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Abstract—Automatic Speech Recognition (ASR) is becoming increasingly ubiquitous, especially in the mobile segment. Fast and
accurate ASR comes at high energy cost, not being affordable for the tiny power-budgeted mobile devices. Hardware acceleration
reduces energy-consumption of ASR systems, while delivering high-performance. In this paper, we present an accelerator for
large-vocabulary, speaker-independent, continuous speech-recognition. It focuses on the Viterbi search algorithm representing the
main bottleneck in an ASR system. The proposed design consists of innovative techniques to improve the memory subsystem, since
memory is the main bottleneck for performance and power in these accelerators’ design. It includes a prefetching scheme tailored to
the needs of ASR systems that hides main memory latency for a large fraction of the memory accesses, negligibly impacting area.
Additionally, we introduce a novel bandwidth-saving technique that removes off-chip memory accesses by 20%. Finally, we present a
power saving technique that significantly reduces the leakage power of the accelerators scratchpad memories, providing between 8.5%
and 29.2% reduction in entire power dissipation. Overall, the proposed design outperforms implementations running on the CPU by
orders of magnitude, and achieves speedups between 1.7x and 5.9x for different speech decoders over a highly optimized CUDA
implementation running on Geforce-GTX-980 GPU, while reducing the energy by 123-454x.
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1 INTRODUCTION

Automatic Speech Recognition (ASR) has attracted the
attention of the architectural community [2], [3], [4], [5] and
the industry [6], [7], [8], [9] in recent years. ASR is becoming
a key feature for smartphones, tablets and other energy-
constrained devices like smartwatches. ASR technology is
at the heart of popular voice-based user interfaces for mo-
bile devices such as Google Now, Apple Siri or Microsoft
Cortana. These systems deliver large-vocabulary, real-time,
speaker-independent, continuous speech recognition. Un-
fortunately, supporting fast and accurate speech recognition
comes at a high energy cost, which in turn results in fairly
short operating time per battery charge. Performing ASR
remotely in the cloud can potentially alleviate this issue,
but it comes with its own drawbacks: it requires access to
the Internet, it might increase the latency due to the time
required to transfer the speech and it increases the energy
consumption of the communication subsystem. Given the
issues with software-based solutions running locally or in
the cloud, we believe that hardware acceleration represents
a better approach to achieve high-performance and energy-
efficient speech recognition in mobile devices.

The most time consuming parts of an ASR pipeline can
be offloaded to a dedicated hardware accelerator in order to
bridge the energy gap, while maintaining high-performance
or even increasing it. An ASR pipeline consists of two
stages: the Deep Neural Network (DNN) and the Viterbi
search. The DNN converts the input audio signal into a
sequence of phonemes, whereas the Viterbi search converts

• This paper is an extension of the conference paper ”An Ultra Low-Power
Hardware Accelerator for Automatic Speech Recognition”, presented in
Micro’49, Taipei, Taiwan, 2016 [1].
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Fig. 1: Percentage of execution time for the two components
of a speech recognition system: the Viterbi search and the
Deep Neural Net. The Viterbi search is the dominant com-
ponent, as it requires 73% and 86% of the execution time
when running on a CPU and a GPU respectively.

the phonemes into a sequence of words. Figure 1 shows
the percentage of execution time required for both stages
in Kaldi [10], a state-of-the-art speech recognition system
widely used in academia and industry. As it can be seen,
the Viterbi search is the main bottleneck as it requires 73%
of the execution time when running Kaldi on a recent CPU
and 86% when running on a modern GPU. Moreover, the
two stages can be pipelined and, in that case, the latency
of the ASR system depends on the execution time of the
slowest stage, which is clearly the Viterbi search.

In recent years there has been a lot of work on boosting
the performance of DNNs by using GPUs [11] or dedicated
accelerators [12], [13], achieving huge speedups and energy
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savings. However, the DNN is just a small part of an ASR
system, where the Viterbi search is the dominant component
as shown in Figure 1. Unfortunately, the Viterbi search
algorithm is hard to parallelize [14], [15], [16] and, therefore,
a software implementation cannot exploit all the parallel
computing units of modern multi-core CPUs and many-core
GPUs. Not surprisingly, previous work reported a modest
speedup of 3.74x for the Viterbi search on a GPU [17].
Our numbers also support this claim as we obtained a
speedup of 10x for the Viterbi search on a modern high-
end GPU, which is low compared to the 26x speedup that
we measured for the DNN. Besides, these speedups come at
a very high cost in energy consumption. Therefore, we be-
lieve that a hardware accelerator specifically tailored to the
characteristics of the Viterbi algorithm is the most promising
way of achieving high-performance energy-efficient ASR on
mobile devices.

In this paper, we present a hardware accelerator for
speech recognition that focuses on the Viterbi search stage.
Our experimental results show that the accelerator achieves
similar performance to a high-end desktop GPU, while
reducing energy by two orders of magnitude. In the second
step, by analyzing the memory behavior of our accelera-
tor, we propose two techniques to improve the memory
subsystem. The first technique consists in a prefetching
scheme inspired by decoupled access-execute architectures
to hide the memory latency with a negligible cost in area.
The second proposal consists in a novel bandwidth saving
technique that avoids 20% of the memory fetches to off-
chip system memory. Finally, we introduce a power-control
mechanism, based on low-power drowsy caches [18], that
significantly reduces on-chip memory leakage, which is the
main power bottleneck of the accelerator.

This paper focuses on energy-efficient, high-perfor-
mance speech recognition. Its main contributions are the
following:

• We present an accelerator for the Viterbi search that
achieves from 1.7x to 5.9x speedup over a high-end
desktop GPU for decoding various speech datasets,
while consuming 123x to 405x less energy.

• We introduce a prefetching architecture tailored to
the characteristics of the Viterbi search algorithm that
provides 1.87x speedup over the base design.

• We propose a memory bandwidth saving technique
that removes 20% of the accesses to off-chip system
memory.

• We present a low-power mechanism for the accel-
erator’s memory components that mitigates most of
the leakage power and reduces total power of the
accelerator between 8.5% to 29.2%.

The remainder of this paper is organized as follows.
Section 2 provides the background information on speech
recognition systems. Section 3 presents our base design for
speech recognition. Section 4 introduces two new techniques
to hide memory latency and save memory bandwidth.
Section 5 elaborates on the power-control approach for the
accelerator’s scratchpad memories. Section 6 describes our
evaluation methodology and Section 7 shows the perfor-
mance and power results. Section 8 reviews some related
work and, finally, Section 9 sums up the main conclusions.

TABLE 1: WER comparison of different ASR decoders for
Librispeech non-clean dataset [21].

System Type WER(%)
Human - 12.69

Kaldi’s ASR (DNN + Viterbi) Hybrid 10.62
DeepSpeech2 [22] End-to-End 13.25

Deep bLSTM with attention [23] End-to-End 12.76
wav2letter++ [24] End-to-End 11.24

2 SPEECH RECOGNITION WITH WFST

Speech recognition is the process of identifying a sequence
of words from speech waveforms. An ASR system must be
able to recognize words from a large vocabulary with un-
known boundary segmentation between consecutive words.
The typical pipeline of an ASR system works as follows.
First, the input audio signal is segmented in frames of
10 ms of speech. Second, the audio samples within a
frame are converted into a vector of features using signal-
processing techniques such as Mel Frequency Cepstral Co-
efficients (MFCC) [19]. Third, the acoustic model, imple-
mented by a Deep Neural Network (DNN), transforms
the MFCC features into phonemes’ probabilities. Context-
sensitive phonemes are the norm, triphones [20] being the
most common approach. A triphone is a particular phoneme
when combined with a particular predecessor and a par-
ticular successor. Finally, the Viterbi search converts the
sequence of phonemes into a sequence of words. The Viterbi
search takes up the bulk of execution time, as illustrated in
Figure 1, and is the main focus of our hardware accelerator
presented in Section 3. The complexity of the search process
is due to the huge size of the recognition model employed
to represent the characteristics of the speech.

