
HAL Id: hal-01954979
https://hal.science/hal-01954979

Submitted on 14 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sytare: a Lightweight Kernel for NVRAM-Based
Transiently-Powered Systems

Gautier Berthou, Tristan Delizy, Kevin Marquet, Tanguy Risset, Guillaume
Salagnac

To cite this version:
Gautier Berthou, Tristan Delizy, Kevin Marquet, Tanguy Risset, Guillaume Salagnac. Sytare: a
Lightweight Kernel for NVRAM-Based Transiently-Powered Systems. IEEE Transactions on Com-
puters, 2019, 68 (9), pp.1390 - 1403. �10.1109/TC.2018.2889080�. �hal-01954979�

https://hal.science/hal-01954979
https://hal.archives-ouvertes.fr


1

Sytare: a Lightweight Kernel for NVRAM-Based
Transiently-Powered Systems

Gautier Berthou, Tristan Delizy, Kevin Marquet, Tanguy Risset, Guillaume Salagnac,
Univ Lyon, INSA Lyon, Inria, CITI, F-69621 Villeurbanne, France

firstname.lastname@insa-lyon.fr

F

Abstract—In a near future, energy harvesting is expected to replace
batteries in ultra-low-power embedded systems. Research prototypes of
such systems have recently been proposed. As the power harvested in
the environment is very low, such systems need to cope with frequent
power outages. They are referred to as transiently-powered systems
(TPS). In order to execute non-trivial applications, TPS need to retain
information between power losses. To achieve this goal, emerging non-
volatile memory (NVM) technologies are a key enabler: they provide a
lightweight solution to retain, between power outages, the state of an
application and of its peripheral devices. These include sensors, serial
interface or radio devices for instance. Existing works have described
various checkpointing mechanisms to adapt embedded applications to
TPS but the use of peripherals was not yet handled. in these works.
This paper proposes a solution for embedded applications using any
peripheral device to run despite transient power. We follow a kernel-
oriented approach resulting in minimal impact on the programming model
of the application. We implement the new concepts in our lightweight
kernel called Sytare, running on an MSP430FR5739 micro-controller and
we analyze the cost of the proposed solution.

Index Terms—Embedded Systems, NVRAM, Energy Harvesting, Low-
power, Wireless Sensor Networks, Internet of Things

1 INTRODUCTION

Embedded connected tiny objects are increasingly used in
our daily lives. This raises important challenges in terms
of energy management and environmental issues. Under
some conditions, the use of wires or batteries to power
embedded systems is very inconvenient because of form
factor, cost or maintenance considerations. To solve this
issue, a new class of wireless, batteryless, computing devices
recently appeared: transiently-powered systems (TPS). TPS are
powered by energy harvesting, using sunlight, radio waves,
temperature gradient or mechanical motion. The low level
of power provided by these techniques causes very frequent
power outages, typically every dozen of milliseconds, and
prevents the execution of applications longer than this
duration.

The use of non-volatile RAM (NVRAM) has recently
been proposed as a basis to keep the program state across
power outages. Several works propose program checkpointing
techniques to save the state of the computational part of the
system (CPU, execution stack, global variables), but do not

This work is supported by Inria (Inria Project lab ZEP https://project.inria.fr/
iplzep/) as well as Insa-Lyon/Spie IoT Chair.

handle the cases where the application uses peripherals (e.g.,
LED, ADC, or RF transceiver). However, the use of such
peripherals is mandatory in embedded systems and must
be enabled in transiently-power systems to make these low
energy systems actually usable.

In this paper, we address the problem of executing
applications on top of a transiently-powered system without
losing their progression between power outages. Compared
to existing works, our approach allows applications to use
non-trivial peripherals such as a radio transceiver. The
mechanisms we propose focus on minimizing the impact on
the programming model.

We identify three problems that must be addressed in
order to persist peripheral state across reboots of a TPS:
peripheral state volatility, peripheral access atomicity and interrupt
handling. This paper proposes an original solution to these
problems based on a kernel approach. All problems are
addressed through the definition of a new driver API. Pe-
ripheral access atomicity is ensured by a specific mechanism
for granting atomic access to peripherals. Peripheral state
volatility and interrupt handling leverage new checkpointing
mechanisms which persist peripheral state.

We also present an implementation of these principles:
the Sytare lightweight kernel, and validate our proposal on
a platform equipped with RAM and NVRAM. Compared to
the former published implementation [1], the work presented
in this paper includes interrupt handling which is definitely
mandatory for any embedded application. The present paper
also explains the solution to the problems mentioned above
in a more detailed fashion. The performance of Sytare
is evaluated, on this platform, against various embedded
application benchmarks.

The paper is organized as follows. Section 2 provides
background and related works and exposes the problems
that need to be addressed when dealing with persistence
of peripherals. Our proposals are detailed in Section 3,
which deals with runtime with and without interrupts.
Then Section 4 details our implementation of the proposed
mechanisms in Sytare, and Section 5 evaluates the overhead
induced by this Sytare kernel.

2 BACKGROUND AND RELATED WORK

There are many fields concerned by this research. We present
former works related to embedded systems, transiently-

https://project.inria.fr/iplzep/
https://project.inria.fr/iplzep/


2

powered systems and non-volatile memories. Then we
precisely state the problems we address.

2.1 Transiently-Powered Systems
Embedded systems traditionally rely on battery power. This
is true for high-end platforms like smartphones down to
tiny nodes in a Wireless Sensor Network. The combination
of battery capacity and average power draw determines
the system operational lifetime: from a few days for a
smartphone up to a few years for a Wireless Sensor Network.
However there are also some situations where using a battery
is undesirable or even impractical [2]. For instance, if the
system is to be manufactured in large quantities (e.g., smart
cards) then including a battery will significantly impact the
unit cost. Also it would greatly increase the physical size of
the system, which might be unacceptable for the application
scenario.

In such cases, the system must harvest energy from
its environment or from external sources; e.g., solar power,
piezoelectricity, thermal gradients, or electromagnetic fields
as in RFID systems.

The last decade has seen a growing interest in designing
such batteryless systems to be programmable with software.
For example, Intel’s Wireless Identification and Sensing
Platform [3] is an attempt to bridge the gap between RFID
systems and traditional sensor networks. Similar to a sensor
network node, the WISP has a few sensors connected to a
programmable micro-controller. And similar to a RFID tag, it
has no battery and draws its power from the RF signal sent by
a reader. More recently, researchers have tackled the problem
of miniaturizing the whole platform even more. For instance,
the Michigan Micro Mote [4] is a 1.0mm3, general purpose,
ultra-low-power, configurable sensor node platform able to
harvest energy from different sources and perform wireless
communication. It embeds a Cortex-M0, a few kilobytes of
SRAM and few kilobytes of persistent SRAM. The recent
Capybara platform [5] further extends the optimization of
harvesting and energy management depending on the target
application.

Even when the energy source is active, the harvested
power level is typically low [6] compared to what the system
consumes in active mode. Storing energy in a capacitor
is thus necessary to allow for useful work to be done in
short bursts. For instance, contact-less smart cards must
perform the whole transaction within a few hundreds of
milliseconds, i.e., within the lifecycle of the device. If the
transaction to be processed is longer, this is simply unfeasible.
Besides feasibility issues, the constraints imposed to the
programmers of these devices are very tough and releasing
new software is highly-demanding in terms of engineering
because of energy-related concerns.

2.2 Programming tiny embedded systems
TPS architectures form the low end of the “embedded
systems” spectrum. On these systems, applications are
programmed either in a bare-metal fashion, i.e., without
any operating system support, or on top of a very small
operating system.

In the first case, the developer is directly in charge of
managing the hardware peripherals as well as organizing

all concurrent activities on the platform. The corresponding
program structure is typically a “super loop” [7] architecture:
all background tasks are performed within a single infinite
loop, which itself is preempted by interrupt service routines.
In the second case, application code executes on a small
operating system like FreeRTOS [8] or Contiki [9], which
offers limited functionality: interrupt processing, thread
management, and sometimes a networking stack. In this
paper, we focus on the bare-metal super loop architecture.
We further make the assumption that program code can be
decomposed into two distinct parts: driver code in charge
of handling hardware accesses, and application code that
implements the high-level logic of the system. Each time
the application needs to access the hardware, it invokes
a driver routine. This approach is a usual way to design
embedded software. Both driver code and application code
can be written either by the same developer, or by separate
developers.

2.3 Non-volatile architectures
Several non-volatile memory (NVM) families are emerg-
ing [10]. This will eventually remove the distinction between
slow/non-volatile “storage” and fast/volatile “memory” [11].
Current NVM technologies still suffer from slow write times,
high write energy and limited write endurance. It is neverthe-
less promising to use these technologies, even though their
place within the memory hierarchy is not definitive today.
Indeed, naively replacing RAM with NVRAM has undesir-
able side-effects. Because power losses are frequent, they can
occur in the middle of the modification of a non-volatile data
structure. When the platform reboots, the program restarts
with inconsistent data [12]. This issue, sometimes referred
to as the “broken time machine” problem [13], is a major
motivation for the work presented here.

