
1

BLADE: An in-Cache Computing Architecture
for Edge Devices

William Andrew Simon , Student Member, IEEE, Yasir Mahmood Qureshi , Student Member, IEEE,
Marco Rios , Student Member, IEEE, Alexandre Levisse , Member, IEEE,

Marina Zapater , Member, IEEE, and David Atienza , Fellow, IEEE

Abstract—
Area and power constrained edge devices are increasingly utilized to perform compute intensive workloads, necessitating increasingly
area and power efficient accelerators. In this context, in-SRAM computing performs hundreds of parallel operations on spatially local data
common in many emerging workloads, while reducing power consumption due to data movement. However, in-SRAM computing faces
many challenges, including integration into the existing architecture, arithmetic operation support, data corruption at high operating
frequencies, inability to run at low voltages, and low area density. To meet these challenges, this work introduces BLADE, a BitLine
Accelerator for Devices on the Edge. BLADE is an in-SRAM computing architecture that utilizes local wordline groups to perform
computations at a frequency 2.8x higher than state-of-the-art in-SRAM computing architectures. BLADE is integrated into the cache
hierarchy of low-voltage edge devices, and simulated and benchmarked at the transistor, architecture, and software abstraction levels.
Experimental results demonstrate performance/energy gains over an equivalent NEON accelerated processor for a variety of edge device
workloads, namely, cryptography (4x performance gain/6x energy reduction), video encoding (6x/2x), and convolutional neural networks
(3x/1.5x), while maintaining the highest frequency/energy ratio (up to 2.2Ghz@1V) of any conventional in-SRAM computing architecture,
and a low area overhead of less than 8%.

Index Terms—In-memory computing, in-SRAM computing, bitline computing, edge computing.

F

1 INTRODUCTION

A S edge devices are being increasingly utilized to per-
form compute intensive tasks traditionally reserved

for servers with access to standard accelerators such as
GPUs [1], [2], a wide range of compute architectures that are
specially suited for edge devices’ area and power constraints
have been proposed. One such innovation is the concept
of near or in-memory computing [3], [4], which improves
performance by computing at the point of data storage.
Such architectures are placed near DRAM, within the cache
hierarchy, or as separate accelerator units with dedicated
memory arrays. In particular, in-SRAM Computing (iSC)
shows promise by performing massive SIMD operations
at a small area/energy cost [5]. Many iSC architectures
have been proposed [6], [7], [8], with each demonstrating
different aspects of the technology. However, each work also
suffers from various shortcomings in relation to simulation
methodology, electrical design, or application support. In
particular, many of the works lack thorough analysis of
system level integration implications, as well as demonstra-
tion of functionality within a full software stack. Also, data

• The authors are with the Embedded Systems Laboratory, Swiss
Federal Institute of Technology, Route Cantonale, 1008 Lausanne. E-mail:
{william.simon, yasir.qureshi, marco.rios, alexandre.levisse, marina.zapater,
david.atienza}@epfl.ch

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below. Digital
Object Identifier no. 00.0000/TC.0000.0000000

corruption within the SRAM array is a prominent problem
for iSC architectures [3], [5], and the solutions proposed so far
within literature either greatly reduce operating frequency [3]
or area efficiency [6]. Finally, many proposed architectures
do not support arithmetic operations such as addition,
subtraction, or multiplication, and are therefore limited in
accelerating arithmetic workloads [5], [6], [9].

Within this context, we present a BitLine Accelerator for
Devices on the Edge (BLADE). BLADE is an iSC architecture
targeted specifically for implementation in low-power edge
devices. It performs massive SIMD bitwise and arithmetic
computations required by emerging edge device workloads
directly in the cache hierarchy, obviating the need for
costly data movement or time-consuming CPU computation.
BLADE addresses each of the previously described short-
comings prevalent in other iSC architectures. Design choices
are motivated from the transistor, architectural, and system
levels in order to demonstrate the architecture’s energy
and performance characteristics at all levels of abstraction.
BLADE divides wordlines into isolated subgroups called
local groups, eliminating the risk of data corruption, and
utilizes a carry lookahead adder and operation pipelining to
improve iSC operating frequency by 2.3x-2.8x compared to
previous iSC architectures, while maintaining a low (8%)
area overhead and functioning at the lowest operating
voltage (0.6V) of any 6T bitcell iSC architecture. We integrate
BLADE into an edge device cache hierarchy and benchmark
it within a fully functioning Linux environment, enabling
consideration of system level events such as cache misses,
coherence requests, and CPU/cache hierarchy pipeline stalls.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works

Published in IEEE Transactions on Computers, vol. 69, no. 9, pp.
1349-1363 which should be cited to refer to this work.
DOI: 10.1109/TC.2020.2972528

https://orcid.org/0000-0001-7357-7204
https://orcid.org/0000-0002-2516-3899
https://orcid.org/0000-0001-8251-6390
https://orcid.org/0000-0002-8984-9793
https://orcid.org/0000-0002-6971-1965
https://orcid.org/0000-0001-9536-4947
http://dx.doi.org/10.1109/TC.2020.2972528

2

Architecture

Level

Compute

Type

CPU SRAM DRAM
I/O I/O

Fig. 1. Computing architecture showing the locations of in-SRAM and
near memory computing extensions.

We therefore present the contributions of this paper as
follows:

• We introduce BLADE, a holistically designed and
simulated iSC architecture capable of arithmetic oper-
ations, designed specifically for edge devices.

• We utilize local bitlines, operation pipelining, and
carry-lookahead addition to achieve the best volt-
age/frequency Pareto curve of any 6T iSC architecture
(0.6V/416MHz-1V/2.2GHz for bitwise operations),
validating our design in 28nm CMOS technology.

• We situate BLADE within the cache hierarchy, explain
BLADE controller functionality, and propose Instruc-
tion Set Architecture (ISA) extensions that enable
application support.

• We benchmark BLADE on the gem5-X architectural
simulator using three edge device workloads, namely,
cryptography, image processing, and neural networks,
demonstrating 4x/6x, 6x/2x, and 3x/1.5x perfor-
mance/energy gains respectively.

The remainder of the paper is organized as follows.
Section 2 provides background on the design and chal-
lenges of iSC architectures. Section 3 details the subarray
optimizations allowing BLADE to run at high frequency with
a low energy consumption while avoiding data corruption.
Section 4 explains how arithmetic operations are supported.
Section 5 details BLADE’s integration in the cache hierarchy
and its interaction with the rest of the architecture. Section 6
provides information on BLADE’s electrical validation as
well as subarray design space exploration results. Section 7
details the methodology for evaluating BLADE at the system
level. Section 8 illustrates our benchmark application results.
Finally, Section 9 concludes this work.

2 BACKGROUND AND CHALLENGES

When making design decisions for any novel architecture,
balancing many competing factors is necessary, including
functionality and generalizability, integration and implemen-
tation details, and area and energy costs. In relation to near
and in-memory computing architectures, three such factors
must be asked when considering the benefits and trade-offs
of such architectures, namely, where to compute, what type
of computation to be performed, and what challenges do
architects face in performing said computation.

2.1 Where to compute: von Neumann vs. iSC vs. NMP
Traditional computer architectures utilize the well-known
von Neumann architecture [10], which simplifies design

and enables modularity by considering the CPU, memory
hierarchy, and any other blocks or accelerators the architect
includes as discrete blocks, connected by a bus. However,
as CPU speed and memory size have both evolved much
faster in relation to available interconnect bandwidth, the von
Neumann architecture has increasingly faced challenges with
data transfer, known as the von Neumann bottleneck [11].
Thus, two new fields of research have opened that attempt
to alleviate this bottleneck, namely, Near Memory Processing
(NMP) and in-SRAM Computing (iSC). The locations of
these two new fields within the traditional von Neumann
architecture are illustrated in Figure 1.

2.1.1 Near Memory Processing (NMP)
Near Memory Processing (NMP) is the practice of placing
compute logic near memory, generally DRAM, in an effort to
decrease access time [4]. Many architectures allocate compute
blocks on the logic layer of HMC DRAM [12], [13], [14],
[15]. Other works couple GPU architectures with 3D stacked
memories [16], [17]. Still others utilize reconfigurable logic
near the DRAM [18], [19], [20].

While NMP computing shows promise, there is still much
research to be done to validate its feasibility. First, from an
integration standpoint, NMP poses a challenge in regards
to virtual-physical memory translation and managing cache
coherency [4]. Second, from an application viewpoint, few
works provide potential solutions for optimizing algorithms
to utilize NMP units while accounting for data locality [17],
[21]. Finally, the HMC logic layer area/power budget is very
constrained, thus limiting NMP logic complexity [13].