Even though the End-to-End (E2E) ASR models based
on standalone RNN or CNN are getting popular since they
simplify the overall pipeline, however, the Kaldi’s hybrid
system combined of DNN and Viterbi beam search still
achieves higher accuracy, especially for noisy audio. Fur-
thermore, E2E systems also require a beam search based
on a language model to achieve accuracy comparable to
hybrid systems [22]. We compared the accuracy of Kaldi’s
ASR decoder [21] with different E2E systems: Baidu’s Deep-
Speech2 [22], a state-of-the-art LSTM network with attention
mechanism [23] and Facebook’s wav2letter++ [24]. Table 1
shows the Word Error Rate (WER) collected for one of our
speech corpora, Librispeech, that includes several hours of
challenging noisy speech.

The state-of-the-art in recognition networks for speech is
the Weighted Finite State Transducer (WFST) [25] approach.
A WFST is a Mealy finite state machine that encodes a
mapping between input and output labels associated with
weights. In the case of speech recognition, the input labels
represent the phonemes and the output labels the words.
The WFST is constructed offline during the training process
by using different knowledge sources such as context de-
pendency of phonemes, pronunciation and grammar. Each
knowledge source is represented by an individual WFST,
and then they are combined to obtain a single WFST en-
compassing the entire speech process. For large vocabulary
ASR systems, the resulting WFST contains millions of states
and arcs. For example, the standard transducer for English
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Fig. 2: Figure (a) shows a simple WFST that is able to recognize two words: low and less. For each arc the figure shows
the weight, or transition probability, the phoneme that corresponds to the transition (input label) and the corresponding
word (output label). Dash symbol indicates that there is no word associated to the transition. Figure (b) shows the acoustic
likelihoods generated by the DNN for an audio with three frames. Figure (c) shows a trace of the Viterbi algorithm when
using the WFST in (a) with the acoustic likelihoods shown in (b), the figure also shows the likelihood of reaching each
state. The path with maximum likelihood corresponds to the word low.

language in Kaldi contains more than 13 million states and
more than 34 million arcs.

Figure 2a shows a simple WFST for a very small vo-
cabulary with two words. The WFST consists of a set of
states and a set of arcs. Each arc has a source state, a
destination state and three attributes: weight (or likelihood),
phoneme (or input label) and word (or output label). On
the other hand, Figure 2b shows the acoustic likelihoods
generated by the DNN for an audio signal with three frames
of speech. For instance, frame one has 90% probability of
being phoneme l. Finally, Figure 2c shows the trace of states
expanded by the Viterbi search when using the WFST of
Figure 2a and the acoustic likelihoods of Figure 2b. The
search starts at state 0, the initial state of the WFST. Next,
the Viterbi search traverses all possible arcs departing from
state 0, considering the acoustic likelihoods of the first frame
of speech to create new active states. This process is repeated
iteratively for every frame of speech, expanding new states
by using the information of the states created in the previous
frame and the acoustic likelihoods of the current frame.
Once all the frames are processed, the active state with
maximum likelihood in the last frame is selected, and the
best path is recovered by using backtracking.

More generally, the Viterbi search employs a WFST to
find the sequence of output labels, or words, with maximum
likelihood for the sequence of input labels, or phonemes,
whose associated probabilities are generated by a DNN.
The word sequence with maximum likelihood is computed
using a dynamic programming recurrence. The likelihood
of the traversal process being in state j at frame f , ψf (sj),
is computed from the likelihood in the preceding states as
follows:

ψf (sj) = max
i
{ψf−1(si) · wij · b(Of ;mk)} (1)

where wij is the weight of the arc from state i to state
j, and b(Of ;mk) is the probability that the observation
vector Of corresponds to the phoneme mk, i. e. the acoustic
likelihood computed by the DNN. In the example shown
in Figure 2, the likelihood of being in state 1 at frame 1 is:
ψ0(s0) · w01 · b(O1; l) = 1.0 · 0.6 · 0.9 = 0.54. Note that state
1 has only one predecessor in the previous frame. In case
of multiple input arcs, all possible transitions from active
states in the previous frame are considered to compute the
likelihood of the new active state according to Equation 1.

Therefore, the Viterbi search performs a reduction to com-
pute the path with maximum likelihood to reach the state
j at frame f . In addition to this likelihood, the algorithm
also saves a pointer to the best predecessor for each active
state, that will be used during backtracking to restore the
best path.

For real WFSTs, it is unfeasible to expand all possible
paths due to the huge search space. In practice, ASR systems
employ pruning to discard the paths that are rather unlikely.
In standard beam pruning, only active states that fall within
a defined range, a.k.a. beam width, of the frame’s best
likelihood are expanded. In the example of Figure 2c, we
set the beam width to 0.25. With this beam, the threshold
for frame 2 is 0.05: the result of subtracting the beam from
the frame’s best score (0.3). Active states 1 and 4 are pruned
away as their likelihoods are smaller than the beam. The
search algorithm combined with the pruning is commonly
referred as Viterbi beam search [26].

On the other hand, representing likelihoods as floating
point numbers between 0 and 1 might cause arithmetic
underflow. To prevent this issue, ASR systems use log-space
probabilities. Another benefit of working in log-space is that
floating point multiplications are replaced by additions.

Regarding the arcs of the recognition network, real WF-
STs typically include some arcs with no input label, a.k.a.
epsilon arcs [17]. Epsilon arcs are not associated with any
phoneme and they can be traversed during the search with-
out consuming a new frame of speech. One of the reasons
to include epsilon arcs is to model cross-word transitions.
Epsilon arcs are less frequent than the arcs with input label,
a.k.a. non-epsilon arcs. In Kaldi’s WFST only 11.5% of the
arcs are epsilon.

Note that there is a potential ambiguity in the use of the
term state, as it might refer to the static WFST states (see
Figure 2a) or the dynamic Viterbi trace (see Figure 2c). To
clarify the terminology, in this paper we use state to refer to
a static state of the WFST, whereas we use token to refer
to an active state dynamically created during the Viterbi
search. A token is associated with a static WFST state, but
it also includes the likelihood of the best path to reach the
state at frame f and the pointer to the best predecessor for
backtracking.

The WFST approach has two major advantages over
alternative representations of the speech model. First, it
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provides flexibility in adopting different languages, gram-
mars, phonemes, etc. Since all these knowledge sources
are compiled to one WFST, the algorithm only needs to
search over the resulting WFST without consideration of the
knowledge sources. This characteristic is especially benefi-
cial for a hardware implementation as the same ASIC can
be used to recognize words in different languages by using
different types of models: language models (e.g., bigrams
or trigrams), context dependency (e.g., monophones or tri-
phones), etc. Therefore, supporting speech recognition for
a different language or adopting more accurate language
models only requires changes to the parameters of the
WFST, but not to the software or hardware implementation
of the Viterbi search. Second, the search process with the
WFST is faster than using alternative representations of the
speech, as it explores fewer states [27].

