming the GPU can reach its TDP
under such highly optimized workloads (e.g. cuDNN), we
determine the energy efficiency as the ratio between that
throughput and the TDP. We do not assume optimizations
such as Winograd to be performed on the GPU, and as such
overestimate the number of FP operations performed, mak-
ing the estimated energy efficiency optimistic. Furthermore,
this excludes the power consumed by the CPU to constantly
push training data into GPU memory.

4.2 Precision, Sparsity, Compression
Training a DNN with reduced FP precision or even fixed-
point arithmetic is much harder than doing the same for
inference. The intuition here is that the SGD algorithm
performs smaller and smaller changes to the parameters as
training progresses. If these changes fall beneath the nu-
meric precision, the algorithm effectively stops converging.
There is no a priori obvious range of magnitudes within
which parameters fall, thus the arithmetic must support a
significant dynamic range without additional prior analysis.
NTX employs 32 bit FP arithmetic which is commonly used
in deep learning frameworks and CPUs/GPUs, rendering
such analysis unnecessary. Note that there is evidence that
training is possible in fixed-point arithmetic with little ac-
curacy loss in some cases [13]. However, results tend to
be limited to specific networks and other work suggests
that reducing precision may not be feasible at all without
incurring significant accuracy loss [14].

Recent work on network compression and pruning tech-
niques has shown promising results in terms of reducing
computational overhead [15]. The general purpose nature
of the RISC-V processors in our architecture allows some of
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convolution. The voltage is varied between 0.6 V and 1.2 V in proportion
to the frequency. Points of highest efficiency of each configuration are
marked in bold red. The internal bandwidth of the HMC puts an upper
bound on the achievable energy efficiency, visible in the upper half of
the graph.

Power
[W] DRAM static DRAM dynamic Logic SRAM

28
/5

0
nm

0 5 10 15 20 25

16× @2.30GHz
32× @1.70GHz
64× @1.30GHz

16× @3.08GHz
32× @2.24GHz
64× @1.68GHz

128× @0.98GHz
256× @0.56GHz
512× @0.28GHz

14
/3

0 
nm

Figure 9. Power dissipation of different configurations, evaluated at their
most-efficient operating point in Figure 8. Note that even the massively
parallel configurations with more than 64 clusters are below a TDP of
25 W.

these schemes to be implemented. For example entire con-
volutions may be skipped or certain forms of decompression
and re-compression may be performed on the processor
cores. The NTX has not been optimized for sparse tensor
operations however, and we leave their detailed analysis
for future work.

4.3 Voltage and Frequency Scaling (VFS)

In this section we assess the efficiency of NTX at dif-
ferent operating points. We vary the supply voltage be-
tween 0.6 V and 1.2 V; and the operating frequency between
0.1 GHz and 2.5 GHz for the 28 nm process and 0.14 GHz
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Figure 11. Histogram of data burst lengths issued by the DMA when
calculating a 3 × 3 convolution tile.

and 3.5 GHz for the 14 nm process. The voltage is assumed
to scale linearly with frequency [16] and is thus varied in
proportion to the frequency. Figure 8 plots the energy effi-
ciency of HMCs with different NTX configurations against
the operating frequency. Two counteracting effects lead
to a tradeoff between efficiency and frequency: On one
hand DRAM consumes significant static power, making
it beneficial to operate at a higher frequency to decrease
the time to solution. On the other hand the NTX power
consumption increases quadratically with voltage and thus
frequency. For larger configurations, the internal bandwidth
limit of the HMC is reached at a certain frequency, visible
as a dent in the efficiency. The points of highest efficiency
are listed in Table 5. Figure 9 shows a breakdown of the
power consumption at these operating points. Figure 10
provides a more detailed power breakdown of the NTX 64
configuration in 14 nm. All configurations remain within a
power budget of 25 W, which according to [17] is feasible for
a HMC with active cooling and keeps DRAM temperature
within nominal refresh limits. If the static power of the
DRAM decreases, e.g. by switching to a different memory
technology, these optimal operating points will change.