2.1.2 in-SRAM Computing (iSC)
In contrast to NMP architectures, iSC architectures allocate
compute logic immediately adjacent to SRAM bitcell arrays,
either in dedicated iSC accelerators or in the preexisting cache
of the memory hierarchy. iSC architectures take advantage
of the SRAM array’s BitLine/WordLine (BL/WL) structure
to perform massive numbers of computations in a SIMD-
like manner [5]. These architectures exploit the inherent
data locality found in many applications to perform these
operations, similar to other SIMD accelerators such as ARM’s
NEON [22] and Intel’s AVX [23] architectures. Further,
when integrated into a cache hierarchy, iSC architectures
reduce energy consumption by (a) taking advantage of the
cache’s set/way allocation scheme to align data and avoid
unnecessary data movement, as explained in Section 5.2, and
(b) reducing data movement between the cache and the CPU.
This is accomplished at a minimal area overhead, as the iSC
architecture augments preexisting hardware. As BLADE is
an iSC architecture, the scope of this paper will be limited to
such architectures, and this work’s contributions to the state
of the art in this field.

2.2 What to compute: Simple vs. Arithmetic Operations
Choosing which operations to support in iSC architectures is
not trivial, as there is a complex interrelationship between
operation complexity, latency, throughput, and area overhead.
Many iSC architectures support only bitwise operations,
through a technique known as bitline computing, first
demonstrated by Jeloka et al. [3], and illustrated in Figure 2.

3

W
o

rd
li

n
e

s
(W

L) ...

A=0
B=0

B·A=0
B+A=1

BRA=0

A A

01

0

...

B·AB+A

BRA
(a) (b)

Sense
Amps

11

0

1 0

1 0

B B

A A

1 0

1 0

B B

Fig. 2. Cache subarray with AND/NOR/XOR bitline computing on values
A=0 and B=0. Bitwise operations are performed by first (a) precharging
the bitlines, then (b) activating multiple wordlines, thus discharging the
bitlines through the connected bitcells.

Bitline computing operates similarly to a standard cache read
operation, which involves precharging a pair of BLs for each
bitcell to be read (Figure 2-a), and then activating a single
WL to connect the row of bitcells to the BLs, resulting in
BL discharge according to the bitcell contents. In contrast,
bitline computing involves the simultaneous activation of
multiple WLs (Figure 2-b), with the resulting BL discharge
computing two bitwise operations between the bits, with
the BL producing an and operation and the BL Bar (BL)
producing an nor operation. Aga et al. extend this work in
their iSC architecture by noring the two BLs, resulting in a
xor operation [5]. This architecture forms the basis of many
iSC publications [6], [9], [24], [25], [26], [27].

Conversely, multiple works support more complex work-
loads by implementing BL logic that performs arithmetic
operations. Analog solutions such as those presented in [7],
[28], [29], [30], [31] modulate BL and/or WL voltages to
perform arithmetic operations and utilize analog circuitry
implemented under the subarray to sense and convert BL
voltages to approximate digital results. On the other hand,
solutions such as [8], [32], [33] implement digital logic to
compute exact solutions to arithmetic operations.

2.3 How to compute: iSC Architecture Challenges
The above iSC architectures have been successfully applied
to a wide range of applications including query processing
and in-memory checkpointing [5], cryptography [5], [24],
[34], neural networks [9], [28], [29], [30], [31], [33], [34], finite
state automaton [6], and video encoding [34], thus demon-
strating their performance and energy benefits. However,
iSC architectures face a variety of challenges at the system,
architectural, and electrical level that must be overcome for
such architectures to be feasible. These challenges include:

• Guaranteeing correct cache functionality at the elec-
trical level.

• Supporting arithmetic operations such as addition
and multiplication.

• Integration into the memory hierarchy while address-
ing issues such as memory translation, coherency, etc.

• Accurate benchmarking on a full software stack.

In the state-of-the-art literature, no single architecture
succeeds in overcoming all of the aforementioned challenges.
Through BLADE, we seek to address each challenge above
via solutions that are validated at each level of abstraction
through electrical design and simulation, architectural inte-
gration, and application level benchmarking.

3 AVOID DATA CORRUPTION WHILE MAINTAINING
HIGH OPERATING FREQUENCY

One of the biggest challenges in iSC architecture design is
the avoidance of data corruption. When activating multiple
WLs in a conventional 6T SRAM array, a short is produced
between the activated bits. It is possible that, due to process
variation during fabrication, the runtime content of the cells,
or transistor aging and degradation, the contents of one bit
can cause another bit to flip, as illustrated in Figure 3-a.
Preventing data corruption has been achieved in previous
literature via multiple methods. The first is to aggressively
limit WL voltage, as done in [3], [5], [29], [32] and illustrated
in Figure 3-b. However, such a technique greatly reduces
operating frequency, reported to at 800MHz@1V [3] and
475MHz@1.1V [33]. Another method, demonstrated in Fig-
ure 3-c, is the introduction of 8T or larger bitcells, which
isolate the bitcell’s contents from the BLs [6], [8], [24], [31], at
the cost of a significantly less area efficient SRAM subarray as
8T bitcells are up to 30% larger over 6T [35]. A third method
is to use pulse width modulated WLs such that no two WLs
are active simultaneously [28], removing the danger of data
corruption, but at the cost of a 2.35x increase in periphery
area. Finally, nonconventional technologies can be used, such
as monolithic 3D integration [25], [26], or deeply depleted
channel technology [36]. Emerging technologies present their
own challenges however; for example, DDC technology
demonstrates stability issues [37] and disturb risks, and
results in poor performance/voltage scaling (100Mhz@0.6V.)

In this work, we present a novel iSC architecture that
utilizes local bitlines to maintain a high operating frequency
and low area overhead, avoid data corruption, and facilitate
simple implementation in conventional 6T SRAM arrays.

3.1 What are Local Bitlines?
Local BitLines (LBLs), illustrated in Figure 3-d, are a cache op-
timization present in many architectures. LBLs divide groups
of WLs into Local Groups (LGs), where all WLs in an LG
share an LBL pair, which is connected to the Global BL (GBL)
pair via I/O circuitry. LBLs reduce parasitic capacitance
resulting from excessively long GBLs, thus improving cache
energy efficiency and reducing delay. LBLs also improve
static noise margin by isolating bitcells into small groups,
reducing leakage interference. For these reasons, LBLs are
already implemented in caches [38].

3.2 BLADE Methods of Operation
BLADE re-utilizes LBLs, taking advantage of the isolation
provided to perform high frequency iSC operations reliably.
A BLADE enhanced cache can perform three sets of memory
operations, namely, standard read/write, slow same-LBL iSC
operations, and fast multi-LBL iSC operations.

4

1 01 0

BLBLBL

0 10 1

1 01 0

BL

0 10 1

1 01 0

BL

G
B
L

G
B
L

G
B
L

1 01 0

LBLLBLLBL

LG0

LG1

Rd_EN

Larger Bi tcel lData Corruption Reduced Frequency

(a) (b) (c)

This Work

(d)

Larger Bi tcel lData Corruption Reduced Frequency

(a) (b) (c)

This Work

(d)

0 10 1

BLBL BLBL

Fig. 3. Bitcell shorting may lead to one of the activated bitcells to flip, as demonstrated in (a). (b) avoids data corruption by lowering WL voltage, while
(c) utilizes 8T bitcells to isolate bitcell contents. We propose Local Groups (LGs) to prevent data corruption (d).

3.2.1 Standard Read/Write Operations
Accessing a single WL of the cache performs a standard read
or write operation. In order to perform a read operation, the
GBLs and the LBLs of the LG to which the target set belongs
are first precharged to Vdd. Then, when the WL is activated,
one of the LBLs discharges. This discharge is propagated
through the local read port to the GBLs (illustrated in
Figure 3-d), where the discharge is sensed by one of the
two single ended sense amplifiers attached to the GBLs. The
addition of local read ports in fact transforms the standard 6T
bitcells into pseudo two-port bitcells, in which simultaneous
read + write operations are possible if the accessed words
are located in different LBLs.

3.2.2 Standard iSC Operations
BLADE can also perform iSC operations in the manner de-
scribed in Section 2.2. However, when performing operations
between bitcells in opposing states, there is a risk of flipping a
bitcell if the PMOS transistor of one bitcell is weaker than the
access and pulldown transistors of the other bitcell, as shown
Figure 3-a. To counteract this problem, it is necessary to
greatly reduce the WL voltages, resulting in a low operating
frequency (<1GHz) [3], [5].

3.2.3 LBL Enhanced iSC Operations
In order to avoid the aforementioned bitcell flipping while
maintaining high operating frequency, BLADE reuses LBLs
and their resulting LGs. When WLs belonging to different
LGs are simultaneously activated, the bitcells are isolated
from each other by the local read ports, eliminating the risk
of bit flipping, as demonstrated in Figure 3-d. Activating
each WL results in a simple read operation within the local
group, which is then propagated to the GBLs by the local
read ports, resulting in an iSC operation between the local
groups, where the GBL represents an and operation, while
the GBL represents a nor. LGs allow BLADE to maintain a
high operating frequency without a reduction in WL voltage,
while still utilizing small 6T bitcells.

LBLs also enable iSC operation in low voltage environ-
ments. Figure 4 illustrates the difference in functionality
between (a) standard iSC operations and (b) LBL enhanced
operations at a Vdd of 0.6V. LBL enhanced operations com-
plete 4x faster than standard operations, and in fact the and
operation fails to converge, due to excessive BL leakage.