3 HARDWARE ACCELERATED SPEECH RECOGNI-
TION

In this section, we describe a high-performance and low-
power accelerator for speech recognition. The accelerator fo-
cuses on the Viterbi beam search since it represents the vast
majority of the compute time in all the analyzed platforms
as shown in Figure 1. On the other hand, the neural-network
used to produce acoustic likelihoods runs on GPU and in
parallel with the accelerator. Figure 3 illustrates the archi-
tecture of the accelerator, which consists of a pipeline with
five stages. In addition to a number of functional blocks, it
includes several on-chip memories to speedup the access to
different types of data required by the search process. More
specifically, the accelerator includes three caches (State, Arc
and Token), two hash tables to store the active states for
the current and next frames of the speech, and a scratchpad
memory to store the acoustic likelihoods computed by the
DNN.

We cannot store all data on-chip due to its huge size.
A typical WFST such as the one used in the experiments
of this work [10] has a large vocabulary of 125k words
and it contains more than 13M states and more than 34M
arcs. The total size of the WFST is 681 MBytes. Regarding
the representation of the WFST, we use the memory layout
proposed in [3]. In this layout, states and arcs are stored
separately in two different arrays. For each state, three
attributes are stored in main memory: index of the first arc
(32 bits), number of non-epsilon arcs (16 bits) and number
of epsilon arcs (16 bits) packed in a 64-bit structure. All the
outgoing arcs for a given state are stored in consecutive
memory locations namely array of arcs; the non-epsilon
arcs are stored first, followed by the epsilon arcs. For each
arc, four attributes are stored packed in 128 bits: index of
the arc’s destination state, transition weight, input label
(phoneme id) and output label (word id), each represented
as a 32-bit value. The State and Arc caches speed up the
access to the array of states and arcs respectively.

On the other hand, the accelerator also keeps track of
the tokens generated dynamically throughout the search.
Token’s data is split into two parts, depending on whether
the data has to be kept until the end of the search or it is only
required for a given frame of speech: a) the backpointer to
the best predecessor is required for the backtracking step to
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Fig. 3: Architecture of the accelerator for speech recognition.

restore the best path when the search finishes, so these data
is stored in main memory and cached in the Token cache;
b) on the other hand, the state index and the likelihood
of reaching the token are stored in the hash table and are
discarded when the processing of the current frame finishes.

Due to the pruning described in Section 2, only a very
small subset of the states are active at any given frame of
speech. The accelerator employs two hash tables to keep
track of the active states, or tokens, created dynamically for
the current and next frames respectively. By using a hash
table, the accelerator is able to quickly find out whether a
WFST state has already been visited in a frame of speech. If
so, the accelerator obtains the memory location for the token
associated with the WFST state from the hash table.

After a brief explanation of the overall ASR system,
the following sections describe how the pipeline of the
accelerator works and provide more details on the analysis
to select appropriate parameters for the different hardware
structures.

3.1 Overall ASR System

The system considered here is based on the hybrid approach
which combines DNN and Viterbi search. This model rep-
resents the state-of-the-art in ASR as it provides better accu-
racy than other schemes such as GMM +Viterbi. The DNN,
which runs on GPU, calculates the acoustic likelihoods of
each batch, containing 256 frames of speech, scheduled to be
reconized on the search phase. For the Viterbi search, which
is the main bottleneck of the whole system, we use the pro-
posed accelerator as it outperforms other implementations
on different platforms like GPU.

The GPU and the accelerator work in parallel processing
the DNN and the Viterbi search respectively in a pipelined
manner. While the accelerator decodes the current batch,
the GPU computes the acoustic scores for the next batch of
frames. In order to hide the latency required for transfer-
ring the acoustic likelihoods from the GPU memory to the
accelerator, a double-buffered memory is equipped in the
accelerator’s architecture which both stores and receives the
acoustic scores of the current and the next frame respec-
tively. These two buffers are swapped at the end of each
frame’s evaluation in order to have the two phases of ASR
pipeline running simultaneously.
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3.2 Accelerator Pipeline

The pipeline of the accelerator illustrated in Figure 3 works
as follows. First, the State Issuer fetches a token from the
hash table that contains the list of tokens that have to be
expanded for the current frame. Each token’s data read from
the hash contains two values: the likelihood of reaching the
token and the state index. The State Issuer then performs
the pruning and, hence, the token is only expanded if
its likelihood is bigger than the threshold, otherwise it is
discarded. If the token passes the pruning, the state’s data
is fetched from memory by using the State cache. Once the
cache provides the data, it is forwarded to the Arc Issuer
together with the token’s likelihood read from the hash.

The Arc Issuer uses the state’s data that contains the
index of the first arc and the number arcs to generate
memory requests to the Arc cache in order to fetch all the
outgoing arcs for that state. When the Arc Issuer receives
the information for a new arc from the cache, it forwards
this information together with the token’s likelihood to the
next pipeline stage. Next, the Acoustic Likelihood Issuer
employs the input label of the arc, i. e. the index of the
phoneme, to fetch the corresponding acoustic likelihood
from the scratchpad memory, labeled as Acoustic Likelihood
Buffer in Figure 3.

In the next pipeline stage, the Likelihood Evaluation unit
receives all the data required to compute the likelihood of
the new token according to Equation 1. This unit computes
the summation of the source token’s likelihood read from
the hash, the weight of the arc read from Arc cache and the
acoustic likelihood. Note that additions are used instead of
multiplications as the accelerator works in log-space. This
unit also keeps track of the maximum likelihood for all the
tokens created in a given frame, as this value is required to
compute the threshold for pruning.

Finally, the Token Issuer employs the index of the arc’s
destination state to access the second hash table containing
the tokens for the next frame. If a token for that state has
already been created, the likelihood for the new token is
compared with the likelihood stored in the hash. If the new
token has a smaller likelihood it is discarded, whereas if
it is bigger both the cost in the hash and the backpointer
in main memory are updated, since a better path to reach
this destination state has been found. If the destination state
does not exist in the hash table, a new hash entry is allocated
to store the likelihood, whereas the backpointer is saved at
the end of the array of tokens in main memory using the
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Token cache.
Once all the tokens for the current frame have been

expanded, the two hash tables are swapped, so the hash
table for the next frame with the new tokens becomes the
hash table for the current frame containing the source tokens
to be expanded and vice versa.

The hash table is accessed using the state index. Each
entry in the hash table stores the likelihood of the token and
the address where the backpointer for the token is stored in
main memory. In addition, each entry contains a pointer to
the next active entry, so all the tokens are in a single linked
list that can be traversed by the State Issuer in the next
frame. The hash table includes a backup buffer to handle
collisions (states whose hash function maps them to the
same entry). In case of a collision, the new state index is
stored in a backup buffer, and a pointer to that location is
saved in the original entry of the hash. Each new collision is
stored in the backup buffer and linked to the last collision
of the same entry, all collisions forming a single linked list.

On the other hand, in case of an overflow in a hash table,
the accelerator employs a buffer in main memory, labeled as
Overflow Buffer in Figure 3, as an extension of the backup
buffer. Overflows significantly increase the latency to access
the hash table, but we found that they are extremely rare for
common hash table sizes.

The Acoustic Likelihood Buffer contains the likelihoods
computed by the DNN. In our system, the DNN is evaluated
in the CPU or the GPU and the result is transferred to the
aforementioned buffer in the accelerator. The buffer contains
storage for two frames of speech, so the accelerator can be
working in the current frame while the DNN is evaluated
for the next frame and the result is copied in the buffer.

