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Abstract—Modern Convolutional Neural Networks (CNNs) require a massive amount of convolution operations. To address the

overwhelming computation problem, Winograd and FFT fast algorithms have been used as effective approaches to reduce the number

of multiplications. Inputs and filters are transformed into special domains then perform element-wise multiplication, which can be

transformed into batched GEMM operation. Different stages of computation contain multiple tasks with different computation and

memory behaviors, and they share intermediate data, which provides the opportunity to fuse these tasks into a monolithic kernel.

But traditional kernel fusion suffers from the problem of insufficient shared memory, which limits the performance. In this article, we

propose a new kernel fusion technique for fast convolution algorithms based on MegaKernel. GPU thread blocks are assigned with

different computation tasks and we design a mapping algorithm to assign tasks to thread blocks. We build a scheduler which fetches

and executes the tasks following the dependency relationship. Evaluation of modern CNNs shows that our techniques achieve an

average of 1.25X and 1.7X speedup compared to cuDNN’s two implementations on Winograd convolution algorithm.

Ç

1 INTRODUCTION

CONVOLUTIONAL neural networks (CNNs) are the state-of-
the-art solution of image classification, detection and

many other computer vision tasks [1], [2], [3]. The high accu-
racy of CNNs comes at the cost of huge computational com-
plexity and tremendous connections in the convolutional
layer. In a typical convolutional network, the input feature
maps convolvewithmanyweight filters iteratively to yield the
output feature maps. For state-of-the-art CNN networks, con-
volution layers are the most time-consuming part. For exam-
ple, the convolutional layer occupies more than 90 percent of
the total computation in many popular neural networks [4].
Hardware accelerators such as GPUs, FPGAs, and ASICs have
been employed to deal with the overwhelming computation
pressure [5], [6], [7].

A universal approach to calculate the convolution opera-
tion is to apply general-purpose matrix multiplication
(GEMM) by flattening features and filters to matrices. One
effective alternative is to introduce FFT and Winograd fast
algorithms [8], [9] on specific layers to reduce the arithmetic
complexity. The fast convolution algorithms contain four
stages. First, both input and filter tensors are split into tiles
and apply Winograd/FFT transformation respectively. Then
each transformed input and filter tiles perform element-wise
matrix multiplication (EWMM) operation, which can be con-
verted into batched GEMM operation. The computation
amount of GEMM transformed tiles is significantly smaller

than the original GEMM-based convolution. Finally, inverse
transformation is applied to result matrices to produce the
convolution result. Prior work [8] shows that usingWinograd
algorithm can reduce the number of multiplications more
than twice on VGGnetwork, leading to an average speedup of
3.4X inCNN inference.

The conventional GPU implementation of the fast convo-
lution algorithm runs each stage in one GPU kernel. The
whole convolution is implemented in four kernels: input
and filter transformation, GEMM and output transforma-
tion. Since different GPU kernels have different arithmetic
intensity and they share intermediate data, kernel fusion
potentially provides the opportunity of further speedup.
When kernels of different stages are fused into one, GEMM
and transformation tasks are able to run in parallel, which
can increase resource and bandwidth utilization, therefore,
enhance the performance. It’s also possible to enable on-
chip data reuse without transferring data back and forth
with off-chip memory.

cuDNN [10] is the most renowned GPU deep learning
library that implementsWinograd/FFT fast convolution algo-
rithm. It is used by most deep learning frameworks for effi-
cient convolution processing on GPUs. It supports both fused
and non-fused implementation for Winograd convolution.
However, its implementation of the fused algorithm is still
rudimentary. We observe that the overall performance of the
fused kernel can be even slower compared to the non-fused
version in many convolution layers. For instance, the fused
implementation is 1.6X slower than the non-fused version
using the cuDNN library for the conv3 layer of YOLOv3.

In this paper, we propose a newkernel fusion technique for
Winograd convolution algorithms on GPUs. Different from
typical kernel fusion which executes each stage one by one in
the kernel function,we assign each thread blockwith different
types of tasks from original kernels. To produce correct
results, execution of tasks for every partition of data must
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follow the order of input and filter transformation! GEMM!
output transformation, which causes dependency between
tasks. We develop a task mapping algorithm that maps the
tasks from different kernels to the thread blocks in the
fused kernel. We optimize for several factors including task
dependency, resource balancing, and data reusing to gain
the performance speedup. The dependency between tasks
can be resolved with little overhead with the proposed task
scheduler.

