534

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 4, APRIL 2020

High Throughput/Gate AES Hardware
Architectures Based on Datapath Compression

Rei Ueno™, Member, IEEE, Sumio Morioka

Kohei Matsuda, Member, IEEE, Makoto Nagata
, Member, IEEE, Yves Mathieu, Tarik Graba,

Shivam Bhasin

, Member, IEEE, Noriyuki Miura

, Member, IEEE,
, Senior Member, IEEE,

Jean-Luc Danger™, Member, IEEE, and Naofumi Homma, Senior Member, IEEE

Abstract—This article proposes highly efficient Advanced Encryption Standard (AES) hardware architectures that support encryption
and both encryption and decryption. New operation-reordering and register-retiming techniques presented in this article allow us to
unify the inversion circuits in SubBytes and InvSubBytes without any delay overhead. In addition, a new optimization technique for
minimizing linear mappings, named multiplicative-offset, further enhances the hardware efficiency. We also present a shared key
scheduling datapath that can work on-the-fly in the proposed architecture. To the best of our knowledge, the proposed architecture has
the shortest critical path delay and is the most efficient in terms of throughput per area among conventional AES encryption/decryption
and encryption architectures with tower-field S-boxes. The proposed round-based architecture can perform AES encryption where
block-wise parallelism is unavailable (e.g., cipher block chaining (CBC) mode); thus, our techniques can be globally applied to any type
of architecture including pipelined ones. We evaluated the performance of the proposed and some conventional datapaths by logic
synthesis with the NanGate 45-nm open-cell library. As a result, we can confirm that our proposed architectures achieve approximately
51-64 percent higher efficiency (i.e., higher bps/GE) and lower power/energy consumption than the other conventional counterparts.

Index Terms—AES, hardware architectures, round-based encryption architecture, unified encryption/decryption architecture

1 INTRODUCTION

RYPTOGRAPHIC applications are essential for many sys-

tems that rely on secure communications, authentica-
tion, and digital signatures. In accordance with the rapid
increase in Internet of Things (IoT) applications, numerous
cryptographic algorithms are now required to be imple-
mented in resource-constrained devices and embedded sys-
tems with high throughput and efficiency. Advanced
Encryption Standard (AES) is an ISO/IEC 18033 standard
symmetric cipher that is one of the most widely used
ciphers around the world. Since the publication of AES at
2001, many hardware implementations for AES have been

e R. Ueno is with the Tohoku University, 2-1-1 Katahira, Aoba-ku,
Sendaishi 980-8579, Japan, and also with JST PRESTO4-1-8 Honcho,
Kawaguchi, Saitama 332-0012, Japan. E-mail: ueno@riec.tohoku.ac.jp.

e N. Homma is with the Tohoku University, 2-1-1 Katahira, Aoba-ku,
Sendaishi 980-8579, Japan. E-mail: homma@riec.tohoku.ac.jp.

e S. Morioka is with the Interstellar Technologies Inc., 690-4 Memu, Taiki,
Hiroo-gun, Hokkaido 089-2113, Japan. E-mail: morioka@fb3.so-net.ne.jp.

e N. Miura, K. Matsuda, and M. Nagata are with the Kobe University, 1-1
Rokkodai-machi, Nada-ku, Kobe-shi 657-8501, Japan.

E-mail: {miura, matsuda, nagata}@cs.kobe-u.ac.jp.

e S. Bhasin is with the Nanyang Technological University, 50 Nanyang Drive,
Research Techno Plaza, BorderX Block, 9th Storey, Singapore 637553.
E-mail: sbhasin@ntu.edu.sg.

o Y. Mathieu, T. Graba, and].-L. Danger are with the Télécom ParisTech,
46, rue Barrault, 75013 Paris, France. E-mail: {yves.mathieu, tarik.graba,
jean-luc.danger j@telecom-paristech.fr.

Manuscript received 24 Feb. 2019; revised 6 Nov. 2019; accepted 26 Nov.
2019. Date of publication 4 Dec. 2019; date of current version 10 Mar. 2020.
(Corresponding author: Rei Ueno.)

Recommended for acceptance by P. Gratz.

Digital Object Identifier no. 10.1109/TC.2019.2957355

proposed and evaluated for CMOS logic technologies.
Studies of AES design and implementation are important
from both practical and academic perspectives since AES
employs a substitution permutation network (SPN) struc-
ture and the major subfunctions, which are followed by
many other security primitives.

AES encryption and decryption are frequently used in
block-chaining modes of operation, such as cipher block
chaining (CBC), cipher-based message authentication
code (CMACQC), and counter with CBC-MAC (CCM), which
are used in, for example, IEEE802.11 wireless LAN and
IEEE802.15.4 wireless sensor networks. Therefore, AES
architectures that efficiently perform both encryption and
decryption in block-chaining modes are in high demand.
Here, we cannot exploit the tradeoff of pipelining between
throughput and area for encryption in block-chaining
modes, although many conventional architectures employ
pipelining techniques [1], [2], [3]. This raises the importance
of datapath optimization for a higher throughput and effi-
ciency. In addition, on-the-fly key scheduling should be
implemented in resource-constrained devices because off-
line key scheduling implementation requires additional
memory to store expanded round keys. Moreover, on-the-
fly key scheduling is sometimes more important when
implementing block cipher with a tweak [4] (e.g., used in
authenticated encryption), in some of which temporal key is
generated using a master key and a tweak unique for each
block [5], [6]. Thus, it would be valuable to develop efficient
AES architectures with on-the-fly key scheduling without
block-wise pipelining techniques.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-9754-6792
https://orcid.org/0000-0002-9754-6792
https://orcid.org/0000-0002-9754-6792
https://orcid.org/0000-0002-9754-6792
https://orcid.org/0000-0002-9754-6792
https://orcid.org/0000-0001-7641-1904
https://orcid.org/0000-0001-7641-1904
https://orcid.org/0000-0001-7641-1904
https://orcid.org/0000-0001-7641-1904
https://orcid.org/0000-0001-7641-1904
https://orcid.org/0000-0002-0072-6114
https://orcid.org/0000-0002-0072-6114
https://orcid.org/0000-0002-0072-6114
https://orcid.org/0000-0002-0072-6114
https://orcid.org/0000-0002-0072-6114
https://orcid.org/0000-0002-0625-9107
https://orcid.org/0000-0002-0625-9107
https://orcid.org/0000-0002-0625-9107
https://orcid.org/0000-0002-0625-9107
https://orcid.org/0000-0002-0625-9107
https://orcid.org/0000-0002-6903-5127
https://orcid.org/0000-0002-6903-5127
https://orcid.org/0000-0002-6903-5127
https://orcid.org/0000-0002-6903-5127
https://orcid.org/0000-0002-6903-5127
https://orcid.org/0000-0001-5063-7964
https://orcid.org/0000-0001-5063-7964
https://orcid.org/0000-0001-5063-7964
https://orcid.org/0000-0001-5063-7964
https://orcid.org/0000-0001-5063-7964
mailto:ueno@riec.tohoku.ac.jp
mailto:homma@riec.tohoku.ac.jp
mailto:morioka@fb3.so-net.ne.jp
mailto:miura@cs.kobe-u.ac.jp
mailto:matsuda@cs.kobe-u.ac.jp
mailto:nagata@cs.kobe-u.ac.jp
mailto:sbhasin@ntu.edu.sg
mailto:yves.mathieu@telecom-paristech.fr
mailto:tarik.graba@telecom-paristech.fr
mailto:jean-luc.danger@telecom-paristech.fr

UENO ET AL.: HIGH THROUGHPUT/GATE AES HARDWARE ARCHITECTURES BASED ON DATAPATH COMPRESSION 535

In this paper, we present new round-based AES architec-
tures for encryption only and both encryption and decryption
with on-the-fly key scheduling. The proposed architectures
achieve the lowest critical path delay (the least number of seri-
ally connected gates in the critical path) with less area over-
head compared to conventional architectures with tower-field
S-boxes. Our architectures employ new operation-reordering
and register-retiming techniques to unify the inversion cir-
cuits without any selectors. These techniques also make it pos-
sible to unify the affine transformation and linear mappings
(i.e., the isomorphism and constant multiplications) to reduce
the total number of logic gates. The proposed and conven-
tional AES datapaths were synthesized and evaluated with an
open-cell library. The evaluation results show that our two
architectures can perform encryption and both encryption
and decryption more area-time efficiently. In particular, the
throughput per gates of the proposed architectures are 51-64
percent larger than those of the corresponding conventional
best architectures.

While the basic concepts and preliminary evaluations of
our AES encryption/decryption architecture were resented
in previous work [7], this paper newly presents more effi-
cient AES architectures with threefold novel contributions.
First, we propose a new optimization technique for mini-
mizing linear operations named multiplicative-offset. The
multiplicative-offset provides a larger variety of matrix con-
structions for linear mappings without any additional block
nor overhead, which can lead to more compact and /or lower-
latency implementation. The proposed multiplicative-offset is
given as an extension of a previous method [8] to round-based
architectures on the basis of operation-reordering and regis-
ter-retiming. Thanks to the new method, the proposed archi-
tecture achieves a further 7-9 percent higher efficiency than
that in the previous version [7]. Second, we newly present a
high throughput/gate AES encryption hardware design
based on the proposed concept/technique (i.e., tower-field
arithmetic, register-retiming, unification of linear operations,
and multiplicative-offset). In particular, we show that the
combination of unification and multiplicative-offset techni-
ques can significantly reduce the logic depth (ie., critical
delay) of the encryption datapath. As a result, the proposed
AES encryption architecture achieves 58-64 percent higher
throughput/gate efficiency than other conventional ones.
Third, while the previous study did not include any reports
on power consumption, we describe a power consumption
estimations based on a Monte-Carlo gate-level timing simula-
tions with back-annotation, in which the effects of glitches
were considered. The results clearly show the advantage
of the proposed architectures in terms of power/energy
consumption.

The rest of this paper is organized as follows. Section 2
introduces related works on AES hardware architectures.
Section 3 presents a new AES encryption/decryption hard-
ware architecture based on our operation-reordering,
register-retiming, unification of linear mappings, and
multiplicative-offset. Section 3 also presents an evaluation
of the proposed datapath by the logic synthesis and gate-
level timing simulations in comparison with conventional
round-based datapaths. Section 4 proposes an AES encryp-
tion hardware architecture based on the techniques pre-
sented in Section 3, and we evaluate the proposed

architecture in the same manner as Section 3. Section 5 dis-
cusses variations of the proposed architectures. Finally,
Section 6 contains our conclusion.