The result generated by the accelerator is the dynamic
trace of tokens in main memory, together with the address
of the best token in the last frame. The backtracking is done
on the CPU, following backpointers to get the sequence of
words in the best path. The execution time of the backtrack-
ing is negligible compared to the Viterbi search so it does
not require hardware acceleration.

3.3 Analysis of Caches and Hash Tables
Misses in the caches and collisions in the hash tables are the
only sources of pipeline stalls and, therefore, the parameters
for those components are critical for the performance of
the overall accelerator. In this section, we evaluate different
configurations of the accelerator to find appropriate values
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for the capacity of the State, Arc and Token caches and the
hash tables.

Figure 4 shows the miss ratios of the caches for different
capacities. As it can be seen, even large capacities of 1-
2 MBytes exhibit significant miss ratios. These large miss
ratios are due to the huge size of the datasets, mainly
the arcs and states in the WFST, and the poor spatial and
temporal locality that the memory accesses to those datasets
exhibit. Only a very small subset of the total arcs and
states are accessed on a frame of speech, and this subset is
sparsely distributed in the memory. The access to the array
of tokens exhibits better spatial locality, as most of the tokens
are added at the end of the array at consecutive memory
locations. For this reason, the Token cache exhibits lower
miss ratios than the other two caches for small capacities of
256KB-512KB.

Large cache sizes can significantly reduce miss ratio,
but they come at a significant cost in area and power.
Furthermore, they increase the latency for accessing the
cache, which in turn increases total execution time. For our
baseline configuration, we have selected 512 KB, 1 MB and
512 KB as the sizes for the State, Arc and Token caches
respectively. Although larger values provide smaller miss
ratios, we propose to use instead other more cost-effective
techniques for improving the memory subsystem, described
in Section 4.

Regarding the hash tables, Figure 5 shows the average
number of cycles per request versus the number of entries
in the table. If there is no collision, requests take just one
cycle, but in case of a collision, the hardware has to locate the
state index by traversing a single linked list of entries, which
may take multiple cycles (many more if it has to access the
Overflow Buffer in main memory). For 32K-64K entries the
number of cycles per request is close to one. Furthermore,
the additional increase in performance from 32K to 64K is
very small as it can be seen in the speedup reported in
Figure 5. Therefore, we use 32K entries for our baseline
configuration which requires a total storage of 768 KBytes
for each hash table, similar to the capacities employed for
the caches of the accelerator.

4 IMPROVED MEMORY HIERARCHY

In this section, we perform an analysis of the bottlenecks in
the hardware accelerator for speech recognition presented in
Section 3, and propose architectural extensions to alleviate
those bottlenecks. There are only two sources of pipeline
stalls in the accelerator: misses in the caches and collisions
in the hash tables. In case of a miss in the State, Arc or Token
cache, the ASIC has to wait for main memory to serve the
data, potentially introducing multiple stalls in the pipeline.
On the other hand, resolving a collision in the hash table
requires multiple cycles and introduces pipeline stalls, as
subsequent arcs cannot access the hash until the collision is
solved.

The results obtained by using our cycle-accurate sim-
ulator show that main memory latency has a much bigger
impact on performance than the collisions in the hash tables.
The performance of the accelerator improves by 2.11x when
using perfect caches in our simulator, whereas an ideal
hash with no collisions only improves performance by 2.8%
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Fig. 6: Prefetching architecture for the Arc cache.

over the baseline accelerator with the parameters shown
in Table 2. Therefore, we focus our efforts on hiding the
memory latency in an energy-efficient manner. In Section 4.1
we introduce an area-effective latency-tolerance technique
that is inspired by decoupled access-execute architectures.

On the other hand, off-chip DRAM accesses are known
to be particularly costly in terms of energy [12]. To fur-
ther improve the energy-efficiency of our accelerator, we
present a novel technique for saving memory bandwidth
in Section 4.2. This technique is able to remove a significant
percentage of the memory requests for fetching states from
the WFST.

4.1 Hiding Memory Latency

Cache misses are the main source of stalls in the pipeline of
the design and in consequence, main memory latency has
a significant impact on the performance of the accelerator
for speech recognition presented in Section 3. Regarding the
importance of each individual cache, the results obtained
in our simulator show that using a perfect Token cache
provides a minor speedup of 1.02x. A perfect State cache
improves performance by 1.09x. On the other hand, the
Arc cache exhibits the biggest impact on performance, as
removing all the misses in this cache would provide 1.95x
speedup.

The impact of the Arc cache on the performance of the
overall accelerator is due to two main reasons. First, the
memory footprint for the arcs dataset is quite large: the
WFST has more than 34M arcs, whereas the number of states
is around 13M. So multiple arcs are fetched for every state
when traversing the WFST during the Viterbi search. Sec-
ond, arc fetching exhibits poor spatial and temporal locality.
Due to the pruning, only a small and unpredictable subset of
the arcs are active on a given frame of speech. We observed
that only around 25k of the arcs are accessed on average per
frame, which represents 0.07% of the total arcs in the WFST.
Hence, the accelerator has to fetch a different and sparsely
distributed subset of the arcs on a frame basis, which results
in large miss ratio for the Arc cache (see Figure 4). Therefore,
efficiently fetching arcs from memory is a major concern for
the accelerator.

The simplest approach to tolerate memory latency is to
increase the size of the Arc cache, or to include a bigger sec-
ond level cache. However, this approach causes a significant
increase in area, power and latency to access the cache. An-
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Fig. 7: Cumulative percentage of states accesses dynamically
vs the number of arcs. Although the maximum number of
arcs per state is 770, 97% of the states fetched from memory
have 15 or less arcs.

other solution to hide memory latency is hardware prefetch-
ing [28]. Nonetheless, we found that the miss address stream
during the Viterbi search is highly unpredictable due to the
pruning and, hence, conventional hardware prefetchers are
ineffective. We implemented and evaluated different state-
of-the-art hardware prefetchers [28], [29], and our results
show that these schemes produce slowdowns and increase
energy due to the useless prefetches that they generate.

Our proposed scheme to hide memory latency is based
on the observation that arcs prefetching can be based
on computed rather than predicted addresses, following
a scheme similar to the decoupled access-execute archite-
cures [30]. After the pruning step, the addresses of all the
arcs are deterministic. Once a state passes the pruning, the
system can compute the addresses for all its outgoing arcs
and prefetch their data from memory long before they are
required, thus allowing cache miss latency to overlap with
useful computations without causing stalls. Note that the
addresses of the arcs that are required in a given frame only
depend on the outcome of the pruning. Once the pruning
is done, subsequent arcs can be prefetched while previously
fetched arcs are being processed in the next pipeline stages.

Figure 6 shows our prefetching architecture for the Arc
cache, which is inspired by the design of texture caches for
GPUs [31]. Texture fetching exhibits similar characteristics
to the arcs fetching, as all the texture addresses can also
be computed much in advance from the time the data is
required.

The prefetching architecture processes arcs as follows.
First, the Arc Issuer computes the address of the arc and
sends a request to the Arc cache. The arc’s address is looked
up in the cache tags, and in case of a miss the tags are
updated immediately and the arc’s address is forwarded
to the Request FIFO. The cache location associated with the
arc is forwarded to the Arc FIFO, where it is stored with
all the remaining data required to process the arc, such as
the source token likelihood. On every cycle, a new request
for a missing cache block is sent from the Request FIFO
to the Memory Controller, and a new entry is reserved in
the Reorder Buffer to store the returning memory block. The
Reorder Buffer prevents younger cache blocks from evicting
older yet-to-be-used cache blocks, which could happen in
the presence of an out-of-order memory system if the cache
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Fig. 8: Changes to the WFST layout. In this example, we can
directly compute arc index from state index for states with
4 or less arcs.

blocks are written immediately in the Data Array.
When an arc reaches the top of the Arc FIFO, it can

access the Data array only if its corresponding cache block
is available. Arcs that hit in the cache proceed immediately,
but arcs that generated a miss must wait for its cache block
to return from the memory into the Reorder Buffer. New
cache blocks are committed to the cache only when its
corresponding arc reaches the top of the Arc FIFO. At this
point, the arcs that are removed from the head of the FIFO
read their associated data from the cache and proceed to the
next pipeline stage in the accelerator.