In conclusion, the contribution of this paper includes:

� We propose a novel kernel fusion technique for
Winograd convolution algorithm on GPUs based on
megakernel.

� Wedevelop an efficient taskmapping algorithmbased
on comprehensive analysis of task dependency,
resource balancing and data reusing of the fused
kernel.

� We develop a task scheduler for the execution of
fused kernel. It handles the dependency between
tasks with little overhead.

We evaluate our kernel fusion technique on NVIDIA
Tesla V100 GPUs with four modern CNNs. For 3 x 3 convo-
lution layers in VGG-16, ResNet-50, YOLO-v3, and Dense-
Net-161, our technique achieves an average speedup of
1.25X and 1.7X over cuDNN non-fused and fused imple-
mentation of Winograd convolution, respectively, and
1.13X faster than the fastest cuDNN algorithm.

2 BACKGROUND

In this section, we first introduce the computation flow of
fast convolution algorithms and then present how the com-
putation kernel is implemented on GPUs.

2.1 Winograd Fast Convolution Algorithm

Consider a normal 2D convolution layer, we have an H �W
input image I and a r� r filter F with stride 1. Convolution
operation generates the output O of size ðH � rþ 1Þ � ðW �

rþ 1Þwith the following formula:

Ox;y ¼
Xr

a¼1

Xr

b¼1
Fa;bIxþa;yþb: (1)

In practice, there are often multiple input channels and
multiple filters. Images are also batched into groups for
higher performance. For convolution operation with C
input channels, K filters, and images are batched with size
N , the output tensor O is given by the following formula.
Here j is the index of the image in the batch, and k is the
index of the filter.

Oj;k;x;y ¼
XC
c¼1

Xr

a¼1

Xr

b¼1
Ij;c;a;b � Fk;c;xþa;yþb: (2)

Two representative fast algorithms to accelerate the spa-
tial convolution process are Winograd and FFT. The fast
algorithms can generate a tile of output feature map instead
of computing them individually. Fig. 1 illustrates the convo-
lution process of a single tile in following four stages:

� Input Transformation (ITrans). First, input tiles are
transformed into size ðmþ r� 1Þ � ðmþ r� 1Þ, with
ðr� 1Þ rows of overlapping elements between neigh-
bouring tiles.

� Filter Transformation (FTrans). Filter is also trans-
formed to the same size ðmþ r� 1Þ � ðmþ r� 1Þ as
transformed input tile.

� Element-Wise Matrix Multiplication. Element-wise mul-
tiplication-and-add are performed for the transformed
tiles. In current GPU implementation, element-wise
multiplication is batched into GEMMs for better paral-
lelism. In Fig. 1, every t tiles are reorgnaized into
ðmþ r� 1Þ2 matrices, and they process GEMMs
respectively.

� Output Transformation (OTrans). After doing the
Element-wise multiplication, the result applies output
transformation to generate the m�m convolution
result. There is no overlap tile in the output tensor.

Fig. 1. The computation flow of fast convolution algorithms.
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Given an input tile of size ðmþ r� 1Þ � ðmþ r� 1Þ and
filter of size r� r, the fast algorithm is applied to generate
the output feature map of size m�m,which can be repre-
sented as the following formula:

O ¼
XC
j¼0

OTrans½ITransðIjÞ � FTransðFjÞ�; (3)

where � refers to the EWMM operation. I; O; F refers to
input tile, output tile and filter, respectively. r is filter size
and m is output tile size. ITrans, FTrans, OTrans refer to the
special transformation functions for input feature map, filter
and output feature map.

We apply the Winograd transformation function into for-
mula (3), and the 1-D winograd convolution algorithm [8]
can be described as follow:

O ¼ AT ½ðG� IÞ � ðBT � F Þ�: (4)

Winograd transformations are linear transformations
which can be expressed by matrix multiplication.A;B;G are
fixed matrices which are irrelevant to input data. Common
neural networks on computer vision use two-dimensional
convolution, it can be computed by nesting one-dimensional
convolution. The formula is as follow:

O ¼ AT ½ðGIGT Þ � ðBTFBÞ�A: (5)

The element-wise matrix-matrix multiplication only needs
ðmþ r� 1Þ � ðmþ r� 1Þ multiplications. Compared to con-
ventional GEMM solution, which needsm�m� r� rmulti-
plication, Winograd algorithm can reduce arithmetic
complexity by

ðmþ r� 1Þ � ðmþ r� 1Þ
m�m� r� r

: (6)

However, when m gets larger, the cost of transformation
process grows rapidly, and the numerical accuracy of Wino-
grad algorithm also decreases. In practical, m ¼ 4 is the
most commonly used version.