Fig. 4. Transient simulations of bitwise operations @0.6V on (a) previously
published architectures, and (b) the proposed BLADE architecture.

It should be noted that introducing LBLs induce a data
placement constraint, namely, that operands cannot share the
same LBL, as discussed in Section 3.4.

3.3 LBL Enhanced iSC Cache Design Advantages

Utilizing LBLs to enable iSC operations provides multiple ad-
vantages over state-of-the-art iSC architectures. As discussed
in Section 2, most iSC architectures require a significant
redesign of either the bitcell array or periphery to enable
computation. BLADE, on the other hand, introduces minimal
changes to the cache architecture. The LBL design, as well
as the use of digital computation in contrast to analog, allow
BLADE to function over a large voltage range, thus easing
implementation across a wide range of cache architectures
and making BLADE suitable for low power edge devices.
Ease of implementation is further facilitated by the fact
that no modification to the bitcell array organization is
necessary to implement BLADE, as all computation happens
within the periphery. This greatly simplifies integration into
existing SRAM fabrication design flows, where the most

5

Fig. 5. Layout of a 256×2×32 BLADE memory with schematic diagram
of the memory periphery.

aggressive and complex design steps relate to the bitcell array.
Finally, BLADE scales easily to larger cache arrays/subarrays
without major loss of performance or energy savings, as LBL
length is invariant with regard to subarray size, as will be
discussed in Section 6.2.

4 LOGIC TO SUPPORT ARITHMETIC OPERATIONS

While bitwise operations enabled by simple bitline logic may
be sufficient to support applications such as cryptography or
binary neural networks, more complex workloads necessitate
arithmetic operations.

As discussed in Section 2.2, iSC architectures can perform
either simple bitwise operations or arithmetic operations
such as addition and multiplication. Supporting arithmetic
operations introduces trade-offs in area overhead and latency
as the BL logic becomes more complex. Carry logic may
have to cross multiple BLs [8]. Alternatively, unorthodox
methods of computation may be introduced, such as bit serial
computation as in [32], which stores and operates on data in

W
D

0

EN_WL

WL0

WL1

WLm-1

WLm

MSBs

encoded WL0

encoded WL1

EN_Prech

PRE_L0

PRE_Lm

RP_L0

RP_Lm

EN_RP

W
D

1

WD fusion

M
S

B
D

Fig. 6. Block schematic of the modified WL decoder used in this work.

a transposed manner, limiting extra BL logic to a couple of
latches, while also greatly increasing throughput. However,
latency is also drastically increased, even quadratically for
multiplication. Further, transposition presents challenges,
requiring either extra hardware in the form of transposition
functional units in the cache controller, 8T bitcells with extra
BLs/WLs [33], which decreases subarray area efficiency as
discussed in Section 3, or software transposition, introducing
challenging programming complexity. For analog solutions,
area overhead is a significant limitation, with reported
overheads of 19% [28] and >30% [31], and the acknowledge-
ment that WL DACs double array periphery [29]. Analog
designs also perform inexact computations, which may
be unacceptable for high precision applications, limiting
generalizability, and are very susceptible to process variation,
temperature, and aging [30].

To accelerate the widest range of workloads pos-
sible, BLADE supports common arithmetic operations,
such as addition, subtraction, multiplication,
greater/less than, and shift. This is accomplished
via digital logic, guaranteeing exactness of calculations,
necessary for high precision workloads. We accomplish this
by augmenting the standard BL logic explained in Section 2.2
with carry and shift logic.

4.1 Bitline Addition Architecture
Figure 5 illustrates BLADE’s BL logic, as well as the transistor
layout of a 4 way, 256x64 bitcell SRAM array with two local
groups, each containing 32 WLs. In order to support addition,
we implement a carry ripple adder underneath the array
through the addition of two nor gates and a xor gate. Shift
latches are also implemented within the BLADE controller
to allow one cycle shifting. Each BL logic block receives a
carry-in from the previous BL logic block, and provides a
carry-out to the next block.

In order to drive multiple WLs as required by iSC oper-
ations, we utilize two WL decoders, which simultaneously
decode two WL addresses. A bitwise and is performed on
the decoded addresses before driving the WLs, as illustrated
in Figure 6.

6

Algorithm 1 Modified add-and-shift multiplication for iSC
computing in edge devices with BLADE.
Input: Op0: Multiplier, Op1: Multiplicand
Output: Res=Op0×Op1

1: Latch Op0
2: i = #BitsOp0 − 1
3: while i ≥ 0 do
4: Res<<1
5: tmp = Op1 +Res
6: if Op0[i] = 1 then
7: Res← tmp
8: else
9: Res← Res

10: end if
11: i−−
12: end while

The implementation of addition logic enables many arith-
metic operations, achievable through series of simple opera-
tions. For example, subtraction can be performed by negating
the subtrahend by reading and storing the GBL value, then
performing an addition between the operands with the first
carry-in value set to 1. Greater than/less than can similarly
be computed by subtracting the operands and sensing the
MSB. Multiplication can be performed via a variation of the
classic add and shift algorithm, as illustrated in Algorithm 1,
in which the product is shifted left each step (line 4) and the
multiplier is processed from MSB to LSB to evaluate which
partial products must be accumulated(lines 6-9).

As memory I/O (sense amplifiers and writeback logic)
and BL logic are pitched under the memory array, cache
associativity influences physical design layout. During layout
we found that a mux-4 array (4 way associative cache, 2µm
per 4 multiplexed BLs) enables the most efficient design for
the I/O and BL logic. However, as the BL logic is pitched
on 1µm, it is also possible to pitch the BL logic in a mux-2
ratio, allowing twice the number of iSC computations per
cycle, in exchange for approximately a 2.5x area overhead
increase (nonlinear due to increased interconnect complexity).
The system level implications of such a configuration are
explored in Section 8.

4.2 Improving Operation Throughput
When performing arithmetic operations at longer word
lengths, (e.g. 32/64 bit), the performance gains of BLADE
are significantly mitigated by both the delay of the ripple
carry adder, as well as (in the case of multiplication) the add
and shift strategy, as demonstrated in Figure 7-a. To solve
this problem, we introduce two optimizations to BLADE’s
design; (1) multiplication stage pipelining to reduce latency,
and (2) a Manchester Carry Chain adder implementation to
reduce the addition critical path.

4.2.1 Manchester Carry Chain
At longer word lengths, the critical path of the ripple carry
adder substantially outpaces cache access times, reducing
pipeline effectiveness. We therefore propose a fast carry
adder based on a dynamic Manchester Carry Chain (MCC)
adder [39] implemented in buffered 4-bits configuration,

iSC+Carry St

St Rd StiSC Carry Shift

St 0iSC Carry+Shift

St 1iSC Carry+Shift

St 2iSC Carry+Shift

St 0iSC Carry+Shift

iSC+Carry St

Rd+Shift St

Rd+Shift St

(a)

(b)

.45 ns .90 1.35 1.80 2.25

(c)(c)

(d)(d)

Fig. 7. Timing of multiplication cycle with (a) no optimization, (b) Manch-
ester Carry Chain, (c) pipeline latches, and (d) add-forward line.

BL0BL0

1-bit

Bitline

Adder

BL1BL1

1-bit

Bitline

Adder

BL2BL2

1-bit

Bitline

Adder

BL3BL3

C0

C1C2C3

P0 G0P1 G1P2 G2P3 G3

S0S1S2S3

C4
EN

4 Bit Manchester Carry Chain

Fig. 8. Manchester carry chain architecture with reduced transistor count
due to simplified Generate and Propagate signal generation.

illustrated in Figure 8. The Generate0:3 and Propagate0:3
signals are simply generated with a single nor gate thanks
to bitline computing, greatly reducing the area overhead
typically associated with such an architecture.

Four MCC blocks are needed per 16 bitcell columns, as
columns are mux-4 multiplexed, with the remaining space
used to fit inter-MCC signal buffers as well as decoupling
capacitors. Such a design provides nearly 80% performance
improvement versus standard carry ripple adder at 1V, and
a 54% improvement for 64-bit additions at 0.6V. Figure 7-b
represents the reduced carry time on a multiplication add-
and-shift cycle with an MCC adder.

4.2.2 Arithmetic Operation Pipelining
Add and shift multiplication can seriously mitigate perfor-
mance if not properly implemented. In order to improve
operation throughput, we implement three optimizations
that allow multiplication pipelining. First, we implement
latches after the sense amplifiers. Without latches, the iSC
and ripple carry operation must be completed in a single step
before writeback can be performed. Latches isolate the carry
logic from the read and writeback stages, enabling these
stages to be pipelined, as illustrated in Figure 7-c. Second,
we implement an add-forward line connecting the addition
output of one BL logic block to the writeback stage of the next
BL pair, allowing a combined add+shift operation. Finally, we
observe that, as described in Section 3.2.1, BLADE-enhanced
memory can perform a writeback and iSC operation simulta-
neously, if the writeback target block is in a different LG than
those accessed for iSC. By first accumulating the product

7

Cache

Subarray

Bitline Multiplexer

Bitline Logic

D
o

u
b

le
 W

L
D

e
c

o
d

e
r

. . ..
.
.