In addition, storing data in NVRAM makes each access
slower and/or more energy-expensive in comparison to
volatile RAM, while storing data in RAM gives good execu-
tion performance, but brings back the problem of volatility.
For this reason, most of the non-volatile architectures cur-
rently foreseen use a combination [14] of both RAM and
NVRAM. For example, the MSP-EXP430FR5739 board from
Texas Instruments includes 16 kB of FRAM together with
volatile RAM.

Because of the broken time machine problem and the
energy-related concerns, a memory architecture composed
of both volatile and non-volatile cells is likely to be the most
adequate and realistic architecture for transiently-powered
systems. The target of this work is such a hybrid memory
architecture.

Another research trend is to change the micro-architecture
and make part of the processor itself non-volatile. Because of
the limitations mentioned above, most non-volatile architec-
tures still follow a hybrid approach: each CMOS register is
not replaced but complemented with a non-volatile flip-flop [6],
[15], [16], [17], [18]. These non-volatile processors are able to
automatically save and restore their contents to and from non-
volatile storage. But such a persistence mechanism requires a
large amount of simultaneous NVRAM operations, causing
significant spikes in current consumption. As a result, this
approach is not applicable to the rest of the platform; e.g.,
main memory or peripherals.



3

For performance reasons, program data structures are typ-
ically allocated to volatile RAM, requiring some checkpoint-
ing mechanism in order to survive power losses. This issue is
discussed in Section 2.4. In any case, both non-volatile archi-
tectures and program checkpointing techniques address the
same issue; i.e., the volatility of program state. In this paper,
we focus on another, distinct issue presented in Section 2.5:
system peripherals such as sensors or I/O devices require
additional, more sophisticated techniques. We consider the
two approaches complementary. Our contributions could
equally be implemented on top of a non-volatile processor.

2.4 Program checkpointing

Checkpointing consists in saving the program state to a
non-volatile memory device and restoring it if an issue
occurs. Checkpointing has been widely used for crash
recovery of critical systems for instance. We are interested in
checkpointing within the context of low power embedded
devices powered by harvesting. Figure 1 shows an ideal
scenario [19] where checkpoints are performed just before
power loss.

Off time Lifecycle

Vdeath

Vsave

Vboot

Time

En
er

gy
st

or
ag

e
vo

lt
ag

e

Fig. 1: Typical On/Off cycles of platforms supplied by energy
harvesting. Checkpoint operations can succeed (green) or
fail (red). Application and devices are always restored in a
coherent state.

The first paper about checkpointing for transiently-
powered systems introduces Mementos [20], a software
runtime for the the Intel WISP [3]. To prevent progression
loss, Mementos periodically interrupts the application and
measures the remaining energy level. If the energy level is
below a certain threshold, Mementos saves the CPU registers
and copies the contents of RAM to flash memory. Mementos
makes power loss transparent to the application program,
but it is designed specifically for flash memory of the WISP
and does not easily generalize to NVRAM.

Hibernus [21] proposes to save program state to FRAM,
which yields significant time and energy savings compared
to Mementos. Instead of interrupting the application on a
periodic basis, Hibernus uses a hardware device to trigger
the checkpoint operation only when the power is about
to be lost. The experimental results of Hibernus confirm
that using RAM and NVRAM side by side and using
checkpoints to compensate power losses is a promising

strategy. Jayakumar et al. [22] also propose checkpointing
based on hybrid memory and power loss detection. Another
work, from Bartling et al. [14], proposes a design for a non-
volatile micro-controller with 10 kB of ROM, 8 kB of SRAM,
and 64 kB of FRAM. Upon detecting a power loss, the
chip automatically saves all CPU and peripheral registers to
FRAM, approximately 320 bytes of data.

Checkpointing can be optimized to reduce its impact on
performance. Aït-Aoudia et al. [19] propose an incremental
checkpointing scheme to reduce the amount of NVRAM
writes as much as possible. Bhatti and Mottola [23] take this
idea one step further. Instead of copying memory contents
as opaque data, they distinguish between stack, globals, and
heap regions. Because each region has a particular internal
structure, saving it entirely is sub-optimal.

None of the papers mentioned above address the issue of
peripheral state persistence. Phoenix [24] proposes a check-
pointing mechanism which allows to roll back the system
state in case of a driver failure. The problem addressed is
different: their goal is to survive driver faults and not power
outages. The volatile memory of the system will not be
inconsistent. Our approach is different from Phoenix but we
agree that “the resource-constrained nature of embedded
systems presents [...] unique challenges to adapting existing
checkpointing mechanisms”.

In a recent paper [25], Wang et al. propose to implement
part of the checkpointing mechanism directly inside the
hardware. In order to speed up the restoration of the
RF transceiver, they design and implement a dedicated
SPI controller with non-volatile logic. This approach is
complementary to our work: while it enables to restore the
transceiver state in parallel with the rest of the system, it
does not guarantee peripheral data consistency, and specific
care is required to ensure atomicity. In the following Section,
we discuss this issues in more detail.

2.5 Problem statement
The problem we address in this paper is to make, for
transiently-powered systems with NVRAM, hardware pe-
ripherals persistent across reboots so that the application does
not have to handle power loss.

In all embedded systems, peripherals are key components.
Their complexity ranges from simple access peripherals such
as LEDs, buttons and GPIO, to more complex peripherals
that impose a specific access sequence to their registers
(timers, ADC, serial ports for instance) or even indirect access
peripherals that must be accessed through another peripheral,
such as a radio chip accessed through SPI serial link. Many
peripherals interact with the application through interrupts.

Section 3 decomposes the problem into three aspects: pe-
ripheral state volatility; peripheral access atomicity; and interrupt
handling. We first propose a solution for handling peripheral
devices while setting aside interrupts. Then we focus on
how to handle interrupts. We briefly present each of these
three aspects, respectively in Sections 2.5.1, Section 2.5.2,and
Section 2.5.3.

2.5.1 Peripheral state volatility problem
The first issue is how to cope with the volatility of peripheral
state. Because peripherals configuration can be complex, cap-
turing and restoring the internal state of peripherals might



4

CPUPower Manager

Energy
Harvester

Energy
Buffer Comparator

Sensors

SPI

Radio

RAM
App. stack

Kernel stack

NVRAM
Code

Chkpt. images

Application

Kernel

Platform

Software
Peripherals

Power source

Fig. 2: Overview of the hardware and software architectures targeted by this proposal.

require more complex techniques than simply restoring their
state from NVRAM to RAM.

For instance, if the radio chip is configured for listening to
incoming packets, the new configuration should be restored
after a power outage has occurred. As mentioned before, this
issue is not solved in existing works on transiently-powered
systems. Our approach leverages a strong assumption:
peripherals are considered entirely volatile. Although non-
volatile flip-flops are heavily studied and even used in some
specific research fields such as neural networks [26], no
peripheral circuit (clock, SPI bus, etc.) embeds non-volatile
memory today. This field, as mentioned before, is subject
to recent investigation [25]. Note that solutions exist, in the
literature, to handle state volatility in the specific case of
mass storage devices using transactions [12].

2.5.2 Peripheral access atomicity problem
The second issue is how to cope with power loss occurring
in the middle of a hardware request being serviced. For
instance, consider a scenario where the application sends a
radio packet. If a power loss happens in the middle of the
transmission, it would not make sense, at the next boot, to
send the rest of the packet.

2.5.3 Interrupt handling problem
An interrupt signals that an event has occurred and that the
software (kernel, driver or application layer) must handle
it. Three problems arise when dealing with interrupts in the
context of transiently-powered systems.

First, an interrupt handler may modify data in memory
without the application being aware of it. This may lead
to inconsistency issues within application state. Second,
handling an interrupt may change not only data in memory
but also some peripheral states, leading to inconsistency
issues between the actual peripheral and what the application
assumes it is. These two problems are not new [27], [28],
[29], but we need to address them in the specific context
of NVRAM-based transiently-powered systems. Third, in-
terrupts carry some data such as, for instance, the origin
of the interrupt or the data located in peripheral memory.
This piece of data is entirely volatile and will no longer be
available upon hardware reboot.

In Section 3, we address the peripheral state volatility
and atomicity problems, as well as interrupt handling.

3 HANDLING PERIPHERALS IN A TPS
Figure 2 shows an overview of both hardware and software
architectures leveraged by this lightweight kernel proposal.
The micro-controller can access both RAM and NVRAM
since both memories are mapped.

Let us assume that we start from a classical checkpointing
mechanism of kernel for transiently-powered systems such as
the one explained in Mementos [20], i.e., without peripheral
handling and interrupt support.