2.2 Converting EWMM to GEMM

Element-wise matrix multiplication has low compute inten-
sity, since one multiply-add operation needs three memory
accesses (load two operands, and store the result), and GPU
can’t perform well to this kind of computation workload.
EWMM can be transformed into batched GEMMs by trans-
position and reorgnaization, which will be efficiently exe-
cuted on GPUs.

As shown in Fig. 1, the input transformation generates t
tiles. Each tile’s size is ðmþ r� 1Þ � ðmþ r� 1Þ and it has C
channels. It can be transposed to a ððmþ r� 1Þ� ðmþ r�
1ÞÞ � C matrix. Similarly, we apply transposition to the filter,
and it becomes a ððmþ r� 1Þ � ðmþ r� 1ÞÞ � C �K tensor.
The convolution of a tile then becomes batched vector-matrix
multiplication (GEMV) with vector size C, matrix size C �K
and batch size ðmþ r� 1Þ � ðmþ r� 1Þ. Since we have t
tiles, the GEMV operation is further combined into batched
GEMM of ðt� CÞ � ðC �KÞ, and the batch size is
ðmþ r� 1Þ � ðmþ r� 1Þ.

2.3 Workload Partition for GPUs

To implement the fast convolution algorithm on GPUs, each
stage is processed in one GPU kernel. For the transforma-
tion kernels, one GPU thread performs the transformation
of one tile in one channel, and one TB performs the transfor-
mation on blockDim channels of the same tile, where
blockDim is the number of thread in one TB. If the tile size is
smaller than blockDim, the TB continues to process the next
tile. For GEMM tasks, one or several TBs perform the multi-
plication of a t� C transformed input matrix and a C �K
transformed filter matrix, and each thread computes one
submatrix with 32 to 128 elements.

3 MOTIVATION

We can observe two important benefits of kernel fusion
for fast convolution algorithms: balanced resource usage
and reduction of data movement. However, although
GPU deep learning library cuDNN supports both fused
and non-fused implementation for Winograd algorithm,
the fused version often underperforms the non-fused ver-
sion. For cuDNN library, the fused version is only faster
than non-fused when channel sizes are less than 128. This
motivates our work which targets a better kernel fusion
technique. Here we introduce three motivations for our
proposed method.

Balanced Computation and Memory Resource. As discussed
before, Winograd/FFT convolution is composed of four ker-
nels and they exhibit diverse computation and memory
behaviors. We use arithmetic intensity (AI) to model the
computation and memory transaction amount.

arithmetic intensity ¼ compute instructions

global memory transaction size
:

(7)

We measured the number of computation and memory
transactions of Winograd convolution kernels and present
them in Table 1. The balanced AI for Tesla V100 is close to
16 (Computation speed:15TFLOP/s, Memory bandwidth:
900 GB/s). If AI is greater than 16, the performance is likely
to be limited by computation resources, and vice versa.
Thus, the performance of the transformation kernels is lim-
ited by memory bandwidth, and the GEMM kernel is
limited by computation resources. The different resource
requirement of each kernel motivates the benefits of kernel
fusion. Kernel fusion reorganizes the workload from multi-
ple kernels to run in one kernel. It enables different types of
workloads to run concurrently on GPU. When compute-
intensive and memory-intensive workloads are running
together, the arithmetic intensity will be balanced.

TABLE 1
Arithmetic Intensity(AI) for Different Stages of

Convolution (FP32 Data Type)

Kernels IN trans GEMM Out trans

Compute 14.18NHWC 9NHW(C+K) 11.6NHWK
Memory 13NHWC 4.5NHWCK 13NHWK
AI 1.08 16 � 128 0.89
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Reduction of Data Movement. In non-fused kernels, inter-
mediate results (transformed input, filter and output ten-
sors) are transferred back and forth within GPU registers
and global memory. For example, transformed input data
generated by input transformation kernel is stored to global
memory, and loaded again by GEMM kernel. Therefore,
kernel fusion can be applied to reduce some of the unneces-
sary data movement. Data reuse can be achieved via the
on-chip shared memory, which reduces global memory
transactions.