LGn

LG0

.

.

.

LGn

LG0

. . . .
.
.

LGn

LG0

.

.

.

LGn

LG0

. . .

. . .

. . ..
.
.

LGn

LG0

.

.

.

LGn

LG0

. . .

. . .

. . .

. . .

. . .

. . .

Fig. 9. BLADE implementation within the cache. Highlighted boxes are
new additions to cache architecture.

in three partial sums, then summing these partial values,
we can fully pipeline the iSC, carry, and writeback stages of
multiplication, as illustrated in Figure 7-d. This strategy
constrains the cache geometry to at least four LGs per
subarray, one containing the multiplicand, which is accessed
every cycle, and three containing the partial products.

5 BLADE SYSTEM LEVEL INTEGRATION AND
FUNCTIONALITY

The question of where to place an iSC architecture, how it
integrates into the rest of the memory hierarchy, and how ap-
plications invoke it is a nontrivial problem. Problems such as
virtual-physical memory translation, coherency, load/store
consistency, interaction with standard memory functionality,
and communication with the CPU must all be addressed.
However, the majority of current literature focuses on the
compute portion of the iSC architecture without discussing
integration into the system architecture or system level
simulation. While some works discuss programmer/ISA
support [5], [6], [24], [32], [40], only a few simulate their
work in a full software stack environment [5], [24].

BLADE is implemented within the cache hierarchy, as
illustrated in Figure 9. Implementing BLADE within the
cache reduces energy consumption due to data movement,
as operand data will often already be loaded into the cache
for utilization by the CPU. Also, in-cache implementation re-
duces area overhead as BLADE re-utilizes the existing cache
SRAM arrays. Overhead is further reduced by integrating
BLADE logic underneath any BL multiplexers that provide
way interleaving, allowing the logic to be shared between
BLs. Retaining way multiplexing functionality also enables
parallel tag-data access, allowing the tag and data array to
be read simultaneously to reduce read times.

Within the cache hierarchy, we specifically implement
BLADE within the private L1 cache, as this provides a
favorable trade-off between area footprint and functionality,
as well as simplifying cache coherence considerations, in
contrast to implementation in shared caches. BLADE can be
implemented in lower level caches, providing an increase in
the number of possible parallel operations, in exchange for a
greater area overhead and coherence complexity. Figure 10

Operation Type?

Enough operands

present to perform ISC

operation?

All operations

completed?

Return to

processor

Instruction

passed to

memory

Rd/Wr

Does operation

meet operand locality

constraints?

No

iSC Operation

Invalid

operation

returned

to

processor

Standard memory

operation

Fetch operands from

lower level of

memory hierarchy

Divide operation into

parallelized cache block

operations, store in

Cache Block (CB) table

Yes

No

Perform maximum

possible iSC operations

Yes
No

Yes

To Processor

Fig. 10. Instruction flow in BLADE cache from time of issue by processor
to operation completion.

illustrates the instruction flow from issue by the processor
to the BLADE cache controller until operation completion
and return to the processor. The following sections provide
greater detail on ISC operation functionality.

5.1 iSC Instruction Passing and ISA Support

To enable BLADE support for applications, we extend the
64-bit ARMv8 ISA with BLADE opcodes, which allows
the programmer to invoke BLADE computations from any
application compiled for supported ARM devices. BLADE
instructions are considered to be memory accesses, and
are passed from the CPU to the cache controller, which
in turn forwards the instruction to the BLADE controller
for decoding and execution. The number of instructions
required to invoke BLADE depends on the number of
operands required for the desired operation, with up to three
instructions passed in succession from the application. These
instructions are transmitted to BLADE via the cache address
bus, which transmits the operand and result addresses as
discussed in Section 5.2, and data bus, which encodes the
operand parameters as illustrated in Figure 11:

• The opcode of the requested operation.
• The width of the operands (8/16/32 bit).
• Data unique to specific operations (e.g., the number

of bits to shift for a shift operation.)
• The number of successive operations to be performed.

In cases where the count of successive operations is dif-
ferent between operands, address ranges of shorter operands
will loop, allowing for reuse of common operands in cases
such as multiplying a large input range over a small filter.

Finally, as BLADE commands directly access the cache, it
is necessary to place a memory barrier before and after each
set of commands to ensure correct memory ordering.

8

Op Operand 0 Parameters Operand 0 Length

Operand 1 Parameters Operand 1 Length

Result LengthResult Parameters

*

**

Unused for 2-operand operations

Unused for 1-operand operations

*

**

CPU

L1 CacheAddress Bus

Data Bus

Fig. 11. iSC instruction format and transmission over address and data
bus to L1 cache.

5.2 Operand Locality Constraints
As mentioned previously, iSC operands must share BLs to
be eligible for iSC operations. Sets that can interact with
each other are considered local, and therefore the require-
ments placed upon operands can be called operand locality
constraints. These constraints depend on the geometry of
the cache, as factors such as cache size, subarray size,
and associativity affect which sets share BLs. However, all
variations in cache geometry can be abstracted to three
constraints on the operand memory addresses, as shown
in Figure 12:

• The offset bits between two operands must match,
guaranteeing operand alignment within a cache block.

• A certain number of set LSBs must match, guarantee-
ing that the operands share the same subarray.

• A certain number of MSBs must differ in order to
avoid data corruption, as explained in Section 3.

To quantify the number of set LSBs that must match,
we define a geometry value V algeo that specifies the cache
geometry properties over which different sets do not share
BLs, and therefore cannot interact with each other. This value
is calculated according to the following equation:

V algeo = #banks ∗#subbanks ∗#subarrays ∗#spwl (1)

where each value represents a cache parameter.
Nsubarrays equals the number of subarray rows in a subbank,
and Nspwl is the number of sets per WL. By interleaving
cache sets across these cache structures, as illustrated in the
example array in Figure 12, the number of set LSBs that
must match between operands is log2 (V algeo). Moreover,
any program compiled to function within certain V algeo
will also function on any cache geometry of the value of
V algeo or smaller. As the operands of this work’s benchmark
applications are page aligned, they can function on any cache
geometry with a V algeo value of up to 64.

Next, it is necessary that a certain number of set MSBs do
not match. This constraint results from BLADE’s utilization of
Local BitLines (LBLs) to run at high frequency (2.2GHz@1V)
while preventing data corruption; the electrical functionality
of this will be explained in greater detail in Section 3,

10

01

00

0

0 0001

00010

1

Tag Set Offset

0 00011

Addr0

Addr1

AddrRes

...

...

...

0
1

2
3

LG

0

1

2

3

4

6

5

7

9

11

13

15

8

10

12

14

Set

S
u

b
a

rra
y

 0
S

u
b

a
rra

y
 1

Bitline Logic

Bitline Logic

0
1

2
3

Fig. 12. The highlighted operands in sets 2 and 4 have matching offsets
and set LSBs, and differing set MSBs, indicating that they share bitline
logic, but not local groups.

however for now it is only necessary to say that a certain
number of WLs NLBL in each subarray share one LBL pair,
and two operands in an iSC operation must not share the
same LBL pair. This geometry constraint can be guaranteed
when NMSBs of the set bits of each operand are different,
with NMSBs defined as:

NMSBs = log2

(
Nsets

V algeo ∗NLBL

)
(2)

where Nsets is the number of sets in the cache and NLBL

is the number of WLs sharing an LBL pair. Note that NMSBs

cannot fall below 1, as this would result in all WLs in a
subarray sharing one LBL pair.

Figure 12 illustrates a simple cache with Nsets=16, Nbanks

= Nsubbanks = 1, Nsubarrays=NLBL= 2, and Nspwl=1, re-
sulting in a V algeo value of 2 and an NMSBs value of 2.
Therefore, one set LSB must match while one MSB cannot
match.

We can also calculate the maximum number of simulta-
neous individual operations that can be performed per iSC
operation as follows:

#i ops =
V algeo ∗ sizecb

wi op
(3)

where wi op is width of a single operation within a
CB op in bytes and sizecb is the size of a cache block in
bytes. Using Equation 3, we calculate that the example
cache in Figure 12 can perform 128 simultaneous operations,
assuming a sizecb=64 bytes and wi op=1 byte.

Guaranteeing proper operand alignment is a challenge
that all iSC architectures face, with different solutions being
proposed. For example, Jeloka et al. [5] handle this by
ensuring operands are page aligned and rely on future
compiler extensions to guarantee this, while Eckert et al. [32]
proposes the use of a special transpose unit in the cache

9

controller for transposing and allocating data in-cache, and
assume for their micro-benchmark that application data is
laid out in DRAM such that it maps to the proper locations in
SRAM. BLADE guarantees alignment by reserving a portion
of memory at kernel boot time that can be mapped by an
application at runtime. Because memory accessed in this
way is guaranteed to map to a specific location in physical
memory, we can ensure operand locality by copying data into
this reserved memory. The reserved memory is cacheable,
contrary to standard reserved memory mapping.

