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Abstract—Traditional reliability approaches introduce relevant costs to achieve unconditional correctness during data processing.
However, many application environments are inherently tolerant to a certain degree of inexactness or inaccuracy. In this paper, we
focus on the practical scenario of image processing in space, a domain where faults are a threat, while the applications are inherently
tolerant to a certain degree of errors. We first introduce the concept of usability of the processed image to relax the traditional
requirement of unconditional correctness, and to limit the computational overheads related to reliability. We then introduce our new
flexible and lightweight fault management methodology for inaccurate application environments. A key novelty of our scheme is the
utilization of neural networks to reduce the costs associated with the occurrence and the detection of faults. Experiments on two
aerospace image processing case studies show overall time savings of 14.89% and 34.72% for the two applications, respectively, as
compared with the baseline classical Duplication with Comparison scheme.
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1 INTRODUCTION

There are several classes of systems (e.g., automotive
and aerospace) where safety-/mission-critical applications
and non-critical applications coexist. For example, in the
aerospace domain, the navigation system of a satellite is
a mission-critical application while the payload processing
applications are not [1]. On one hand, for mission-critical
applications, it is mandatory to provide the desired level
of reliability in the computation. Thus, fault management
mechanisms are generally adopted. To this aim, hardware/-
software Duplication with Comparison (DWC) and Triple
Modular Redundancy (TMR) are utilized to achieve fault
detection and fault tolerance, respectively [2]. On the other
hand, since the overall system works in a harsh environ-
ment, also non safety-/mission-critical applications may re-
quire fault detection/tolerance capabilities, possibly as a soft
requirement, because errors in the output do not compromise
the safety of the system.

Payload applications frequently consist of image pro-
cessing applications [3]; in the satellite scenario, they collect
pictures from a camera, apply a pipeline of manipulating fil-
ters and transmit the result to a base station on Earth. These
applications may have an inherent degree of fault/noise
tolerance, because i) they may deal with noisy inputs (e.g.,
sensors), ii) their outputs may be probabilistic estimates (e.g.
as in machine learning algorithms), and iii) their output
images may be used by a human, whose perceptual limita-
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tions provide resiliency to a certain level of inexactness [4].
When considering such applications, commonly adopted
classical fault detection/tolerance methods (e.g., the DWC)
may produce worst-case conservative results since they
discard processed data as soon as a single pixel differs.
Indeed, in certain cases, the fault that affects the pipeline
processing may cause the output image to be only slightly
altered. The slightly-altered image may still be usable by the
end user/application for a correct execution of subsequent
processes. In such a scenario, it would be possible to con-
tinue the processing and transmission of the result using
the slightly-altered image without any re-computation, thus
saving time/power [5]. Conversely, if the affected output
image is heavily altered such that it is not usable by the end
user, it is crucial to be able to detect the fault and re-execute
the processing as soon as possible to limit time/power
overheads. Therefore, in such a context, deciding whether
to discard or not an image based on the occurrence of a
fault is not enough. At the opposite, it would be beneficial
to be able to decide if the overall image is still usable by the
end user/application to decide whether to discard it or not.

In this paper, we propose a time-efficient flexible fault
management scheme that extends the classical DWC ap-
proach by exploiting the classification capabilities of Convo-
lutional Neural Networks (CNNs) to discriminate between
usable and unusable application’s outputs. When a fault
causes an error, the effects are evaluated and only if deemed
necessary, the application is re-executed to mitigate the
effects of the fault. Our new method aims at limiting the
reliability-related overheads by avoiding unnecessary re-
executions, thus saving time and power. While the proposed
scheme is general, the core component realizing the flexible
error detection strategy needs to be designed, trained and
optimized specifically for the application under considera-
tion. To this end, a design methodology is also presented,
together with a semi-automatic framework supporting the
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designer in the implementation of the hardened image pro-
cessing application. A preliminary version of the approach
has been presented in [5]; we here extend it to achieve a
mature proposal that includes these contributions:
• an improved tunable Smart Checker (SC), based on a

refined CNN and a Difference Evaluator to invoke it; the
last component replaces the Two-Rail Checker (TRC)
module of the previous proposal;

• a systematic approach to instantiate and tune the pa-
rameters of such a checker;

• a semi-automated design flow to select the CNN inter-
nal architecture, train it and optimize its execution time
by pruning the irrelevant parts in its internal structure;

• an extensive experimental campaign to demonstrate the
effectiveness of both the proposed fault management
scheme and companion design flow.

We applied the proposed flexible fault management
scheme to two realistic aerospace image processing applica-
tions. Results show an overall time saving of about 14.89%
and 34.72% for the two applications, respectively, incurring
a reliability-related penalty (not usable images that have not
been discarded) of about 0.3% and 1.6%.

The rest of this paper is organized as follows: Section 2
discusses the related work, and Section 3 introduces the mo-
tivations behind the design of this scheme. Then, Section 4
discusses in details the proposed fault detection scheme
for image processing and presents the methodology for
hardening a target application by means of the proposed
scheme. In Section 5, we first introduce the two case studies
to analyze and validate the proposed solution and then we
discuss the obtained experimental results. Finally, Section 6
concludes the paper and highlights future work.

2 RELATED WORK

The idea of adopting hardening schemes that relax some
constraints has already been explored in various directions
in the literature and at different levels of abstraction, from
logic level to Register Transfer Level (RTL).

Various approximate/inexact TMR schemes have been
proposed at the logic level [6], [7], [8]. They mainly aim at re-
ducing the area required by the hardened circuit by trading-
off the precision of the detection/mitigation scheme. For
example, the classical TMR scheme is applied to a single-
output combinatorial function, using two replicas that are
smaller but introduce errors, masked by the subsequent
majority voting scheme. Different fault detection/manage-
ment schemes have been considered in [9], starting from
the DWC, and other are presented in [10], devoted to
reduce the size of the checker/voter circuits. Common to
these approaches is their focus on the single bit or value
being manipulated, such that these proposals work at a low
abstraction level to tailor the implemented function, making
it difficult to apply them at the application level with multi-
dimensional data.