4.4 Multiple Logic Layers

Table 5 shows the area occupied by different NTX config-
urations. The unoccupied area on the LoB is not precisely
known, and estimates range from 10 mm2 [4] to 50 mm2

[18]. In the following we assume that the LoB has an area of
50 mm2, of which 25 mm2 are unused and thus available to
custom logic. This allows configurations of up to 64 clusters
per HMC. For larger configurations, we propose the use of
multiple stacked logic dies such as the 3D Logic in Memory
(LiM) proposed in [19]. While the use of additional layers
increases the complexity of the die stack, they allow for a
significant increase in parallelism and efficiency. Further-
more, the use of LiM layers for custom accelerator logic has
the additional benefit of decoupling the LoB manufacturing
process from the accelerator, thus allowing modular as-
sembly of “Application Specific Memory Cubes (ASMCs)”.
We expect this concept to be relevant for High Bandwidth
Memory (HBM) as well.

4.5 Memory

Table 3 summarizes our estimates for the memory occupied
by the parameters and the intermediate activations of the
networks investigated in the paper. We derive these from
the network structure outlined in the corresponding papers.
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Table 3
Memory footprint of the parameters and intermediate activations of

select DNNs. The two last columns show the total memory requirement
for training with batch size 1 and higher. [MB]

Network Param. Interm. Act. BS=1† BS>1†

AlexNet [20] 232.5 6.0 238.5 471.0
GoogLeNet [1] 26.7 46.5 73.2 99.8
Inception v3 [21] 90.8 99.2 190.0 280.8
ResNet-34 [22] 176.2 28.3 204.5 380.6
ResNet-50 [22] 174.6 67.1 241.7 416.3
ResNet-152 [22] 306.4 154.4 460.7 767.1

† Batch Size

For training with a batch size of 1 the footprint amounts
to 239 MB, 73.2 MB, and 461 MB for AlexNet, GoogLeNet,
and ResNet-152, respectively. For batch sizes greater than
1, where the gradient of each image is computed sepa-
rately and added to a weighted average, another set of of
parameters is needed to hold the accumulated gradient.
This amounts to 471 MB, 99.8 MB, and 767 MB, respectively.
Note that the memory footprint then remains constant for
all batch sizes.1 This leaves 0.5 GB to 7 GB for training data
depending on network and HMC size, around 3550 to 48600
sample images (227 × 277 × 3), equating to 31 s to 247 s of
independent training operation on NTX 64.

To fully utilize the bandwidth into DRAM, it is pa-
ramount that the accesses emitted by the DMA occur in
sufficiently long bursts and have high locality with respect
to DRAM pages to reduce overhead. In the case of 4D tiling
[4], this is given by the fact that the pre-tiled data lies in
DRAM as a dense consecutive sequence. In the case of on-
the-fly tiling the DMA has to issue more and smaller bursts
since the required data does not lie in DRAM consecutively.
The tile dimensions however offer multiple degrees of free-
dom to adjust the access patterns generated by the clusters.
For example, HMCs [6] use an internal bus width of 32 B,
and a maximum DRAM page size in the range of 32 B to
256 B. In the aforementioned 3 × 3 convolution most data
transfers occur as bursts of 72 B, 88 B, or 96 B, and 92% of
all data is transferred in bursts above 32 B. Figure 11 shows
a histogram of the burst lengths issued by the DMA into the
DRAM. The few small bursts are due to convolution weight
transfers, which can be cached to improve burst length
further. We thus conclude that our architecture is capable
of fully utilizing DRAM bandwidth by emitting sufficiently
large accesses.

4.6 Comparison with NeuroStream
NeuroStream (NS) [4] was aimed primarily at efficient in-
ference and requires data to be very carefully laid out in
memory (4D tiling). This constraint on data layout makes
training very inefficient, since intermediate activations after
each layer need to be re-tiled when storing them back to
DRAM. This puts a significant workload on the RISC-V
processor cores and causes additional traffic into memory.
The processors are under high load to keep the NS saturated
with FP operations, such that spending compute cycles
on re-tiling also means stalling the NS co-processors. Our
architecture does not depend on such a tiling.

1. Images in a batch may still be processed in sequence before a
weight update is performed, keeping memory need constant.

Table 4
Architecture comparison in 28 nm FD-SOI between NTX (this work)

and the inference architecture NS [4].