5.3 Issuing ISC Operations to Cache Subarrays
In order to receive commands from the CPU and issue iSC
operations to the cache subarrays, the cache controller is
augmented to support these functions. iSC operations are
limited to a page in length to simplify address translation.
The controller breaks the iSC operation into Cache Block (CB)
operations up to a cache block in length, and stores them in
a CB table. The CB table is responsible for confirming the
operation’s eligibility for in-cache computation as described
in Section 5.2, fetching missing operands, and tracking the
status of the operation. Once all operands have been fetched
and are present in the cache, the CB table issues the operation
to the relevant cache subarrays. After all CB operations are
complete, the CB table alerts the CPU that the iSC operation
has completed.

5.4 Fetching and Allocating Operands
The CB table requests missing operation operands from
memory. To simplify memory access, the BLADE control
logic is implemented as a slave module to the standard
cache controller. iSC operations received from the CPU
are forwarded to the BLADE controller, and all memory
requests from BLADE are forwarded to the cache controller,
which handles them as standard requests in regards to
considerations such as coherency updating, evictions, or
MSHR coalescing.

When performing iSC operations, the way in which
operand data is stored must be considered to meet operand
locality constraints. Therefore, for any operation requiring
more than one operand, such as bitwise, addition, or mul-
tiplication operations, operands are always stored in way
0 of a set. Any operands that are already loaded in a way
other than 0 at the commencement of the iSC operation
will be copied via an iSC swap way command to ensure
correct functionality. Also, blocks containing iSC operands
are tagged as such, and the cache controller will choose to
evict other ways first in the case of a conflict miss.

In order to guarantee correct memory coherency function-
ality, cache blocks subject to a snoop request will be evicted,
and the cache controller will inform BLADE of the eviction.
The block must be re-requested by BLADE in order to
resume functionality. However, multi-cycle operations such
as multiplication must be completed atomically, and therefore
any snoop requests occurring during such an operation are
rejected and reissued.

5.5 Integration in the gem5-X Architecture Simulator
As this work is designed to accelerate edge level devices, we
utilize gem5-X [41] to simulate the integration of BLADE into

Fig. 13. Maximum frequency of bitwise operations vs. memory supply
voltage at 28nm CMOS.

the cache hierarchy of an in-order CPU. It is also possible to
integrate iSC architectures into out-of-order cores [5], albeit
with more complicated memory access patterns.

In order to generate accurate performance statistics, we
extract timing values from BLADE’s transistor level design,
and convert these into CPU cycle values based on the
simulated CPU’s target clock frequency. In the next few
Sections we will discuss BLADE’s circuit level design and
optimizations.

6 ELECTRICAL VALIDATION AND DESIGN SPACE
EXPLORATION

In order to verify the functionality of BLADE and the afore-
mentioned optimizations, we layout and simulate BLADE
at the transistor level. We also perform a design space
exploration by varying cache geometry parameters in order
to illustrate energy, delay, and area trends.

6.1 Functional Validation of BLADE

Our layout methodology consists of implementation and
simulation of the critical paths of the memory array (bitcells,
WLs, global and local BLs), periphery (WL decoders and
drivers), and iSC logic in 28nm bulk CMOS thin oxide
transistors provided by TSMC’s high performance technol-
ogy PDK [42]. The periphery/iSC circuitry is implemented
with the Low Voltage Threshold (LVT) technology flavor
to optimize performance, while the memory array utilizes
the Regular Voltage Threshold (RVT) technology flavor to
limit static leakage. We design the bitcell based on the work
presented in [43], [44], achieving a bitcell pitch of 0.127µm,
and pitch the periphery along the bottom and sides of the
array with a spacing of 500nm between the array/periphery
to account for any spacing required between SRAM and
logic design rules. The simulated netlist contains >8000
elements, is simulated at 300K for 10,000 Monte-Carlo runs,
and accounts for CMOS variability and post-layout parasitics.
Memory and periphery signal propagation time is modeled
by equivalent circuits for the lines with corresponding gates
and extracted RC networks.

10

TABLE 1
Worst Case iSC Energy/Frequency Values in a 256×64 array with 2 LGs.

Operation Rd Wr iSC Add
Width Bitwise 8b 16b 32b 64b

E/op[fJ] 23.5 25.9 23.8 20.7 41.6 83.3 167
MMC Carry - - - 64 130 258 512Prop. Time [ps]

Array 88.9 137 163Leak./op [fJ]

Fr
eq

.[G
hz

]

(CRA w/o
pipeline) 2.2 2.2 2.2 2.2 2.2 1.7 1.2

(CRA w/
pipeline) 2.2 2.2 2.2 2.2 2.2 2.2 1.0

(MCC w/
pipeline) 2.2 2.2 2.2 2.2 2.2 2.2 2.2

Using this electrical characterization framework, we
extract BLADE area, timing, and energy values for different
subarray geometries. Figure 13 shows the maximum clock
frequency of BLADE vs. other proposed iSC architectures
at different supply voltages. The dotted blue line represents
bitwise iSC operation within a single LG, as described
in Section 3.2.2, with similar performance to other iSC
architectures. The utilization of LGs, on the other hand,
enables significantly higher iSC operating frequencies, as
illustrated by the green, gray, and red curves. As can be
seen, the utilization of LGs improves operation frequency
by 2.5x-3x depending on subarray geometry vs. standard
iSC architectures and extends the operating range down to
416MHz/0.6V.

Finally, Table 1 details the worst case energy/frequency
values for different bitwise/addition iSC operations across
different adder configurations. This table shows that, with-
out optimization, 8/16-bit addition can be completed
within 2.2GHz. However, reduced operating frequencies of
1.7/1.2GHz are necessary to complete 32/64-bit addition,
respectively. By utilizing an MCC adder and carry logic
pipelining, as explained in Section 4.2.2, a 2.2GHz operating
frequency can be regained for 64-bit additions.

6.2 Subarray Design Space Exploration

There is a complex interrelationship between the parameters
defining subarray geometry and the subarray’s energy,
delay, and area overhead. In order to demonstrate these
relationships, we explore the design space defined by a
subarray’s number of bitlines, wordlines, and LGs, with our
results displayed in Figure 14-a. To more clearly illustrate the
design space, we normalize the design space over a range of
various subarray geometries, as shown in Figure 14-b.

Area overhead is primarily influenced by the number
of WLs belonging to each LG (LG size). In a 128x128
configuration, LG sizes of 16, 32, 64, and 128 result in
area efficiencies of 55.6, 71, 84.4, and 91%, respectively. This
is because larger LGs require less periphery per WL they
contain, thus improving area efficiency.

Delay is influenced primarily by the LG size, and secon-
darily by the length of the WL. As LG size increases, parasitic
capacitance increases and reduces switching time. Similarly,
the parasitic capacitance of the WL increases delay, although
this is partially offset by the reduced length of the GBL.

Fig. 14. (a) Energy, area, and delay variations for cache geometries. (b)
The normalized energy, area, and delay design space, with maximum
values for each metric equal to 1.

Finally, energy is also influenced by LG size and WL
length. Similarly to delay, energy consumption decreases
with smaller LGs due to parasitic capacitance. In contrast
however, energy decreases as WL length increases, as only
one WL is activated for any number of BLs, meaning that the
energy per bit decreases with increasing numbers of BLs.

System level factors also play a role in deciding cache
geometry. As discussed in Section 3.2.3, at least 2 LGs must
be present in order to perform LBL-enhanced iSC operations.
More generally, more LGs translates to less operand locality
constraints on application data. Furthermore, 4 LGs are neces-
sary to pipeline multiplication, as explained in Section 4.2.2.

As our simulations indicate, different use cases may ne-
cessitate different cache geometries, whether it be low-power,
low-area, or high-performance designs. When benchmarking
BLADE in this article, we consider a 128x128 subarray with
4 LGs. This subarray exceeds our target operating frequency
of 2.2GHz while maintaining a low energy consumption and
achieving an area efficiency of 71%, of which the BLADE
architecture accounts for 8% area overhead.

11

7 SYSTEM LEVEL BENCHMARKING

In order to demonstrate BLADE’s performance at the applica-
tion level, we integrate BLADE into the gem5-X architectural
simulator and profile a v ariety o f e merging e dge device
workloads, allowing us to extract energy and runtime
performance trends across a range of cache geometries [41].

7.1 Edge Device Workloads
As BLADE is targeted specifically f or e dge l evel devices,
we select three benchmarks that are becoming increasingly
prevalent on edge devices. These benchmarks demonstrate
how BLADE is uniquely positioned for enhancing such
devices.

7.1.1 Cryptography
One of the primary challenges the IoT industry faces as
more and more sensitive data is stored and transmitted
by edge devices is data privacy and security [45]. Indeed,
lightweight cryptographic algorithms suitable for edge level
devices are being developed [46], and many processors
provide dedicated accelerators for cryptography [47]. Given
these motivations, we utilize the Secure Hash Algorithm 3
integrity algorithm (SHA-3) [48] as a benchmark to illustrate
that BLADE can provide low-power execution for such
algorithms.