2 RELATED WORKS

In this paper, we briefly describe the related works. See the
previous version [7] for more detail.

2.1 Unified AES Datapath for Encryption

and Decryption

Architectures that perform one round of encryption or
decryption per clock cycle without pipelining are the most
typical for AES design and are called round-based architec-
tures in this paper. Round-based architectures can be imple-
mented more efficiently in terms of throughput per area
than other architectures by utilizing the inherent parallelism
of symmetric key ciphers.

To design such round-based encryption/decryption archi-
tectures in an efficient manner, we consider how to unify the
resource-consuming components such as the inversion cir-
cuits in SubBytes/InvSubBytes for the encryption and decryp-
tion datapaths. There are two conventional approaches for
designing such unified datapaths. The first approach is to
place two distinct datapaths for encryption and decryption
and select one of the datapaths with multiplexers as in [1].
In the architecture, the intermediate value is stored in a
register after InvMixColumns instead of AddRoundKey. Such
register-retiming is suitable for pipelined architectures. The
second approach is to unify the circuits of the functions Sub-
Bytes, ShiftRows, and MixColumns with their inverse func-
tions, respectively (e.g., [2], [9]). The order of the decryption
operations was changed to be the same as that of the encryp-
tion operations. The main drawbacks of conventional archi-
tectures are the false critical path delay and the required area
and delay overheads caused by several multiplexers. This
false critical path reduces the maximum operation frequency
owing to logic synthesis due to the false longest logic chain.
The overhead caused by the multiplexers is also nonnegligible
for common standard-cell-based designs. In addition, the sec-
ond approach sometimes requires an additional InvMixCol-
umns required for the above reordering [9], which is also
considered as an overhead.

2.2 Inversion Circuit Design and Tower-Field

Arithmetic

The design of the inversion circuit used in (Inv)SubBytes
has a significant impact on the performance of AES imple-
mentations. There are two major approaches for its design,
namely, direct mapping and tower-field arithmetic. Inver-
sion circuits based on direct mapping such as table-lookup,
binary decision diagram (BDD), and positive-polarity Reed-
Muller (PPRM) transforms [1], [10], [11] are faster but larger
than those based on tower field. On the other hand, tower-
field arithmetic enables us to design more compact and
area-time efficient inversion circuits in comparison with
direct mapping [2], [8], [9], [12], [13], [14], [15], [16], [17],
[18]. Therefore, we focus on inversion circuits based on
tower-field arithmetic in this paper.

To embed such a tower-field-based inversion circuit in AES
hardware, isomorphic mapping between the AES field and

536

the tower field is required because the inversion and Mix-
Columns are performed over the AES field (i.e., PB-based
GF(2%) with an irreducible polynomial z®+ 2%+ 23+
2+ 1). Typically, the input into the inversion circuit (in
the AES field) is initially mapped to the tower field by the
isomorphic mapping. After the inversion operation over
the tower field, inverse isomorphic mapping prior to
affine transformation is applied [9]. On the other hand,
some architectures perform all of the AES subfunctions
(i.e., SubBytes as well as ShiftRows, MixColumns, and
AddRoundKey) over the tower field, where isomorphic
mapping and its inverse mappings are performed at the
timings of the data (i.e., plaintext and ciphertext) input
and output, respectively [2], [19]. In other words, the cost
of field conversion is suppressed when the conversion is
performed only once during encryption or decryption.
However, the cost of constant multiplications in MixCol-
umns over a tower field is worse than that over the AES
field while inversion is efficiently performed over the
tower field. More precisely, in tower-field architectures,
such linear mappings including constant multiplications
usually require a 37xor delay, where Txor indicates the
delay of an XOR gate [20]. The XOR gate count used in
(Inv)MixColumns over a tower field is also worse than
that over the AES field.

3 PROPOSED ENCRYPTION/DECRYPTION
ARCHITECTURE

This section presents a new round-based AES architecture
that unifies the encryption and decryption paths in an effi-
cient manner. The key ideas for reducing the critical path
delay are summarized as follows: (a) to merge linear map-
pings such as MixColumns and isomorphic mappings as
much as possible by reordering subfunctions, (b) to mini-
mize the number of selectors to unify the encryption and
decryption paths by the above merging and a register-
retiming, and (c) to perform isomorphic mapping and its
inverse mappings only once in the pre- and post-round
datapaths. We can reduce the number of linear mappings to
at most one for each round operation as the effect of (a).
Moreover, we can reduce the number of selectors to only
one (4-to-1 multiplexer) in the unified datapath as the effect
of (b) while the inversion circuit is shared by the encryption
and decryption paths. From the idea of (c), we can remove
the isomorphic mapping and its inverse mappings from the
critical path. Fig. 1 shows the overall architecture that con-
sists of the round function and key scheduling parts. Our
architecture performs all of the subfunctions over a tower
field for both the round function and key scheduling parts
and therefore applies isomorphic mappings between the
AES and tower fields in the datapaths of the pre- and post-
round operations, which are represented as the blocks “Pre-
round datapath” and “Post-round datapath” in Fig. 1.
“Round datapath” performs one round operation for either
encryption or decryption.

3.1 Round Function Part

The proposed architecture employs a datapath for encryp-
tion and decryption where inversion is unified and applies
new operation-reordering and register-retiming techniques

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 4, APRIL 2020

Plaintext/Ciphertext
Round
datapath

Data
register

Initial Key

Round function part l Key scheduling part

GF(2% to GF((2%)

Pre-round

datapath

Post-round
datapath

Initial key
register

>

>

Round key
generator
Round key
register

Ciphertext/Plaintext

Fig. 1. Overall architecture of proposed AES encryption/decryption
hardware.

to address the conventional issues of a false critical path
and additional multiplexers. By using our operation-reor-
dering technique and then merging linear mappings, we
can reduce the number of linear mappings on the critical
path of the round datapath to at most one. Our reordering
technique also allows for the unification of the linear map-
pings and affine transformation in a round. The unification
of these mappings can drastically reduce the critical path
delay and the XOR-gate count of linear mappings in a
tower-field architecture.

The new operation reordering is derived as follows. First,
the operational round operation of AES encryption is repre-
sented by the following equation:

mE;Jrl) :u,iS(méng) + U1,iS(m§Tyi)+j)
+ UQ_jS(m;(Q72+j) + U3_7S(mg,)+]) + k’fz) (1)
—Z te-iS(m})) + k),
where m) and k: are the ith row and jth column interme-

diate value at the rth round input in encryption and the rth
round key, respectively, except for the final round. Note
that the subscripts of each variable are a member of Z/4Z.
The function S indicates the 8-bit S-box, and wug, u1, us, and
ug are the coefficients of the matrix of MixColumns, which
are respectively given by B, 8+ 1, 1, and 1, where g is the
indeterminate of GF'(2°) satisfying g° + ' + 8* + 8+ 1 = 0.
We can rewrite Eq. (1) by decomposing S into inversion and
affine transformation as follows:

(r+1)

LJ = i (Uefi <A<(m£'7>+/) _1) +

0

3

¢)) +H),)

where A is the linear mapping of the affine transformation,
and ¢ (= %+ B° + B+ 1) is a constant. In the case of tower-
field architectures, Eq. (2) is represented by

AW ((86m))) +) + A

3)
where A is the isomorphic mapping from the AES field to a
tower field, and A’ is the inverse isomorphic mapping.

UENO ET AL.: HIGH THROUGHPUT/GATE AES HARDWARE ARCHITECTURES BASED ON DATAPATH COMPRESSION 537

The linear mappings, which include an isomorphism and
constant multiplications over the GF, are performed by the
constant multiplication of the corresponding matrix over
GF(2). Therefore, we can merge such mappings to reduce
the critical path delay and the number of XOR gates. To
unify all linear mappings on one round as at most one map-
ping, we first apply A to both sides of Eq. (3) as follows:

3 1
r+1) u N c
A@m{) A(§j<emﬂA(<) »+>> w

e=0
(r)
+k;j),
which is followed by

Am{") =

2y

Al oA (AT,))) + A

M-

Il
o

+AGK),

(5)
because an arbitrary linear mapping Lin satisfies Lm(
+b) = Lin(a) + Lin(b), S(a+b) =3 a+> b and 3,
Up_iC = c + ¢B+ c(B+ 1)+ ¢ = c. Then, we consider the var-
iable d of the tower field derived from mf /) (.e.,
df'j = ()) By substituting d<7> to A(m;) we can merge
the linear mappmgs as follows:

=3 <UH <(dfrf+/) ’1)> FAQ AR, ©

e=0

where U,_;(z) = A(u._;(A(A'(z)))). Note that Us(z) = Us(x)
is equal to the affine transformation over the tower field
denoted as ¥(x) = A(A(A'(z))). Thus, the linear mappings
of a round in Eq. (6) can be merged into at most one, even
with a tower-field S-box, while the linear mappings in
Eq. (3) cannot be.

On the other hand, the equations for AES decryption cor-
responding to Egs. (3) and (6) are respectively given by

mT = i <WH <A/ ((A(A’()+) 71) + kQ)) :

e=0
(7)

4 = (8 (MA@)) +A)
e=0
+AED)),
®)

where m) denotes the ith row and jth column intermedi-
ate value at the rth round input at decryption, and A’
indicates the linear mapping of the inverse affine transfor-
mation. The coefficients vy, v1, v2, and v3 are respectively
given by g2+ 82+ B+p+1, B+ +1, and 2 +1,
and ¢ (= B*+1) is a constant. Here, the linear mappings
cannot be merged into one because they are performed both
before and after the inversion operation. In addition, if we
construct an encryption/decryption datapath based on
Egs. (6) and (8), the inversion circuit cannot be shared by
encryption and decryption without a selector because the

timings of the inversion operations are different from each
other. Therefore, we con51der a register retiming to store the
intermediate value s(given after the inverse affine trans-
Z(J) is given by
))) +A(d). In the decryptlon we store sm

- and 9” D,

formatlon over the tower—ﬁeld Here, s

=AA (A’(
in the data register instead of d
we rewrite Eq. (8) as follows:

=3 () D)) s o

e=0

. By using s

where V,_;(z) = A(A'(ve_i (A (2)))).

Our round datapath is constructed with a minimal criti-
cal path delay according to Egs. (6) and (9). Fig. 2 shows the
proposed reordering technique. In the proposed flow, we
perform isomorphic mapping from/to GF(2%) to/from
GF((24)?) at the data input/output. We first decompose
SubBytes into the inversion and (Inv)Affine. In the encryp-
tion, Affine, MixColumns, and AddRoundKey can be
merged by exchanging Affine and ShiftRows. In the decryp-
tion, the inversion circuit is located at the beginning of the
round by exchanging the inversion and InvShiftRows. Note
that all the operations excluding isomorphic mappings are
performed over the tower field as mentioned before. Thus,
additional selectors for sharing the inversion circuit are not
required thanks to the operation-reordering and register-
retiming techniques. This is because both inversion opera-
tions are performed at the beginning of the round, which
means that the data register output can be directly con-
nected to the inversion circuit.