Insufficient Shared Memory. The existing fused implemen-
tation suffers from a huge disadvantage which hurts the
performance greatly. Ideally, intermediate results can be
stored in the shared memory of each thread block (TB)
instead of global memory. However, the intermediate
results are often too large to fit in the shared memory. Con-
sider a convolution layer with 128 input and output channel
for 16 6� 6 tiles(the number of tiles must be big enough for
efficient matrix multiplication). The workload will be trans-
formed into ð16� 128Þ� ð128� 128Þ matrix multiplication
with batch size of 36. If we compute Input Transformation,
GEMM, and Output Transformation stages in one TB, the
whole transformed tile should be stored in shared memory.
The transformed input and output tile has 128� 16� 36
numbers, which requires 288 KB shared memory. The
weight coefficients also consume some shared memory
capacity. Since current GPUs only have 48 to 96 KB shared
memory in one SM, the capacity is far from enough. To
solve the problem, the intermediate data has to either
recomputed or stored into global memory, which introdu-
ces great overhead for large layers. We profiled fused and
non-fused cuDNN Winograd implementations with NVI-
DIA profiler and found that the number of floating-point
instructions in the fused kernel is 1.5 times of the non-fused
kernel. It is possibly due to the recomputation of intermedi-
ate data. As a result, the advantage of kernel fusion cannot
make up the disadvantage, and the performance becomes
slower.

In this paper, we propose a new kernel fusion technique
for fast convolution algorithms which avoids the problem
of memory capacity while keeping the advantages of kernel
fusion. In the following of this paper, Section 4 introduces
our kernel fusion technique based on heterogeneous mega-
kernels. Performance optimization of the fused kernel
depends on an task mapping algorithm, which is analyzed
in Section 5. The implementation of task scheduler is
explained in Section 6. We evaluate our technique and com-
pare with existing solutions in Section 7.

4 MEGAKERNEL-BASED FUSION FORCONVOLUTION

We use Megakernel-based approach [11], [12] to effectively
fuse the kernels of convolution algorithm. Listing 1 shows
the difference of the proposed megakernel-based fusion
between the conventional sequential fusion. Unlike the
sequential fusion which assigns each stage of convolution
in the same TB and executes them one by one(Listing 1(a)),
our fusion technique schedules the computation of different
stages to different TBs (Listing 1(b)). Each TB switches to
different device function according to its block index and
only processes the computation of a single stage.

Listing 1. Pseudo Code of Two Fusion Methods

4.1 Problems and Solution of MegaKernel Fusion

However, the advantages of kernel fusion are also destroyed
in the megakernel-based execution model. First, across-stage
data reuse inside TB is not preserved. Each TB can only exe-
cute one stage, and different stages are executed in different
TBs which must be transferred with global memory. Second,
resource balancing is not guaranteed. GPU resource can be
imbalanced when TBs of same stages execute together. If all
concurrent running TBs are performing transformation
stages, the memory bandwidth will be exhausted while some
computation resources are idle. Moreover, there exists data
dependency between stages, which must be preserved in the
fused kernel. For example, for each partition of data, GEMM
can only start after the corresponding inputs and filters are
transformed.

The solution of these problems is inspired from the behav-
iour of NVIDIA GPU thread block scheduler. Although not
stated in the official documents, researchers observed that the
execution order of TBs is positivly correlated to the TB index
(blockIdx) [13], [14]. Based on this observation, we find that
the time interval of two TBs is related to their blockIdx dis-
tance. The transaction speed of L2 cache is much faster than
off-chip memory. Since the global memory transaction is
cached with L2, if the time interval of two TBs is small, they
have more chance to share data with L2 cache. This solves the
first problem of data reusing. For the resource balancing prob-
lem, it can be optimized by running types of workloads
together, and can also be controlled with the index of TBs. For
the dependency problem, the dependency between stages
becomes the dependency between TBs. In the fused megaker-
nel, wemust preserve the execution order of particular TBs.