The state machine of the system is sketched in Figure 3.
When a power loss happens, the kernel saves a copy of the
application state from RAM to NVRAM. When power comes
back on, it checks whether a valid checkpoint exists and
restores the application state in RAM.

However, this scenario is valid only if power loss occurs
while executing application code. If power loss occurs during
the execution of driver code, then at the next boot it will not
make sense to resume its execution exactly where it stopped.
This highlights the access atomicity problem mentioned above.
We propose to modify the structure of the code so as to
handle peripheral state persistence.

Initialize system

Restore state

Save checkpoint

Boot

Off

Run

Not first boot

First boot

Actual power loss

HW
reboot

Power
loss detected

Fig. 3: State machine of a simple transiently-powered system
with a classical checkpointing kernel.

3.1 Modifying bare-metal embedded software

In the state machine of Figure 3, there is no distinction
between application code and driver code. This is usually
the case for bare-metal code; i.e., an embedded application
without operating system. As mentioned before, we make
the assumption that this code can be split into two types of
code: application code; and low-level driver code. If this is not
the case, i.e., if memory-mapped hardware register accesses
are spread along application functions, then code refactoring



5

Initialize system

Restore state

Save checkpoint

Boot

Off

Run app

Service syscall

Not first boot

First boot

Actual power loss

HW
reboot

Power loss detected

syt_xxx() return

interrupted during

app syscall

Fig. 4: State machine of a Sytare TPS including the checkpointing logic as well as the system call wrappers described in
Section 3.3. For simplicity, interrupts are not illustrated here.

will be needed to clearly separate application code and driver
code.

We expect application code to encompass higher-level
functions as well as library code. As such, we define the
application state to be composed of all the global variables
of these modules, the contents of the execution stack (local
variables, control flow) and CPU registers.

Driver code consists of all functions which provide access
to hardware features. A driver may call primitives from other
drivers. For instance, our radio chip driver is built on top of
the SPI driver, which itself requires digital I/O.

We propose to add a third level of code which we call
kernel code that will be inserted at the frontiers between
application code and driver code and hence, encapsulate
each driver function call. Kernel code is responsible for persis-
tence management, which includes saving and restoring
application state to and from non-volatile memory. The
kernel code adds a thin wrapper around each driver function.
The wrapper contains the necessary features to address the
atomicity problem. We call these wrappers system calls. In
our proposed solution, the application should always invoke
a driver function through a system call, which is part of the
kernel. It means that the application should never directly
call a driver function, as it would bypass the wrapper, but it
should call the corresponding system call instead. This might
induce some simple code refactoring by the developer.

In addition, the kernel also includes procedures for
checkpointing (saving state to NVRAM), restoring (loading
state from NVRAM), and initializing the platform. From now
on, for the sake of clarity, we will refer to all the software
components of the kernel code (system calls, initialization,
checkpointing and restoring code) as Sytare which is the
name given to our particular implementation of these
solutions. Of course there are many other ways to implement
our proposal, but the main principles stated here need to be
respected.

Sytare kernel code follows a state machine which slightly
differs from that of Figure 3 as shown in Figure 4. The
restoration procedure now acts differently depending on
whether the power loss occurred during a system call or
during application code. The kernel wrappers allow Sytare to
make this distinction. To what extent this helps in providing
persistence and atomicity for peripherals is explained further
in Sections 3.2 and 3.3.

Like other similar checkpointing mechanisms [20], [19], a
hardware device detects imminent power loss and interrupts
the application. Section 4.1 details our implementation of

this mechanism. The checkpoint procedure then copies
application state to a non-volatile data structure, called
checkpoint image.

Sytare maintains two checkpoint images, in a double-
buffer fashion. The last valid image is kept intact while the
next image is built incrementally. This way, if a power loss
occurs during a checkpoint operation, the system will be able
to recover the last valid image at the next boot.

3.2 Solution to peripheral state volatility
As discussed in Section 2.5, checkpointing memory con-
tents is not enough when the system includes hardware
peripherals. Restoring the state of a hardware device re-
quires non-trivial operations like configuring some I/O pins,
communicating over a serial bus (which itself should be
initialized first), respecting certain timing constraints, etc..
The solution to this issue is quite simple but requires some
cooperation from the driver developer. This cooperation
consists in storing the state of the device in a device context
and in implementing restore() and save() functions for
each driver.

3.2.1 Device context
For simple peripherals, the state of the hardware device is
reflected in driver code, such as the value of control registers
for instance. If the device has a more complex state space;
e.g., a finite state machine with several control modes, then
the driver usually keeps track of the current mode within
the device context.

In Sytare, we require this kind of data to be explicitly
encapsulated in a so-called device context data structure. This
change is illustrated in Figure 5 on a simple LED device
example. Thanks to these device context structures, the kernel
can take a snapshot of the state of each device at various
points in time and augment the checkpoint image with
peripheral state, hence providing peripheral state persistence.

All device drivers offer some init() primitive which
performs the correct initialization procedure. Sytare requires
each driver to provide an additional restore() primitive
which will be called upon restoring a checkpoint.

At boot time, the kernel restores all device contexts to
memory, and then successively invokes the restore()
function of each driver. This function is responsible for
initializing the hardware and then bringing it back to the
required state as described by the device context. In the
simplest scenario, this operation may consist in simply
calling init(). However for more complex peripherals



6

(a)
void led0_switch_on() {

HW_REGISTER_FOR_THIS_LED=1;
}

(b)

typedef struct {
char led_state[LED_COUNT];

} led_context_t ;

led_context_t *led_context;

void led0_switch_on() {
HW_REGISTER_FOR_THIS_LED=1;
led_context->led_state[0]=1;

}

Fig. 5: Illustration of the device context data structure. (a)
Straightforward initial driver routine for a LED. (b) Modified
driver routine, compliant with Sytare kernel requirements.
Note that only the device context type is defined in the driver
code, the device context allocation is managed by the kernel.

which require indirect access and/or impose certain access
constraints, the restore() function uses the information
restored from the saved device contexts.

If some driver A uses services of some other driver B, the
kernel must ensure that the restore() function of driver
A is called only after B has been restored. The dependencies
between devices are usually static and the kernel should be
able restore the devices in an order compatible with these
dependencies. In our implementation, we simply ask to the
application developer to manually order the calls to the
init() routines of the drivers.

3.3 Solution to peripheral access atomicity

To solve the peripheral access atomicity problem, we have
to make peripheral accesses atomic. If a driver operation is
interrupted, then it must be considered entirely failed as the
kernel cannot ensure state consistency at lower granularity.
Our proposed solution uses the system call wrapper mecha-
nism defined above to treat differently application code and
driver code.

3.3.1 Volatile and non-volatile stacks
The contract between the application and the kernel is that a
system call will be executed entirely before being registered in
the checkpoint image. If a power loss happens in the middle
of a system call, then at the next boot the system call will be
retried completely instead of just resumed. Our implementation
uses different memory regions for application execution
environment (i.e., the application stack) and driver execution
environment (i.e., the kernel stack).

Application code and system calls have different check-
pointing policies when it comes to the variables: system call
variables must not be saved since we want them to be retried
from the beginning in case of power loss. To do so, Sytare
separates execution stack of application and system calls.
This so-called kernel stack (or volatile stack) is never included
in the checkpoint image, which guarantees that any partial
progress inside a driver is volatile. Stacks are switched in
the system call wrapper invoked by the application. The
wrapper also saves a pointer to the system call and a copy

void syt_led0_switch_on(void)
{

// backup arguments and switch to kernel stack
syt_syscall_ctx_switch();
// call original driver function
__asm__ __volatile__("call #led0_switch_on");
// save() device contexts and switch to app. stack
syt_syscall_return();

}

Fig. 6: Illustration of the system call wrapper for the simple
driver routine led0_switch_on from Figure 5.

of its arguments into the checkpoint image. This piece of
information is sufficient to retry a system call if a power loss
occurs during the driver function execution. Once the data
are saved, the wrapper then calls the actual driver function
which runs on the volatile stack.

An example of such system call, i.e., wrapper of a
driver function, is shown on Figure 6 as it is implemented
in Sytare. The macros syt_syscall_ctx_switch() and
syt_syscall_return() implement stack switching. They
depend on the underlying hardware and contain assembly
code, but one can notice that writing the wrapper for
each driver function is quite systematic and may be done
automatically.

The syt_syscall_return is also responsible for sav-
ing the corresponding device context into the next checkpoint
image. By ensuring that syt_syscall_return is the only
function that saves the device contexts, we ensure to always
have a coherent device state during restoration. Note that
there is a specific treatment for nested system calls; i.e.,
driver routines that call other driver routines. Saving device
contexts is performed only when the outer driver routine
returns. This is illustrated further in Figure 10.