Fig. 3 illustrates the proposed round function datapath
with the unification of linear mappings. Our architecture
employs only one 128-bit 4-in-1 multiplexer, whereas conven-
tional ones employ several 128-bit multiplexers. For example,
the datapath in [21] employs seven 128-bit multiplexers.'
Fewer selectors can reduce the critical path delay and circuit
area and solve the false critical path problem. Unified affine
and Unified affine™! in Fig. 3 perform the unified linear map-
pings G.e., Uy,...,Us and Vg, ..., V3) and constant addition.
The number of linear mappings on the critical path is at most
one in our architecture, whereas that of the conventional
architectures is not. We can also suppress the overhead of con-
stant multiplication over the tower field by the unification.
Adder arrays in Fig. 3 consist of four 4-input 8-bit adders in
MixColumns or InvMixColumns. In the encryption, the fac-
toring technique for MixColumns and AddRoundKey [20] is
available for Unified affine as described in Section 4.1 in detail,
which makes the circuit area smaller without a delay over-
head. As a result, the data width between Unified affine and
Adder array in Encryption path is reduced from 512 to
256 bits because the calculations of U; and Us are not per-
formed in the Encryption path. In addition, Adder array and
AddRoundKey are unified in the Encryption path because
both of them are composed of 8-bit adders.” On the other hand,
since there is no factoring technique for InvMixColumns

1. The selectors in SubBytes/InvSubBytes are included in the seven
multiplexers.

2.Some architectures such as [9], [21] unify AddInitialKey and
AddRoundKeys. We did not unify them to avoid increasing the num-
ber of selectors.

538
Plaintext Plaintext
1 Round 0
Round 0 GF(2® to GF((2%%)
K AddRoundKey AddRoundKey f+—K©

E Data reg. dw'”‘

S-box
Round 1-9 Inversion Round 1-9
SubBytes Affine Inversion
ShiftRows 4‘ ShiftRows
MixColumns Affine
K" —» AddRoundKey MixColumns
AddRoundKey |, g

E Data reg.

merged

Data reg.
S-box p> Data reg
Round 10 Inversion Round 10
SubBytes Affine Inversion
ShiftRows % ShiftRows
K" —s| AddRoundKey Affine
AddRoundKey [«— k'
GF((2%?) to GF(2%)
Ciphertext Ciphertext
(a) (b)
)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 4, APRIL 2020

Ciphertext Ciphertext
| Round 10
Round 10 GF(2%) to GF((2%?)

K10 AddRoundKey AddRoundKey [—K!"

InvAffine
Round 9-1 Round 9-1
InvShiftRows Inversion
InvSubBytes InvShiftRows

InvAffine
Inversion

AddRoundKey f[+— K

InvMixColumns

K”—» AddRoundKey
InvMixColumns

InvS-box

InvAffine
Data reg. merged
Round 0 Round 0
InvShiftRows Inversion
InvSubBytes - InvShiftRows
0 InvAffine 0
K9 —s AddRoundKey - AddRoundKey |+— K
Inversion

H2y ¢ 8
IS-box GF((27))lo GF(2%)

Plaintext Plaintext

(a) (b)
(ii)

Fig. 2. Proposed (i) encryption and (ii) decryption flows (a) before and (b) after reordering and register-retiming.

without delay overheads, the data width from Unified
affine™! to Adder array in the Decryption path is 512 bits.
Finally, an inactive path can be disabled by using a demulti-
plexer since our datapath is fully parallel after the inversion
circuit. Thanks to the disabling, a multiplexer and
AddRoundKey are unified as Bit-parallel XOR. (The addi-
tion of A(c) in Unified affine should be active only during
encryption.) In addition, the demultiplexer can suppress
power consumption due to a dynamic hazard. Although
tower-field inversion circuits are known to be power-con-
suming owing to dynamic hazards [11], these hazards can be
terminated at the input of the inactive path.

Our datapath employs the inversion circuit presented in
[8], [15] because it has the highest area-time efficiency
among inversion circuits applicable to the tower-field archi-
tectures and/or both encryption and decryption. We can
merge the isomorphic mappings in order to reduce the

(Round input)

Round
128 datapath
Encryption m Decryption
path path Plaintext/Ciphertext
[shiftRows |/ [invshiftRows | 12 Pre-round
datapath
[Unified affine || |[AddRoundKey | [GF@% to GR(@D]
Post-round 128 256
datapath
] I i
Bit-parallel XOR Adderarray |/ [Unified affine | [AddinitialKey |
AddRoundKey *512
GF(2?) to GF(2%) L2 [Adderarray | [InvAffine |
128
4:1 MUX

Ciphertext/Plaintext (Round output)

Fig. 3. Proposed round function part for encryption/decryption hardware.

linear function on the round datapath to only one, even if
the inversion circuit has different GF representations at the
input and output. Since the output is given by an RRB, the
data width from Inversion to Unified affine (or Unified
affine™!) is given by 160 bits. However, AddRoundKey in
the decryption path and Bit-parallel XOR in the post-round
datapath are implemented respectively by only 128 XOR
gates because the NB used as the input is equal to the
reduced version of the RRB. Note here that, while the path
through the Encryption path and Post-round datapath con-
tains two linear mappings (i.e., Unified affine and GF ((24?)
to GF(2%)), this path would not be a critical path because
the Adder array (including AddRoundKey) and 4-in-1 mul-
tiplexer basically has a longer delay than GF((24?) to
GF(2%). In addition, a 1:2 DeMUX is implemented with
NOR gates thanks to the redundancy, whereas nonredun-
dant representations require AND gates.

3.2 Key Scheduling Part
The on-the-fly key scheduling part is shared by the encryp-
tion and decryption processes. For the encryption, the key
scheduling part first stores the initial key in the Initial key
register in Fig. 1 and then generates the round keys during
the following clock cycles. For the decryption, the final
round key should be calculated from the initial key and
stored in Initial key register in advance. The key scheduling
part then generates the round keys in the reverse order by
Round key generator in Fig. 1. However, conventional key
scheduling datapaths such those as in [9], [21] are not appli-
cable to our architecture because they have a loop with a
false path and/or a longer true critical path than our opti-
mized round datapath.

To address the above issue, we introduce a new architecture
for the key scheduling datapath. For on-the-fly implementation,

UENO ET AL.: HIGH THROUGHPUT/GATE AES HARDWARE ARCHITECTURES BASED ON DATAPATH COMPRESSION 539

Initial key

GF(2%) to GF((2*?)

> Initial key
register

(AddInitialKey)
* ENC/DEC

8 ka2) P

Round key generator
Round constant

L 32

Z‘){’sz
GF(2% to GF((2')) D
A | o)
constants | ! D
D A 3V ey
UV
L€ LE RotWord
D | D 2
D N D D

PR K) l K
2:1 MUX 2:1 MUX

—l 2:1TUX :J : ¥

128

Round key
register

(AddRoundKey)

Fig. 4. Proposed key scheduling part for encryption/decryption
hardware.

the subkeys are calculated for each of the four subkeys (i.e.,
128 bits) in a clock cycle. Therefore, the on-the-fly key sched-
uling for the encryption over a tower field is expressed as

K = k) + KeyEx(ky))

K = kD 4+ k7 + KeyEx(k))

K = kg)+k<’>+k“+KeyEx(k<’>) ’
KUY = K kY k) + k) 4 KeyEx(K)

(10)

where £\, k", k), and £ are the 32-bit subkeys at the rth
round over the tower field, and KeyEx is the key expansion
function that consists of a round-constant addition, Rot-
Word, and SubWord over the tower field. The inverse key
scheduling for the decryption over the tower field is repre-
sented by

KV = KD 4+ KeyEx(K) + k)
1) _ 0)
k? - kl +k2
Y= kD k)

Fig. 4 shows the proposed key scheduling datapath archi-
tecture, where the KeyEx components (i.e., RotWord, Sub-
Word, and Add constants) are unified for encryption and
decryption. Here, the input key is initially mapped to the tower
field, and all of the computations (including AddRoundKey)
are performed over the tower field. The upper 2-in-1 multi-
plexer selects an initial key or a final round key as the input
to the Initial key register, the middle 2-in-1 multiplexer
selects a key stored in Initial key register or a round key as
the input to the Round key generator, and the lower 2-in-1
multiplexers select an encryption or a decryption path.
Importantly, most of the adders (i.e., XOR gates) for comput-
ing &Y, kY, and k(""" should be nonintegrated in order
to make the critical path shorter than that of the round

function part. In addition, the ENC/DEC signal controls the
input to RotWord and SubWord by using a 32-bit AND gate.
Such an usage of AND gate is useful for shortening critical
path of key scheduling datapath compared to conventional
ones which employ only multiplexers. Moreover, the round
constant addition is performed separately from RotWord
and SubWord to reduce the critical path delay. As a result,
the critical path delay of the key scheduling part becomes
shorter than that of our optimized round function part.

3.3 Optimization of Linear Mappings based
on Multiplicative-Offset

Linear mappings (i.e., isomorphic mapping, the linear part of
unified affine, and constant multiplications in MixColumns/
InvMixColumns) are realized as XOR matrix operations,
whose construction are determined by the defining polyno-
mials of the tower field in the case of tower-field implementa-
tion. The construction of XOR matrices (especially, Hamming
weights of matrix) has an impact on the performance of AES
hardware. In this subsection, we newly present a method
named multiplicative-offset for increasing the variety of con-
structions of linear mappings, in order to find conversion
matrices with less Hamming weights. Although the basic idea
is similar to the method for optimizing tower-field S-box
implementation proposed in [8], which uses a fixed multipli-
cative mask for the inversion, we extend and generalize it in
order to optimize the whole tower-field AES encryption/
decryption architecture on the basis of proposed register-
retiming and operation-reordering.