4.2 Proposed Design

Fig. 2 shows our solution of kernel fusion that aims to solve
the problems. It consists of two parts: (a) a static task map-
ping algorithm and (b) a task scheduler. We define task as
each TBs in original non-fused kernels. Task mapping is the
process to map each task to a TB of fused kernel specified
by TB index. The mapping process is invoked before kernel
launching. With the task mapping process, we can optimize
for L2 cache data reusing and GPU resource balancing by
adjusting the tasks assigned to each TB. The task scheduler
is used to execute the task and ensure the tasks are executed
without unresolved dependency.

Fig. 2b shows the brief structure of the task scheduler.
The execution of every TB consists of four steps: obtain task,
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check dependency, execute tasks and update task depen-
dency. Tasks are pre-assigned to TBs in the task mapping
step, so TBs can just access the mapping array to obtain its
task. It checks its dependency relationship before execution.
After making sure that the dependency is resolved, the TB
switches to its device functions to perform the actual calcu-
lation. Finally, it updates the dependency status for other
tasks. The detail of task scheduler will be explained in
Section 6.

The advantage of the task scheduling system comes from
three aspects. First, the scheduling overhead is very small.
It only requires one extra memory transaction (read the task
mapping array) and two atomic operations (check and
update dependency). Second, it’s very flexible to adjust to
different task mapping solutions. Several tasks can run con-
currently if they are assigned with adjacent TBs, and vice
versa. Finally, static task mapping does not affect the load
balancing among GPU streaming multiprocessor(SM)s,
because TBs will be scheduled to GPUs with GPU’s internal
TB scheduler once there is free space on any SM.

5 TASK MAPPING FOR MEGAKERNEL

The key problem of Megakernel fusion is to map the tasks
from the original kernels to one specific TB in the fused ker-
nel. We define it as a task mapping problem. In this section,
we analyze the effect of different factors for performance,
and present a task mapping solution for best timing perfor-
mance. Fig. 2a shows our task mapping optimization to
minimize the overall execution time of the fused kernel. We
first formulate the task mapping problem in Section 5.1. To
balance the computation and memory utilization, we map
the tasks with different arithmetic intensity adjacently to
make them running concurrently on GPU (Section 5.2).
Then, we model the distance between the dependent tasks
to minimize the dependency overhead (Section 5.3). We try
to maximize the data reuse by mapping tasks with data
reuse to adjacent TBs, which reduces global memory

transactions (Section 5.4). Finally, we use an algorithm to
generate the task mapping sequence by combining all the
optimization techniques (Section 5.5).

5.1 The Task Mapping Problem

As shown in Fig. 1, the execution of Winograd convolution
algorithm can be separated into many groups, and each
group is formed with t tiles. So the total number of group is
NG ¼ Batch Size� Tiles per batch=t. Inside each group,
there are three types of task dependency orders which must
be preserved: input transformation ! GEMM, filter trans-
formation! GEMM and GEMM! output transformation.

Definition 1 Task Group. We first define task as the thread
block from four original kernels. Apparently there are four types
of task according to their original kernel. We define task group
as a set of tasks of the same type to process each stage of convo-
lution for t tiles. The convolution of t tiles involves different
number of TBs from each original kernels. We define the num-
ber of tasks in each task group as SI; SG; SO for input transfor-
mation, GEMM and output transformation, respectively. Filter
transformation is used by every partition, so it is considered as
a whole task group. The number of tasks for filter transforma-
tion is defined as NF , same as the number of TBs in filter trans-
formation kernel. The number of input transformation,
GEMM, output transformation task group is same, which is
defined asNG.

An input transformation task group is composed of tasks
on transforming t tiles, which generates matrices for GEMM
tasks. A GEMM task group is composed of the multiplica-
tion of ðmþ r� 1Þ2 matrices. The output transformation
task group transforms the same number of tiles as the input
transformation task group, but the number of tasks can be
different because of their different channel numbers.