NS NTX NTX
Figure of Merit [4] “small” “big”

Clusters/Cores/Accelerators 16/4/2 16/1/8 64/1/8
Cluster/Accelerator Freq. [GHz] 1.0/1.0 0.75/1.5 0.75/1.5
Peak Performance [Gop/s] 256 384 1536
Core Efficiency [Gop/s W] 116 97 97

Area [mm2]
Clusters Logic 4.48 5.38 21.5
Clusters Memory 4.8 5.1 19.5
Total 9.3 10.5 41.0

Power [W]
Clusters Logic 1.10 2.31 9.24
Clusters Memory 1.10 1.65 6.60
HMC without Clusters 9.00 9.14 12.9
Total 11.2 13.1 28.7

Inference (GoogLeNet, 1 image)
Execution Time [ms] 14.0 11.3 2.83
Avg./Peak Bandwidth [GB/s] 14.4/51.2 17.8/57.6 71.0/230
Efficiency [Gop/s W] 20.3 21.4 39.1

Training (GoogLeNet, 1 image)
Execution Time [ms] 56.8 34.8 8.69
Avg./Peak Bandwidth [GB/s] 11.3/51.2 18.5/57.6 74.0/231
Efficiency [Gop/s W] 15.0 21.0 38.3
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Figure 12. Comparison of energy efficiency when training the networks
listed in Table 5 (geometric mean), with GPUs, NS [4], and the largest
NTX configurations that do not require additional LiMs. NTX 32 in 28 nm
achieves a 2.5× increase, and NTX 64 in 14 nm a 2.7× increase in
efficiency over GPUs in similar technology nodes.

In Table 4 we compare NTX to NS, both implemented
in 28 nm. The much improved offloading scheme allows us
to increase the ratio of co-processors to control cores from
2:1 to 8:1. The fast FMAC allows us to operate the NTX at
twice the frequency of the rest of the cluster, leading to an
increase of peak performance from 256 Gop/s to 384 Gop/s
for the 16 cluster version. The increased number of hard-
ware loops and operations supported by NTX, together with
the improved performance, allow us to increase the energy
efficiency of a training step from 15 Gop/s W to 21 Gop/s W.

The 16 cluster configuration requests a peak bandwidth
of 57.6 GB/s, which does not saturate the internal band-
width of up to 320 GB available inside the HMC. We can
improve the energy efficiency to 38.3 Gop/s W by increasing
the number of clusters to 64.

4.7 Comparison with other Accelerators
To compare against other accelerators, we use one training
step of AlexNet [20], GoogLeNet [1], Inception v3 [21], three
variants of ResNet [22], and a Long Short-Term Memory
(LSTM) with 512 inputs and hidden states as workload.
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Table 5
Comparison between different configurations of the architecture proposed in this work, related custom accelerators, and GPUs. The energy

efficiencies reported are with respect to training different DNNs and an LSTM.
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This Work
NTX (16×) 28 50 10.5 0 2.30 0.589 (a) 19.7 23.6 24.1 21.6 21.3 23.5 22.3 29.9
NTX (32×) 28 50 20.7 0 1.70 0.870 (a) 26.3 31.6 32.3 28.9 28.5 31.4 29.9 40.0
NTX (64×) 28 50 41.0 1 1.30 1.331 (a) 34.0 40.8 41.7 37.3 36.8 40.6 38.6 51.6
NTX (16×) 14 30 4.2 0 3.08 0.788 (a) 28.8 34.6 35.4 31.6 31.2 34.4 32.8 43.8
NTX (32×) 14 30 8.3 0 2.24 1.219 (a) 38.0 45.6 46.7 41.7 41.2 45.4 43.2 61.3
NTX (64×) 14 30 16.4 0 1.68 1.720 (a) 48.3 58.0 59.3 53.0 52.3 57.7 54.9 73.1
NTX (128×) 14 30 32.8 1 0.98 2.007 (a) 57.9 69.5 71.0 63.4 62.6 69.1 65.8 90.1
NTX (256×) 14 30 65.6 2 0.56 2.294 (a) 65.5 78.6 80.4 71.8 70.9 78.2 74.4 111.2
NTX (512×) 14 30 131.2 3 0.28 2.294 (a) 69.1 82.9 84.8 75.7 74.8 82.5 78.5 116.9