7.1.2 HEVC Video Processing
In 2018, Youtube and Snapchat combined accounted for
over 20% of all mobile upstream traffic [1], a nd a s more
people broadcast their lives on social media, compression
of upstream traffic will become a necessity on edge devices.
The advent of 4K cameras on mobile devices will exacerbate
this challenge, with more compression required to efficiently
transmit. In order to demonstrate BLADE’s capabilities in
alleviating this problem, we benchmark Kvazaar [49], an
application for High Efficiency Video Encoding (HEVC).

7.1.3 Convolutional Neural Networks
The ubiquity of Convolutional Neural Networks (CNNs) as
a solution for a variety of problems has led to increasing
interest in implementing effective CNN solutions on edge
devices, with both algorithmic [50], [51] and hardware [2],
[52] innovations proposed. We therefore include CNNs in our
application benchmarks. We implement our benchmark with
the Arm Compute Library (ACL) [53], an API from ARM
designed to optimally utilize its NEON SIMD co-processor.

7.2 gem5-X Parameters
As stated in Section 5, iSC architectures interact heavily with
other components of the computer architecture. In order
to acquire accurate performance statistics while simulating
such interactions, we utilize the gem5-X architectural sim-
ulator [41] with a full Linux software stack to benchmark
BLADE. gem5 is calibrated with the parameters outlined
in Table 2, which emulates the ARMv8 A53 in-order core
found on the ARM Juno development board [54], and
running an Ubuntu 18.04 LTS software environment that
demonstrates less than 4% timing inaccuracy on profiling
tests compared to physical hardware. We implement BLADE

TABLE 2
Simulator Parameters

Processor 2GHz, 4 stage pipeline, ARMv8 ISA
in-order core, 7 entry LSQ

NEON 128-bit registers
Co-processor 16 parallel 8-bit operations

L1-I Cache 32kB, 4-way, 1 cycle access
L1-D Cache 32kB, 4-way, 1 cycle access, BLADE

L2 Cache mostly-exclusive, 1MB, 4-way, 6 cycle
access

Memory DDR3 2133MHz, 4GB

BLADE Max 1024/128 bitwise/8bit simultaneous
operations

timing values by converting delays calculated Section 6.1
to cycle counts at 2GHz. The cache hierarchy utilizes a
typical 64 byte WL length, with the cache geometry designed
such that 1024 bitwise/128 8-bit iSC operations can be
performed simultaneously. For performance comparison, we
also simulate a NEON SIMD co-processor [22], a SIMD unit
found on many edge devices.

7.3 McPAT Support
In order to estimate energy consumption of BLADE at a sys-
tem level, we utilize McPAT [55], an architectural framework
for estimating the area and energy of a specified architecture.
For this work, we initialize McPAT with ARM Cortex-A53
architectural parameters [56]. We then augment this model
using the energy statistics specified in Section 6.1 to estimate
the added energy consumption of BLADE operations. gem5-
X provides traces of all CPU, memory, NEON, and BLADE
operations, which are subsequently provided to McPAT to
compute application runtime energy consumption for NEON
and BLADE benchmarks.

8 BENCHMARK RESULTS

During benchmarking, we explore a wide range of hardware
and algorithm parameters to demonstrate trends in perfor-
mance and energy consumption that vary depending on
architecture design choices. Specifically, we analyze effects
on performance and energy in relation to the number of
iSC operations performed, the associativity of the cache,
and finally the size of the cache. Also, we analyze how
optimization for arithmetic operations affects runtime of
applications utilizing such operations.

8.1 Bitwise Operations/iSC Operation Count
In order to observe how the ratio between operations and
memory accesses of an application affects BLADE perfor-
mance, we benchmark the block permutation kernel of the
SHA-3 algorithm. This kernel encrypts input data via a large
number of bitwise operations, specifically xor, shift, and
and, in a series of up to 24 rounds of permutation. By varying
the count of bitwise operations being performed on input
data, we can draw interesting conclusions about BLADE’s
effectiveness in accelerating such bitwise algorithms.

Figure 15 illustrates BLADE performance and energy
improvement in comparison to NEON for bitwise oper-
ation/memory access ratios between 1 and 200 for 4096
bytes of data. As this figure shows, at lower ratios, memory

12

1

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

0x

1x

2x

3x

4x

5x

6x

7x
C

yc
le

 C
o

u
n

t

Operations per Data Access

P
e

rf
o

rm
a

n
ce

/E
n

e
rg

y
 G

a
in

NEON

BLADE

Perf Gain

Energy Gain

Fig. 15. Runtime/energy results for NEON/BLADE on bitwise operations.

64 256 1024 4096
0x

1x

2x

3x

4x

5x

6x

7x

C
yc

le
 C

o
u

n
t

Image Size

P
e

rf
o

rm
a

n
ce

/E
n

e
rg

y
 G

a
in NEON - Assoc 4

BLADE - Assoc 4

NEON - Assoc 2

BLADE - Assoc 2

Perf Gain - Assoc 4

Perf Gain - Assoc 2

Energy Gain - Assoc 2

Energy Gain - Assoc 4

Fig. 16. Runtime/energy results for NEON/BLADE on FIR operations.

access dominates function time. However, as operation count
per data access increases, BLADE provides correspondingly
increasing acceleration, saturating at a ∼3.5x gain, achieved
at 30 operations per access. As SHA3-256 performs over
400 operations per access, BLADE demonstrates strong
applicability to such an application. BLADE’s maximum
demonstrated performance gain over NEON for bitwise
operations is 4x.

Energy improvements follow a similar trend, with in-
creasing energy gains that saturate at 40 operations per
access. Energy improvement results from identical reasons
as previously described; at higher operation/memory access
ratios, energy consumption due to compute and L1-CPU
data transfer become significant. BLADE eliminates L1-CPU
transfers and reduces in-CPU operations, providing up to 6x
energy improvement over NEON.

8.2 FIR Filter/Cache Associativity
In our next benchmark, we evaluate how cache associativity
(and by extension the number of simultaneous operations
BLADE can perform) affects performance. To accomplish
this, we modify the associativity between 2 and 4 ways at
an equivalent cache capacity, while benchmarking Kvazaar’s
FIR filter function. This function uses four separate 8-tap
FIR filters, filtering an input image first horizontally, then
vertically, to produce 16 filtered outputs. Input images of four
different sizes are accepted, with progressively increasing
memory and compute requirements.

Figure 16 illustrates performance and energy consump-
tion differences resulting from the varying cache geometries.
As this figure shows, a 4-way associative cache provides
slightly higher acceleration over a 2-way associativity for tile
sizes of up to 1024 pixels, as the wide 4-way cache results
in less evictions of relevant data. However, at a tile size

16 32 64 128 256
0x

1x

2x

3x

C
yc

le
 C

o
u

n
t

Image Width

P
e

rf
o

rm
a

n
ce

/E
n

e
rg

y
 G

a
in

Neon - 32kB

BLADE - 32kB

Neon - 128kB

BLADE - 128kB

Perf Gain - 32kB

Perf Gain - 128kB

Energy Gain - 32kB

Energy Gain - 128kB

Fig. 17. Runtime/energy results for NEON/BLADE on convolution opera-
tions.

of 4096, compute requirements surpass those of memory,
and therefore 2-way cache performance surpasses that of
4-way. This is because, assuming constant cache capacity,
a 2-way cache can perform twice the number of parallel
operations. Overall, BLADE provides up to a maximum of
6x performance gain over NEON for FIR filtering.

In contrast to the bitwise benchmark, FIR filter energy
gain is more muted. This results from the fact that iSC
multiplication is significantly more computationally complex
than bitwise operations and therefore consumes more energy
to execute. However, energy consumption due to L1-CPU
data movement is still reduced, and BLADE still achieves a
maximum of 2x energy reduction over NEON.

8.3 Convolution/Cache Capactiy
In the next set of experiments, we evaluate the effects of
overall cache size on BLADE performance by benchmarking
it with a convolutional layer of a CNN that we implement
in ACL. The convolutional layer has 32 input planes and 32
output planes, and performs 3x3 convolution at a stride of
1 with a padding of 1 to maintain equivalent dimensions.
We store input/output data in 32-bit fixed-point notation
and weights in 8-bit fixed-point notation, and vary input
layer width between 16 and 256 pixels. We utilize 2 cache
sizes, 32kB and 128kB, to demonstrate effects of cache size
on BLADE effectiveness.

Figure 17 illustrates how cache size impacts performance.
Performance results for each cache follow similar trends,
where both implementations see performance drop-offs at
larger image widths. This is due to the fact that at larger
input widths, the resulting output plane does not fit entirely
within the L1 cache, requiring a more complex kernel loop to
satisfy operand locality constraints as described in Section 5.2,
and resulting in increased data movement. However, by
increasing cache size to 128kB, larger input widths can be
accommodated while avoiding performance drop-off; in this
case, 128kB caches can accommodate an input width of up
to 64 pixels, as opposed to 32 for a 32kB cache. Furthermore,
these results demonstrate the benefits of moving BLADE to
higher capacity, lower level caches, as discussed in Section 5.
Overall, BLADE demonstrates a maximum performance gain
of 3x over NEON for a convolutional layer of a CNN.