Definition 2 Task Mapping. Given tasks from the four original
kernels, namely IN trans ¼ fI1;1 . . . ISI ;NG

g for input transfor-
mation, Filter trans ¼ fF1 . . .FNF

g for filter transformation,

Fig. 2. Overview of kernel fusion.
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GEMM ¼ fG1;1 . . .GSG;NG
g for GEMM, and OUT trans ¼

fO1;1 . . .OSO;NG
g for output transformation, andNFþNGðSI þ

SG þ SOÞ TBs, task mapping is defined as the mapping f that
maps TBs to tasks as follows,

fðTBÞ ! Task;

where

Task 2 fIN trans [ Filter trans [GEMM [OUT transg;

TB 2 ½0; NF þNGðSI þ SG þ SOÞÞ:

Our goal is to find a task mapping strategy to minimize
the execution time of the fused kernel. Since the number of
TBs that can execute concurrently on GPU is fixed in com-
pile time (we refer it as NCTB), we try to minimize the total
execution time of all TBs in the fused kernel. Since filter trans-
formation is required by every GEMM tasks, we assign
them to the beginning TBs (smallest blockIdx) and assume
that filter transformation completes in advance. We only
consider input/output transformation and GEMM tasks in
the following discussion.

Fig. 3a shows the distribution of task types in fused ker-
nel before optimization. Each type of tasks executes in
order, which is the same as non-fused kernel. We optimize
the task mapping by changing the TB index of each task in
order to change their execution order.

5.2 Task Interleaving for Resource Balancing

One of the goal of kernel fusion is to improve resource bal-
ancing by the concurrent execution of different types of
tasks. Transformation tasks are memory-intensive and
GEMM tasks are often compute-intensive. When they run
separately, one resource is used up while the other resource
is not fully utilized. As discussed in Section 3, suppose the
number of computation instruction is CT for transformation
tasks and CG for GEMM tasks. The number of memory
transaction are MT and MG respectively. The execution
speed for computation and memory transaction is SC and
SM for GPU. Without kernel fusion, the total time for two
types of tasks can be estimated as

TNonfused ¼MT

SM
þ CG

SC
: (8)

After kernel fusion, the time of fused kernel is bounded by
either computation or memory, so the total time can be

estimated as

Tfused ¼ max
CT þ CG

SC
;
MT þMG

SM

� �
: (9)

Obviously, the total time of fused kernel is smaller than the
non-fused one. However, in real situations, not every task
can run concurrently with tasks of other types. We define a
task is fusible, if there is a number of other type’s tasks in
nearby TBs, which can run concurrently with the particular
task. Otherwise, the task is infusible. For better resource bal-
ancing, the number of infusible tasks should be kept to the
minimum.

The proportion of task numbers in the original kernels is
SI : SG : SO. In the fused kernel, the number of tasks in an
adjacent period of TBs should also follow the proportion.
Otherwise, some tasks will be left behind, and become
infusible tasks at the tail. As shown in Fig. 3b, we mix
different type of tasks together so that they can execute
concurrently.

5.3 Dependency Overhead Elimination

There is dependency relationship between tasks. As shown
in Fig. 4, when a child task G1 depends on a parent task I1,
if G1 starts before I1 finishes, it must wait until I1 com-
pletes. Otherwise, the data required by child task is not
ready, and it will produce incorrect results. We define the
waiting time Twait, which is caused by the current TB wait-
ing for its unfinished parent tasks. Twait of task G can be
defined as

TwaitðGÞ ¼ maxð0;max
S2PGðTedðSÞÞ � TstðGÞÞ; (10)

where PG refers to all parent tasks of task G. Task G has
to wait for all of its parent tasks to finish.

In NVIDIA GPUs, neighboring TBs are likely to be
launched in a short time interval, which causes waiting if
neighboring TBs have data dependency. To avoid this, we
intentionally separate the dependent TBs when we map the
tasks, keeping enough distance between them. We men-
tioned three types of task dependency. The dependency
between GEMM tasks and Filter Trans tasks are resolved
by mapping the Filter Trans tasks to the beginning TBs. For
the other two types of dependency, we define their TB dis-
tances as follows. DIG refers to the minimal interval of TB
index between parent IN trans task and child GEMM task,
and DGO refers to the minimal interval of TB index between
parent GEMM task and child OUT trans task. The two
intervals should be long enough to avoid the waiting time
of task dependency.

Fig. 3c shows the distribution of the running tasks during
execution after optimizing for dependency. The first DIG

TBs are IN trans tasks, because other tasks are not ready to
execute at that time. For the next DGO TBs, some GEMM
tasks are ready to run, but OUT trans tasks are still not

Fig. 3. Working task distribution in time.