The proposed prefetching architecture solves the two
main issues with the hardware prefetchers: accuracy and
timeliness. The architecture achieves high accuracy because
the prefetching is based on the computed rather than pre-
dicted addresses. Timeliness is achieved as cache blocks
are not prefetched too early or too late. The Reorder Buffer
guarantees that data is not written in the cache too early.
Furthermore, if the number of entries in the Arc FIFO is big
enough the data is prefetched with enough anticipation to
hide memory latency.

Our experimental results provided in Section 7 show
that this prefetching architecture achieves performance very
close to a perfect cache, with a negligible increase of 0.34%
in the area of the Arc cache and 0.05% in the area of the
overall accelerator.

4.2 Reducing Memory Bandwidth
The accelerator presented in Section 3 consumes memory
bandwidth to access states, arcs and tokens stored in off-
chip system memory. The only purpose of the state fetches
is to locate the outgoing arcs for a given state, since the
information required for the decoding process is the arc’s
data. The WFST includes an array of states that stores the
index of the first arc and the number of arcs for each
state. Accessing the arcs of a given state requires a previous
memory read to fetch the state’s data.

Note that this extra level of indirection is required since
states in the WFST have different number of arcs ranging
from 1 to 770. If all the states would have the same number
of arcs, arcs indices could be directly computed from state



8

index. Despite the wide range in the number of arcs, we
have observed that most of the states accessed dynamically
have a small number of outgoing arcs as illustrated in
Figure 7. Based on this observation, we propose a new
scheme that is based on sorting the states in the WFST by
their number of arcs, which allows to directly compute arc
addresses from the state index for most of the states.

Figure 8 shows the new memory layout for the WFST.
We move the states with a number of arcs smaller than or
equal to N to the beginning of the array, and we sort those
states by their number of arcs. In this way, we can directly
compute the arc addresses for states with N or less arcs. In
the example of Figure 8, we use 4 as the value of N.

To implement this optimization, in addition to changing
the WFST offline, modifications to the hardware of the
State Issuer are required to exploit the new memory layout
at runtime. First, N parallel comparators are included as
shown in Figure 8, together with N 32-bit registers to store
the values of S1, S1 + S2... that are used as input for the
comparisons with the state index. Second, a table with N
entries is added to store the offset applied to convert the
state index into its corresponding arc index in case the state
has N or less arcs. In our example, a state with 2 arcs has an
offset of −S1, which is the value stored in the second entry
of the table.

The outcome of the comparators indicates whether the
arc index can be directly computed or, on the contrary, a
memory fetch is required. In the first case, the result of the
comparators also indicates the number of arcs for the state
and, hence, it can be used to select the corresponding entry
in the table to fetch the offset that will be used to compute
the arc index. In addition to this offset, the translation from
state index to arc index also requires a multiplication. The
factor for this multiplication is equal to the number of arcs
for the state, which is obtained from the outcome of the
comparators. The multiplication and addition to convert
state index into arc index can be performed in the Address
Generation Unit already included in the State Issuer, so no
additional hardware is required for those computations.

For our experiments we use 16 as the value of N. With
this value we can directly access the arcs for more than
95% of the static states in the WFST and more than 97%
of the dynamic states visited at runtime. This requires 16
parallel comparators, 16 32-bit registers to store the values
of S1, S1 + S2... and a table with 16 32-bit entries to store
the offsets. Our experimental results show that this extra
hardware only increases the area of the State cache by 0.36%
and the area of the overall accelerator by 0.02%, while it
reduces memory bandwidth usage by 20%. Furthermore,
we have applied our technique for three other ASR decoders
using either Librispeech [32], Tedlium [33], or Voxforge [34]
corpora, which yields almost similar decrease in the mem-
ory requests, 21.7%, 21.8%, and 22%, respectively.

5 POWER-CONTROLLED HASH ARCHITECTURE

In this section, we describe a novel power-control scheme
applied on the accelerator’s Hash structure. First, we an-
alyze the potential of such technique for reducing the ac-
celerator’s power dissipation. As our evaluation shows, the
Hashes dissipate nearly 53% of the total power, including
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Fig. 9: Percentage of hash in drowsy mode for different
number of partitions.

both the leakage and dynamic activities. Thus, we focus on
controlling the power of these modules as they represent
the main bottleneck. On the other hand, the static power
accounts for 72% of the accelerator’s total power and almost
50% of this amount is dissipated by the Hashing mechanism.
Therefore, we target decreasing the Hashes’ leakage power,
in order to efficiently lower both the accelerator’s power and
energy consumption.

Regarding static power optimization, power gating [35]
is a very effective technique used in many designs. How-
ever, we cannot apply this approach for the Hash’s table
since it would lose the data, which is needed for the next
frame’s evaluation. The reason is that this table uses a well-
dispersed hashing function, which therefore distributes all
the tokens almost uniformly across the table’s entries. Nev-
ertheless, we can power-gate a moderate portion of Hash’s
backup buffer on average, due to its entries consecutive
allocation.

Another less aggressive method of reducing leakage
energy consumption is to put the buffers into a low-power
drowsy mode in which the state of memory is preserved.
To do so, two schemes have been introduced at the circuit
level: one using adaptive body-biasing with multi-threshold
CMOS [36]; and the other one chooses between two differ-
ent voltages for each operation mode [18]. Because of the
short-channel effects in deep-submicron process and the low
operating voltage (for the second approach), a significant
reduction of the leakage power is yielded, achieving most
of the advantage of a power-gating strategy.

As aforementioned, we can use power-gating for the
backup buffer, partially, by conservatively selecting the
partitions to turn off. A more aggressive approach would
incur in some performance degradation in case the active
partitions do not suffice to store all the active states, and
some partitions need to be reactivated. Consequently, we
exploit the drowsy technique as the base of our power-
control scheme for both Hash tables and backup buffer. We
based our implementation on the approach which uses dual
voltages as it is simpler and more effective.

Regarding the switching between drowsy and active
modes for the entire Hash structure, we use a simple yet
effective policy which is based on the access pattern of
the memory partitions. Unlike the static scheme proposed
in [18], we use a dynamic threshold for transitioning a
partition from active to drowsy mode. Moreover, we explore
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Fig. 10: Percentage of drowsy vs active time for several transition thresholds considering 128 partitions in each buffer.

the optimal number of partitions both for the Hash table and
backup buffer. The power of each partition is controlled by
its own drowsy control logic.

Our power-control system works as follows. Whenever
there is an access to a partition of the Hash table, it is
switched on by setting the voltage of that partition to the
active value (1 V for 28 nm technology). Then, a counter,
called change-mode counter, is started in order to mea-
sure a statically-adjusted period. The counter starts over
at each access to the same partition. As the resetting of
the counter happens repetitively because of consecutive
accesses to the same partition, the active period varies
dynamically throughout the execution time and for the
different partitions. When the change-mode counter exceeds
a given threshold, the partition’s voltage is set to the drowsy
mode, lowering the voltage to 0.3V, for which the state of
all the entries is preserved. To manage the power-control
mechanism of each partition, a very simple logic is required
in addition to the change-mode counter: two pass transistors
for connecting different voltages to the partition, and a 1-bit
SRAM cell to keep track of the drowsy control signal.