Other approaches [11], [12] acting at RTL are based on
the reduction of the numeric precision in the DWC and
TMR schemes. The arithmetic units of the additional replicas
and the checking/voting modules elaborate and check only
the most significant bits of the values in the nominal circuit
so that protection is provided only on a subset of the bits,

the most relevant ones for the result of the computation.
The rationale is that the application context is inherently
tolerant with respect to a certain degree of impreciseness
in the results, due in reality to the presence of an error on
the least significant bits. Our proposal stems from the same
consideration, but the application scenario we take into
account does not allow for these techniques to be applied,
being all parts of the image relevant in the same way.

An enhanced version of the same strategy consists in
replacing the classical checker in fault detection schemes
with a comparison of the numerical distance between the
outputs of the nominal system and the introduced possibly-
approximate replica with respect to a given threshold. This
approach proved to be suitable for Floating Point Unit [13]
and for Digital Signal Processing circuits [14], [15]. To some
extend, these solutions introduce the idea of usability of
the slightly corrupted results we here exploit. Indeed, al-
though the authors state that their solution is applicable to
the image processing context, there is no straightforward
extension from their scenario based to the single scalar data
to the image one. It has also been observed that designing a
system to provide an acceptable/usable output rather than
the best-possible/correct output can yield significant gains
in terms of the system’s implementation costs and complex-
ity [16], [17]. The solutions are however not applicable to
our scenario due to the entirely different settings.

The preliminary work at the basis of this proposal has
been presented in [5], exploiting a smart fault management
scheme and introducing the usability concept. The approach
employs CNNs to have an advanced checker capable of an-
alyzing the effect of the fault on the final result of an image
processing application. However, the CNN is simple and is
invoked every time there is a single different pixel between
two replicas due to the occurrence of a fault, limiting the
performance benefits. This new proposal enhances that idea
and introduces a flexible, tailored and optimized checker,
defines the methodology and the software framework to
harden the application, achieving improved results with
respect to such previous work.

3 MOTIVATION AND PRELIMINARIES

Let us consider the case of an image processing application
consisting of several steps, running on a single-core mi-
croprocessor in an environment subject to radiation effects.
Such radiations may produce Single Event Upsets (SEUs)
that affect the process(es) that manipulate the image, caus-
ing the overall application output to be corrupted. As an
example, consider an application for identifying buildings
in images taken from a satellite (Fig. 1(a)), by highlighting
them with bounding boxes (Fig. 1(b)). Should a fault occur
during the processing and produce an observable error on
the output image, one of the two situations will hold:

i) the impact of the fault is relevant, such as the one
reported in Fig. 1(c), and the identified bounding boxes
differ from the ones extracted in a fault-free condition;

ii) there is a visible effect of the fault, as shown in Fig. 1(d),
however the corrupted image is still usable leading
to a final result (the bounding boxes) that is basically
identical to the fault-free output.
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(a) Application input (b) Correct output

(c) Corrupted output: unusable (d) Corrupted output: usable

Figure 1. Fault effects on processed images leading to unusable (1(c))
or usable (1(d)) images. Images are taken from Bing maps [18].

The proposed approach discards a corrupted image
(intermediate data or final output) and performs re-
computation only when the image is deemed not usable by
the downstream application or end user.

While the difference between correct and corrupted is
well-defined, the difference between usable and unusable
is often context-related. As such, our proposed approach
has a stochastic nature and may incur in misclassifications:
i) a usable image is discarded (false positive), or ii) an
unusable image is accepted (false negative). False positives
impact the effectiveness of the proposed approach, because
re-computation is performed when not needed. On the
other hand, false negatives should be avoided because they
affect the reliability. However, since the methodology is
envisioned for not mission/safety-critical tasks, they lead
to no dangerous situation.

3.1 Evaluation criteria
The methodology and its companion design flow take into
account various alternatives and, based on their perfor-
mance, select the most promising option. For intermediate
steps and for the final solution, the effectiveness is evaluated
in terms of i) the correctness of the classification with respect
to the usability of the image, referred to as performance in the
following, and ii) the execution time saving. Performance is
evaluated by feeding the SCs of the final complete system
with corrupted images and by computing the percentages
of them classified as to be discarded (D) because considered
too corrupted, or not discarded (/D). This classification is
analyzed against what the images really are, usable (U) or
unusable (/U). Table 1 reports the resulting four classes.

3.2 Working scenario
We propose a software-based solution for achieving fault
tolerance in image processing applications executed on
a general purpose embedded CPU, mitigating the effects
of SEUs in the microprocessor memory elements or in

Table 1
Performance evaluation: notation and classification

D Discarded the SC classifies the data as not usable
/D Not Discarded the SC classifies the data as usable

U Usable the data is usable
/U Unusable the data is not usable

D /U Correctly handled corrupted data
/D U Achieved execution time savings

D U Not exploited execution time savings – false positive
/D /U Erroneously accepted data – false negative

Figure 2. The fault detection scheme: the classical DWC solution is
extended by replacing the TRC with an SC module.

the system memory. Faults in microprocessors may lead
to i) application crashes or operating system exceptions
blocking the execution, ii) application hangs leading to a
non-termination, and iii) silent data corruption, where the
executed application terminates producing an erroneous
output, without any alert [19]. The first class is managed
autonomously by the operating system and the second one
can be dealt with by means of watchdog mechanisms; the
last one represents the most critical situation requiring an
ad-hoc hardening, addressed here. We assume a single SEU
may occur during a run of the application, also in harsh
environments, thus every fault is an independent event.

The proposed methodology uses a mix of space and time
redundancy to achieve fault tolerance, by exploiting and
extending the DWC scheme to detect the occurrence of a
fault, and, when necessary, by performing a re-execution of
the computation. The classical DWC uses a TRC to perform
a bit-wise comparison, such that any single corrupted pixel
leads the image to be re-processed. The re-processing is
performed independently of the impact of the corruption on
the image, that is the number of corrupted pixels and effect
on the usability of the produced output. Our contribution
replaces the TRC with a more flexible SC (Fig. 2).

The solution we propose is general and can be applied to
other hardware/software platforms, provided the fault/er-
ror relations are opportunely adapted, to enable the flexible
identification of errors that can be tolerated. Future work
will investigate this extension.