Fig. 4. Resolving dependency overhead.
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ready. Then each of three types of tasks can be available
until input transformation tasks are used up. Resolving the
dependency problem causes infusible tasks in the front DIG

TBs of IN trans, and several TBs of OUT trans TBs at the
tail when other types of tasks are used up.

5.4 Data Reuse Optimization

Kernel fusion doesn’t change the data reuse behavior inside
TB, but it changes data reuse between different TBs by rear-
ranging the order of tasks. Fig. 5 shows three types of data
reuse. Type (a) is the reuse between two adjacent IN trans
tasks that share overlapping rows. Type (b) is the reuse
between two GEMM tasks sharing the same transformed fil-
ter matrix. Type (c) is the producer-consumer data reuse of
parent IN trans task and child GEMM task. Parent GEMM
tasks and child OUT trans tasks have the same behavior of
data reuse. For NVIDIA GPUs, every global memory trans-
actions write L2 cache, which cannot be bypassed. Reusable
data is stored in L2 cache in the first access. If the data didn’t
evict from cache in the second accessing, data can be fetched

from the cache, which reduces the number of global mem-
ory transactions. To achieve the data reuse within L2 cache,
the interval between two transactions on the same memory
space must be small enough.

Fig. 6 gives an detailed model for data reuse of type (a)
and (b). For type(a), the data reuse of input transformation,
adjacent tasks share some overlapped data, and they can be
automatically assigned to nearby TBs. For type (b), data
reuse in GEMM tasks,M task groups form a grid of M � SG

GEMM tasks. Here SG is the number of tasks in one GEMM
task group. Every column of M GEMM tasks shares the
same transformed filter matrix.

To maximize data reuse, we should group GEMM tasks
in one column together to run in nearby TBs, because they
share the same transformed filter matrix. To keep the pro-
portion of task types within a task mapping pattern, every
M GEMM TBs in the same column should launch together
(having small TB distance) withMSI=SG IN_trans tasks and
MSO=SG OUT_trans tasks. The sequence is illustrated at the
bottom of Fig. 7. We repeat the sequence for SG times to
generate the task mapping for M task groups. In this way,
for every M times of access on the transformed filter matrix,
only the first time will suffer from cache miss. Other M-1
access will fetch data from the cache. The reuse rate is
ðM � 1Þ=M, which increases when M grows larger.

Type (c) data reuse has more strict prerequisites. Data
generated by parent tasks must stay in the L2 cache
for enough long time because the child tasks start after a
long interval. The channel sizes must be small enough for
all transformed tiles to fit in the cache. Note that when
type(c) data reuse satisfies, type (a) and (b) reuse are
automatically viable because all data can be reused via
cache. For typical Winograd convolution with float data
type, type (c) data reuse is available when the channel
number is smaller than 64.

5.5 Task Mapping Generation Algorithm

We discussed three optimization factors for kernel fusion so
far: resource balancing, dependency waiting overhead elim-
ination and data reuse optimization. These factors are
tightly correlated, and cannot be optimized separately. We
use three parameters DIG;DGO;M to demonstrate the opti-
mization. More clearly, we can generate the task mapping
sequence for every TB mapping with their tasks. Algorithm
1 presents the details. The tasking mapping algorithm con-
tains four parts.

Fig. 5. Data reuse of three types.

Fig. 7. Performance comparison of convolution layers with cuDNN and our Winograd implementations.

Fig. 6. Task mapping for input and filter reuse.
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Algorithm 1. Task Mapping Algorithm

1: Input NF ; SI; SG; SO;DIG;DGO;M
2: Output Task Mapping Sequence
3: procedure TaskMapping
4: FirstNF TBs Filter_trans tasks.
5: NextDIG TBs IN_trans tasks.
6: for i 1; toDGO=MðSI þ SGÞ do
7: for j 1; to SG do
8: MSI=SG TBs IN_trans tasks
9: M TBs GEMM tasks with jth filter matrix
10: end for
11: end for
12: while IN trans task remains do
13: for j 1; to SG do
14: MSI=SG TBs IN_trans tasks
15: M TBs GEMM tasks with jth filter matrix
16: MSO=SG TBs OUT_trans tasks
17: end for
18: end while
19: Last TBs remaining GEMM and OUT trans tasks
20: end procedure

� Filter Transformation TBs. At the beginning, all filter
transformation tasks are assigned to the first NF TBs,
since they are required by every GEMM task (Line
4). This part can also be separated into a new kernel
which is invoked before the main kernel, since they
are unable to work concurrently with GEMM tasks
and no data reusing is available.