3.3.2 Power loss scenarios
Having this solution in mind, there are two possible scenarios.
If the system call is interrupted by a power loss, the
checkpoint operation has to be triggered, but it only has to
save application state, since the former state of the peripheral
has already been saved to non-volatile memory during former
system call. At the next boot, the kernel restores application
state to memory and can re-run the system call that has been
interrupted with its correct arguments.

In the other case, where the system call successfully
returns, the kernel wrapper erases the saved system call
pointer and arguments from the checkpoint image, calls the
save() function of the relevant drivers (see Figure 7) and
switches back to application stack.

Note that partial progress in the driver routine may have
side effects, for instance when a radio packet has been sent
but power loss occurred before the system call returned. In
such cases, we make the assumption that the situation is
not handled by device drivers but by higher software layers.
Network and communication protocol layers should not be
part of the kernel but should be considered application code.
In the specific case of sending multiple radio packets, this
must be handled by the application code and by providing an
adequate radio device context. Very recent work has started
addressing this problem [30].



7

void led_save(void) {
if(led_device_dirty) {

memcpy(
&next_image->led_device_context,
led_device_context,
sizeof(*led_device_context));

}
}

Fig. 7: Illustrating the save() primitive for the led driver.
The if statement prevents the device context from being
copied if the system call did not alter the device context.

Finally, to support the case where no system call happens
during a lifecycle, or if all system calls are read-only opera-
tions, the kernel initializes at boot time the checkpoint image
with a copy of all device contexts from the last image.

3.3.3 Checkpoint image structure
To sum up our proposal for peripheral state persistence, we
show the content of a complete checkpoint image in Figure 8.
The checkpoint image contains information describing the
application state as did former works related to checkpoint-
ing, but it also contains the driver state and the kernel state,
ensuring atomicity of system calls.

Application
State

Kernel
State

Driver
State

- variables
- application stack

- register values

- syscall in progress flag
- syscall adress

- syscall arguments

- driver A device context
- driver B device context

- . . .

Next
Last

Fig. 8: Illustration of the checkpoint image content.

3.4 Solution to interrupt handling
Until now, we have only considered sequential execution
of code. Interrupt handlers behave as concurrent pieces of
code and bring additional consistency issues when power
loss occurs.

3.4.1 Top-half and bottom-half
A standard approach for handling interrupts in traditional
operating systems consists in splitting interrupt handlers
into two parts, the top-half and the bottom-half [31], [32].
When an interrupt occurs, it is immediately handled by the
operating system that executes a so-called top-half routine
with interrupts disabled. This routine usually acknowledges
the interrupt and registers a deferrable bottom-half in charge
of handling the lengthy operations associated with the
interrupt.

We propose a natural extension of this approach to handle
transient power. Our proposal leverages the top-half being
part of the kernel code and the bottom-half being application
code, as in a classical operating system.

As mentioned in Section 2.5.3, we have to pay attention
to several issues, which are well-known in the embedded
system area. A top-half may modify peripheral state and
a bottom-half may modify peripheral or application state.
This situation leads to consistency issues between the actual
peripheral state and what the application assumes it is.

Furthermore, interrupts carry data, such as the origin of
the interrupt or the data located in the peripheral generating
the interrupt. We cannot afford to lose the volatile data on
power loss, because the application would use incoherent
data after the platform has rebooted. This problem is specific
to our TPS context. In the following of this Section, we
describe our solutions to these problems.

3.4.2 Interrupt handling design concerns
In order to keep the interrupt-based power loss detection
mechanism, interrupts must be enabled as long as possible.
Hence, while interrupts are disabled during top-halves, they
must be kept enabled during bottom-halves. This leads to
a choice: bottom-halves can or cannot be nested; i.e., could
a bottom-half run in the middle of another bottom-half? To
simplify the complexity of the resulting kernel, we chose
to forbid nested bottom-halves and we propose instead to
sequence them with the creation of a queue of bottom-halves
scheduled in a FIFO fashion.

Another important assumption is that no system call will
occur in top-halves. This makes sense because top-halves
belong to kernel code. Hence, when a top-half needs to access
to a peripheral, it directly calls the original driver function.

The application developer is likely to request peripheral
access from a bottom-half. And of course, bottom-halves are
only allowed to access peripherals through system calls, in
exactly the same way as application code would.

3.4.3 Persistence of interrupt data

App Kernel Drv A

IRQ A
ISR

Top-half
drvA_on_interrupt

Save interrupt data
into device contextreturn

Save interrupt occurrence
Save device contexts to NVRAM

Fig. 9: Sequence diagram showing how top-halves perform
interrupt data persistence.

We identify two kinds of interrupt data that must be
persisted: scheduling data and peripheral data. Scheduling
data contain the queue of bottom-halves waiting to be run.
Peripheral data are the data carried along with the interrupt.
It can be the content of a device register or a more complex
structure, as a long radio packet for instance.

In order for the kernel to keep these pieces of information
across potential hardware reboots, the checkpoint image
depicted in Figure 8 must be extended to support interrupt
data persistence.

We extend device contexts to store interrupt peripheral
data. Again, there are many design choices for this extension:
how many pending interrupts do we allow for a particular
device for instance? In our implementation, the choice is
made to limit to one the number of simultaneous pending
interrupts from the same device. Other choices can be made
and will imply more complex device context handling.



8

App Kernel Drv A Drv B
app_main()

syt_drvA_fn(x)

drvA_fn(x)
drvB_fn(y)

mark_dirty()
return

mark_dirty()
return

drvB_save()
return

drvA_save()
return

return

App Drivers Kernel

NVRAM Checkpoint
Last Image

App0 A0,B0 ∅|∅

App Drivers Kernel

NVRAM Checkpoint
Next Image

∅ A0,B0 ∅|∅

∅ A0,B0 (drvA_fn|x)

∅ A2,B1 ∅|∅

App Drivers
Dirty

drivers

SRAM

App0 A0,B0 ∅
App1 A0,B0 ∅

App1 A1,B0 ∅

App1 A1,B1 {B}

App1 A2,B1 {B,A}

App1 A2,B1 ∅
App2 A2,B1 ∅

Fig. 10: Sequence diagram of a complex, i.e., nested, system call with SRAM and NVRAM kernel data structures content.

To store interrupt data, Sytare requires that the driver
developer provides an on_interrupt() routine, for each
driver, that will be called by top-halves. This routine must
perform the relevant copies from peripheral memory into
its device context. Since power loss could happen at any
moment, we want the volatile interrupt data to be extracted
and copied into the device context as soon as possible,
as shown in Figure 9. Once the bottom-half counterpart
is scheduled, the kernel saves all modified contexts and
interrupt occurrence. Then, the bottom-half will be eventually
executed, possibly after a power loss.

3.4.4 Data race conditions
The last problem concerns concurrency between bottom-
halves and application. Bottom-halves may access the same
data as the application would access and this may result in
various race condition scenarios. As a result, memory may
become inconsistent for the application.

Again, the solution to this problem is very dependent on
implementation choices. Race conditions between application
code and bottom-halves, as well as race conditions involving
accesses to peripherals from interrupt context, must be
handled.

This problem is usually addressed with interrupt pri-
orities and critical sections. For instance, it may be left to
the application developer to disable interrupts (including or
excluding power loss interrupt) during peripheral accesses
whenever they think peripheral consistency would be threat-
ened by interrupts. This is the solution provided in Sytare.

3.5 An example of complex system call
We illustrate our checkpointing mechanism in Figure 10
where we detail the successive operations that ensure coher-
ent reboots whenever a power outage occurs.

The “SRAM” column describes the volatile state which
includes the application state, the device contexts and a list
of modified drivers with respect to the last checkpoint image
built by the kernel. The “NVRAM Checkpoint Next Image”
and “NVRAM Checkpoint Last Image” columns describe the
checkpoint image double-buffer.

Initially, the application state is App0 and peripherals A
and B respectively have states A0 and B0. The application
requests access to peripheral A, which has to be done through
the kernel wrapper (prefixed by syt_ as implemented in
Sytare). Between the beginning of the app_main() function
and calling syt_drvA_fn(), the state of the application in
SRAM changes from App0 to App1, as every instruction
impacts the volatile state of the system. At this point,
peripherals A and B and their associated drivers are still
in states A0 and B0.

The application calls the wrapper syt_drvA_fn(x).
Before the wrapper calls the actual driver function
drvA_fn(x), the kernel records that the application de-
veloper wants to execute drvA_fn() with parameter x, in
order to be able to restart the call if power loss occurs in the
meantime. When drvA_fn() calls drvB_fn(), the state of
peripheral A has changed to state A1 in SRAM.

Then drvB_fn() runs to completion, making peripheral
B change to state B1. Just before ending, drvB_fn() function
indicates that driver B is dirty, i.e., its state has changed
compared to the NVRAM recorded device context. Then
drvB_fn() returns back to drvA_fn(), which runs to
completion and makes peripheral A change to state A2 and
indicates driver A as dirty.