Similarly to performance gain trends, a drop to below 1x
energy gain is seen at pixel widths of 64/128 for cache sizes of
32kB/128kB, due to increased data movement resulting from
ill-fitting kernels. Such trends indicate that operand locality
is an important factor in ascertaining the effectiveness of a
particular iSC architecture and cache geometry, Thus, not all

13

TABLE 3
Cycles for 8/32-bit multiplication at different pipeline levels @2Ghz

Pipeline Level Multiplication
Cycle Count (8/32 bit)

No Pipeline 40/126
with Add-Forward 14/72

with Latches 24/66
Full Pipeline 15/39

8/16 16/32 32/64 64/128 256

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Benchmark Parameter

P
e

rf
o

rm
a

n
ce

 G
a

in

Convolution - Full

Convolution - Latches

Convolution - Forward Line

Convolution - No Pipeline

Fir - Full

Fir - Latches

Fir - Forward Line

Fir - No Pipeline

Fig. 18. Performance trends for different levels of arithmetic pipelining.

kernels or applications are well suited to such an architecture.
Future work must be done to alleviate these constraints as
much as possible. Ultimately, a maximum of 1.5x energy gain
is achieved for the convolutional layer.

8.4 Arithmetic Logic Optimization
Lastly, we observe how the arithmetic operation optimiza-
tions described in Section 4.2 affect FIR filter and convolution
benchmark performance. Table 3 enumerates cycle counts
for 8 and 32-bit iSC multiplications for the benchmark archi-
tecture. These results show that 8-bit multiplication in fact
completes in fewer cycles at 2GHz in an architecture without
latches. However, the carry logic delay for 32 bits requires
2 cycles at 2GHz, resulting in a significant increase in cycle
count for 32-bit multiplication. Figure 18 illustrates the effects
of adding pipeline optimization to the BL logic for the FIR
filter and convolution benchmarks, and demonstrates that
pipelining provides significant performance improvement
for a negligible area cost.

9 CONCLUSION

iSC architectures show great promise in accelerating a variety
of workloads, and are particularly interesting for edge
devices due to their area and energy constraints. In this
context, we have presented BLADE. BLADE is an arithmetic
iSC architecture whose utilization of industry standard 6T
bitcell arrays enables easy integration into current SRAM
fabrication flows, and its low power digital design makes
it appropriate for accelerating emerging applications on
edge devices. We validated BLADE’s functionality from the
system level down to the electrical level. At the system
level, we integrated BLADE into the cache hierarchy of
an in-order CPU, accounting for system level interactions

such as coherency and load/store consistency. Then, at the
electrical level, we laid out our enhanced cache design,
demonstrating how the use of local bitlines provides the best
voltage/frequency ratio (0.6V/415MHz-1V/2.2GHz) of any
6T iSC architecture while maintaining a low area overhead of
8%. Finally, we benchmark BLADE on a full software stack
with three emerging edge device workloads, and demon-
strated 4x/6x, 6x/2x, and 3x/1.5x performance/energy gains
over a the NEON SIMD co-processor, thus validating our iSC
design at the application level and demonstrating BLADE’s
effectiveness for edge level device acceleration.

ACKNOWLEDGMENTS

This work has been partially supported by the EC H2020
RECIPE (GA No. 801137) project, the EC H2020 WiPLASH
(GA No. 863337) project, and the ERC Consolidator Grant
COMPUSAPIEN (GA No. 725657).

REFERENCES

[1] Sandvine, “The mobile internet phenomena report,” Tech. Rep., 02
2019.

[2] (2018). [Online]. Available: https://www.apple.com/newsroom/
2017/09/the-future-is-here-iphone-x/

[3] S. Jeloka et al., “A 28 nm configurable memory
(TCAM/BCAM/SRAM) using push-rule 6t bit cell enabling
logic-in-memory,” JSSC, vol. 51, no. 4, pp. 1009–1021, 2016.

[4] G. Singh et al., “A review of near-memory computing architectures:
Opportunities and challenges,” in DSD, 08 2018.

[5] S. Aga et al., “Compute caches,” in HPCA, 2017.
[6] A. Subramaniyan et al., “Cache Automaton,” MICRO, 2017.
[7] M. Kang et al., “A 481pj/decision 3.4m decision/s multifunctional

deep in-memory inference processor using standard 6t SRAM
array,” CoRR, vol. abs/1610.07501, 2016.

[8] K. C. Akyel et al., “DRC2: Dynamically reconfigurable computing
circuit based on memory architecture,” in ICRC, 2016.

[9] W. Khwa et al., “A 65nm 4kb algorithm-dependent computing-in-
memory sram unit-macro with 2.3ns and 55.8tops/w fully parallel
product-sum operation for binary dnn edge processors,” in ISSCC,
02 2018, pp. 496–498.

[10] J. von Neumann, “First draft of a report on the edvac,” IEEE Annals
of the History of Computing, vol. 15, no. 4, pp. 27–75, 1993.

[11] J. Backus, “Can programming be liberated from the von neumann
style?: A functional style and its algebra of programs,” Commun.
ACM, pp. 613–641, 08 1978.

[12] J. T. Pawlowski, “Hybrid memory cube (hmc),” in HCS 23, 08 2011.
[13] M. Drumond et al., “The mondrian data engine,” in ISCA 44, 06

2017, pp. 639–651.
[14] S. L. Xi et al., “Beyond the wall: Near-data processing for databases,”

in DaMoN 11, 2015, pp. 1–10.
[15] J. Ahn et al., “A scalable processing-in-memory accelerator for

parallel graph processing,” in ISCA 42, 06 2015, pp. 105–117.
[16] D. Zhang et al., “Top-pim: Throughput-oriented programmable

processing in memory,” in HPDC 23, 2014.
[17] K. Hsieh et al., “Transparent offloading and mapping (tom):

Enabling programmer-transparent near-data processing in gpu
systems,” in ISCA 43, 06 2016, pp. 204–216.

[18] M. Gokhale, S. Lloyd, and C. Hajas, “Near memory data structure
rearrangement,” in MEMSYS, 2015, pp. 283–290.

[19] M. Gao and C. Kozyrakis, “Hrl: Efficient and flexible reconfigurable
logic for near-data processing,” in HPCA, 03 2016, pp. 126–137.

[20] A. Farmahini-Farahani et al., “Nda: Near-dram acceleration archi-
tecture leveraging commodity dram devices and standard memory
modules,” in HPCA 21, 02 2015, pp. 283–295.

[21] S. F. Yitbarek et al., “Exploring specialized near-memory processing
for data intensive operations,” in DATE, 03 2016.

[22] ARM, “Introducing neon,” ARM, Tech. Rep., 2009.
[23] C. Lomont, “Introduction to intel advanced vector extensions,”

Intel, Tech. Rep., 05 2011.
[24] A. Agrawal et al., “X-sram: Enabling in-memory boolean computa-

tions in cmos static random access memories,” Trans. Circuits Syst.
I, vol. 65, no. 12, pp. 4219–4232, 12 2018.

https://www.apple.com/newsroom/ 2017/09/the-future-is-here-iphone-x/
https://www.apple.com/newsroom/ 2017/09/the-future-is-here-iphone-x/

14

[25] F. Hsueh et al., “Tsv-free finfet-based monolithic 3d+-ic with
computing-in-memory sram cell for intelligent iot devices,” in
IEDM, 12 2017, pp. 12.6.1–12.6.4.

[26] S. Srinivasa et al., “A monolithic-3d sram design with enhanced
robustness and in-memory computation support,” in ISLPED, 2018.

[27] W. Simon et al., “A fast, reliable and wide-voltage-range in-memory
computing architecture,” in DAC, 2019.

[28] M. Kang et al., “A multi-functional in-memory inference processor
using a standard 6t sram array,” JSSC, pp. 642–655, 02 2018.

[29] J. Zhang, Z. Wang, and N. Verma, “In-memory computation of
a machine-learning classifier in a standard 6t sram array,” JSSC,
vol. 52, no. 4, pp. 915–924, 04 2017.

[30] S. K. Gonugondla, M. Kang, and N. Shanbhag, “A 42pj/decision
3.12tops/w robust in-memory machine learning classifier with
on-chip training,” in ISSCC, 02 2018, pp. 490–492.

[31] A. Jaiswal et al., “8t SRAM cell as a multi-bit dot product engine
for beyond von-neumann computing,” CoRR, vol. abs/1802.08601,
2018.

[32] C. Eckert et al., “Neural cache: Bit-serial in-cache acceleration of
deep neural networks,” in ISCA 45, 2018, pp. 383–396.