Figure 9 shows the average percentage of partitions
that are in drowsy mode when decoding speech signal for
different numbers of partitions in the hash table and backup
buffer. As it can be seen, the more partitions we use for
the Hash table, the larger the percentage that stays in the
drowsy mode. The main reason is that the hash function
maps tokens to entries in a nearly uniformly-distributed
manner. Consequently, as we decrease the size of partitions,
they are less frequently accessed, which results in a higher
drowsy percentage. On the other hand, accesses to the
backup buffer are more predictive since partitions are writ-
ten in order starting from the first entry. Thus, although the
buffer can be in the drowsy mode more time by increasing
the number of partitions, the improvement is not as huge as
for the hash table.

In order to further evaluate our technique, we have
explored various drowsy mode transitioning thresholds to
decide when an active partition is switched to drowsy
mode. Figure 10 shows the breakdown of the percentage
of time in which a partition is in drowsy or active mode,
on average, for different transition thresholds. As it can
be seen, by increasing the threshold, which determines the
minimum cycles that a partition is active, the percentage

of drowsy mode decreases in either Hash table or backup
buffer. This reduction is substantially larger for the Hash
table because of the more frequent accesses to each partition
when using a longer period, which triggers more resets of
the change-mode counter, resulting in a higher percentage
for the active mode operation. On the other hand, by setting
an aggressive period such as 50 cycles for both the hash table
and backup buffer, it imposes negligible overhead, as the
delay and energy cost of switching a partition to different
operation modes are relatively small. Based on our H-SPICE
simulation results, each transition takes 0.12 ns (much less
than a cycle) and consumes 2.83 × 10−15 J energy at 28 nm
technology. Furthermore, we can hide almost all the delay of
turning on a partition by notifying the hash table in advance
when a request for either updating or adding a token is
received in the Token Issuer.

By using the aforementioned exploration and statistics,
we decided to use 128 and 32 partitions in the Hash table
and backup buffer, which results in 95.8% and 98.3% of
drowsy mode operation on average, respectively. Moreover,
we set the transition threshold as 50 cycles (83 ns) due to its
good trade-off between saving leakage power and energy
overhead of switching between different operation modes.
Furthermore, we extended the Hash’s microarchitecture in
a way to add a snooping port that the Token Issuer uses
to report a future access to a drowsy partition. By notifying
the access to the partition in advance in the pipeline, our
accelerator is able to hide the transition delay. Regarding
the implementation of this technique, the area of the Hash
table is increased by 0.16% while only incurring in a 0.05%
overhead in the total accelerator’s area.

6 EVALUATION METHODOLOGY

We have developed a cycle-accurate simulator that models
the architecture of the accelerator presented in Section 3. Ta-
ble 2 shows the parameters employed for the experiments in
the accelerator. We modified the simulator to implement the
prefetching scheme described in Section 4.1. After exploring
different sizes of 32, 64, and 128 entries for the Arc FIFO,
we select 64 for both the Request FIFO and Reorder Buffer,
achieving the best trade-off between the area-cost, energy-
consumption and accelerator’s performance, in order to
hide most of the memory latency. Furthermore, we have
implemented the bandwidth saving technique proposed in
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TABLE 2: Hardware parameters for the accelerator.

Technology 28 nm
Frequency 600 MHz

State Cache 512 KB, 4-way, 64 bytes/line
Arc Cache 1 MB, 4-way, 64 bytes/line

Token Cache 512 kB, 2-way, 64 bytes/line
Acoustic Likelihood Buffer 64 KB

Hash Table 768 KB, 32K entries
Memory Controller 32 in-flight requests

State Issuer 8 in-flight states
Arc Issuer 8 in-flight arcs

Token Issuer 32 in-flight tokens
Acoustic Likelihood Issuer 1 in-flight arc

Likelihood Evaluation Unit 4 fp adders, 2 fp comparators

Section 4.2. We use 16 parallel comparators and a table of
offsets with 16 entries in order to directly compute the arc
indices for the states with 16 or less arcs.

We configure the Viterbi search parameters in the same
way as configured for the Kaldi toolkit. In particular, we
use the beam width as 15, which is representative for the
very low probability of 3.1e-7. Thus, the Viterbi’s hypotheses
whose score (likelihood) gets higher than beam 15 (lower
than 3.1e-7) are pruned away, to keep the search space
tractable.

In order to estimate area and energy consumption, we
have implemented the different pipeline components of the
accelerator in Verilog and synthesized them using the Syn-
opsys Design Compiler with a commercial 28 nm cell library.
On the other hand, we use CACTI to estimate the power
and area of the three caches included in the accelerator. We
employ the version of CACTI provided in McPAT [37], a.k.a.
enhanced CACTI [38] which includes models for 28 nm.

We use the delay estimated by CACTI and the delay
of the critical path reported by Design Compiler to set the
target frequency so that the various hardware structures
can operate in one cycle (600 MHz). In addition, we model
an off-chip 4GB DRAM using CACTI’s DRAM model to
estimate the access time to main memory. We obtained a
memory latency of 50 cycles (83 ns) for our accelerator.

Regarding the WFST datasets, in addition to the WFST
for English language provided in the Kaldi toolset [10], we
use several other ASR decoders, such as Librispeech [32],
Tedlium [33] and Voxforge [34], in order to extensively
evaluate our accelerator. Each of these systems’ WFSTs is
generated based on various language models using the
vocabularies from 13.9K to 200K words. Moreover, they use
different approaches for the acoustic-scoring, either Gaus-
sian Mixture Model (GMM) (Tedlium and Voxforge) and
DNN (Librispeech and Kaldi’s English dataset). Overall, our
system is evaluated for thousands of hours of speech and
hundreds of different speakers, with different phonemes
evaluation approaches.

6.1 CPU Implementation
We use the software implementation of the Viterbi beam
search included in Kaldi, a state-of-the-art ASR system. We
measure the performance of the software implementation
on a real CPU with the parameters shown in Table 3. We
employ Intel RAPL library [39] to measure energy consump-
tion. We use GCC 4.8.4 to compile the software using -O3
optimization flag.

TABLE 3: CPU parameters.

CPU Intel Core i7 6700K
Number of cores 4

Technology 14 nm
Frequency 4.2 GHz
L1, L2, L3 64 KB, 256 KB per core, 8 MB

TABLE 4: GPU parameters.

GPU NVIDIA GeForce GTX 980
Streaming multiprocessors 16 SMs (each with 2048 threads)

Technology 28 nm
Frequency 1.28 GHz

L1, L2 caches 48 KB, 2 MB

6.2 GPU Implementation
We have implemented the state-of-the-art GPU version of
the Viterbi search presented in [17]. Furthermore, we have
incorporated all the optimizations described in [40] to im-
prove memory coalescing, reduce the cost of the synchro-
nizations and reduce the contention in main memory by
exploiting GPU’s shared memory. We use the nvcc compiler
included in CUDA toolkit version 7.5 with -O3 optimization
flag. We run our CUDA implementation on a high-end GPU
with the parameters shown in Table 4 and use the NVIDIA
Visual Profiler [41] to measure performance and power.