At this point in time, both drivers of peripherals A and
B are dirty. Driver routine drvA_fn() eventually returns
to the kernel wrapper, which calls the save() routine of
all drivers. In this specific scenario, only drivers A and B
will copy their device contexts into the checkpoint image as
they are the only dirty drivers. When the kernel wrapper
returns to the application, the drivers are no longer dirty. In
addition, the address of the system call and its parameter
are cleared. Eventually, the application keeps on making
progress, changing its state to App2.

One can check that, whenever power loss occurs and
triggers application state copy to the next checkpoint image,
the next image presents a coherent state of the system:
application and drivers.



9

4 IMPLEMENTATION

In this Section we describe our current Sytare implementa-
tion [33] and we evaluate its performance and overhead on
the Texas Instruments MSP430FR5739 micro-controller which
contains 16 kB of NVRAM. Sytare source code is available
online1.

4.1 Hardware

The Texas Instrument MSP430 is a very popular architec-
ture in the Wireless Sensor Network literature. The MSP-
EXP430FR5739 FRAM Experimenter’s board2 includes 16 kB
of embedded ferroelectric random access memory (FRAM).
Most NVRAM-based TPS papers so far either target this
exact chip or the related FR5969 chip. To the best of our
knowledge, no other NVRAM-based micro-controller family
is commercially available yet. We also used the CC2500 Radio
Frequency transceiver daughterboard 3 from ChipCon.

The MSP-EXP430FR5739 platform is an interesting mix
of volatile and non-volatile memory: 16 kB of FRAM which
has a 125 ns access time, and 1 kB RAM which can, as all
peripherals, run up to 24 MHz. In our experiments we set
the clock frequency to 24 MHz.

Power loss detection is performed using the on-chip
voltage comparator and an external voltage divider, as in [21].
It raises an interrupt so that periodic polling is not required.

4.2 Memory organization and kernel boot

In the Sytare prototype implementation, device drivers and
application code are all linked using gcc linker into a single
executable image which is transferred at once onto the target
platform. The RAM and NVRAM memory organization (.text,
.data and .bss sections for kernel, driver and application code,
the two stacks and room for checkpoint image) is configured
using a linker script as it is usually done for embedded
systems.

When the platform is powered on, kernel execution starts.
The kernel stack is reset afresh. All Sytare data, such as
checkpoint images and various bookkeeping variables, are
kept in NVRAM. Hence, the kernel knows what happened
before the last power loss and act accordingly.

4.3 Checkpointing and restoration

When an imminent power loss is detected and raises an
interrupt, the kernel takes over and copies application stack,
.data and .bss sections from volatile memory into the next
checkpoint image. All data sections are copied, not only the
modified sections like in [19]. The use of the Direct Memory
Access of the platform makes the process simple and fast.
This operation always copies the same amount of data. Thus,
checkpointing time does not depend on factors such as the
power loss frequency. In our case, checkpointing always lasts
less than 26 µs.

On boot, Sytare repopulates all volatile sections based
on checkpoint image information. In more details, on the
very first boot, it consists in initializing .data and .bss

1. https://gitlab.inria.fr/citi-lab/sytare-public/
2. http://www.ti.com/lit/ug/slau343b/slau343b.pdf
3. www.ti.com/lit/ds/swrs040c/swrs040c.pdf

sections. On regular boot after a power loss, it consists in
restoring application stack, .data, .bss and peripherals
configuration.

4.4 Implementation of the system call wrappers
When an application needs access to any driver
routine, it invokes the corresponding system
call. For example to send a message it calls the
syt_cc2500_send_packet(msg,size) primitive
instead of the original cc2500_send_packet(msg,size)
driver function. The implementation of system call wrappers
follows exactly what is depicted in Section 3.3.

If several drivers are involved in servicing a system call,
then all of them will mark themselves dirty. Of course, when
a driver routine returns a value, the return value is copied
as the return value of the wrapper, in order to grant the
application with the information exposed by the driver API.

4.5 Device drivers persistence in Sytare
We hereafter give some details about the device drivers
implemented Sytare.

4.5.1 Simple access peripherals
The I/O driver provides an interface to configure the external
pins of the MSP430 micro-controller. Each pin can be either
assigned to GPIO function or connected to some peripheral
module. It can also be configured as output or as input, and
can be set to generate interrupts, etc.. All these options are
controlled through memory-mapped registers. For instance,
P1DIR is used to choose input or output direction for Port 1.

In the case of such simple access peripherals, adding
persistence support is straightforward. The device context
structure of the I/O driver mimics the hardware registers
exactly as shown formerly in Figure 5. The restore() prim-
itive simply copies its values into the peripheral registers.

4.5.2 Constrained access peripherals
The clock system, SPI bus and temperature sensor must com-
ply to either a specific access protocol or timing constraints.
For example, the clock system has a basic protection against
accidental misconfiguration. The software must unlock the
clock system by writing a password to a specific register,
perform the required operations and then lock it back again.

In a traditional bare-metal program, these peripherals are
already managed by dedicated device drivers and accessed
only through some high-level API. Thus adding persistence
support to the corresponding code is quite straightforward.
The driver developer provides a high-level driver API and
Sytare provides high-level system call API in order to
handle the constraints of those peripherals. However, the
mechanisms added by Sytare to ensure the persistence of
peripheral states add a penalty to each operation.

4.5.3 Indirect access peripherals
The most complex device drivers implemented in Sytare use
indirect access. For instance, the CC2500 radio transceiver
is controlled via the SPI bus. The radio itself is quite a
complex peripheral: it features many configuration registers,
requires certain timings on requests, and has a non-trivial

https://gitlab.inria.fr/citi-lab/sytare-public/
http://www.ti.com/lit/ug/slau343b/slau343b.pdf
www.ti.com/lit/ds/swrs040c/swrs040c.pdf


10

internal finite state machine (the radio can be either idle,
sleeping, receiving and transmitting). The driver exposes
high-level primitives to the application developer; e.g., send
a message or put the radio to low-power sleep. It implements
each of these actions via a series of SPI transactions, made
through the SPI driver. Again, Sytare provides system calls
corresponding to this high level API.

5 EVALUATION

We now evaluate Sytare performance on the MSP430-
EXPFR5739 board.

5.1 Power supply
Power supply is implemented with a programmable power
supply for reproducibility. It generates a square signal that
can support hundreds of mA for peak activity, even though
in our applications the current needs never get higher than
25 mA. The output of our programmable power supply is
directly connected to the supply pins of the target board. It
can make lifecycles as small as 3 ms. In our experiments, we
make the duration of the lifecycles vary, but within the same
experiment, it is kept constant. However our programmable
power supply is capable of running scenarios with various
lifecycle durations.

5.2 Metrics and variables
To evaluate Sytare performance, we define some metrics. For
a given application, we define Twired as the time it takes to
run entirely the application under continuous power, without
Sytare or any persistence mechanism. The starting point is
the instant when power is turned on, so the duration we
measure includes hardware boot time as well as program
initialization. The finish point is the instant the application
completes. We use this Twired measure as a ground truth
baseline for evaluating the cost of Sytare mechanisms. In
order for the concepts of starting and finish points to make
sense, we built the benchmark applications in a slightly
different way than bare-metal super loop. Instead of having
an infinite loop, the applications iterate a fixed amount of
times. We also define two parameters in relation with power
supply, namely on-time and off-time. However the off-time is
of little interest, as the platform is completely inactive during
those periods. Hence, we focus on the on-time, which we
define as the duration of the supply voltage being above the
minimum operating threshold of the platform.

For each experiment, we set a certain lifecycle duration
value, called Ton, and configure the power supply to repeat-
edly power on the platform for this duration, then power it
off. We define Ttransient as the time needed for the system to
reach the same execution state as in the ground truth finish
point above. When measuring this duration we exclude
all off-time periods as they do not give any information.
However, we do include the boot time (hardware and
software) and the cost of the checkpoint operations.

To assess the performance of Sytare, we are interested in
the overhead incurred on execution time. For any value of
Ton, we define the effective yield Y as the following ratio:

Y (Ton) =
Twired

Ttransient(Ton)
(1)

For small values of Ton, recall that Ton is kept constant
for one transient execution, the platform will never have a
chance to boot successfully and the application will never
finish. In other words Ttransient would be “infinite” and the
effective yield would be zero.

On the other hand, when Ton approaches Twired, then
the application will run to completion in just one lifecycle
with little kernel interaction. In this case, the overhead
corresponds to the system call wrappers as there is no
checkpoint operation, nor restore operation, nor multiple
hardware boot times. So even if the kernel boots only once
and never has to save or restore checkpoints, execution
overhead arising from the system call wrappers still impacts
performance and the effective yield will never reach 100%.

5.3 Benchmark applications
We use four benchmark applications with various levels of
interaction with peripheral devices:
RSA encrypts a 128-bit data buffer using the RSA algorithm.