Fig. 5 illustrates the proposed (a) encryption and (b)
decrypt1on flows with multiplicative-offset, where w(and

denote the ith column and jth row intermediate bytes at
the rth round for encryption and decryptlon with multipli-
cative-offset, respectively. In addition, L") denotes the rth
round key with the multiplicative-offset. Here, as well as
Fig. 2, all operations excluding the first and final operations
(i.e., ”Multlply y/GF(2%) to GF((2Y)?)” and “GF(2%) to
GF((24))/Multiply y~1” respectively) should be per-
formed over the tower field. The basic idea of multiplica-
tive-offset is to initially multiply all bytes of the input data
by a constant value y as an offset, which is a non-zero ele-
ment of the PB-based GF(2%), and then, to multiply the
intermediate bytes at each round by 2 to correct the offset,
and finally to multiply y~! before the data output to remove
the offset. Note that, in decryption, the offset value should
be given by ! (and y~? should be multiplied in a round)
in order to share pre- and post-round datapaths. Since the
multiplication over a GF is a type of linear mapping over
the GF, this multiplication can be merged to isomorphic
mapping or unified affine with further operation-reordering
and register-retiming. Thus, we can increase the variety of
conversion matrices by 255 times without any overhead
because y can take a value from 255 candidates.

Importantly, each isomorphic mapping with multiplicative-
offset at Round 0 and 10 and round key is identical in the cases
of encryption and decryption, which indicates that we can still
unify the pre- and post-round datapaths and key scheduling
part even with the multiplicative-offset. In addition, since the
number of merged linear operations are same as that without
multiplicative-offset in Fig. 2, we can confirm that the

540
Plaintext Ciphertext
merged l Round 0 merged l Round 10
Multiply » f— L Multiply »
GF(2*) to GF(2'))) GF(2*) to GF((2'))
AddRoundKey AddRoundKey f«—_L%
Multiply 7'
Data reg. InvAffine
A -1
wi, (= ydi) Multiply y
Round 1-9 merged
Inversion
- Data reg.
ShiftRows > o
. i) (=7 sii")
Multiply » Round 9-1
Mi éffllne Inversion
ixColumns | ;® -
Multiply 7 InvShiftRows
AddRoundKey AddRoundKey [«—L"
merged " . Multiply 7'
wi 0 (= ydi) InvMixColumns
InvAffine
Data reg.
ng—l Multiply 7'
Round 10
merged 1) Sl (1)
Inversion i (=7 s)
ShiftRows > Data reg.
merged Multiply » Round 0
Affine Inversion
Multiply » InvShiftRows

AddRoundKey fe— L
GF((2'}) to GF(2%)

AddRoundKey [¢—L”
GF((2*)) to GF(2%)

Multiply 7 Multiply 7'
merged l merged l
Ciphertext Plaintext
(a) (b)

Fig. 5. Proposed tower-field (a) encryption and (b) decryption flows
based on operation-reordering, register-retiming, and multiplicative-offset.

multiplicative-offset requires no overhead. Note that, while the
conventional optimization method in [8] requires to multiply y
to both input and output, the proposed multiplicative-offset
modifies the timing of multiplications with register-retiming
such that all the linear operations per round can be unified.

More precisely, we first multiply y to m) and the results
of inversion in Eq. (3) and we derive

3 -1
r+1 T r
m =3 (e (A (A)))+) + K.
e=0
(12)
This is so because the offset y of m) is canceled by the mul-
tiplication with y after the i inversion. However, we cannot
implement the AES round function based on Eq (12) in an
efficient round-based manner because the m U is not off-
set by y, which indicates that we should store mi’fr]) in the
register as an intermediate value and should perform the
multiplication by y prior to inversion. Therefore, we multi-
ply y to both sides of Eq. (12) to correct the offset as follows:
r+1 T -1
yml = 28 (e (AW (Al)))
+e)) + vk

Thus, the intermediate bytes and round key bytes at every
round have the same offset y. Let w(be the mtermedlate
byte with the offset over the tower field (ie., A(yml]))
which is the intermediate value stored in the register. We

(13)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 4, APRIL 2020

can merge all the linear mappings in Eq. (13) as well as
Eq. (3) by resister-retiming, and the equation for the round
datapath of encryption is derived as follows:

5 -1
wETfl) _ Z(Qefi (<w£T7>+]))) + A(ye) + A(V&é?)

e=0
(14)

where Q._;(z) = A(y(u._;(A(y(A'(2)))))), which denotes the
unified linear transformation with the offset correction in
the encryption. Note that ycis a constant value for a fixed y,
and it should be embedded in the datapath. In the pre-
round datapath, plaintext is not only mapped to the tower
field, but is also offset by y at A, = A o y, which denotes the
merged linear mapping for A and the constant multiplica-
tion of y. In the post-round datapath, the ciphertext is
mapped to the AES field, and the offset is removed at
Al =y ' oA, which denotes the merged linear mapping
for A" and the constant multiplication of y~!.

On the other hand, in decryption, we multlply Yyl to s) and
the result of inversion in Eq. (8), adjust ¢/, and multiply y‘l to
both sides of Eq. (8). As well as the encryption, by using the reg-
ister-retiming and operation-reordering techniques, we then
derive the multiplicative-offset version of Eq. (9) as follows:

3 -1
0 =S A((10) AR +AG), a5

e=

where Aci(z) = Ay (A'(ve—i(y (M (@)))) and) =
Ay~ (A'(sfrj)))), which denote the unified linear transforma-

tion with offset correction and the intermediate value with the
proposed register-retiming and multiplicative-offset in the
decryption, respectively. Note here that the offset value is
given by y ! instead of y because of the register-retiming. In
other words, while the ciphertext bytes are initially offset by y
at A, as same as encryptlon the first intermediate bytes are
computed as t< = Ay N (A (y (A (y2)))))), where z;
denotes the ith row and jth column byte of ciphertext (i.e.,
input data at decryption). Moreover, we remove the offset at
A;,l in the post-round datapath as in the case of encryption.
Whereas the offset value is ! at the register, the offset is cor-
rectly removed by multiply " at A} because the offset value
is inverted at the inversion as y(tg))_l = (y! tfg))_l.

Since the offset of a round key is given by y in both cases
of encryption and decryptlon we can still use the unified
key scheduling part. Let l be the ith row and jth column
of the rth round key with the offset over the tower field (i.e.,
A(yk) (=A ())) and let l be the ith 32-bit word of
the rth round key with the offset over the tower field. We
first map the initial key k; O> to l<O by using A,. Then, the key
scheduling with the offset for encryptron is expressed as

l(()T‘H) = l(7> + KeyEXoﬁset (l(i))
léH—l) = l) + l) + l + KeyEXofﬁsct(l‘g’)) 7
= zm 10 415 4 KeyEx o (1)

(16)

UENO ET AL.: HIGH THROUGHPUT/GATE AES HARDWARE ARCHITECTURES BASED ON DATAPATH COMPRESSION 541
TABLE 1
Synthesis Results for Proposed and Conventional AES Hardware Architectures With Area Optimization

Area Latency Max. freq. Throughput (Gbps) Power@100MHz (uW) Efficiency (Kbps/GE) PL product

(GE) (ns) (MHz) 10 cycles 11 cycles Enc. Dec. 10 cycles 11 cycles Enc. Dec.
Satoh et al. [6] 15,269.67 32.56 337.84 4.32 3.69 849 820 273.20 257.45 27,643 26,699
Lutz et al. [1] 26,113.67 23.00 434.78 5.57 N/A 759 833 213.12 N/A 17,457 19,159
Liu et al. [18] 13,760.33 37.62 292.40 3.74 3.40 1,020 1,030 271.99 247.26 38,372 38,749
Mathew et al. [2] 18,576.33 43.34 253.81 3.25 2.95 1,150 1,640 174.89 158.99 49.841 71,078
Previous version [4] 16,428.33 21.01 523.56 6.70 6.09 582 512 407.93 370.84 12,228 10,757
This work 16,418.33 19.25 57143 7.31 6.65 490 511 445.50 405.00 9,433 9,837

TABLE 2
Synthesis Results for Proposed and Conventional AES Hardware Architectures With Area-Speed Optimization

Area Latency Max. freq. Throughput (Gbps) Power@100MHz (uW) Efficiency (Kbps/GE) PL product

(GE) (ns) (MHz) 10 cycles 11 cycles Enc. Dec. 10 cycles 11 cycles Enc. Dec.
Satoh er al. [6] 16,628.67 24.97 440.53 5.64 5.13 902 868 339.10 308.27 22,523 21,674
Lutz et al. [1] 28,301.33 16.20 617.28 7.90 N/A 735 843 279.18 N/A 11,907 13,657
Liu er al. [18] 15,335.67 29.70 380.37 4.74 431 1,010 1,050 309.13 281.03 29,997 31,185
Mathew e al. [2] 21,429.33 30.80 357.14 4.57 4.16 1,390 1,850 213.33 193.93 42,812 56,980
Previous version [4] 18,013.00 16.28 675.68 8.65 7.86 569 507 480.13 436.49 9,263 8,254
This work 17,368.67 15.84 694.44 8.89 8.08 465 484 511.78 465.25 7,366 7,667

where KeyEx, ... denotes KeyEx with the offset correction,
in which the linear mapping of the affine transformation in
SubWord over the tower field (i.e., ¥ = A(A(A'(2)))) is
replaced with ®(z) = A(y(A(y(A'(x))))). Similarly, the
inverse key scheduling with the offset for decryption is rep-
resented by

lg;l) lé)r) + KeyEXoffset(l(QT) + lg;))
r—1 g

-1 _ 0

Ly 41

lgrfl) lg“) + lgr)

Thus, we can perform AddRoundKey (and AddInitialKey)
with the offset by replacing k:f’l) and KeyEx in Egs. (14)
and (15) with lE? and KeyEx, g, respectively.

The proposed encryption/decryption hardware with the
multiplicative-offset can be realized by replacing the opera-
tions in Figs. 1, 3, and 4 with the corresponding ones for
multiplicative-offset. Since we use common A, and A/ _; for
encryption and decryption as shown in Fig. 5 thanks to the
offset correction at each round, the multiplicative-offset can
be applied to our architecture in Figs. 1, 3, and 4 without
any overhead. Thus, we can increase the variety of conversion
matrices by 255 times because y can take a value from 255 can-
didates. The optimal conversion matrices can be searched in
an exhaustive manner. Consequently, we found a set of con-
version matrices with a Hamming weight of 4,016 in total
while we found no conversion matrices set with Hamming
weight of less than 4,416 without multiplicative-offset when
we used the state-of-the-art tower-field inversion in [8].
Roughly speaking, the multiplicative-offset method reduces
the circuit area for linear mappings by approximately 9 per-
cent without any overhead. Note that a set of conversion
matrices with a low Hamming weight is useful for reducing
the fan-out of each XOR gate, which is related to the latency
and power consumption.