4 A FLEXIBLE FAULT MANAGEMENT APPROACH

This section introduces the SC architecture and its design
methodology. Each SC is meant to handle different inter-
mediate data, therefore it is independently designed and
customized for the application step it analyzes. Although
it is not possible to design a single generalized module to
fit all SCs, the methodology and the practical process to
implement them is systematic and the application developer
can rely on it to obtain the custom SC modules.
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4.1 The Smart Checker architecture

Fig. 3 shows the internal structure of the Smart Checker (SC)
of each one of the DWC blocks depicted in Fig. 2 (where for
readability reasons, not all inputs of the module are shown).
The module receives the application input image and two
replicas’ outputs and determines whether a re-computation
is necessary (the output is a Boolean ok/ko signal). Given a
set of inputs, the following situations may arise:
• the replicas’ outputs are identical (no error occurred),
• the two replicas’ outputs are slightly different (a fault

corrupted one of them), or
• the two replicas’ outputs are heavily different (a fault

corrupted one of them) and it is necessary to further
investigate whether they are still usable or not.

The Difference Evaluator block computes the difference be-
tween the two replicas’ outputs, value by value, and the
percentage of such differences. If the percentage is above
a set α threshold the CNN is invoked on the application
input image and the difference of the two replicas’ outputs,
possibly after resizing. As illustrated in Fig. 3, the two
resized inputs to the CNN are stacked as different sets of
input channels to the CNN: For example, if the colored
input image has the three RGB channels, the CNN will
have a 6-channel input, the 3 channels of the resized input
image and those of the resized difference image. We employ
CNNs because they are the state-of-the-art in image feature
extraction and classification tasks. Here though, the CNN is
exploited in a different way, to determine the usability of
the intermediate data and the final output.

The defined two-step analysis is particularly promising
since it combines the reduced execution time of the simple
Difference Evaluator with the more accurate classification of
the time-demanding CNN. As a consequence, the selection
of a proper α threshold is particularly relevant. Such value
is empirically identified, based on the application scenario
and the usability of the corrupted images, and is determined
at design time, when training the CNN and the SC itself. In
particular, α is set to a value such that when the difference
is below, the output of the overall process is still usable by
the downstream application. When the difference is larger
than α, it may be necessary to re-process the image. In the
latter case, the CNN will make the final decision. While the
solution in [5] is based on a Difference module that computes
a per-pixel difference and triggers the CNN classification
every time there is a difference in the replicas’ outputs (i.e.,
acting as a TRC).

Finally, to limit the complexity of the classification pro-
cess and to reduce the execution time of the CNN, a resizing
block may be added to reduce the input image and the
difference of the two replicas. As we shall also demonstrate
in Section 5, resizing up to a certain downsampling rate
may provide a better overall tradeoff between accuracy and
execution time. For applications that involve high-resolution
image processing, resizing may degrade the overall perfor-
mance and thus can be omitted.

As discussed, the CNN is the most expensive compo-
nent in terms of computational complexity. Therefore, it is
invoked only when deemed necessary, because the time sav-
ings for not re-executing the processing must be balanced by
the time for running the SC. To this end, we have designed a

Figure 3. The proposed Smart Checker module.

general SC architecture presented in Fig. 3 to be customized
based on the stage of the image manipulation process. The
customizable items are 1) the threshold α of the Difference
Evaluator, and 2) the CNN.

This architecture includes both the traditional DWC
scheme (corresponding to setting α = 0% and having no
CNN block), and the solution presented in [5] (correspond-
ing to setting α = 0% and having a CNN block, i.e.,
invoking the CNN every time at least one pixel differs).
Should the cost of invoking the CNN be considerable with
respect to re-executing the application step, it is possible
to use the Difference Evaluator and trigger a re-execution
anytime the difference between the replicas is above a given
α (corresponding to α > 0% and no CNN block). This is a
limit case for the proposed methodology, therefore we will
focus on the more general case.

The identification of the most effective α value in re-
lation to the CNN, and the CNN design for each possible
processing step are discussed in the following.

4.2 Design Methodology
The key elements of the SC are the Difference Evaluator and
the CNN. The specific choice of the threshold α affects
the operation of both modules and thus the overall system
performance. In fact, a high α would reduce the number of
times the CNN is executed, thus increasing the time savings.
Indeed, such a choice would also potentially increase the
number of erroneous decisions taken by the SC. This is
because a high α would increase the number of images
that are accepted/discarded by only counting the number
of different pixels, without resorting to the “intelligence”
provided by the CNN. On the other hand, a low α would
represent a too conservative choice: In this case, the CNN
would be executed also when the two images are almost
identical, thus reducing both the number of errors but also
the time savings. The CNN needs to provide high accuracy
in classifying usable/unusable data. On the other hand,
a shorter CNN execution time is also desirable for time
savings. In fact, to reap any time saving benefits through
CNNs, a necessary condition is that the time saved by
reducing the number of unnecessary re-executions is more
than the time overhead incurred by the execution of the
CNN itself.

We adopt the design flow depicted in Fig. 4 to design and
optimize the α threshold value of the Difference Evaluator
and train the CNN. The process is executed once per each
step of the application to specifically tailor the SC module.
Inputs to the flow are i) the application to be analyzed, ii) the
hardware architecture where the application is executed,



5

Figure 4. The SC design methodology and flow.

iii) the fault models appropriate for the HW platform,
iv) a set of input images representative of the images the
application is meant to process, and v) an oracle that mimics
the final user of the results of the application under analysis.
The oracle is a tool that implements the post-conditions of
the considered image processing application, that are the
requisites for the usability of the inputs for the downstream
end-user application.1 The first stages of the design flow
(namely fault injection and error simulation) are used to
generate the training, validation and the test sets, used to
design and evaluate the SC. The best α threshold value is
chosen and several CNN architectures are trained and then
evaluated by means of the validation set. Once the best CNN
is identified, it is pruned to reduce its execution time, and
its performance is evaluated using the test set.

The design space considering all parameters at play is
too wide to be explored exhaustively, therefore the adopted
flow selects, in each phase, the local optimum. This strategy
does not guarantee the optimality of the overall solution,
however experimental results show that, in general, the final
design performs better than the discarded alternatives.