Because it uses no peripherals but has a significant
memory footprint, it allows us to study the performance
of our application checkpointing mechanism.

LEDs slowly increases a counter and displays its value using
LEDs. This simple application allows us to study the
performance overhead of adding persistence to a simple
access peripheral and system call wrappers.

Sense senses the temperature 80 times using the internal
ADC, stores the values in an array as well as the average
value. Between each measurement, the application waits
5 milliseconds. The application demonstrates the use of
constrained peripherals.

WSN computes the average temperature over 10 measure-
ments and sends the result using the radio chipset.
The whole process is done 50 times. This application
also demonstrates the transparent use of constrained
peripherals for more realistic scenarios.

All applications can be compiled on top of Sytare or as
bare-metal applications. We measure for each benchmark
application:

• Twired, the average execution time of the application,
without Sytare and without power loss, over 100 sam-
ples. The standard deviation is given in the results.

• Tmin
on , the smallest lifecycle duration for which the

application can be executed to completion in a transient
power context. We observe, in Figure 11, that Y (Ton)
behaves like a hyperbola. Since the slope of Y (Ton)
becomes straight when Ton is small, Tmin

on cannot be
measured with great accuracy. Hence the values we
show are computed using the hyperbola model Ŷ , by
solving the equation Ŷ (Tmin

on ) = 0.
• Y max, the maximal yield obtained for a benchmark

application; i.e., when Ton ≥ Twired.
The results are given in Table 1. The LED counter

application uses only LEDs, thus only uses one driver that
must be persisted across power losses. Although the driver
is simple, the overhead of Sytare is visible in the yield
(Y max = 99.53%).

The Sense application uses multiple peripherals but stays
efficient in terms of yield (Y max = 99.94%) as the different
drivers used do not have a long hardware initialization.



11
(a) RSA application

0 20 40 60 80

40

60

80

100
90

Yi
el

d
(%

)

Measured
Fitting curve

(b) LED counter application

0 100 200 300 400

60

80

100

22

90

Yi
el

d
(%

)

Measured
Fitting curve

(c) Sense application

0 100 200 300 400

60

80

100

33

90

Ton(ms)

Yi
el

d
(%

)

Measured
Fitting curve

(d) WSN application

0 200 400 600

60

80

100

42

90

Ton(ms)

Yi
el

d
(%

)

Measured
Fitting curve

Fig. 11: Temporal yield measurements as a function of lifecycle duration (Ton) for all applications.

App. Twired Std dev. Y max Tmin
on

RSA 73.61 ms 0.25 ms 0.9986 1.95 ms
Leds 1003.61 ms 5.06 µs 0.9953 2.04 ms
Sense 410.56 ms 4.61 µs 0.9994 3.27 ms
WSN 891.80 ms 0.36 ms 0.9729 2.70 ms

TABLE 1: Twired, Y max and Tmin
on for each application. Std

dev. is the standard deviation of Twired over 100 samples.

The WSN application is a realistic application used for
Sytare evaluation. The addition of a complex active RF
transceiver decreases the maximal yield of the application, as
RF chip initialization and restoration require active polling
and multiple SPI communications. Besides, the action of
sending a message consumes much more current, inducing
a voltage drop and increasing the risks of failed checkpoint
or of having to retry a system call. Despite these points, our
system is still able to run the application on transient power
under the TPS hypothesis. The system call overhead is rather
low since the application reaches 97,29% yield efficiency.

In addition, Figure 11 tells us that the applications
can perform 90% yield efficiency for short lifecycles. For
instance, WSN application achieves 90% yield with lifecycles
of 42 ms. In comparison to the 891 ms given by Twired, the
requirements to ensure a certain quality of service are less
constraining than in the ground truth without checkpointing.

The conclusion on benchmark evaluation is that all
applications succeed in running on transient power thanks to
Sytare integration. Applications can run over much shorter
power periods without losing much yield efficiency.

5.4 Kernel evaluation

This Section analyzes in detail the behavior of Sytare: boot
sequence and system calls. In addition, we evaluate the
minimal lifecycle duration, and discuss memory-related and
energy-related issues.

5.4.1 System boot
Table 2 shows the time spent by the kernel in various phases
of the boot sequence. Values were measured based on the
WSN application. It can be seen that a great portion of boot
time is dedicated to restoring the peripheral state and that

software mechanisms (checkpointing and restoration) have
a low impact in comparison. In addition, our experiments
show that restoring peripheral state does not take the same
amount of time as it depends on the amount and type of the
peripherals. An active polling phase in the hardware startup,
or the size of the configuration to restore, are factors that
impact boot time. More precisely, the majority of the time
spent in restoring the state of peripherals is taken by the
restoration of the radio device (around 78%), far above the
ADC converter (8%), the SPI bus (6%), the clock (4%) and the
ports (3%).

Boot
hard-
ware

Restore
app.

Restore
device
context

Restore
periph.
state

Init
chkpt.

Time 1.24 ms 45 µs 27 µs 1.17 ms 30 µs

TABLE 2: Booting sequence of WSN application.

Those numbers can be compared to the time needed to
checkpoint the program state during the power loss: 26 µs.
Note that the Vsave, as defined in Figure 1, has been set ex-
perimentally to a value large enough to allow checkpointing
completion in normal conditions. Dynamically setting Vsave
may be important for optimization of transiently-powered
systems.

5.4.2 System calls evaluation
It is important to note that the overhead induced by the
kernel is not only the sum of the kernel boot and the kernel
checkpoint times. During application execution, the calls
to driver primitives via system calls induce kernel time
overhead. This overhead is shown in Table 3 for several
drivers primitives.

Primitive Time overhead
LED toggle +1325%
Sense temperature +27%
Radio sleep +137%
Radio wake up +8%
Radio message send +1%

TABLE 3: Kernel temporal impact on driver primitives.

We can see that the overhead induced by the kernel for
context switch and for saving device contexts depends on



12

the complexity of the peripheral to be accessed and the
complexity of hardware actions achieved during a system
call. It varies from more than 90% of system call time to an
extremely low value (under 1%). Nevertheless, the impact of
system calls on runtime is low, as yield values can reach up
to 97%. In addition, the longer the driver routine, the more
negligible becomes the system call wrapper. Indeed, system
call wrappers add an overhead of 1% for radio send packet
routine, while they add an overhead of 1325% for LED toggle
routine.

5.4.3 Minimal lifecycle duration
Except for the first lifecyle, any lifecycle encompasses a
restoration and a checkpointing phase. If a lifecycle lasts less
than restoration time and checkpointing time, application
cannot make any progress. In addition, our solution to
peripheral access atomicity problem is to make system calls
atomic so they are re-run from the beginning if interrupted.
Thus, depending on the application, the minimal duration
of a lifecycle must be long enough for the longest or most
energy-consuming system call.

Table 1 also shows the minimal durations of a lifecycle,
called Tmin

on , for various applications. Applications that are
not peripheral intensive, such as RSA and LEDs, can make
progress with shorter lifecycles than applications such as
Sense and WSN. This demonstrates that Sytare efficiency
dependends on the peripherals used and their complexity.

5.4.4 Memory occupation
The RAM overhead of Sytare is mostly imputable to the need
of a separate kernel stack of size limited to 128 bytes. Details
on kernel stack are given in Section 5.4.5. The driver memory
occupation in RAM is increased approximately by the size of
the mirrored configuration. For example the RF chip driver
we used requires 44 additional bytes in RAM for persistence
management. The kernel variables and checkpoint images
are located in NVRAM and do not impact kernel RAM
occupation.

App. RSA LED Sense WSN
Total NVRAM use 7366 6952 8696 11994
Checkpoint image 584 385 405 503

TABLE 4: NVRAM requirements, in bytes, of some applica-
tions. Checkpoint image size is included in the total NVRAM
use.

Table 4 shows the amount of NVRAM used by each
application. The checkpoint image size is the size of a
single checkpoint image. Since Sytare uses a double-buffer
mechanism for checkpoint images, the total NVRAM space
used solely by the checkpoint images is twice as large.
NVRAM requirements vary from an application to another
because they do not use the same amount of drivers, of
variables, etc..

5.4.5 Kernel stack utilization
Sytare kernel runs on its own stack, which means that part of
the memory is dedicated to the kernel and is not usable from
application space. In order to evaluate the amount of used
kernel stack, we use two applications: a buttons application
that counts the amount of times the button is pressed, and a

Power
losses

IRQ
occurrences

App.
buttons

App.
radio

0 0 42 58
2 0 42 62
0 ≥ 10 62 100
2 ≥ 10 68 102

TABLE 5: Kernel stack utilization, in bytes, for buttons and
radio applications, under several runtime scenarios.

radio application that counts the amount of received packets
Both applications display their counter on the LEDs and are
based on interrupts.