Custom Accelerators
NS (16×) [4] 28 50 9.3 — 1.0 0.256 (a) 10.2 15.1 14.6 13.1 12.9 14.2 13.0 —
DaDianNao [13] 28 28 67.7 — 0.6 2.09 (b) — — — — — — 65.8* —
ScaleDeep [23] 14 — — — 0.6 680 (c) 87.7* 83.0* — 139.2* — — 100.8* —

GPUs
Tesla K80 † 28 40× 561 — 0.59 8.74 (a) — 4.5 3.5 — 3.7 8.8 4.7 —
Tesla M40 † 28 30× 601 — 1.11 7.00 (a) — 11.3 — — — — 11.3 15.6
Titan X ‡ 28 30× 601 — 1.08 7.00 (a) 12.8 9.9 — 17.6 8.5 12.2 11.8 —
Tesla P100 † 16 21◦ 610 — 1.3 10.6 (a) — 19.8 19.5 — 18.6 24.18 20.4 —
GTX 1080 Ti ‡ 16 20× 471 — 1.58 11.3 (a) 20.1 16.6 — 27.6 13.4 19.56 18.9 —

† Inception/ResNet: batch size 64 with TensorFlow/cuDNN 5.1 [11]; GoogLeNet: batch size 128 with Torch/cuDNN 5.1 [12]
‡ All nets: batch size 16 Torch/cuDNN 5.1 [24] § 512 inputs and hidden states, batch size 32 for NTX and 64 for GPU [25]
× GDDR5 and GDDRX5, process node estimated based on GPU release year ◦HBM2 * Estimated system efficiency including DRAM,
see Section 5.2 †† (a) floating-point 32 bit, (b) fixed-point 16/32 bit, (c) floating-point 16/32 bit

Table 5 and Figure 12 provides an overview of the compared
architectures.

To our knowledge there are two other custom accel-
erators besides NeuroStream [4] that claim support for
training at precisions similar to ours: DaDianNao [13] and
ScaleDeep [23]. Both provide much less memory relative
to their computational power than GPUs, NeuroStream,
and NTX. To compare on a system level, we estimate the
efficiency of these accelerator including additional DRAM
to hold training data, as described in Section 5.2. In this
case, DaDianNao has an efficiency of 65.8 Gop/s W with
fixed-point arithmetic, which is identical to the computa-
tionally equivalent NTX 128. ScaleDeep has an efficiency of
100.8 Gflop/s W which is 1.3× higher than NTX 512, the
largest configuration considered by us.

GPUs are currently the accelerator of choice to train
DNNs. Our architecture can achieve significantly higher en-
ergy efficiency than a GPU at a comparable technology node
(see Figure 12). Considering the largest NTX configurations
that do not require additional LiMs, we achieve an effi-
ciency increase of 2.5× from 11.8 Gop/s W to 29.9 Gop/s W
in 28 nm, and an increase of 2.7× from 20.4 Gop/s W to
54.9 Gop/s W in 14 nm. Compared to the GPU power anal-
ysis and model published in [26], NTX spends a larger
fraction of power in the FPUs, namely 14% versus 4.8%.
Assuming an FMA requires the same energy per item in
similar technology nodes, this increase corresponds to the
observed efficiency increase and gives an intuition of why
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Figure 13. Comparison of the Gop/s of compute performance per
deployed area of silicon, for GPUs, NS [4], and the largest NTX configu-
rations that do not require additional LiMs. NTX 32 in 28 nm achieves a
2.7× increase, and NTX 64 in 14 nm a 4.4× increase in area efficiency
over GPUs in similar technology nodes.

NTX outperforms GPUs. This is in part due to the absence
of caches in NTX and the GPU’s significant idle power. See
Figure 10.

4.8 Deployed Silicon
One unique key benefit of our architecture is that it lever-
ages existing unused silicon area. This incurs almost no
additional costs, since we assume the HMCs to be already
present in the system as main memory of the CPU, and
manufacturing costs of the spare silicon area is the same
regardless of whether it is being used. This allows us to de-
ploy up to 32 processing clusters in 28 nm and 64 processing
clusters in 14 nm with no additional silicon needed.
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Figure 14. Scaling behavior of data-parallel training on a mesh of HMCs.
(a) depicts the square mesh withN2 cubes. The arrows indicate the four
phases and wave direction of the global weight update. (b) shows the
time line corresponding to the mesh for the compute and, in more detail,
update phases. (c) outlines the speedup for different mesh and total
batch sizes. (d) shows the corresponding energy efficiencies. Larger
batch sizes help amortize the cost of the global weight update.