4.2.1 α Threshold Selection
The first stage of the design flow is to determine the best
α threshold value for the Difference Evaluator. First, a set
of candidate α values is identified. Then, for each α value
and for the specific training set, all images are processed
by the Difference Evaluator so configured, and we collect the
information of the class they belong to, among /D U, D /U,
D U and /D /U. The ultimate goal of the flexible fault man-
agement scheme is to benefit from situations where a usable
image is not discarded, thus α could be selected so that /D
U is the highest among all alternatives. However, the higher
the threshold, the higher the probability to erroneously
classify the image as usable when it is not. In this work,
we want to avoid false negatives, therefore the selected α is
the one that achieves the highest portion of /D U with the
lowest portion of /D /U, possibly 0%. Hence, there is one
and only one choice of α for the application requirements
considered in this work. In a relaxed application context,
it could be more convenient to accept a limited amount of
false negatives to achieve higher performance savings.

1. The oracle can be replaced by the end-user application if available.

All pixels are treated uniformly; it could be possible
to use other policies should the application and/or the
images allow for it. The Difference Evaluator would be further
specialized to trigger the re-computation in a more tailored
way, an opportunity we will investigate in the future.

4.2.2 CNN Design and Optimization
This design stage explores several CNN architectures to
determine which one is the most suitable to work in con-
junction with the chosen Difference Evaluator. We follow the
standard and widely adopted guidelines for CNN architec-
ture definition [20] still keeping in mind that there is no
“golden” network architecture that is guaranteed to work in
the best way for a specific task.

We adopt a CNN architecture composed of a number of
convolutional layers interleaved with max-pooling layers,
which perform dimensionality reduction and help pushing
the model towards better generalization. Also, the last layer
of the CNN is a fully-connected layer that performs the
final classification [21], [22], [23]. To obtain binary classifi-
cation, the activation function for the last layer is always
the Sigmoid function. All the other layers use the Rectified
Linear Unit (ReLU) activation function and the dropout
rates are always chosen between 0.25 to 0.5, to prevent
overfitting [24]. The CNN architectural parameters that have
to be tuned are the number of convolutional layers and the
number of filters per convolutional layer.

4.2.3 CNN Training
We train the defined CNNs with the Adam optimizer [25],
that exploits the benefits of both AdaGrad [26] and RM-
SProp [27] strategies. The considered classes consist of im-
ages that are deemed by the end user either usable and
acceptable (U) or unusable and rejected (/U). As our CNNs
deal with a binary classification problem, the objective loss
function used by the optimizer can be chosen to be the binary
cross-entropy∑

s∈S −(wUys log(ps) + w/U (1− ys) log(1− ps)) (1)

with class weights wU , w/U . Here, S is the sample set, ys is
the label of sample s, and can only assume 0 (reject) or 1
(accept). Also, ps is the output of the CNN, representing the
likelihood that an image should be accepted.
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The weights wU and w/U represent the impact of mis-
classifications of samples of the corresponding class on the
loss function. When w/U = wU , every misclassification has
the same impact on the loss function. When w/U > wU , the
training will be biased towards reducing the cases where
a /U image is classified as U. In other words, setting
w/U > wU attempts to minimize the number of /D /U
cases, although potentially increasing the number of D U.

In our design flow, we trained each CNN with the
latter configuration (w/U > wU ) and optimized the ratio
w/U/wU to minimize the amount of /D /U while still
keeping the D U percentage low. To prevent overfitting,
Early Stopping [28], Dropout [24] and Ridge Regularization [29]
are employed.

The CNN is trained only on the set of training images
that are rejected by the difference evaluator. A similar
design choice is considered in the context of multi-stage
conditional neural networks [30], [31]. In particular, in [30],
a given stage of a multi-stage CNN is trained using only the
training samples that are passed from the previous stage.
Still, another option may be to use the entire training set for
training the CNN. In this case, the resulting CNN should
also learn to correctly label the images that are accepted by
the difference evaluator as “usable,” increasing the overall
complexity of the SC. Another disadvantage of the latter
option is increased training time due to a larger set of
training samples. Intuitively, training a CNN over a set of
images that it will never encounter translates to a waste of
neural computing resources.

4.2.4 CNN Pruning

Pruning a CNN means modifying it by removing connec-
tions, neurons or convolutions. This reduces the number of
parameters and, as a consequence, the execution time. The
expected execution time reduction typically ranges from 3x
to 11x.

We applied the following two algorithms [32]:
• Average Percentage of Zeros (APoZ): the connections in a

layer that most often produce zeros are pruned.
• Sum of Absolute Weights (SoAW): typically, very few

connections in a CNN have large weights, while many
connections have small weights. The former type of
connections are the ones that affect the final classifi-
cation the most. Under this assumption, it is possible to
prune the low-weight connections without impacting
the classification accuracy.

After pruning, the CNN needs to be re-trained to allow the
remaining connections to adjust their weights.

We designed an automated and iterative CNN pruning
process that applies the APoZ and the SoAW algorithms, re-
trains the pruned CNN and evaluates the new classification
accuracy by using the validation set. In case the difference
between the original accuracy and the new accuracy is lower
than a given threshold, the pruned CNN is accepted and
a new pruning iteration is attempted. If the difference in
accuracy exceeds the threshold the pruning procedure ends.

Regarding the complexity of the pruned CNNs, we note
that our applications involve several non-trivial steps in
general. SCs operate at each step to decide whether the final
output of the system, after passing through all remaining

Algorithm 1 The training set generation procedure
Inputs:
DS : image dataset
si : application’s step to be analyzed

Outputs:
TS : computed training set

Body:

1: TS ← {}
2: for all I ∈ DS do
3: for e← 1 to E do
4: ri ← run_application_steps(I , s1, si)
5: r∗i ← inject_random_error(ri, si)
6: r∗N ← run_application_steps(r∗i , si+1, sN )
7: rN ← run_application_steps(I , s1, sN )
8: label← oracle(r∗N , rN )
9: TS ← TS ∪ 〈I, r∗i , ri, label〉

10: end for
11: end for

steps, would be usable or not. Therefore, CNNs of the corre-
sponding SCs should necessarily be “complicated enough”
to capture the effects of the non-linearities that will follow.