We ran these applications with two parameters:
• Power losses: amount of power losses throughout the

experiment.
• IRQ occurrences: number of times the application was

interrupted, excluding power loss detection.
Table 5 shows how much kernel stack is actually used for
both applications under these scenarios. Those results show
that interrupt handling requires few dozens of bytes at
most. Given these results, in our current implementation,
we statically set the amount of RAM assigned to kernel stack
to 128 bytes.

However, the nature of the application may change
the stack requirements of the kernel, since using different
peripherals may result in a different kernel stack utilization.
For instance, our GPIO driver does trivial operations, while
our radio driver is built on top of our SPI driver, using
the GPIO driver. As a result, there are many nested calls
and kernel stack usage increases. In addition, interrupts add
stack utilization overhead as they involve driver calls and
manipulate kernel internal functions. Power losses do not
substantially change kernel stack usage, as the kernel stack
is reset on boot.

5.4.6 Application stack utilization overhead
Application stack utilization mainly depends on the applica-
tion itself. However Sytare needs to store some data on the
application stack to achieve persistence.

When switching from application stack to kernel stack to
run a system call, thirteen 16-bit registers are pushed onto
the application stack. As a result, the system call mechanism
adds a 26-byte overhead to application stack utilization.
Since a bottom-half can run when the main application is
interrupted during a system call, and since bottom-halves
also can use system calls, then in this worst-case scenario the
26-byte overhead can be accumulated, making this overhead
reach 52 bytes.

When power loss detection interrupt is generated, the
micro-controller pushes two 16-bit registers onto the current
stack. Hence, whenever power loss detection occurs while
running application code, a 4-byte overhead will be observed
in the application stack.

As a result, the typical worst-case scenario as far as
application stack utilization overhead is concerned is when
the main application is interrupted during a system call and
power loss detection occurs when the bottom-half uses a
system call. In this specific situation, overhead adds up to 56
bytes. In our experiments, 256 bytes for the application stack
were enough in total, for all applications.



13

5.4.7 Energy overhead
Sytare was tested against the AEM10940 energy harvester
from e-peas4 company. It consists of a solar energy harvester
and a power manager, and stores energy in a capacitor. In
our experiments, we use a 330 µF capacitor. The embedded
power manager powers on and off the MSP-EXP430FR5739
board, respectively whenever the capacitor voltage goes
beyond Vboot = 3.21 V or below Vdeath = 2.93 V, which gives
an energy budget of 313 µJ. As discussed in [5], the storage
should be large enough to run the largest atomic section. Our
largest atomic section is the radio packet sending system call
which takes 100 µJ with this energy harvester. The solar cell
we use is the CBC-SEH-01, a 32 cm2 solar cell. A smaller cell
can be used and would simply decrease the frequency of
lifecycles, as long as the delivered power is large enough to
enable harvesting.

0 50 100 150 200

0

500

1,000

t(s)

E
c
a
p
−
E

d
e
a
th
(µ
J
)

Fig. 12: Available energy in the storage capacitor, supplied by
harvesting solar energy. Peaks above 1000 µJ are caused by an
internal feature of the harvester when the storage capacitor
is charged too slowly, when the solar cell was covered.

Figure 12 shows the amount of energy stored in the
capacitor over a period of 200 seconds, under indoor light
conditions, while covering the solar cell occasionally. The
capacitor is refilled within 730 milliseconds in case of usual
office light conditions, and within 10 seconds when the solar
cell is covered. This scenario is thus realistic for an Internet
of Things application solely supplied by energy harvesting.

Checkpoint creation and restoration operations respec-
tively consume 0.183 µJ and 2.115 µJ every lifecycle, leaving
310 µJ for the application to run every lifecycle.

6 CONCLUSION

This paper presents the Sytare kernel. Sytare offers ser-
vices for handling software running on transiently-powered
systems. At time of writing, Sytare is the first tool that
associates checkpointing, a classical solution to handle
transient power, with a mechanism that ensures a safe use of
non trivial peripherals such as timer, serial interface, ADC
or radio transceiver. Sytare has been implemented for the
MSP-EXP430FR5739 board from Texas Instruments which
includes 16 kB of FRAM together with traditional RAM. This
implementation shows that the impact of Sytare in terms
of performance is reasonable and validates our proposal
on a real transiently-powered system. This paper studies

4. https://e-peas.com/

the trade-off between the duration of the powered periods
and the additional cost of Sytare software layer. It shows
that, for powered periods as small as a few milliseconds,
realistic applications can make progress despite frequent
power outages. In addition, the overhead of the persistence
mechanisms introduced in this paper is low, in comparison to
the improvement brought by substantially less constraining
lifecycle durations. This paper also quantifies the impact on
driver calls, and it shows for instance that the time overhead
induced by Sytare in radio driver calls is less than 1%.

An important future work concerns the value of the
thresholds used for checkpointing and resuming execution.
These values substantially impact performance. They depend
on architecture, application and possibly other factors such
as temperature. It will probably be necessary to set up an
adaptive threshold choice. It would become possible to dynam-
ically adapt the threshold with an improved communication
between the power manager and the application. In addition,
the needs of an application are never constant, especially
for low-power embedded applications that usually run
under several power modes, such as CPU-active, low-power
sleep, radio-active, etc.. Hence, it is interesting to analyze,
either statically or dynamically, the energy requirements
of applications so that the kernel can adjust the voltage
threshold values.

REFERENCES

[1] G. Berthou, T. Delizy, K. Marquet, T. Risset, and G. Salagnac,
“Peripheral state persistence for transiently-powered systems,” in
Global Internet of Things Summit (GIoTS). IEEE, 2017.

[2] H. Jayakumar, K. Lee, W. S. Lee, A. Raha, Y. Kim, and V. Raghu-
nathan, “Powering the Internet of Things,” in International Sympo-
sium on Low Power Electronics and Design (ISPLED). ACM, 2014.

[3] M. Buettner, R. Prasad, A. Sample, D. Yeager, B. Greenstein, J. R.
Smith, and D. Wetherall, “RFID sensor networks with the Intel
WISP,” in Conference on Embedded Network Sensor Systems (SenSys).
ACM, 2008.

[4] Y. Lee, S. Bang, I. Lee, Y. Kim, G. Kim, M. H. Ghaed, P. Pannuto,
P. Dutta, D. Sylvester, and D. Blaauw, “A Modular 1 mm3 Die-
Stacked Sensing Platform With Low Power I2C Inter-Die Com-
munication and Multi-Modal Energy Harvesting,” IEEE Journal of
Solid-State Circuits, vol. 48, no. 1, 2013.

[5] A. Colin, E. Ruppel, and B. Lucia, “A Reconfigurable Energy Stor-
age Architecture for Energy-harvesting Devices,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). ACM, 2018.

[6] K. Ma, Y. Zheng, S. Li, K. Swaminathan, X. Li, Y. Liu, J. Sampson,
Y. Xie, and V. Narayanan, “Architecture exploration for ambient
energy harvesting nonvolatile processors,” in Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2015.

[7] D. Stonier-Gibson, “Understanding embedded microcontroller mul-
titasking RTOS alternatives,” SPLat Controls, 2010, date accessed:
sept 2016.

[8] F. Guan, L. Peng, L. Perneel, and M. Timmerman, “Open source
FreeRTOS as a case study in real-time operating system evolution,”
Journal of Systems and Software, vol. 118, 2016.

[9] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki: a lightweight
and flexible operating system for tiny networked sensors,” in
International Conf. on Local Computer Networks (LCN). IEEE, 2004.

[10] J. S. Meena, S. M. Sze, U. Chand, and T.-Y. Tseng, “Overview of
emerging nonvolatile memory technologies,” Nanoscale Research
Letters, vol. 9, no. 1, 2014.

[11] K. Bailey, L. Ceze, S. D. Gribble, and H. M. Levy, “Operating system
implications of fast, cheap, non-volatile memory,” in Conference on
Hot topics in Operating Systems (HotOS). USENIX, 2011.

[12] I. Oukid, D. Booss, A. Lespinasse, W. Lehner, T. Willhalm, and
G. Gomes, “Memory Management Techniques for Large-scale
Persistent-main-memory Systems,” Proceedings of the VLDB En-
dowment, vol. 10, no. 11, 2017.

https://e-peas.com/


14

[13] B. Ransford and B. Lucia, “Nonvolatile Memory is a Broken
Time Machine,” in Workshop on Memory Systems Performance and
Correctness (MSPC). ACM, 2014.

[14] S. Bartling, S. Khanna, M. Clinton, S. R. Summerfelt, J. A. Rodriguez,
and H. P. McAdams, “An 8MHz 75uA/MHz zero-leakage non-
volatile logic-based Cortex-M0 MCU SoC exhibiting 100-percent
digital state retention at VDD=0V with <400ns wakeup and sleep
transitions,” in Intl. Solid-State Circuits Conf. (ISSCC). IEEE, 2013.