Figure 13 compares the Gop/s of compute performance
per deployed amount of silicon for NTX and GPUs. Our
solution requires 4.4× less area to achieve the same compute
performance as a GPU. Even more when one considers that
the chosen 32 and 64 cluster configurations can fit into the
aforementioned unused silicon, their cost is virtually zero.
This sets our solution apart from ScaleDeep, DaDianNao,
and other GPUs, which require significant silicon overhead.

4.9 Scaling to multiple HMCs

We investigate the scaling behavior of NTX 64 and organize
the HMCs in a square mesh of different side lengths N as
depicted in Figure 14a. Each link operates at 60 GB/s [6].
We leverage data parallel training to distribute computation
across the HMCs in the mesh, which is also commonly done
on GPUs [27]. Each HMC computes its local weight update
first. The global update is then performed in four waves as
a horizontal followed by a vertical systolic average which
can be performed in a streaming fashion.

We assume the weight update to be 300 MB, which
takes Ttx = 4.88 ms to transmit. Each cube takes 104 µs to
compute the average, which is negligible compared to Ttx.
Furthermore the internal bandwidth of the HMC is much
larger than the 120 GB required by the two serial links active
in parallel during streaming operation. We assume a latency

of Tlat = 20 µs inside the cube, which is a very conservative
estimate. The time taken for one of the four waves described
above is then

Tpass = Ttx +N · Tlat (14)

Since Tlat is small relative to Ttx, the number of cubes in
the mesh has only little influence on this time. For a very
large mesh of N = 16 (256 HMCs) Tpass = 5.20 ms. Since
four such passes are necessary, the total time to perform the
weight update across the mesh is

Tupdate = 4 · Tpass = 20.8 ms (15)

A time diagram of such an update is depicted in Figure 14b.
The time required by the mesh to calculate the local weight
update is

Tstep = 8.69 ms · LB / N2 (16)

where LB is the total batch size across all cubes. This yields
a total execution time for one batch across the mesh of
Ttotal = Tupdate + Tstep. A single HMC would perform the
same computation in Tsingle = 8.69 ms · LB . Figure 14c
depicts the speedup. At a batch size of 8192, a system with
64 HMCs achieves almost perfect speedup of 62.8× (98%
parallel efficiency), and 144 HMCs achieve 138× (95.8%
parallel efficiency).

Regarding energy efficiency we consider two operating
modes of the cubes: During the global mesh update the
serial links and clusters are active. We assume the four serial
links to consume Plink = 8 W [4]. The energies to compute a
wave pass and to power-cycle the serial links [6] are

Epass = Tpass · (21 W + Plink) = 150.9 mJ (17)
Epwrud = 2 · Plink · 50 ms = 800 mJ (18)

The energies spent per HMC for the global and local weight
updates are

Eupdate = 4 · Epass + Epwrud = 1.403 J (19)

Estep = Tstep · 21 W ·N2 (20)

and the overall energy for one batch across the mesh re-
quires

Etotal = (Eupdate + Estep) ·N2 (21)

A single HMC would require Esingle = Tsingle · 21 W for the
same task. At a batch size of 8192 as above, 64 HMCs achieve
an energy efficiency of 94.3%, 144 HMCs achieve 88.1%.

4.10 Savings at Data Center Scale
Computing at a data center scale incurs a significant energy
and cost overhead over the raw hardware’s power con-
sumption. This is among other factors due to the required
air conditioning and cooling. A standard measure for this
overhead is the Power Usage Effectiveness (PUE) [28], the
ratio of the power consumed by a data center to the power
consumed solely by its compute units:

ηpue =
Ptotal

Pcompute

Data centers are reported to have ηpue = 1.12 [29]. The
figure depends heavily on the local climate and usually only
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Figure 16. Number of HMCs that can be deployed with a power budget
of 2.4 kW for different numbers of NTX clusters per HMC, and the
corresponding compute capability.

the winter months’ numbers are published. We assume an
average ηpue = 1.2. We consider a NVIDIA DGX-1 server
with two Intel Xeon CPUs and eight Tesla P100 cards. One
such unit consumes 3.2 kW of power, 2.4 kW of which are
due to the GPUs. We assume DDR4 DRAM to consume 6 W
per 16 GB of storage under full load [30]. We investigate two
different approaches of replacing the GPUs of the system
with NTX-augmented HMCs. Consider that the 512 GB of
system memory requires 256 chips distributed across the
DIMM modules if built from 16 Gbit DRAM chips. An 8
GB HMC is roughly equivalent to 4 such chips, so the same
system built from HMCs would comprise 64 memory cubes.