4.2.5 Fault Injection and Error Simulation
This stage of the design flow generates the training, valida-
tion and test sets for the CNN starting from a set of input
images that are representative of what the application will
process at runtime. We split the fault injection experiment
from the error simulation one to be effective in terms of the
overall time required to carry out the training, validation
and test sets generation. Indeed, when performing fault
injection on a microprocessor, it might occur that the fault
either causes a crash or timeout of the application (we
do not consider such cases, as previously discussed) or it
does not affect the output. Thus, the number of corrupted
outputs may be small with respect to the number of fault
injection experiments. On the other hand, for an effective
CNN training, a large number of corrupted output data is
required.

Given a specific application step, we first perform a
fault injection campaign to collect a significant number of
corrupted intermediate outputs. This phase is performed by
using a fault injection tool capable at simulating both the
considered architecture and fault models (which are the tar-
get microprocessor architecture and the SEUs, respectively,
in the considered scenario). Each corrupted output consist-
ing in a distortion of the nominal result is representative
of the different ways a fault can affect the computations of
the considered processing step. Based on these corrupted
images, we manually extract distortion patterns and we
categorize them into a set of representative error models
that we use in the subsequent automated error simulation
campaign. Differently from fault injection, in error simula-
tion, every experiment produces a corrupted result.

Error simulation is then employed in the procedure
reported in Algorithm 1 to generate the training set for each
step si of the considered application. For each image in the
input dataset, the algorithm simulates E different random
errors to produce a corresponding number of items to be
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Figure 5. The structure of the Buildings Identification Application.

included in the training set TS (Lines 2–3). The input image
I is first processed by using the previous application’s steps
from s1 to si, an error is randomly selected among the
available models for the current step si and injected in the
intermediate result ri (Lines 4–5). The corrupted intermedi-
ate output r∗i is then elaborated by means of the remaining
steps from si+1 to sN to obtain the final corrupted image
r∗N (Line 6). A golden final output rN is also computed by
running the entire application, so that the pair r∗N and rN are
used as input for the oracle to classify the experiment with
a usable/unusable label, i.e. U or /U (Lines 7–8). Finally,
the obtained tuple 〈ri, r∗i , I, label〉, where the three items
represent an instance of possible inputs of the SC and the
label the desired classification, is added to the training set
TS (Line 9). The test set and the validation set are generated
by following the same algorithm.

5 EXPERIMENTAL RESULTS AND DISCUSSION

In this section we first describe the experimental setup, then
we report the results for the two application case studies.

5.1 Experimental Setup
The design process of the SCs is realized by a Python frame-
work that implements for each SC, its modules, namely the
Difference Evaluator (dubbed DiffEv in the tables) and the
CNN. For CNN design and training, TensorFlow and Keras
Python packages have been adopted [33].

The fault injection campaign is carried out using
LLFI [19], which can inject hardware faults mimicking SEUs
in the application software being executed, targeting the
processor and the memory (e.g., instruction’s operand bit-
flip, data corruption). We ran a campaign for each applica-
tion’s step, identifying for each one a set of error models that
can occur on the output. As a result, the error models are
associated with the specific application steps being executed
and the hardware architecture on which it is run.

The applications are implemented in C++, as well as the
final deployed SCs, and all performance evaluations (i.e.,
execution times) are collected on an Odroid Board XU3 with
a single-core Arm A15 architecture and tasks scheduled in a
time-triggered fashion.

For each case study, we discuss the process for the
identification of the α parameters of Difference Evaluators,
and the CNN design and pruning phases. Finally, we report
the execution times and performance gains of the fault
management scheme, in comparison with respect to the
classical DWC solution and the one presented in [5].

5.2 Case Study #1: Buildings Identification
Our first application identifies buildings in aerial images.
The application accepts a bitmap and produces a heatmap

of the same size where each input pixel in the input image
is encoded with the probability of the pixel to belong to a
building. Bounding-boxes are then drawn on the heatmap to
highlight the identified buildings. An example input image
and the corresponding output are shown in Fig. 1. The
block diagram of the application is illustrated in Fig. 5. The
application is composed of four steps: i) sharpening (S) is
an convolution that applies a sharpening kernel. This step
takes an image and produces the corresponding sharpened
image; ii) thresholding (T) performs a pixel-wise classification
by doing a channel-wise comparison of the values; iii) re-
shape&convolution (R&C) performs a classification based on
image reshaping and then a convolution. The two precious
classification steps take the sharpened image and produce
two matrix of probability values. iv) aggregation (A) per-
forms a pixel-wise multiplication between the outputs of
the two previous steps to aggregate their classifications. This
step takes two matrices and produces the output heatmap.

As a simple end-user application for the building iden-
tification, we implemented an oracle that given a (possibly
faulty) heatmap and the corresponding correct one outputs
a usable label if the bounding-boxes on the two heatmaps
overlap for at least the 85% of the total area.

5.2.1 Training/Validation/Test Set Generation
For our first case study, we generated a dataset of input
images by collecting about 1,000 aerial images of a set of
cities from Bing maps (by using the available API [18]).

We performed fault injection experiments with LLFI in
the four steps of the building identification application. The
identified error models, similar for the different stages, are:
i) image shift, a portion of the output matrix is shifted; ii) black
area, a portion of the output matrix is set to black; iii) black
spots, pixels, lines or squares are set to black; iv) color change,
a constant change in the likelihood index of a part of the
output matrix occurs (on an image it appears as a change in
the luminosity, hence the name).

We generated a training dataset for each application’s
step based on the procedure in Algorithm 1; in particular, we
corrupted each one of the 1,000 input images by simulating
10 different error models, generating a training set consti-
tuted by 10,000 corrupted images. Similarly, we generated
the validation and test sets, starting from other 300 and 1,000
images, respectively, from different cities and simulating 10
errors per each one.