7 EXPERIMENTAL RESULTS

In this section, we provide details on the performance
and energy consumption of the CPU, the GPU and the
different versions of the accelerator. At first, we consider
the Kaldi’s English dataset to illustrate our evaluation for
the different versions of accelerator. Then, we compare our
most optimized version to show the numbers for the rest
ASR decoders. Figure 11a shows the decoding time per
one second of speech, a common metric used in speech
recognition that indicates how much time it takes for the
system to convert the speech waveform into words per each
second of speech. We report this metric for six different
configurations. CPU corresponds to the software implemen-
tation running on the CPU described in Table 3. GPU refers
to the CUDA version running on the GPU presented in
Table 4. ASIC is our accelerator described in Section 3 with
parameters shown in Table 2. ASIC+State corresponds to the
bandwidth saving technique for the State Issuer presented
in Section 4.2. ASIC+Arc includes the prefetching architec-
ture for the Arc cache presented in Section 4.1. Finally,
the configuration labeled as ASIC+State&Arc includes our
techniques for improving both the State Issuer and the Arc
cache.

As it can be seen in Figure 11a, all the systems achieve
real-time speech recognition, as the processing time per one
second of speech is significantly smaller than one second.
Both the GPU and the ASIC provide important reductions in
execution time with respect to the CPU. The GPU improves
performance by processing multiple arcs in parallel. The
ASIC processes arcs sequentially, but it includes hardware
specifically designed to accelerate the search process, avoid-
ing the overheads of software implementations.

Figure 11b shows the speedups with respect to the
GPU for the same configurations. The initial design of the
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Fig. 11: a) Decoding time, i. e. the time to execute the Viterbi search, per second of speech. Decoding time is smaller than
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Fig. 12: a) Comparison of decoding time for the most optimized version of ASIC accelerator versus CPU and GPU. The
numbers are shown for 3 different decoders: Librispeech, Tedlium and Voxforge.; b) Speedups achieved for the best ASIC
configuration versus CPU and GPU, for different ASR datasets.

ASIC achieves 88% of the performance of the GPU. The
ASIC+State achieves 90% of the GPU performance. This
configuration includes a bandwidth saving technique that
is very effective for removing off-chip memory accesses
as reported later in this section, but it has a minor im-
pact on performance (its main benefit is power reduction
as we will see later). Since our accelerator processes arcs
sequentially, performance is mainly affected by memory
latency and not memory bandwidth. On the other hand, the
configurations using the prefetching architecture for the Arc
cache achieve significant speedups, outperforming the GPU.
We obtain 1.64x and 1.7x speedup for the ASIC+Arc and
ASIC+State&Arc configurations respectively with respect to
the GPU (about 2x with respect to the ASIC without these
optimizations). The performance benefits come from remov-
ing the pipeline stalls due to misses in the Arc cache, as the
data for the arcs is prefetched from memory long before they
are required to hide memory latency. The prefetching archi-
tecture is a highly effective mechanism to tolerate memory
latency, since it achieves 97% of the performance of a perfect
cache according to our simulations.

In order to measure the applicability of our accelerator,
we also compare the decoding time when running several
other decoders. Figures 12a and 12b show the execution time
per one second of speech and the speedup achieved versus
GPU, respectively, for Librispeech, Tedlium and Voxforge
speech datasets. As illustrated, the accelerator obtains sig-

nificant performance improvement, speeding up the Viterbi
from 1.8x for Tedlium to 5.9x for Librispeech, compared to
a high-end GPU. The reason for achieving higher speedup
for Librispeech and Voxforge, is that these datasets are
significantly smaller in size (37 and 496 MB) comparing to
Tedlium (1.1 GB) and Fisher English(681 MB). Moreover,
the complexity of the Viterbi search is lower for these
ASR decoders as the number of hypotheses dynamically
generated is considerably smaller. Thus, we have seen that
both the arc and state caches and the token cache exhibit
good temporal and spatial locality, which therefore results
in higher performance speedup.

Our accelerator for speech recognition provides a huge
reduction in energy consumption as illustrated in Fig-
ure 13a. The numbers include both static and dynamic en-
ergy. The base ASIC configuration reduces energy consump-
tion by 142x with respect to the GPU, whereas the optimized
version using the proposed improvements for the memory
subsystem (ASIC+Arc&State) reduces energy by 224x. The
reduction in energy comes from two sources. First, the ac-
celerator includes dedicated hardware specifically designed
for speech recognition and, hence, it achieves higher energy-
efficiency for that task than general purpose processors and
GPUs. Second, the speedups achieved by using the prefetch-
ing architecture provide a reduction in static energy. The last
configuration, named as Lop Opt ASIC, includes the Hash’s
power-control mechanism in addition to all the previous
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Fig. 13: a) Energy reduction vs GPU, for different versions of the accelerator when decoding Kaldi’s English dataset; b)
Power dissipation for the CPU, GPU and different versions of the accelerator for decoding Kaldi’s English dataset.
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Fig. 14: a) Energy reduction of the best versions of Accelerator vs the GPU, for the different ASR decoders; b) Power
dissipation for the CPU, GPU and the two optimized and low-power versions of accelerator, regarding different ASR
decoders.

optimizations. The Lop Opt ASIC reduces the energy of the
accelerator by 290x with respect the GPU configuration.
This additional decrease in energy is due to controlling the
leakage power of the Hash tables by switching almost 97%
of its partitions to the drowsy mode (see Figure 10).

On the other hand, Figure 13b shows the average power
dissipation for the different systems, including both static
and dynamic power. The CPU and the GPU dissipate 32.2
W and 76.4 W respectively when running the speech recog-
nition software. Our accelerator provides a huge reduction
in power with respect to the general purpose processors
and GPUs, as its power dissipation is between 472 mW and
618 mW depending on the configuration. The prefetching
architecture for the Arc cache increases power dissipation
due to the significant reduction in execution time that it
provides, as shown in Figure 11b. With respect to the initial
ASIC, the configurations ASIC+Arc and ASIC+State&Arc
achieve 1.87x and 1.94x speedup respectively. The hardware
required to implement these improvements to the memory
subsystem dissipates a very small percentage of total power.
The Arc FIFO, the Request FIFO and the Reorder Buffer
required for the prefetching architecture dissipate 4.83 mW,
only 0.83% of the power of the overall accelerator. On
the other hand, the extra hardware required for the State
Issuer (comparators and table of offsets) dissipates 0.15 mW,
0.03% of the total power. In the best case, Lop Opt ASIC
configuration achieves 22.64% power reduction versus the
optimized version of accelerator, by only dissipating 5.3 mW

(1.18% of the total power) for the change-mode counters and
the drowsy control logic.

Furthermore, we evaluate the power and energy con-
sumption of the accelerator for the other three ASR de-
coders, in order to show the general applicability of our
proposal in energy-efficient Viterbi acceleration. Moreover,
we also include the evaluation of the power-control mech-
anism for the different benchmarks. Figures 14a and 14b
show the energy-savings and power dissipation of the ac-
celerator, respectively, for the various speech datasets. As
depicted in Figure 14a, we can achieve between 113x to 412x
energy reduction for the optimized version of accelerator
(ASIC+State&Arc) with respect to the GPU. In addition, we
can further decrease energy by significantly shrinking the
leakage power using the power-control mechanism, result-
ing in 123-454x energy-saving. The reason for a more modest
benefit for the low-power drowsy technique, compared to
Figure 13a, is that the power breakdown of the accelera-
tor shows a lower percentage for the hash tables (26.2%
on average) for the three decoders shown in Figure 14a.
Moreover, the leakage power accounts for 44.4% of the total
accelerator’s power for these decoders, compared to the 59%
in the case of Kaldi’s English WFST. Regarding the power
dissipation, the best ASIC configuration requires an average
of 710 mW power. On average, we can reduce both energy
and power and the accelerator by 15% using the power-
control scheme, considering all the speech decoders.