3.4 Performance Evaluation
Tables 1 and 2 summarize the synthesis results of the pro-
posed AES encryption/decryption architecture by the

Synopsys Design Compiler (Version D2010-3) with the Nan-
Gate 45 nm open-cell library [22] under the worst-case con-
ditions, where Area indicates a two-way NAND equivalent
gate size (i.e., gate equivalents (GEs)); Latency indicates the
latency for one block encryption/decryption, which is esti-
mated from the circuit path delay of the datapath under the
worst-low condition; Max. freq. indicates the maximum oper-
ation frequency obtained from the critical path delay;
Throughput indicates the throughput at the maximum opera-
tion frequency in which 10 cycles and 11 cycles indicate the
throughput respectively, if and unless the plaintext and
ciphertext blocks are input and output simultaneously in one
clock cycle (see the next paragraph); Power@100 MHz indi-
cates the power consumption estimated by a Monte-Carlo
gate-level timing simulation with back-annotation, in which
Enc. and Dec. indicates that for encryption and decryption,
respectively; Efficiency indicates the throughput per area; and
PL product indicates the power-latency product. To conduct a
practical performance comparison, an area optimization
(which maximizes the effort of minimizing the number of
gates without flattening the description) was applied in
Table 1, and an area-speed optimization (where an asymptoti-
cal search with a set of timing constraints was performed after
the area optimization) was applied in Table 2. Fig. 6 also
shows the latency and area of the synthesized proposed AES
encryption/decryption architecture.

In these tables and figures, the conventional representa-
tive datapaths [1], [2], [9], [21] and that in the previous ver-
sion [7] were also synthesized by using the same conditions.
The source codes for these syntheses were described by the
authors referring to [1], [2], [9], 2113 except for the source
codes of Satoh’s and Canright’s S-boxes in [9], [12] that can
be obtained from their websites [23], [24]. To fairly evaluate
and compare the performance of datapaths without the

3. According to [2], the GF(2*) inversion in the GF((2)?) inversion
circuit in [2] can be implemented with a Txor + 377 NAND delay, where
TNAND denotes the delay of the NAND gates. However, there is no
detailed description to realize such a circuit. Therefore, we described
the circuit by a direct mapping based on the PPRM expansion, which is
an algebraic normal form frequently used to design GF arithmetic cir-
cuits [11], [25].

542
28,000 x Satoh et al. [8]
O Lutz et al. [1]
26,000 = +Liu et al. [9]
24.000 A Mathew et al. [2]
’ O Previous version [4]
22,000 ® This work
m
O 20,000
8 18,000 4
< 16,000 °o0 _
14,000 +
12,000
10,000
15 20 25 30 35 40 45
Latency (ns)
(a)
30,000 X Satoh et al. [8]
o O Lutz et al. [1]
28,000 +Liuetal. [9]
26,000 4 Mathew et al. [2]
O Previous version [4]
—_ 24,000 ® This work
U(DJ 22,000 R
3 20,000
E 18,000 o°
16,000 x
¥
14,000
12,000
10,000
15 20 25 30 35
Latency (ns)

(b)

Fig. 6. Latency and area of AES encryption/decryption hardware
architectures with (a) area and (b) area-speed optimization.

effect of pipelining, the datapaths of [1] and [2] were
adjusted to the round-based nonpipelined architecture cor-
responding to the proposed datapath. Latency was calcu-
lated by assuming that the datapath of [1] requires 10 clock
cycles to perform each encryption or decryption and the
others require 11 clock cycles. This is because the initial key
addition and first-round computation are performed with
one clock cycle for [1]. On the other hand, Throughput of
architectures except Lutz’s [1]. is calculated assuming that
they require 10 and 11 cycles to perform encryption/
decryption per block. These architecture can perform conse-
cutive encryption/decryption with 10 clock cycles per block
if plaintext and ciphertext are input and output simulta-
neously in one clock cycle; otherwise, they require 11 cycles.
Note that, in Lutz’s [1] architecture, plaintext and ciphertext
cannot be input and output simultaneously in one clock
cycle.. Area includes the initial key, round key, data regis-
ters, and control logic in addition to combinational circuits
for round datapaths. Note also that the key scheduling parts
of [1] and [2] were implemented with the ones presented in
this paper because there was no description for the key
scheduling parts. (For [1], the isomorphic mapping was
removed for application to the round function part.)

The results in Tables 1 and 2 show that our datapath
achieves the lowest latency and highest efficiency compared
with the conventional ones with tower-field inversion cir-
cuits. Although all operations are translated to the tower

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 4, APRIL 2020

field in our architecture, the area and delay overheads of
MixColumns and InvMixColumns are suppressed by the
unification technique. More precisely, the critical path
delay of the proposed datapath is given by only Tiny+
Tpemux + 67Txor + Tiiser, where Tiny, Tpemux, and Thaser
denote the delay for the inversion circuit, demultiplexer,
and 4-to-1 selector, respectively. The delay of 67xor
includes the unified linear operation (37xor), adder array
(2Txor), and AddRoundKey (ITxor) in Round datapath.
Since the critical path of conventional architectures includes
at least three linear operations, adder array, one
AddRoundKey, one inversion, and three selectors, the criti-
cal path delay of conventional ones should be given by
larger than Tinv + 127%0r + 3751581, Where T5.sp1, denotes
the delay for a 2-in-1 selector. Thus, the lower logic depth of
proposed datapath leads to the lower latency than the con-
ventional ones, as indicated in Tables 1 and 2. Especially,
even with a tower-field S-box, our architecture has an
advantage with regard to the latency over Lutz’s one with
table-lookup-based inversion (i.e., very small Tiyy). In addi-
tion, we can also confirm that the optimization of linear
mappings based on multiplicative-offset clearly improves
the area-time efficiency. As a result, our architecture is 51—
63 percent more efficient in terms of the throughput per
area than the conventional best. More precisely, the pro-
posed datapath achieves approximately 63 percent higher
efficiency than any conventional architecture and 9 percent
more efficient than the previous version with area optimiza-
tion. In addition, the proposed datapath has 51 and
7 percent higher throughput/gate efficiency than the con-
ventional best and previous version when using area-speed
optimization, respectively.

The results also suggest that the proposed architecture
would perform an AES encryption or decryption with 38—
46 and 44-51 percent smaller energy than the conventional
best, respectively. More precisely, the proposed architecture
reduces the power by 35-38 and 38-43 percent than the con-
ventional best for encryption and decryption, respectively,
because of the compressed datapath and the cutoff of an
inactive path by a demultiplexer. Thanks to the lower
latency and lower power consumption, the proposed archi-
tecture improves power-latency efficiency by 46 and 51 per-
cent than conventional ones at encryption and decryption
with area optimization, respectively. In the case of area-
speed optimization, the improvement of power-latency effi-
ciency is given by 38 and 44 percent for encryption and
decryption, respectively. These results indicate that the pro-
posed architecture can perform AES encryption and decryp-
tion with the lowest energy consumption. In addition,
the proposed architecture improves the PL product by
23 percent (9 percent) and 20 percent (7 percent) at encryp-
tion (decryption) than the previous version with area and
area-speed optimization, respectively, because of the multi-
plicative-offset. We can also confirm the advantage of the
proposed architecture over the previous version in terms of
power/energy consumption as well as the efficiency.

The performance of the architecture in [2] was relatively
lower for our experimental conditions because its critical
path includes InvMixColumns for round key for operation-
reordering and therefore becomes longer than those of other
designs. In addition, InvMixColumns over a tower-field is

UENO ET AL.: HIGH THROUGHPUT/GATE AES HARDWARE ARCHITECTURES BASED ON DATAPATH COMPRESSION 543

Plaintext Initial Key
Round function part l Key scheduling part
v Multiply 7
Post-round Round Pre-round GF(2%) to GF((2%?)
datapath datapath datapath

Initial key
register

Data
register

Round key
generator
Round key
register

Ciphertext

Fig. 7. Overall architecture of proposed AES encryption hardware.

more area-consuming than that over the AES field. This sug-
gests that the architecture in [2] is not suitable for an on-the-
fly key scheduling implementation. The architectures in [9],
[21] have smaller areas than the proposed architecture;
however, our architecture has a higher throughput. The
increasing ratio of the throughput is larger than that of the
circuit area because the architectures in [9], [21] use InvMix-
Columns to compute InvMixColumns for round key and
require several additional selectors, respectively. Moreover,
the proposed architecture has a higher efficiency than the
previous version, because the multiplicative-offset can
reduce the implementation cost of linear mappings as
described in Section 3.3.

4 PROPOSED ENCRYPTION ARCHITECTURE

4.1 Round Function Part

While unified AES encryption/decryption architecture is
very important for many existing practical applications,
AES hardware that supports only encryption is also highly
in demand owing to the wider spread of the counter (CTR)-
mode and inverse-free authenticated encryptions working
with AES such as Galois/Counter-Mode (GCM) [26] and
Offset Two Round (OTR) [27].

In this section, we propose an efficient AES encryption
hardware architecture based on the same philosophy as Sec-
tion 3. Fig. 7 shows the overview of the proposed AES
encryption hardware architecture, and Fig. 8 shows the pro-
posed round function part for encryption only, which are
based on Eq. (14) and are basically derived by omitting the
Decryption path of the proposed unified architecture shown

(Round input)

Round Plaintext
28
datapath 108 Pre-round
datapat
- Multiply »
Post-round ShiftRows 8 42
datapath GF(2*) to GF((2%?%)
Linear AddinitialKey
operations
GF((2*) to GF(2%)
Multiply 7'
A 4
2:1 MUX
Ciphertext (Round output)

Fig. 8. Proposed round function part for encryption hardware.

) fi,/‘(r)) ﬁ+ . ’/(f') ﬁAZ,/m ﬁ*},/(y) [i’/_(l')

WAL
\V
‘?
W[)f(l-# 1)
()
li,/(r)) ﬁJ(/‘) ﬁ+) J(") ﬁ+2,/(r) ﬁ+3 J(V)

(Post-round Na
datapath) ¥

N

W

(b)

Fig. 9. Realization of Linear operations based on MixColumns factorization
using (a))y and (b) ;.

in Figs. 1, 3, and 4. Note that the multiplicative-offset is
applied to the architecture in Fig. 7.