5.2.2 α Threshold Selection
Each one of the four Difference Evaluator blocks is designed
and tailored to allow corrupted images not to be discarded
provided the CNN is able to correctly decide whether it
is necessary to repeat the processing. The customizable
parameter is the α value of the percentage of the number of
different pixels between the two replicas, such that no false
negatives (/D /U) occur. We have explored integer values of
α ∈ [0, 10], analyzing both the distribution of the classified
images in one of the four classes, and the execution times,
comparing the results against the baseline (the TRC module,
adopted in both the classical DWC technique and the one
presented in [5]). All experiments have been executed on a
set of 10,000 samples, and for each α value, we analyzed
the behavior of the Difference Evaluator with respect to its
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Table 2
Corrupted image management for different α values for the R&C step

D /U /D U D U /D /U
α = 0 ≡ TRC 54.46 0.00 45.54 0.00
α = 1 54.46 34.81 10.73 0.00
α = 2 54.46 35.86 9.68 0.00
α = 3 54.46 36.72 8.82 0.00
α = 4 54.46 37.54 8.00 0.00
α = 5 54.46 38.15 7.39 0.00
α = 6 54.46 38.77 6.77 0.00
α = 7 54.46 39.30 6.24 0.00
α = 8 54.45 39.81 5.73 0.01
α = 9 54.45 40.46 5.08 0.01
α = 10 54.41 40.74 4.80 0.05

Table 3
Difference Evaluators Characteristics – Case Study #1

S T R&C A
α 1% 2% 7% 2%

decision to keep the image or not, and by observing whether
the final output was indeed usable.

Results for the Difference Evaluator on the R&C step
are reported in Table 2. The first column identifies the
adopted α threshold; the subsequent four columns report
the percentage of images classified as D /U, /D U, D U
(false positives) and /D /U (false negatives), respectively.
Following our discussion in Section 4.2.1, we can observe
from Table 2 that the best choice is α = 7% since it provides
the highest flexibility (i.e., the highest number of /D U)
without incurring false negatives.

The same process has been carried out for all the four
steps, collecting similar data; the adopted final implementa-
tions of the four Difference Evaluators are reported in Table
3. The execution time for this module is 4.7ms, the same
execution time required by the TRC module.

5.2.3 CNN Architecture Design and Training
Once the Difference Evaluators are tuned, the Resizing Block
and the CNN are designed in a single phase. We explored
different feedforward CNN architectures.

Architectural optimization can significantly improve the
performance of any neural network. In this context, we
note that our work is the first to utilize neural networks
for deciding image usability in reliable image processing
applications. The input channels to the neural network are
the input image and a difference map obtained at a certain
application step. While the best neural network architec-
tures for usual image classification tasks (where the input
to the neural network is a mere image) are well-understood,
finding the best network architecture for our specific sce-
nario is thus an open problem. Our proposed solution here
is a simple grid-like search where we try certain well-known
network architectures, followed by pruning. One can also
potentially utilize some of the existing neural architecture
search algorithms [34], [35] for finding an appropriate neural
network topology for the SC. Extensions of our results in
this direction are left as future work.

Our networks differ in the amount of filters in their
convolutional layers, to analyze how the number of ex-
tracted features impacts the final accuracy. Among the sev-

Table 4
Execution times of different SCs architectures – Case Study #1

const_filters fat_to_thin thin_to_fat bell
Time (ms) 33.2 98.3 30.9 18.1

eral explored solutions, we report here the most effective
implementations. In all networks, the last two layers are
fully connected layers with 25 neurons and a single neuron,
respectively.

• const_filters: This architecture has the same number of
filters in each convolutional layer. The network config-
uration is 2+3+2, meaning that the sequence of network
layers is given by two convolutional layers, a max-
pooling layer, three more convolutional layers, a max-
pooling layer, and two more convolutional layers (and
the two fully-connected layers as mentioned previ-
ously). Each convolutional layer has 20 filters.

• fat_to_thin: In this architecture, the number of filters
decreases at each subsequent layer of the network.
The network configuration is 2+2+2. The convolutional
layers have 40, 35, 30, 30, 30, and 20 filters, respectively.
The rationale is to extract as many features as possible
in the beginning and then elaborate and compress the
extracted information towards the final layer of the
network. Due to the large number of features extracted
in the first layers, the inference time will be relatively
high when compared with the other architectures.

• thin_to_fat: This topology provides an increasing num-
ber of filters at each layer while the feature maps’
height and width decrease. The network configuration
is 2+2+2. The convolutional layers have 20, 25, 30, 30,
40, and 40 filters, respectively. The architecture puts
more emphasis on low-level features as compared to
high-level ones. By extracting few features in the first
layers keeps the execution time at moderate levels.

• bell: A cross of thin_to_fat and fat_to_thin architectures,
the number of features extracted with the bell topology
follows a “bell-shaped” curve. The network configura-
tion is 2+6+2. The convolutional layers have 10, 10, 20,
20, 25, 25, 25, 30, 30 and 20 filters, respectively.

We collected the execution times of the different CNN
alternatives, as shown in Table 4. Execution times are in-
fluenced by the architecture itself, designed according to
the input size, which is the same for all steps in this
case study. To reduce the size of the CNN inputs, and
consequently the execution time, a Resizing Block is used.
We have empirically observed that a 15x15 Resizing Block,
which performs downsampling by 15 for each dimension
of its input, has provided the best possible performance in
terms of the accuracy/execution time trade-off.

The CNN performance is evaluated in terms of its ability
to discriminate between the usable and unusable images,
which depends on the dataset and the choice of the thresh-
old α. For each application step, we analyzed the perfor-
mance of different CNN architectures. Detailed results for
the R&C step are reported in Table 5. The CNN is triggered
by the Difference Evaluator, configured as previously speci-
fied (α = 7%). All alternatives are affected by a limited but
a non-zero number of false positives (/D /U). In accordance
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Table 5
Performance of different CNN architectures for the R&C step

CNN arch. D /U /D U D U /D /U
bell 54.64 40.54 4.72 0.10
fat_to_thin 54.32 41.48 3.78 0.42
thin_to_fat 53.93 42.00 3.27 0.81
const_filts 54.22 41.71 3.56 0.52

Table 6
Intermediate Comparative Analysis

Approach D /U /D U D U /D /U Avg. Time (ms)
TRC + CNN [5] 50.3% 35.6% 13.9% 0.2% 691.17
DiffEv + CNN 50.4% 39.9% 9.6% 0.1% 672.21

with the design strategy outlined in Section 4.2.1, we select
the solution with the smallest number of false negatives.
In the case of the R&C step, the corresponding optimal
architecture turns out to be the bell architecture.