[33] J. Wang et al., “A compute sram with bit-serial integer/floating-
point operations for programmable in-memory vector acceleration,”
in ISSCC, 02 2019, pp. 224–226.

[34] W. A. Simon et al., “Blade: A bitline accelerator for devices on the
edge,” GLSVLSI 29, p. 6, 05 2019.

[35] L. Chang et al., “A 5.3ghz 8t-sram with operation down to 0.41v in
65nm cmos,” in VLSI, 06 2007, pp. 252–253.

[36] Q. Dong et al., “A 4 + 2t sram for searching and in-memory
computing with 0.3-v vddmin,” JSSC, vol. 53, no. 4, 04 2018.

[37] R. Boumchedda et al., “High-density 4t sram bitcell in 14-nm 3-d
coolcube technology exploiting assist techniques,” VLSI, 2017.

[38] M. E. Sinangil, H. Mair, and A. P. Chandrakasan, “A 28nm high-
density 6T SRAM with optimized peripheral-assist circuits for
operation down to 0.6V,” ISSCC, 2011.

[39] M. Schlag and P. Chan, “Analysis and Design of CMOS Manchester
Adders with Variable Carry-Skip,” TC, 1990.

[40] M. Kooli et al., “Smart instruction codes for in-memory computing
architectures compatible with standard sram interfaces,” in DATE,
03 2018, pp. 1634–1639.

[41] Y. M. Qureshi et al., “Gem5-x: A gem5-based system level simula-
tion framework to optimize many-core platforms,” HPC ’19, p. 12,
04 2019.

[42] (2011). [Online]. Available: https://www.tsmc.com/english/
dedicatedFoundry/technology/28nm.htm

[43] M. Chang et al., “A 28nm 256kb 6T-SRAM with 280mV improve-
ment in VMINusing a dual-split-control assist scheme,” ISSCC,
2015.

[44] H. Pilo et al., “A 64Mb SRAM in 22nm SOI technology featuring fine-
granularity power gating and low-energy power-supply-partition
techniques for 37% leakage reduction,” ISSCC, 2013.

[45] M. Elkhodr, S. A. Shahrestani, and H. Cheung, “The internet of
things: New interoperability, management and security challenges,”
CoRR, vol. abs/1604.04824, 2016.

[46] S. Singh et al., “Advanced lightweight encryption algorithms for iot
devices: survey, challenges and solutions,” JAIHC, pp. 1–18, 2017.

[47] ARM, “Arm cortex-a53 mpcore processor cryptography extension,”
ARM, Tech. Rep., 12 2014.

[48] M. J. Dworkin, “SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions,” FIPS, 2015.

[49] M. Viitanen et al., “Kvazaar: Open-source hevc/h.265 encoder,” in
ACMMM 24, 2016, pp. 1179–1182.

[50] S. Han et al., “Eie: Efficient inference engine on compressed deep
neural network,” in ISCA 43, 06 2016, pp. 243–254.

[51] M. Tan et al., “Mnasnet: Platform-aware neural architecture search
for mobile,” CoRR, vol. abs/1807.11626, 2018.

[52] V. Gokhale et al., “A 240 g-ops/s mobile coprocessor for deep
neural networks,” in CVPR, June 2014.

[53] (2018). [Online]. Available: https://developer.arm.com/
technol-ogies/compute-library

[54] ARM, “Arm versatile express juno r2 development platform,” ARM,
Tech. Rep., 11 2015.

[55] S. L. Xi et al., “Quantifying sources of error in mcpat and potential
impacts on architectural studies,” in HPCA 21, 02 2015, pp. 577–589.

[56] K. Krewell, “Cortex-a53 is arm’s next little thing,” The Linley
Group, Tech. Rep., 11 2012.

William Andrew Simon received his Master
degree in Electrical Engineering, specialization
in micro and nanoelectronics, from the Swiss
Federal Institute of Technology Lausanne (EPFL)
in 2017. He is currently a Ph.D. student in Elec-
trical Engineering in the Embedded Systems
Laboratory at EPFL. His research interests are in-
memory computing, neural networks, emerging
memory architectures, and FPGAs.

Yasir Mahmood Qureshi received his Master
degree in Embedded Computing Systems from
NTNU, Trondheim in 2013. He is currently a Ph.D.
student in Electrical Engineering in the Embed-
ded Systems Laboratory at the Swiss Federal
Institute of Technology Lausanne (EPFL). His
research interests are energy efficient servers,
heterogeneous compute and hybrid memory ar-
chitectures.

Marco Rios received his Master Degree in Com-
puter Science and Electronics for Embedded
Systems from Université Grenoble Alpes in 2018.
He is currently a Ph.D. student in Electrical Engi-
neering in the Embedded Systems Laboratory
at the Swiss Federal Institute of Technology
Lausanne (EPFL). His research interests are
design of integrated systems and circuits, in-
SRAM computing, 3D stacked technologies and
the system impact of emerging memories.

Alexandre Levisse received his Ph.D. degree
in Electrical Engineering from CEA-LETI, France,
and from Aix-Marseille University, France, in 2017.
He is currently a post-doctoral researcher in the
Embedded Systems Laboratory at the Swiss
Federal Institute of Technology Lausanne (EPFL).
His research interests include circuits and ar-
chitectures for emerging memory and transistor
technologies, 3D stacked architectures, and in-
memory computing and accelerators.

Marina Zapater received her Ph.D. degree
in Electronic Engineering from Universidad
Politécnica de Madrid, Spain, in 2015. She is cur-
rently a post-doctoral researcher in the Embed-
ded System Laboratory at the EPFL, Switzerland,
and has been appointed Associate Professor
in the School of Management and Engineering
Vaud (HEIG-VD) in the University of Applied
Sciences Western Switzerland (HES-SO) in 2020.
Her research interests include thermal and power
optimization of complex heterogeneous systems,

and energy efficiency in novel architectures, servers and data centers.

David Atienza (M’05-SM’13-F’16) is associate
professor of electrical and computer engineering,
and director of the Embedded Systems Labora-
tory at the Swiss Federal Institute of Technology
Lausanne (EPFL), Switzerland. He received his
Ph.D. in Computer Science and Engineering
from UCM, Spain, and IMEC, Belgium, in 2005.
His research interests include system-level de-
sign methodologies for high-performance multi-
processor system-on-chip (MPSoC) and low-
power Internet-of-Things systems, including new

2-D/3-D thermal-aware design for MPSoCs and many-core servers,
ultra-low power edge AI architectures for wireless body sensor nodes
and smart consumer devices. He has co-authored over 300 papers
in peer-reviewed international journals and conferences, several book
chapters, and seven patents. Dr. Atienza received the 2018 DAC Under-
40 Innovators Award, 2018 IEEE TCCPS Mid-Career Award, a 2016 ERC
Consolidator Grant, the 2013 IEEE CEDA Early Career Award, the 2012
ACM SIGDA Outstanding New Faculty Award, and a Faculty Award from
Sun Labs at Oracle in 2011. He served as DATE 2015 Program Chair
and DATE 2017 General Chair, is an IEEE Fellow, an ACM Distinguished
Member, and has served as IEEE CEDA President (period 2019-2020).

https://www.tsmc.com/english/dedicatedFoundry/technology/28nm.htm
https://www.tsmc.com/english/dedicatedFoundry/technology/28nm.htm
https://developer.arm.com/technol- ogies/compute-library
https://developer.arm.com/technol- ogies/compute-library

	Introduction
	Background and Challenges
	Where to compute: von Neumann vs. iSC vs. NMP
	Near Memory Processing (NMP)
	in-SRAM Computing (iSC)

	What to compute: Simple vs. Arithmetic Operations
	How to compute: iSC Architecture Challenges

	blackAvoid Data Corruption while Maintaining High Operating Frequency
	What are Local Bitlines?
	BLADE Methods of Operation
	Standard Read/Write Operations
	Standard iSC Operations
	LBL Enhanced iSC Operations

	LBL Enhanced iSC Cache Design Advantages

	blackLogic to Support Arithmetic Operations
	Bitline Addition Architecture
	Improving Operation Throughput
	Manchester Carry Chain
	Arithmetic Operation Pipelining

	blackBLADE System Level Integration and Functionality
	iSC Instruction Passing and ISA Support
	Operand Locality Constraints
	blackIssuing ISC Operations to Cache Subarrays
	Fetching and Allocating Operands
	Integration in the gem5-X Architecture Simulator

	Electrical Validation and Design Space Exploration
	Functional Validation of BLADE
	Subarray Design Space Exploration

	System Level Benchmarking
	Edge Device Workloads
	Cryptography
	HEVC Video Processing
	Convolutional Neural Networks

	gem5-X Parameters
	McPAT Support

	Benchmark Results
	Bitwise Operations/iSC Operation Count
	FIR Filter/Cache Associativity
	Convolution/Cache Capactiy
	Arithmetic Logic Optimization

	Conclusion
	References
	Biographies
	William Andrew Simon
	Yasir Mahmood Qureshi
	Marco Rios
	Alexandre Levisse
	Marina Zapater
	David Atienza