Here, we focus on the construction of “Linear oper-
ations,” which performs the operations corresponding to
Unified affine, Adder array, and AddRoundKey of the
Encryption path in Fig. 3. Fig. 9 shows the block diagram of
Linear operations for the jth column, where f; ; denotes the
jth byte of input of Unified affine and ® denotes the affine
transformation with the multiplicative-offset over the tower
field (e, ®(f,) = A(AWA (i) +Alye) = Q= Q),
which is given by the same manner as the encryption/
decryption architecture in Section 3. As shown in [20],
according to uy = g and u; = B + 1 in the MixColumn func-
tion, we implement only either €}y or (); (corresponding to
Fig. 9a or Fig. 9b, respectlvely) in our architecture because
MixColumn function ,BgL)+ (B+ 1)g7<+)1 i+ g,(Jr)QJ + gffdj can

be factorized as ,B(gfrj) L]+1) + gq]+1 + gg />+2 + gf /)+3 or

B+ 1)(953) + gf;z-)ﬂ) + gE,} + ggd-)+2 + giﬁj+3, where gl-,j denotes

the ith column and jth row input byte of MixColumns at
the rth round over the AES field. This indicates that,
because of the linearity of isomorphic mappings and multi-
plicative-offset, Linear operations can be realized by

W = Qo + £+ UL +‘1>(fz+2,) +<1><fl+3]>
) or wgr}+1> = () + 0+ R+ o) +
(I)(f;(jrS]) +l
the reahzatlon of (b) based on O (f

O(f10) + () +1), the
AddRoundKey can be efficiently implemented by the term

D(f) while ®(f) does not appear in another formula. In
Fig. 9b the output denoted by “Post-round datapath” is

. In the proposed archltecture we employ

fz+1 2t (fi(,;))+

because final round

544

Initial key

Initial key

register

(AddInitialKey)

Round key generator

Round constant

Multiply »
GF(2%) to GF((2*))

kY32

Add
constants

RotWord

T\ SubWordoffset

a
N>

pael PGl e KD

128

Round key
register
(AddRoundKey)

Fig. 10. Proposed key scheduling part for encryption hardware.

used for AddRoundKey at the final round with bypassing of
MixColumns. Note that unified affine transformations
and some XOR gates in Linear operations should be
shared in an identical column (i.e., for the calculations of

g;l), le), g]ﬂ), and wéﬁrl) for each j) for savings in the
circuit area.

Linear mappings over GF(2®) including (; and & usu-
ally require a delay of 37xor, where Txor denotes the delay
of a two-way XOR gates. This indicates that Linear opera-
tions of Fig. 9 requires a 67xor delay because the delay of ®
is usually given by 37xor. On the other hand, if we find an
optimal conversion matrix for ® with a 27xor delay, we can
reduce the delay of Linear operations and can implement it
with only a 57%or delay. Actually, while we found no such
a matrix with a 2Txogr delay without multiplicative-offset,
we successfully found a few optimal matrices in an exhaus-
tive search of y. Thus, the proposed encryption architecture
has a low latency, and we can confirm again the effective-
ness of multiplicative-offset.

Thanks to the register-retiming, operation-reordering,
and multiplicative-offset, our encryption architecture has
the lowest logic depth among conventional architectures.
Let Tanp be the delay of a two-way AND gate. The architec-
ture presented by Nekado et al. [20] has the delay of
ATwNp + 13Tx0r,* which was lower than any other conven-
tional tower-field architecture until now, to the best of our
knowledge. The proposed architecture can achieve the
delay of 37anp + 117%x0r + T5:1881, Where Th.spr, denotes
the delay of a two-in-one selector. Note that, as in the
encryption/decryption hardware in Section 3, the critical
path should be on the Round datapath part but not Post-
round datapath in Fig. 7b, because the adder array and mul-
tiplexer in Round datapath would be longer than GF((24?)
to GF(2%) in Post-round datapath. Thus, we can confirm the
higher efficiency of the proposed architecture, given that a

4. The delay does not include that of multiplexers because neither
concrete implementation, datapath, nor architecture was shown in [20];
and therefore, a quantitative comparisons and evaluations with [20] are
difficult in this paper.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 4, APRIL 2020

2-in-1 multiplexer has a delay similar to a two-way logic
gate such as AND and XOR gates [10].

4.2 Key Scheduling Part

Fig. 10 shows the proposed key scheduling part datapath
for the encryption hardware. The encryption key scheduling
part is basically derived by removing the decryption data-
path from the encryption/decryption key scheduling part
shown in Fig. 4 as well as the round function part, and it
can be implemented according to Eq. (16). However, in con-
trast to the encryption/decryption key scheduling part,
some XOR gates excluding the output of KeyEx .., should
be factorized for achieving a smaller area, because the fac-
torization can be performed without degrading the critical
delay nor changing the functionality as shown in Fig. 10.

4.3 Performance Evaluation

Tables 3 and 4 show the performance of the proposed AES
encryption hardware, and these data were derived with the
same conditions as those in Tables 1 and 2 in Section 3.4.
For comparison, we also show performance evaluation
results for the conventional hardware.” As typical architec-
tures, we evaluated two AES encryption hardware architec-
tures denoted by SASEBO IPs [23], which are published as
open-source intellectual property cores (IPs) for Side-
channel Attack Standard Evaluation BOards (SASEBOs). In
the columns of SASEBO IPs [23], “Table” and “Tower field”
indicate that the hardware architectures are based on
a table-based and tower-field S-boxes, respectively. The
source codes for these architectures were derived from [23].
In addition, we also evaluated state-of-the-art architectures
presented by Gueron and Mathew in [28]. In the column of
Gueron and Mathew [28], “Native” and “Mapped” indicate
that the all round operations and only SubBytes were per-
formed over a tower field, respectively. Since we found no
public source codes for the architectures of [28], the source
codes for these syntheses were described by the authors
referring to [28], as well as Section 3.4. SASEBO IPs require
12 clock cycles for one block encryption, while the proposed
architecture and the architecture by Gueron and Mathew
can be implemented such that one block encryption is per-
formed with 11 clock cycles, according to their description.
In Tables 3 and 4, the rows denoted by “10 (11) cycles” and
“11 (12) cycles” denote the throughput or efficiency in the
case and not the case that the plaintext and ciphertext blocks
are input and output simultaneously in one clock cycle,
respectively. Fig. 11 also shows the latency and area
obtained by the synthesis results.

In Tables 3 and 4, while the SASEBO IP with the table-
based S-box has a shorter latency and higher throughput
than our architecture, the table-based S-box requires an
approximately two times larger circuit area than ours. The
SASEBO IP with a tower-field S-box has a smaller circuit
area, while our architecture has a shorter latency, which
results in higher efficiency of our architectures. Here, it is
interesting that the SASEBO IP with a table-based S-box has
a lower power consumption than that with a tower-field

5. Since the previous version [7] did not present encryption architec-
ture, we do not compare the proposed encryption architecture with the
previous version.

UENO ET AL.: HIGH THROUGHPUT/GATE AES HARDWARE ARCHITECTURES BASED ON DATAPATH COMPRESSION 545

TABLE 3
Synthesis Results for Proposed and Conventional AES Encryption Hardware Architectures With Area Optimization
Area Latency Max. freq. Throughput (Gbps) Power (uW) Efficiency (Kbps/GE) PL product
(GE) (ns) (MHz) 10 (11) cycles 11 (12) cycles @100MHz 10 (11) cycles 11 (12) cycles
SASEBO Table 21,291.67 16.68 719.42 8.10 7.67 373 393.18 360.42 6,222
IPs [23] Tower field 10,529.33 30.72 390.63 4.55 4.17 536 431.69 395.72 16,466
Gueronand Mapped 12,467.67 26.51 414.94 5.31 4.83 588 426.00 387.27 15,588
Mathew [28] ~ Native 11,311.00 28.38 387.60 4.96 4.51 619 428.62 398.75 17,567
This work 11,257.33 17.38 632.91 8.10 7.36 295 719.64 654.22 5,127
TABLE 4
Synthesis Results for Proposed and Conventional AES Encryption Hardware Architectures With Area-Speed Optimization
Area Latency Max. freq. Throughput (Gbps) Power (W) _ Efficiency (Kbps/GE) pr, product
(GE) (ns) (MHz) 10 (11) cycles 11 (12) cycles @100MHz 10 (11) cycles (12) cycles
SASEBO Table 23,085.00 11.64 1,030.93 12.00 11.00 352 519.66 476.35 4,097
IPs [23] Tower field 11,431.67 23.04 520.83 6.06 5.56 513 530.16 485.98 11,820
Gueron and Mapped 13,249.33 21.78 505.05 6.46 5.88 655 487.92 443.57 14,266
Mathew [28] ~ Native ~ 12,108.33 23.87 460.83 5.90 5.36 755 487.16 442.87 18,022
This work 12,127.00 13.97 787.40 10.08 9.16 279 831.10 755.54 3,898

S-box in spite of their circuit area, rather than the tower-
field S-boxes by hand at gate level. The tower-field S-box is
known as a power-consuming circuit due to dynamic haz-
ards [11], and Design Compiler would be good at synthesiz-
ing the table-based S-box with consideration of not only the
low latency but also the low power consumption. Neverthe-
less, our architectures have a lower power consumption
and lower (or at least comparable) power-latency product

22,000
] [JSASEBO IP [22] (Table)
20,000 ©SASEBO I IP [22] (Tower field)
X Gueron and Mathew [28] (Mapped)
a 18,000 + Gueron and Mathew [28] (Native)
@ This work
2 16,000
<
=
< 14,000
12,000 =
) +
10,000 ¢
10 15 20 25 30 35
Latency (ns)
(a)
24,000
[u] [ISASEBO IP [22] (Table)
22,000 SASEBO I IP [22] (Tower field)
20.000 X Gueron and Mathew [28] (Mapped)
—_ ’ + Gueron and Mathew [28] (Native)
[sa) .
g 1 8,000 ® This work
5 16000
< 14,000 8
12,000 L] +
<o
10,000
10 15 20 25
Latency (ns)
(b)

Fig. 11. Latency and area of AES encryption hardware architectures with
(a) area and (b) area-speed optimization.

than SASEBO IP with a table-based S-box, which clearly
shows the usefulness of the proposed unification techniques
of linear mappings and multiplicative-offset. In addition,
we can also confirm that our architectures have higher effi-
ciency and lower power/energy consumption than state-of-
the-art architectures by Gueron and Mathew, thanks to the
unification technique and multiplicative-offset. Thus, we
can confirm that the proposed architecture achieves 64 and
58 percent higher efficiency in terms of bps/GE than con-
ventional representative and state-of-the-art architectures
with area and area-speed optimization, respectively. We
can also confirm the advantages of the proposed architec-
ture in terms of efficiency and power/energy consumption.