The same study has been carried out on all the filters of
the Case Study #1. The bell architecture offers the best results
with respect to the other alternatives for all steps except the
Thresholding (T) step of the process, where the const_filts
solution performs better.

The next step of the design flow is pruning the chosen
CNNs. The pruning is performed in such a way that it will
improve the time-efficiency of the CNN without any loss of
its classification performance. Note that an alternate design
flow for a better time-efficiency/classification performance
trade-off could be to choose between the pruned versions
of different network architectures. On the other hand, in our
experiments, it became apparent that such a design flow will
not be feasible as pruning is a computationally-intensive
process. Therefore, for each SC, we have first selected the
best unpruned network architecture, and then proceeded
with pruning the chosen architecture.

Our design approach is comparable to the one presented
in [5], where the CNN is triggered by the TRC and is not
pruned. Although that previous scheme is only a special
case of our final proposed scheme, the design space explo-
ration on the CNN architecture and the use of the Difference
Evaluator allow us to achieve already a better performance,
as highlighted by the results in Table 6, where we report
the overall performance of the schemes, and the execution
times averaged on the distribution of classification cases (D
/U, /D U, D U and /D /U) that occur.

5.2.4 CNN Pruning
We applied the two strategies described in Section 4.2.4,
APoZ followed by SoAW. Obviously, at the end of the prun-
ing process, the architecture of the initial CNN is modified.
However, for brevity, we refer to the modified architecture
with the same name as the design we initially adopt. Table 7
reports the execution times of the CNNs, together with the
achieved savings, that range from 69% to 88%.

Once the pruning has been performed, the final imple-
mentation of each SC module is completed. Table 8 reports
the execution times for the four SC modules of this case
study, also listing the same information for the baseline
solutions. In particular, the first two columns list the name

Table 7
CNNs Execution Times – Case Study #1

Appl. CNN Exec. time (ms)
step Arch. Initial Pruned Improve.

S pruned bell 18.10 2.52 86%
T pruned const_filts 33.20 10.28 69%
R&C pruned bell 18.10 2.21 88%
A pruned bell 18.10 2.63 85%

Table 8
Checkers’ Execution Times – Case Study #1

Worst Case Avg. Case
Appl. Exec. time TRC [5] SC [5] SC
step (ms) (ms) (ms) (ms) (ms) (ms)

S 97.0 4.7 29.8 14.22 29.8 10.80
T 32.0 4.7 29.8 21.98 29.8 17.67
R&C 185.0 4.7 29.8 13.91 29.8 10.29
A 34.0 4.7 29.8 14.33 29.8 9.79

of the application step and its execution time. Columns three
and four report the execution times for the TRC adopted in
the classical DWC solution, and the checker adopted in [5]
(TRC and CNN), respectively. The last column reports the
time of the proposed SC when the CNN is invoked. When
the CNN is not invoked, only the Difference Evaluator is
executed, resulting in an execution time that is identical to
the execution time of the TRC.

5.2.5 Complete Hardened Application
It is now possible to analyze the complete hardened ap-
plication, in terms of performance and execution time. We
compare the proposed scheme against the baseline schemes,
namely the DWC and the scheme proposed in [5] (TRC
and CNN) enhanced with the selection of the best CNN
architecture, not part of the original work (labeled [5]+).

The results of this analysis are reported in Table 9.
Pruning yields a 7.12% execution time improvement with
respect to the SC with the initial CNN architectures, leading
to a final 14.89% improvement with respect to the classical
DWC solution. In comparison with the scheme in [5], a
10.36% improvement is obtained.

By looking at the performance of the pruned solution
with respect to the usability/discarding of the images, it is
worth noting that the pruning does not significantly affect
the accuracy, and even reduces the number of false negatives
to 0.3%. We believe this may happen as a new training phase
is performed after pruning every connection.

The final SC produces an average of 8.5% of D U images,
while the amount of /D /U is 0.3%, leading to a final
SC accuracy of 91.2%. When considering the reliability of
the hardened application, we only take false negatives into
account. The end result is an accuracy of 99.7%, which is
within acceptable margins in non-safety-critical scenarios.

5.3 Case study #2: Land Segmentation

The second application we considered takes as input
patches of aerial images and uses a CNN to classify each
patch. The CNN outputs the likelihood of the patch to
belong to each one of 4 considered classes (barren land,
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Table 9
Fault Management Scheme Performance – Case Study #1

Avg. time
Approach D /U /D U D U /D /U (ms)

TRC (classical DWC) 50.5% 0.0% 49.5% 0.0% 733.60
[5]+ 50.4% 35.5% 14.0% 0.1% 696.53

DiffEv + CNN 50.4% 39.9% 9.6% 0.1% 672.21
DiffEv + pruned CNN 50.2% 41.0% 8.5% 0.3% 624.33

(a) Barren Land (b) Trees

(c) Grassland (d) Other

Figure 6. Examples of classes for Case Study #2. Images are taken from
SAT-4 database [36].

trees, grassland, or other). As the classes are mutually exclu-
sive, all the likelihoods sum up to 1 and therefore the final
classification is the class with the highest likelihood. Fig. 6
shows some examples of the patches in the dataset with the
respective classes reported in the caption. To structure the
application in multiple steps, we split the land segmentation
application into a number of intermediate layers. The first
layer accepts an image and produces a feature matrix. The
intermediate layers accept a feature matrix and produce
a feature matrix. Finally, the final layer accepts a feature
matrix and produces the final classification.

Again, as a simple end-user application for the land seg-
mentation we implemented an oracle that given a (possibly
faulty) output of and the corresponding golden counterpart
og assigns to the result a usable label if the Manhattan
distance (or L1-norm) of the two output vectors ‖of − og‖1
is lower than a set threshold 0.05.

5.3.1 Training/Validation/Test Set Generation
For the second case study we used as input dataset a subset
of 20,000 images from the SAT-4 database [36].

We performed fault injection experiments on the various
layers and the outcome is the following set of error models:
i) matrix shift, a part of the feature matrix is shifted; ii) zero
area, a portion of the feature matrix is set to zeros; iii) zero
spots, pixels, lines or squares of the feature matrix are set to
zeros; iv) value change, the values of a portion of the feature
matrix are increased/decreased of a given constant value.