As mentioned in Section 3, the main focus is to accel-
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Fig. 15: a) Memory traffic for the baseline ASIC and the version using the optimization for the state fetching presented in
Section 4.2; b) Energy vs decoding time per one second of speech. The measurements are collected based on Kaldi’s English
dataset.

erate the Viterbi search which is the main bottleneck in
ASR systems. However, we have also measured the delay
and power of the GPU part in order to have a thorough
evaluation of our method. Considering an audio file of
about 2 minutes of speech and 56 batches of frames, the
additional execution time regarding the rest parts running
on GPU is 10.23% of total, partitioning into 6.12% and
4.11% for the DNN and backtracking phases respectively.
Regarding the DNN implementation on GPU, we have used
the latest version of the NVIDIA CUBLAS library [42] that
reaches the best performance for the Kaldi’s fully-connected
DNN computation. The final results show that we have a
speedup of 1.87x compared to the GPU running all the ASR
application together. The 17% increase in the speedup is
because that most of the DNN evaluation is overlapped with
the decoding time since both GPU and the accelerator work
in parallel, whereas the GPU runs the DNN and Viterbi
search in a consecutive manner.

The memory bandwidth saving technique presented in
Section 4.2 avoids 20% of the accesses to off-chip system
memory as illustrated in Figure 15b. The baseline configu-
ration for this graph is the initial ASIC design. The figure
also shows the traffic breakdown for the different types of
data stored in main memory: states, arcs, tokens and the
overflow buffer. Our technique targets the memory accesses
for fetching states, which represent 23% of the total traffic
to off-chip memory. As it can be seen in the figure, our
technique removes most of the off-chip memory fetches for
accessing the states. The additional hardware included in
the State Issuer is extremely effective to directly compute
arc indices from state indices for the states with 16 or
less arcs, without issuing memory requests to read the arc
indices from main memory for those states. Note that in
Figure 15b we do not include the configurations that employ
the prefetching architecture, as this technique does not affect
the memory traffic. Our prefetcher does not generate useless
prefetch requests as it is based on computed addresses.

To sum up the energy-performance analysis, Figure 15a
plots energy vs execution time per one second of speech. As
it can be seen, the CPU exhibits the highest execution time
and energy consumption. The GPU improves performance
in one order of magnitude (9.8x speedup) with respect
to the CPU, while reducing energy by 4.2x. The different
versions of the accelerator achieve performance comparable

or higher to the GPU, while providing an energy reduction
of two orders of magnitude. Regarding the effect of the tech-
niques to improve the memory subsystem, the prefetching
architecture for the Arc cache provides significant benefits
in performance and energy. On the other hand, the aim
of the memory bandwidth saving technique for the State
Issuer is to reduce the number of accesses to off-chip system
memory. This technique achieves a reduction of 20% in the
total number of accesses to off-chip DRAM as reported
in Figure 15b. When using both techniques (configuration
labeled as ASIC+State&Arc) the accelerator achieves 16.7x
speedup and 1185x energy reduction with respect to the
CPU. Compared to the GPU, this configuration provides
1.7x speedup and 287x energy reduction. Finally, the con-
figuration with the low-power technique keeps the same
performance as the ASIC with all the other optimizations,
while deceasing the energy by two additional orders of
magnitude, 1674x and 290x with respect to CPU and GPU
respectively.

Finally, we evaluate the area of our accelerator for speech
recognition. The total area for the initial design is 24.07
mm2, a reduction of 16.53x with respect to the area of
the NVIDIA GeForce GTX 980 (the die size for the GTX
980 is 398 mm2 [43]). The hardware for the prefetching
architecture in the Arc cache, i. e. the two FIFOs and the
Reorder Buffer, produce a negligible increase of 0.05% in the
area of the overall accelerator. The extra hardware for the
State Issuer required for our bandwidth saving technique
increase overall area by 0.02%. The power-control approach
of the hash table represents only 0.04% of area overhead. In
total, the area of the accelerator including all optimizations
is 24.11 mm2.

8 RELATED WORK

Prior research into hardware acceleration for WFST-based
speech recognition has used either GPUs, FPGAs or ASICs.
Regarding the GPU-accelerated Viterbi search, Chong et
al. [17], [40] proposed an implementation in CUDA that
achieves 3.74x speedup with respect to a software decoder
running on the CPU. We use this CUDA implementation
as our baseline and show that an accelerator specifically
designed for speech recognition achieves an energy re-
duction of two orders of magnitude with respect to the
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GPU. The GPU is designed to perform many floating point
operations in parallel and, hence, it is not well-suited for
performing a memory intensive yet computationally limited
WFST search.

Regarding the FPGA approach, Choi et al. [3], [44]
present an FPGA implementation that can search a 5K-word
WFST 5.3 times faster than real-time, whereas Lin et al. [45]
propose a multi-FPGA architecture capable of decoding a
WFST of 5K words 10 times faster than real-time. Their
use of a small vocabulary of just 5K words allows them
to avoid the memory bottlenecks that we have observed
when searching large WFSTs. Our accelerator is designed
for large-vocabulary speech recognition, which is 56 times
faster than real-time when searching a 125K-word WFST.

Regarding the ASIC approach, Price et al. [5] developed
a 6 mW accelerator for a 5K-word speech recognition sys-
tem. Our work is different as we focus on large-vocabulary
systems. On the other hand, Johnston et al. [4] proposed a
low-power accelerator for speech recognition designed for
a vocabulary of 60K words. Compared to the aforemen-
tioned accelerators, our proposal introduces two innovative
techniques to improve the memory subsystem, which is
the most important bottleneck in searching larger WFSTs:
a prefetching architecture for the Arc cache and a novel
bandwidth saving technique to reduce the number of off-
chip memory accesses for fetching states from the WFST.

Prior work on hardware-accelerated speech recongnition
also includes proposals that are not based on WFSTs [46],
[47]. These systems use HMMs (Hidden Markov Models) to
model the speech. In recent years, the WFST approach has
been proven to provide significant benefits over HMMs [17],
[27], especially for hardware implementations [44]. Hence,
our accelerator focuses and is optimized for a WFST based
approach.

9 CONCLUSIONS

In this paper we design a custom hardware accelerator for
large-vocabulary, speaker-independent, continuous speech
recognition, motivated by the increasingly important role
of automatic speech recognition systems in mobile devices.
We show that a highly-optimized CUDA implementation
of the Viterbi algorithm achieves real-time performance on
a GPU, but at a high energy cost. Our design includes
innovative techniques to deal with memory accesses, which
is the main bottleneck for performance and power in theses
systems. In particular, we propose a prefetching architecture
that hides main memory latency for a large fraction of
the memory accesses with a negligible impact on area,
providing 1.87x speedup with respect to the initial design.
On the other hand, we propose a novel memory bandwidth
saving technique that removes 20% of the accesses to off-
chip system memory. To further improve the efficiency of
the accelerator, a power control mechanism is introduced to
remove most of the leakage power of the hash tables, which
provides between 8.5% to 29.2% reduction of the total power
dissipation. The final design including all the improvements
achieves a range of speedups from 1.7x to 5.9x with respect
to a modern high-end GPU, for a variety of speech decoders,
while providing reductions in energy consumption between
123x and 454x.
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