The critical path delay of the proposed datapath is given by
Tinv + 5Txor + T1581, Wwhere 5Txor corresponds to the delay
of Linear operation. The conventional architectures except for
SASEBO IP with table-based S-box requires greater than
Tinv + 8Txor + Toaser, or Tiny + 11Txor+ Thaser, because
their critical paths include two or three linear operations. In
contrast, SASEBO 1P with table-based S-box has a delay of
Tinv + 7TTxor + Toaser, with a very small Tiny by the table-
based S-box. As aforementioned, SASEBO IP with table-based
S-box has a lower latency than the proposed architecture.
However, the latency of proposed architecture is still compara-
ble to the SASEBO IP with table-based S-box as shown in
Tables 3 and 4, whereas the proposed architecture has approxi-
mately 47 percent smaller circuit area with both area and
area-speed optimization. This also indicates the area-latency
efficiency of the proposed architecture.

5 DiscussION

5.1 Comparison With Other Conventional
Architectures

The above comparative evaluation was done with the pro-
posed and some conventional but representative datapaths.
There are other previous works focusing on area-time effi-
ciency by round-based architectures. However, such previ-

ous works do not provide for concrete implementation

546

and/or exhibit better performance than the abovemen-
tioned conventional datapaths. For example, a hardware
AES description with a short critical path was presented
in [20], which employed an redundant representation and
unification techniques to reduce the critical path delay.
However, we could not evaluate the efficiency by ourselves
because of the lack of a detailed description about the
implementation. The AES processor in [29] is also a typical
high throughput encryption architecture, but we cannot
evaluate it in this paper because of the lack of descriptions
of its building blocks. Another AES encryption/decryption
architecture with a high throughput was presented in [21].
However, the architecture had a lower throughput/area
efficiency compared to the architecture in [9] according to
that paper. Moreover, low latency AES encryption and
decryption architectures based on twisted-BDD and hard-
ware T-box in [10] were not evaluated in this paper because
this would require a sophisticated back-end design (.e.,
place and route).

5.2 Possibility of Pipelining

The proposed design employs a round-based architecture
without block-wise parallelism such as pipelining. How-
ever, the block-wise parallelism are exploitable in the paral-
lelizable modes and authenticated encryptions (e.g., CTR
mode, GCM [26], OTR [27], and Offset CodeBook (OCB)
[30]), by the trade-off between the area and the throughput
by pipelining [28], [31]. A simple way to obtain a pipelined
version of the proposed architecture is to unroll the rounds
and insert pipeline registers between them. The datapath
can be further pipelined by inserting registers into the
round datapath. The proposed datapath can be efficiently
pipelined by placing the pipeline register at the output of
the inversion with a good delay balance between the inver-
sion and the following circuit. For example, the synthesis
results for the proposed datapath using the area-speed opti-
mization with the NanGate 45-nm standard-cell library indi-
cated that the inversion circuit had a delay of 0.60 ns, and
the remainder had a delay of 0.66 ns. Accordingly, pipelin-
ing would achieve a throughput of 17.63 Gbps, which is
nearly twice that without pipelining. Thus, the proposed
datapath is also suitable for pipelined implementation.

5.3 Choice of S-box Implementation

We employed a tower-field S-box presented by Ueno et al. [8],
[15]. Actually, Ueno’s S-box is the most efficient S-box archi-
tecture applicable to our AES hardware architecture, which
employ tower-field arithmetic, decomposition of (inv)S-box
into inversion and (inv)affine transformation, and merge of
linear operations including isomorphic mapping,.

There are several tower-field S-box implementation that
have smaller area, lower latency, and/or higher efficiency
than the above one. For example, Boyar ef al. presented a
very small S-box description based on a logic minimization
[16]. In 2018, Reyhani-Masoleh et al. presented smaller and
more efficient S-boxes than Boyar’s and Ueno’s S-boxes on
the basis of architectural and gate-level optimizations. In
2019, Maximov and Ekdahl further improved the perfor-
mance of AES S-box [18] by means of new logic minimiza-
tion techniques. They presented three S-box designs, each

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 4, APRIL 2020

of which are the fastest, smallest, or most efficient until
now. However, these S-boxes cannot be applied to our
architecture. These S-boxes unifies isomorphic mapping,
affine transformation, and linear operations in inversion as
a big XOR matrix operation at the input and/or output of
S-box to achieve smaller area and lower latency. Therefore,
these (inv)S-boxes cannot be decomposed into inversion
and (inv)affine transformation, and cannot be applied to
our AES hardware architecture that utilizes the S-box
decomposition. An extension of our architecture for efficient
application of such S-boxes remains in future work.

In contrast to tower-field S-boxes, direct-mapping-based
(or table-based) S-box architecture including BDD-based
ones can be implemented with very lower latency and rela-
tively small power consumption at costs of circuit area and
efficiency. However, we should implement table-based
inversion and (inv)affine transformation separately in our
architecture whereas the table can directly implement the
functionality of S-box, which indicates that the decomposi-
tion of S-box can be latency and area overheads for the
table-based implementation. In addition, our optimization
techniques for unifying linear operations may not work
well with the table-based implementation, because the
table-based implementation does not require isomorphic
mappings which are efficiently unified in our architecture.

Thus, the tower-field S-box which can be efficiently decom-
posed into inversion and (inv)affine transformation like
Ueno’s S-box [8], [15] is suitable to our architecture that is
intended to achieve a higher throughput/gate efficiency (and
S-boxes in, for example, [9], [12], [13] are possible candidates).

5.4 Application of Countermeasure Against
Side-Channel Attacks

Another discussion point is how the proposed architecture
can be resistant to side-channel attacks, especially against
differential power analyses (DPAs) [32]. A masking coun-
termeasure would be based on a masked tower-field inver-
sion circuit [33]. The major features of the countermeasure
are to replace the inversion with a masked inversion and to
duplicate other linear operations. Such a countermeasure
can also be applied to the proposed datapath. In addition,
hiding countermeasures, such as wave dynamic differential
logic (WDDL) [34], which replaces the logic gates with a
complementary logic style, would also be applicable, and
the hardware efficiency would be proportionally lower with
respect to the results in Tables 1 and 2.

More sophisticated masking-based countermeasures such
as threshold implementation (TI) and a consolidated mask-
ing scheme (CMS) [35], [36] would also be applicable to the
proposed datapath in principle in the same manner as other
conventional ones. On the other hand, such countermeas-
ures, especially against higher-order DPAs, require a con-
siderable area overhead and more random bits compared
with the aforementioned countermeasures. When applying
such countermeasures, the area overhead would be critical
for some applications. In addition, TI- and CMS-based
inversion circuits should be pipelined to reduce the result-
ing circuit area (i.e.,, the number of shares). To divide the
circuit delay equally, it would be better to insert a pipeline
register at the middle of the Encryption and Decryption
path in Fig. 3.

UENO ET AL.: HIGH THROUGHPUT/GATE AES HARDWARE ARCHITECTURES BASED ON DATAPATH COMPRESSION 547

6 CONCLUSION

This paper presented a new efficient round-based AES archi-
tecture that supports encryption only and both encryption and
decryption. The proposed datapath utilizes new operation-
reordering and register-retiming techniques to unify critical
components with fewer additional selectors. Consequently,
Our datapath has the lowest critical path delay compared to
conventional ones with tower-field S-boxes. We also presented
a new technique for optimizing matrices for linear operations
named multiplicative-offset. The multiplicative-offset can
improve the efficiency of AES hardware architecture by
approximately 9 percent without any overhead. The proposed
and conventional AES datapaths were implemented with
compatible round-based architectures and evaluated by logic
synthesis with the NanGate 45-nm open-cell library. The syn-
thesis results suggested that the proposed architecture was
approximately 51-64 percent more efficient than the best con-
ventional architecture in terms of the throughput per area. In
addition, as a result of gate-level timing simulations with
back-annotation, we also confirmed that the proposed archi-
tecture can perform encryption/decryption with the lowest
power/energy consumption.

ACKNOWLEDGMENTS

This research has been supported by JSPS KAKENHI Grant
No. 17H00729 and No. 19K21526, and JST PRESTO Grant
No. JPMJPR18M3.

REFERENCES

[1] A. Lutz et al., “2 Gbit/s hardware realizations of RIJNDAEL and
SERPENT: A comparative analysis,” in Proc. Int. Workshop Crypto-
graphic Hardware Embedded Syst., 2002, pp. 144~158.

[2] S.K.Mathew et al., “53 Gbps native GF(Q‘I)2 composite-field AES-
encrypt/decrypt accelerator for content-protection in 45 nm high-
performance microprocessors,” IEEE]. Solid-State Circuits, vol. 46,
no. 4, pp. 767-776, Apr. 2011.

[3] S.-Y.Lin and C.-T. Huang, “A high-throughput low-power AES
cipher for network applications,” in Proc. IEEE Asia South Pacific
Design Autom. Conf., 2007, pp. 595-600.

[4] M. Liskov, R. L. Rivest, and D. Wagner, “Tweakable block
ciphers,” J. Cryptology, vol. 24, no. 3, pp. 588-613, 2011.

[5] K. Minematsu, “Beyond-birthday-bound security based on tweak-
able block cipher,” in Proc. Int. Workshop Fast Softw. Encryption,
2009, pp. 308-326.

[6] Y. Naito, “Tweakable Blockciphers for efficient authenticated
encryptions with beyond the birthday-bound security,” IACR
Trans. Symmetric Cryptology, no. 2, pp. 1-26, 2017.

[7] R. Ueno, S. Morioka, N. Homma, and T. Aoki, “A high through-
put/gate AES hardware architecture by compressing encryption
and decryption datapaths—toward efficient CBC-mode impleme-
ntation,” in Proc. Int. Conf. Cryptographic Hardware Embedded Syst.,
2016, pp. 538-558.

[8] R. Ueno, N. Homma, Y. Nogami, and T. Aoki,”Highly effiient
GF(2%) inversion circuit based on hybrid GF representations,” .
Cryptographic Eng., vol. 9, no. 2, pp. 101-113, 2019.

[91 A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A compact
Rijndael hardware architecture with S-box optimization,” in Proc.
Int. Conf. Theory Appl. Cryptology Inf. Security, 2001, pp. 239-254.

[10] S. Morioka and A. Satoh, “A 10 Gbps full-AES crypto design with
a twisted-BDD S-Box architecture,” IEEE Trans. Very Large Scale
Integr. Syst., vol. 12, no. 7, pp. 686691, Jul. 2004.

[11] S. Morioka and A. Satoh, “An optimized S-Box circuit architecture
for low power AES design,” in Proc. Int. Workshop Cryptographic
Hardware Embedded Syst., 2002, pp. 172-186.

[12] D. Canright, “A very compact S-box for AES,” in Proc. Int. Work-
shop Cryptographic Hardware Embedded Syst., 2005, pp. 441-455.