We corrupted each one of the input images by simulating
10 different error models, generating a training set of 200,000

Table 10
Execution times of different SCs architectures – Case Study #2

Exec. time (ms)
1 Branch 2 Branches 4 Branches 8 Branches

Step 1 10.10 11.58 23.68 47.50
Step 2 4.60 3.01 6.10 12.25
Step 3 1.10 1.08 2.20 4.55

Table 11
Performance of different CNN architectures for Step 1 – Case Study #2

D /U /D U D U /D /U
1 Branch 14.92 80.99 3.14 0.95
2 Branches 12.90 82.97 1.16 2.98
4 Branches 13.39 81.86 2.27 2.48
8 Branches 12.55 82.72 1.41 3.33

corrupted images. Similarly, we generated the validation
and test sets starting from 6,000 and 10,000 different images,
respectively, taken from the same database.

5.3.2 α Threshold Computation
As for the first application, the first step here is to deter-
mine the α thresholds for the Difference Evaluators in the
SCs. To this purpose we ran the same experiment reported
in Section 5.2.2. This experiment highlighted that for the
second application there is always a non-zero number of
false negatives, even for very low threshold values. Thus, to
avoid misclassifications, it is necessary to set α = 0%, that
is to use a TRC for all three steps of the application.

5.3.3 CNN Architecture Design and Training
The spatial dimensions of the output of the three application
steps are relatively small, ranging from 5x5 to 26x26. Thus,
the CNN of the SC does not need to be particularly deep
for accurate image classification and input resizing is not
necessary. We thus considered a “branching” architecture,
where n different branches of CNNs accept the same input
but operate independently. In other words, the branches do
not share any weights or connections. The outputs of the
n CNN branches are concatenated and fed to a final fully-
connected layer, which provides the classifier output. We
explored four CNN architectures, characterized by 1, 2, 4
and 8 branches (the first architecture being equivalent to a
“regular” CNN). We report the resulting execution times
in Table 10. Since the size of the inputs of each CNNs is
different between the three application steps, we observe
different execution times.

The CNN classification performance for each possible
architecture is reported in Table 11 for Step 1 of the appli-
cation. As before, for each application step, we select the
architecture characterized by the smallest number of /D /U
cases. The corresponding best architecture is “1 Branch” for
Step 1. The same choice is carried out for Step 3, in which
case the “2 Branches” architecture is selected. In Table 12, we
compare our unpruned intermediate solutions against the
scheme proposed in [5]. The results highlight the benefits
of exploring the solution space with respect to the CNN
architecture, since both solutions use the TRC to trigger
classification.
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Table 12
Intermediate Comparative Analysis – Case Study#2

Avg. time
Approach D /U /D U D U /D /U (ms)

TRC + CNN [5] 11.9% 75.7% 9.6% 2.8% 137.58
TRC + CNN 12.4% 76.4% 8.9% 2.3% 135.85

Table 13
CNNs Architecture Design and Execution Times – Case Study #2

Appl. CNN Exec. time (ms)
step Arch. Initial Pruned Improve.

Step 1 1 Branch 10.10 4.25 58%
Step 2 2 Branches 3.01 1.50 50%
Step 3 1 Branch 1.10 0.60 45%

5.3.4 CNN Pruning
We applied the same two pruning strategies described in
Section 4.2.4 and re-trained the CNNs. The resulting ex-
ecution times are reported in Table 13. We can observe
that pruning provides a 45%-58% improvement in execution
times. The complete execution times of the various checker
solutions are shown in Table 14. We note the significant
improvement compared to our initial work [5].

5.3.5 Complete Hardened Application
Execution times for the implemented SC modules are used
to determine the performance of the completely hardened
architecture. We report the overall performance and exe-
cution times in Table 15, and compare with the baseline
solutions. Similar to the previous case study, the number of
false negatives provided by the pruned networks is lower
than the unpruned networks. The final implementation is
characterized by an accuracy of 88.00%. When computing
the reliability of the solution, affected by false negatives
only, we achieve a 98.40%. From the execution time point of
view, the final implementation improves the classical DWC
solution of 34.72%, and the proposal in [5] by 4.89%.

As a final consideration, both the actual and the ide-
ally optimal solutions are characterized by higher improve-
ments, notably because of the nature of the adopted appli-
cation, that is inherently more tolerant to a certain degree of
inexactness.

6 CONCLUSIONS

This paper has presented a novel time-efficient flexible fault
management scheme for image processing applications. We
extend the classical DWC approach by predicting the usabil-
ity of the application output, based on a classification of the
intermediate, possibly corrupted, data. Such fault manage-
ment scheme stems from the adoption of a new paradigm
in fault detection/tolerance: we move from the classical
corrupted/not corrupted image model to usable/unusable
one. The result empowers image processing applications
with fault tolerance requirements to discard only those out-
puts that would actually lead to a system failure. Avoiding
unnecessary re-executions reduces the typical reliability-
related overheads, such as time and power.

The proposed approach has been applied to two image
processing applications related to the aerospace scenario.

Table 14
Checkers’ Execution Times – Case Study #2

Appl. Exec. time TRC [5] SC
step (ms) (ms) (ms) (ms)

Step 1 30.25 0.09 11.65 4.34
Step 2 42.65 0.04 3.05 1.54
Step 3 26.0 0.01 1.09 0.61

Table 15
Fault Management Scheme Performance – Case Study #2

Avg. time
Approach D /U /D U D U /D /U (ms)

TRC 14.7% 0.0% 85.3% 0.0% 197.94
TRC + CNN [5]+ 12.4% 76.4% 8.9% 2.3% 135.85
TRC + Pruned CNN 13.1% 74.9% 10.4% 1.6% 129.20

Experimental results have demonstrated the effectiveness
of the approach, supported by the overall time saving of
14.89% and 34.72% for the two applications, respectively.
Our approach has also incurred a low rate of false nega-
tives, being corrupted images that could not be detected. In
particular, the false negative rates have been in the range
of 0.3% and 1.6% for the two case studies, respectively, and
thus are well within acceptable margins.
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