4.10.1 Same Peak Compute

The P100 cards achieve a combined peak compute of
84.8 Tflop/s. Figure 15 shows the number of HMCs required
to match this performance, and the achievable energy sav-
ings, with different NTX configurations per cube. The 43
HMCs with NTX 128 required to achieve the same compute
power consume only 860 W, saving 2.4 kW of GPU power
and an additional 128 W of DRAM power, for an overall re-
duction of 2.1×. With a PUE of 1.2 this translates to 1868 kW
of saved power, which at an energy price of 0.1104 $/kWh
[31] is 1808 $ per year and server.

4.10.2 Same Thermal Design Power

Figure 16 shows the number of HMCs that can be deployed
within the 2.4 kW GPU power budget of the DGX-1. 129
HMCs with NTX 128 are capable of achieving 258.9 Tflop/s
in total, a 3.1× improvement over the P100.

5 RELATED WORK

Acceleration of DNNs, in particular the forward pass, is
a well researched field with a rich literature. Goodfellow,
et al. [3] provide a good coverage of the mathematical
background of Deep Learning. An overview of techniques
for efficient DNN inference and the involved challenges can
be found in [2].

5.1 Accelerators for Inference

Architectures to accelerate the inference process of Convo-
lutional Neural Network (CNN) have been studied exten-
sively in literature. FPGA-based accelerators report energy
efficiencies on the order of 10 Gop/s W and usually rely
on fixed-point arithmetic and less than 32 bit precision [32].
ASIC-based accelerators porivde efficiencies on the order of
1000 Gop/s W at reduced precisions, for example Google’s
TPU [33] which uses 8 bit arithmetic, or [34] with 1 bit. Near-
memory inference architectures embedded in the logic die
of an HMC have also been investigated, for example the 2D
accelerator array presented in [18] which uses 16 bit fixed-
point arithmetic and achieves up to 450 Gop/s W, or the
clustered many-core architecture [4] which is based on 32 bit
FP co-processors and achieves up to 22.5 Gflop/s W. Certain
architectures such as [35] employ a distributed memory
model, where the entire network’s parameter are stored
on chip. This becomes increasingly difficult with modern
networks that require hundreds of MB [1], [20], [21], [22],
and the network to be trained is tightly bound to the number
of chips that can be interconnected. We furthermore observe
that due to the vast difference in energy spent for compu-
tation and data transfer, it is only meaningful to compare
architectures that use the same arithmetic precision and bit
width.

5.2 Accelerators for Training

We observe that much fewer architectures have been pro-
posed to cover the training aspect of DNNs. Many of the
aforementioned architectures are not suitable for this since
they lack the ability or memory capacity to store inter-
mediate activations, e.g. due to optimizations in the data
path, or the precision and dynamic range for the training to
converge.

The NeuroCube [36] is based on 16 bit fixed-point MAC
units which are capable of performing the necessary com-
putations, but it is unclear if training of modern deep net-
works converges at this precision and dynamic range. NTX
surpasses NeuroCube’s efficiency of 7.63 Gop/s W because
we focus on maximizing the energy spent in the FPU, e.g.
by doubling its clock frequency. We furthermore use VFS to
increase efficiency.

DaDianNao [13] uses 64 chips to perform training at
32 bit fixed-point precision with 2.3 GB of distributed mem-
ory. A single chip with 2.1 Top/s and 36 MB is roughly
equivalent to NTX 128 with 2 Tflop/s and 16 MB but with-
out the HMC. In this setting NTX achieves a 1.9× better
core efficiency of 250.9 Gflop/s W despite its FP arithmetic.
Considering an estimated 15.8 GB of DRAM that is needed
to match the memory-to-compute density of the DGX-1 puts
DaDianNao’s system energy efficiency at 65.8 Gflop/s W,
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assuming that the overall cost of the memory (DRAM
modules, memory controller, interconnects) is comparable
to that of an 8 GB HMC (1 W/GB).