[13] Y. Nogami, K. Nekado, T. Toyota, N. Hongo, and Y. Morikawa,
“Mixed bases for efficient inversion in F((Qz)z)z and conversion

matrices of SubBytes of AES,” in Proc. Int. Workshop Cryptographic
Hardware Embedded Syst., 2010, pp. 234-247.

[14] A. Rudra, P. K. Dubey, C. S. Jutla, V. Kumar, J. Rao, and
P. Rohatgi, “Efficient Rijndael encryption implementation with
composite field arithmetic,” in Proc. Int. Workshop Cryptographic
Hardware Embedded Syst., 2001, pp. 171-184.

[15] R. Ueno, N. Homma, Y. Sugawara, Y. Nogami, and T. Aoki,
“Highly efficient GF(2®) inversion circuit based on redun-
dant GF arithmetic and its application to AES design,” in
Proc. Int. Workshop Cryptographic Hardware Embedded Syst.,
2015, pp. 63-80.

[16]]. Boyar, P. Matthews, andP. Peralta, “Logic minimization techni-
ques with applications to cryptology,”]. Cryptology, vol. 47, no. 2,
pp- 280-312, 2013.

[17] A. Reyhani-Masoleh, M. Taha, and D. Ashmawy, “Smashing the
implementation records of AES S-box,” IACR Trans. Crypt.
Hardware Embedded Syst., pp. 298-336, 2018.

[18] A. Maximov and P. Ekdahl, “New circuit minimization techni-
ques for smaller and faster AES SBoxes,” IACR Trans. Crypt.
Hardware Embedded Syst., pp. 91-125, 2019.

[19] I. Hammad, K. El-Sankary, and E. El-Masry, “High-speed AES
encryptor with efficient merging techniques,” IEEE Embedded Syst.
Lett., vol. 2, no. 3, pp. 67-71, Sep. 2010.

[20] K. Nekado, Y. Nogami, and K. Iokibe, “Very short critical path
implementation of AES with direct logic gates,” in Proc. Int.
Workshop Security, 2012, pp. 51-68.

[21] P.-C. Liu, H.-C. Chang, and C.-Y. Lee, “A 1.69 Gb/s area-efficient
AES crypto core with compact on-the-fly key expansion unit,” in
Proceedings of ESSCIRC, 2009, pp. 404-407.

[22] “NanGate FreePDK45 open cell library,” Jan. 2016, [Online].
Auvailable: http://www.nangate.com/?page_id=2325

[23] Tohoku University, “Cryptographic hardware project,” 2015.
[Online]. Available: http://www.aoki.ecei.tohoku.ac.jp/crypto/

[24] D. Canright, “Canright web page,” 2015. [Online]. Available:
http://faculty nps.edu/drcanrig/

[25] T. Sasao, “And-Exor expressions and their optimization,” in Logic
Synthesis and Optimization, vol. 212. New York, NY, USA: Kluwer
Academic Publishers, 1993, pp. 287-312.

[26] D. A. McGrew and J. Viega, “The Galois/Counter Mode of opera-
tion (GCM),” 2005. [Online]. Available: http://csrc.nist.gov/
groups/ST /toolkit/BCM/documents/gem-revised-spec.pdf

[27] K. Minematsu, “Parallelizable rate-1 authenticated encryption
from pseudorandom functions,” in Proc. Annu. Int. Conf. Theory
Appl. Cryptographic Techn., 2014, pp. 275-292.

[28] S. Gueron and S. Mathew, “Hardware implementation of AES
using area-optimal polynomials for composite-field representa-
tion GF(24)* of GF(28),” in Proc. IEEE 23nd Symp. Comput. Arith-
metic, 2016, pp. 112-117.

[29] I. Verbauwhede, P. Schaumont, and H. Kuo, “Design and perfor-
mance testing of a 2.29-GB/s Rijndael processor,” IEEE].
Solid-State Circuits, vol. 38, no. 3, pp. 569-572, Mar. 2003.

[30] P. Rogaway, N. Bellare, J. Black, and T. Krovetz, “OCB: A block-
cipher mode of operation for efficient authenticated encryp-
tion,” ACM Trans. Inf. Syst. Security, vol. 6, no. 3, pp. 365-403,
2003.

[31] A. Hodjat and 1. Verbauwhede, “Area-throughput trade-offs for
fully pipelined 30 to 70 Gbits/s AES processors,” IEEE Trans.
Comput., vol. 50, no. 4, pp. 366-372, Apr. 2006.

[32] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Proc. Annu. Int. Cryptology Conf., 1999, pp. 388-397.

[33] E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen, “A side-
channel analysis resistant description of the AES S-box,” in Proc.
Int. Workshop Fast Softw. Encryption, 2005, pp. 413-423.

[34] K. Tiri and I. Verbauwhede, “A logic level design methodol-
ogy for a secure DPA resistant ASIC or FPGA implemen-
tation,” in Proc. Conf. Design Autom. Test Europe, 2004, vol. 1,
pp. 246-251.

[35] S. Nikova, V. Rijmen, and M. Schlaffer, “Secure hardware imple-
mentation of nonlinear functions in the presence of glitches,” J.
Cryptology, vol. 24, no. 2, pp. 292-321, 2011.

[36] O.Reparaz, B. Bilgin, S. Nikova, B. Gierlichs, and I. Verbauwhede,
“Consolidating masking schemes,” in Proc. Annu. Cryptology
Conf., 2015, pp. 764-783.

http://www.nangate.com/?page_id=2325
http://www.aoki.ecei.tohoku.ac.jp/crypto/
http://faculty.nps.edu/drcanrig/
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/gcm-revised-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/gcm-revised-spec.pdf

548

Rei Ueno is an assistant professor in Research
Institute of Electrical Communication, Tohoku Uni-
versity, and is currently working with the JST as a
researcher for a PRESTO project. His research
interests include arithmetic circuits, cryptographic
implementations, formal verification, and hardware
security. He received the Kenneth C. Smith Early
Career Award in Microelectronics at ISMVL 2017.
He is a member of the IEEE.

Sumio Morioka received the BE, ME, and PhD
degrees in computer science from Osaka Univer-
sity, Japan, in 1992, 1994, and 1997, respectively.
For 1997-2016, he was a senior researcherin cen-
tral research laboratories of NTT, IBM, Sony and
NEC, and a visiting researcher of Imperial College
London. In 2016, he joined Interstellar Technolo-
gies Inc., Japan, as a chief designer of avionics
system for commercial space launch vehicles. His
research interests include LSI architecture, EDA,
formal methods and security systems. He
received the Sony MVP 2004 Award for the development of a hardware
security processor for PlayStation Portable and PLAYSTATION3. He is a
member of the IEEE, IEICE, and a senior member of IPSJ.

Noriyuki Miura received the BS, MS, and PhD
degrees in electrical engineering from the Keio Uni-
versity, Yokohama, Japan. He is currently an asso-
ciate professor with Kobe University, Kobe, Japan,
and concurrently a JST PRESTO researcher, wor-
king on hardware security and next-generation het-
erogeneous computing system. He is currently
serving as a TPC Member for A-SSCC and Sympo-
sium on VLSI Circuits. He received the Top ISSCC
Paper Contributors 2004-2013 and the IACR
CHES Best Paper Award in 2014. He is a member
of the IEEE.

Kohei Matsuda received the BS and MS degrees
in computer science from Kobe University, Kobe,
Japan, in 2015 and 2017, respectively, where he
is currently working toward the PhD degree with
the Graduate School of System Informatics. His
current research interests include circuit-level
countermeasure against physical attacks and
design methodology for cryptographic processors.
He is a member of the IEEE.

Makoto Nagata received the BS and MS degrees
in physics from Gakushuin University, Tokyo, in
1991 and 1993, respectively, and the PhD degree
in electronics engineering from Hiroshima Univer-
sity, Hiroshima, in 2001. He is a professor of the
Graduate School of Science, Technology and Inno-
vation, Kobe University, Kobe, Japan. He served as
a technical program chair (2010-2011) and sympo-
sium chair (2012-2013) for Symposium on VLSI
circuits. He is currently chairing Technology Direc-
tions subcommittee for International Solid-State
Circuits Conference (ISSCC) and an associate editor for the IEEE Transac-
tions on VLSI Systems. He is a senior member of IEEE and IEICE.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 4, APRIL 2020

Shivam Bhasin received the bachelor's degree
from UP Tech, India, in 2007, the master's
degree from Mines Saint-Etienne, France, in
2008, and the PhD degree from Telecom Paris-
tech, in 2011. He is a senior research scientist
and principal investigator at Physical Analysis
and Cryptographic Engineering Laboratory,
Temasek labs, Nanyang Technical University
Singapore, since 2015. His research interests
include embedded security, trusted computing
and secure designs. Before NTU, Shivam held
position of Research Engineer in Institut Mines-Telecom, France. He
was also a visiting researcher at UCL, Belgium (2011) and Kobe Univer-
sity, Japan (2013). He regularly publishes at top peer reviewed journals
and conferences. Some of his research now also forms a part of ISO/
IEC 17825 Standard. He is a member of the IEEE.

Yves Mathieu is currently a full professor at Insti-
tut Mines-telecom/TELECOM ParisTech. He is the
vice-chair for education of the Communication and
Electronics Department. He undertakes research
activities inside the “Safe and Secure Hardware”
team with a focus on ASIC design.

Tarik Graba received the master degree (DEA:
Diplme d'tude Approfondies) and the PhD degree
in electrical engineering from Pierre et Marie
Curie University (UPMC), Paris, France, in 2003
and 2006. He is currently associate professor at
Institut Mines-telecom/Telecom ParisTech in the
Communication and Electronics Department. His
research activities include digital ASIC and
system on chip design, and hardware security.

Jean-Luc Danger is currently a full professor at
Institut Mines-telecom/TELECOM ParisTech. He
is the head of the digital electronic system
research team whose the main research topics
are about security/safety of embedded systems
and implementation of complex algorithms with
physical constraints. He authored more than 200
scientific publications, 20 patents, and cofounded
the company Secure-IC in 2010.

Naofumi Homma received the BE degree in infor-
mation engineering, and the MS and PhD degrees
in information sciences from Tohoku University,
Sendai, Japan, in 1997, 1999, and 2001, respec-
tively. He is currently a professor with the Research
Institute of Electrical Communication at Tohoku
University. For 20022006, he also joined the Japan
Science and Technology Agency (JST) as a
researcher for the PRESTO project. His research
interests include computer arithmetic, EDA method-
ology, high performance/secure VLS| computing,
and hardware security. He is a senior member of
the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