[15] F. Su, W. Chen, L. Xia, C. Lo, T. Tang, Z. Wang, K. Hsu, M. Cheng,
J. Li, Y. Xie, Y. Wang, M. Chang, H. Yang, and Y. Liu, “A
462GOPs/J RRAM-based nonvolatile intelligent processor for
energy harvesting IoE system featuring nonvolatile logics and
processing-in-memory,” in Symposium on VLSI Technology (VSLIT).
IEEE, 2017.

[16] Y. Liu, Z. Li, H. Li, Y. Wang, X. Li, K. Ma, S. Li, M. Chang, S. John,
Y. Xie, J. Shu, and H. Yang, “Ambient energy harvesting nonvolatile
processors: from circuit to system,” in Design Automation Conference
(DAC). ACM, 2015.

[17] Y. Liu, Z. Wang, A. Lee, F. Su, C. Lo, Z. Yuan, C. Lin, Q. Wei, Y. Wang,
Y. King, C. Lin, P. Khalili, K. Wang, M. Chang, and H. Yang, “4.7 A
65nm ReRAM-enabled nonvolatile processor with 6x reduction
in restore time and 4x higher clock frequency using adaptive
data retention and self-write-termination nonvolatile logic,” in
International Solid-State Circuits Conference (ISSCC). IEEE, 2016.

[18] Y. Wang, Y. Liu, S. Li, D. Zhang, B. Zhao, M. Chiang, Y. Yan, B. Sai,
and H. Yang, “A 3us wake-up time nonvolatile processor based on
ferroelectric flip-flops,” in Proceedings of the ESSCIRC, 2012.

[19] F. Aït-Aoudia, K. Marquet, and G. Salagnac, “Incremental check-
pointing of program state to NVRAM for transiently-powered
systems,” in International Workshop on Reconfigurable Communication-
centric Systems-on-Chip (ReCoSoC). IEEE, 2014.

[20] B. Ransford, J. Sorber, and K. Fu, “Mementos: system support for
long-running computation on RFID-scale devices,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). ACM, 2011.

[21] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi,
D. Brunelli, and L. Benini, “Hibernus: Sustaining Computation
During Intermittent Supply for Energy-Harvesting Systems,” IEEE
Embedded Systems Letters, vol. 7, no. 1, 2015.

[22] H. Jayakumar, A. Raha, and V. Raghunathan, “QUICKRECALL: A
Low Overhead HW/SW Approach for Enabling Computations
across Power Cycles in Transiently Powered Computers,” in
International Conference on VLSI Design (VLSID). IEEE, 2014.

[23] N. Bhatti and L. Mottola, “Efficient State Retention for Transiently-
powered Embedded Sensing,” in International Conference on Embed-
ded Wireless Systems and Networks (EWSN). ACM, 2016.

[24] R. Smith and S. Rixner, “Surviving Peripheral Failures in Embedded
Systems,” in USENIX Annual Technical Conference. USENIX, 2015.

[25] Z. Wang, F. Su, Y. Wang, Z. Li, X. Li, R. Yoshimura, T. Naiki,
T. Tsuwa, T. Saito, Z. Wang, K. Taniuchi, M. Chang, H. Yang, and
Y. Liu, “A 130nm FeRAM-based parallel recovery nonvolatile SoC
for normally-off operations with 3.9x faster running speed and
11x higher energy efficiency using fast power-on detection and
nonvolatile radio controller,” in Symposium on VLSI Circuits, 2017.

[26] Y. Wang, L. Xia, M. Cheng, T. Tang, B. Li, and H. Yang, “RRAM
Based Learning Acceleration,” in Intl. Conf. on Compilers, Architec-
tures and Synthesis for Embedded Systems (CASES). ACM, 2016.

[27] L. Ryzhyk, P. Chubb, I. Kuz, and G. Heiser, “Dingo: Taming Device
Drivers,” in European Conference on Computer Systems (EuroSys).
ACM, 2009.

[28] J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux Device Drivers,
3rd Edition. O’Reilly Media, Inc., 2005.

[29] P. Deligiannis, A. F. Donaldson, and Z. Rakamaric, “Fast and Precise
Symbolic Analysis of Concurrency Bugs in Device Drivers,” in Intl.
Conference on Automated Software Engineering (ASE). ACM, 2015.

[30] F. Aït-Aoudia, M. Gautier, M. Magno, O. Berder, and L. Benini,
“Leveraging Energy Harvesting and Wake-Up Receivers for Long-
Term Wireless Sensor Networks,” Sensors, vol. 18, no. 5, 2018.

[31] W. Dong, C. Chen, X. Liu, Y. Liu, J. Bu, and K. Zheng, “SenSpire OS:
A Predictable, Flexible, and Efficient Operating System for Wireless
Sensor Networks,” IEEE Trans. on Computers, vol. 60, no. 12, 2011.

[32] P. Regnier, G. Lima, and L. Barreto, “Evaluation of Interrupt
Handling Timeliness in Real-time Linux Operating Systems,”
SIGOPS Operating Systems Review, vol. 42, no. 6, 2008.

[33] G. Berthou, T. Delizy, K. Marquet, T. Risset, and G. Salagnac,
“Peripheral State Persistence For Transiently Powered Systems,”
INRIA, Research Report RR-9018, 2017.

Gautier Berthou holds a Master’s degree from
KTH Royal Institute of Technology as well as a
Master’s degree from engineering school INSA
Lyon, both in computer science. After one year
working as an engineer on a research project
dedicated to NVRAM management in transiently-
powered systems, he started working as a PhD
student in the Socrate team of INRIA/CITI lab.

Tristan Delizy is a PhD student in the CITI
Laboratory of INRIA / INSA-Lyon. After a mas-
ter’s degree in computer science (2013) from
INSA-Lyon, he spent several years in industry
as an embedded software developer. He then
joined INRIA to work on the transiently powered
systems for a year, and since 2016 he started
a PhD on Dynamic Memory Management for
Heterogeneous Memory Embedded Systems.
His research interests include Transiently Pow-
ered Systems, Dynamic Memory Management,

Normally-Off Computing and Non-Volatile Memory technologies.

Kevin Marquet is an associate professor at INSA
Lyon, member of the CITI Lab and the INRIA
Socrate team. He holds a PhD from University
of Lille (2007) where he designed a Java OS for
embedded system. He previously worked as post-
doctoral researcher at Verimag, Grenoble, where
he studied the formal verification of SystemC
programs. His research works still revolve around
operating systems and memory management.

Tanguy Risset is a full professor at INSA Lyon
and a member of the CITI Lab, he is head of
the INRIA Socrate team. He worked previously at
Irisa Rennes on high level synthesis, then in ENS-
Lyon where he created the INRIA COMPSYS
team. He studied software defined radio, created
the SOCRATE INRIA Team at INSA Lyon and
was co-leader of the FIT/CorteXlab platform. His
research interests now include Ultra-low power
systems, Non-volatile memory, IoT and software
defined radio.

Guillaume Salagnac is an associate professor
at INSA Lyon and a member of the CITI lab
since 2009. He holds a PhD (2008) and an
MSc (2004) both from University of Grenoble
(France), where he studied automatic dynamic
memory management for real-time embedded
Java applications. Before joining the CITI lab, he
was a post-doctoral researcher at the CSIRO ICT
Centre in Brisbane, Australia, where he worked
on high-level programming for Wireless Sensor
Networks. His current research interests lie in the

area of programming languages and operating systems for resource-
constrained embedded platforms.


	Introduction
	Background and Related Work
	Transiently-Powered Systems
	Programming tiny embedded systems
	Non-volatile architectures
	Program checkpointing
	Problem statement
	Peripheral state volatility problem
	Peripheral access atomicity problem
	Interrupt handling problem


	Handling peripherals in a TPS
	Modifying bare-metal embedded software
	Solution to peripheral state volatility
	Device context

	Solution to peripheral access atomicity
	Volatile and non-volatile stacks
	Power loss scenarios
	Checkpoint image structure

	Solution to interrupt handling
	Top-half and bottom-half
	Interrupt handling design concerns
	Persistence of interrupt data
	Data race conditions

	An example of complex system call

	Implementation
	Hardware
	Memory organization and kernel boot
	Checkpointing and restoration
	Implementation of the system call wrappers
	Device drivers persistence in Sytare
	Simple access peripherals
	Constrained access peripherals
	Indirect access peripherals


	Evaluation
	Power supply
	Metrics and variables
	Benchmark applications
	Kernel evaluation
	System boot
	System calls evaluation
	Minimal lifecycle duration
	Memory occupation
	Kernel stack utilization
	Application stack utilization overhead
	Energy overhead


	Conclusion
	References
	Biographies
	Gautier Berthou
	Tristan Delizy
	Kevin Marquet
	Tanguy Risset
	Guillaume Salagnac