ScaleDeep [23] supports training in 32 bit FP precision
at 14 nm. We estimate its total die area to be 2800 mm2

based on its TDP and the power density of a GPU, which
yields 243 Gflop s/mm2, around 2.3× more than NTX 64.
An entire node achieves 680 Tflop/s but has only 1.17 GB of
distributed memory. As such it excludes any form of system
DRAM and puts its core efficiency of 420.9 Gflop/s W on
par with the 417.0 Gflop/s W achieved by NTX 512. The
estimated 5.13 TB of DRAM that is needed to match the
memory-to-compute density of the DGX-1 puts ScaleDeep’s
system power consumption at 6.75 kW under the same
assumptions as DaDianNao, with a system energy efficiency
of 100.8 Gflop/s W. It is unclear how much additional en-
ergy would be consumed by the processing power required
to feed these accelerators with data.

5.3 GPUs
GPUs can be seen as the main workhorse of Deep Learn-
ing and are commonly used for both inference and train-
ing due to their flexibility. Recent implementations on the
GTX 780 and GTX Titan (both featuring a Kepler microar-
chitecture) reach 1650 Gflop/s at 250 W and 999 Gflop/s
at 240 W, which corresponds to 6.6 and 4.2 Gflop/s W,
respectively [4], [37]. Embedded GPUs like the Tegra K1
have lower absolute throughput, but reach a similar energy
efficiency of around 7 Gflop/s W [37]. The Pascal generation
of GPUs offer several features beneficial to DNNs, such as
HBM and 16 bit FP support. Compared to previous gen-
erations, the P100 achieves a 2× higher peak throughput
of 10.6 Tflop/s and a significantly higher energy efficiency
around 20 Gflop/s W [11], [24]. The recently introduced
Volta generation offers tensor cores, a new compute element
able to perform 4×4 matrix Fused Multiply and Adds
(FMAs) in 16 bit FP, with 16 or 32 bit outputs in one cy-
cle. These cores promise a 5× increase in Deep Learning
performance compared to previous GPU generations [38].
Furthermore, GPUs have been shown to be amenable to
near-memory processing as well [39].

6 FUTURE WORK

Our architecture is inherently scalable since the HMC stan-
dard allows for memory cubes to be interconnected via the
serial links [6]. Mesh arrangements of HMCs offer many
opportunities and different parallelization techniques [40]
for training DNN should be explored. Moving to HBM
promises further energy efficiency gains and brings new
challenges and design constraints in using the bottom mem-
ory controller die. Improvements to the DMA engine in
the compute clusters would allow for even more efficient
offloading and further ease the load on the RISC-V processor
core. Applicability of transprecision and compression tech-
niques offer other interesting angles to be investigated for
further gains.

7 CONCLUSION

We have presented the streaming FP co-processor NTX with
a decisive focus on training DNNs. Its data path is built

around a fast fused accumulator with full 32 bit precision,
which gives it a key advantage over architectures that are
based on fixed-point arithmetic or lower FP precision. The
co-processor is capable of generating three independent
address streams from five nested hardware loops, allow-
ing it to traverse structures with up to five dimensions
in memory independently. A rich set of arithmetic and
logic commands allows it to perform the reductions and
matrix/vector operations commonly found in the forward
pass, but also the threshold, mask, and scatter operations
encountered during the backward pass. We combine eight
such co-processors with memory, a control processor, and a
DMA unit into a cluster. An efficient offloading scheme frees
up resources on the control processor to exert fine-grained
control over data movement. The data does therefore not
need to be put into memory in a specific, pre-tiled pattern,
but can be operated on directly in its canonical and dense
form. Integrated into the LoB of an HMC, multiple clusters
can exploit the high bandwidth and low accesses latency
into DRAM in this near-memory setting. Configurations
which fit into the unused area on the LoB incur virtually
zero additional manufacturing costs. NTX scales well to
large meshes of HMCs and can provide the same compute
capability at less power, or more compute capability at the
same power.
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