� Initial TBs. Because of distance restriction, only input
transformation task can be placed in the nextDIG TBs
(Line 5). Both input transformation and GEMM tasks
can be placed in the following DGO TBs. For M task
groups, GEMM tasks reusing the same filter matrix
are grouped together. IN trans tasks are also sepa-
rated to SG groups and inserted to the task sequence,
to keep the task proportion for resource balancing.
(Line 6�11).

� Body TBs. In the following TBs, each of the three types
of tasks can be placed. Similar to above, M IN trans,
GEMM and OUT trans task groups are rearranged to
SG groups. Each contains MSI=SG IT_trans tasks, M
GEMM tasks and MSO=SG OUT trans tasks. M
GEMM tasks share the same transformed filter matrix.
This step repeats until IN trans tasks are used up.
(Line 12�18).

� Tail TBs. Finally, input transformation tasks will be
used up, and the remaining tasks fill the last TBs of
the fused kernel (Line 19).

6 IMPLEMENTATION OF TASK SCHEDULER

Although we manage to eliminate the task dependency
overhead in the task mapping process, the actual execution
time of TBs can be affected by some random factors, and the
child task can sometimes start before the parent task fin-
ishes. To prevent from generating wrong results, we must
guarantee that every child task starts after the completion of
its parent tasks with the task scheduler.

Listing 2 shows a pseudo CUDA implementation of task
scheduler to resolve the dependency of parent and child

tasks. We introduce a volatile global array counter, which
records the number of unfinished parent tasks in each task
group. The counter is initialized with the total number of
parent tasks of one task group. After each parent TB fin-
ishes, it atomically decrements the counter of its task group
by one. Each TB only performs once and thread 0 does the
job. For the child TBs, before the TB calls its device function,
it checks the dependency counter to see whether it reaches
zero, which means all parent tasks of its task group have fin-
ished. If not, the child TB keeps polling the counter until
reaching zero. The counter is implemented in volatile to pre-
vent caching.

Listing 2. Pseudo Code for Dependency Resolving

7 EXPERIMENTS

7.1 Experiment Overview

Weperform experiments onNVIDIA Tesla V100 GPU.We test
the typical 3� 3 convolution layers from the state-of-the-art
neural networks and compare the performance of our pro-
posed kernel fusion designwith cuDNN library. ForWinograd
convolution algorithm, cuDNN supports two implementa-
tions, WINOGRAD and WINOGRAD_NONFUSED. cuDNN’s
non-fused version is composed of four kernels corresponding
to our input transformation, filter transformation, GEMM, and
output transformation kernels. The software version in our
experiment is CUDA 10.0 andwe compare our performance of
convolution with cuDNN v7.3.1. Our experiment mainly tar-
gets on Winograd convolutions, because it has a better perfor-
mance compared with FFT on 3� 3 convolution, and is
alreadywidely adopted in typical convolution layers.

To perform our experiments, we first implement the non-
fused version of F ð4� 4; 3� 3ÞWinograd convolution with
four kernels, which is the same as cuDNN’s non-fused algo-
rithm. We use NHWC data layout in our experiment for bet-
ter memory coalescing. For transformation kernels, we use
one thread to process transformation for one 6� 6 tile, and
one TB consists of 128 threads. For GEMM tasks, NVIDIA’s
GEMM library cuBLAS is closed source and not available to
call inside kernels. We implemented GEMM by splitting the
multiplication of t� C and C �K matrices to multiple
tasks, according to channel sizes C and K. Fig. 7 shows that
our non-fused implementation is slightly slower than
cuDNN due to the inefficiency of GEMM kernel. To build
the fused kernel, we rewrite the kernels to device functions,
and bind them together with the task scheduler.

In the following, we first compare the performance of our
fused kernel and cuDNN’s kernels with single layers
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extracted from neural networks. We discuss the effect of layer
specification and fusion parameters by comparing the perfor-
mance of different parameter values. Then, we integrate our
fused convolution kernels into PyTorch deep learning frame-
work [15] to evaluate the overall optimization for different
networks. Finally, we also compare our resultswith some pre-
vious works. Our technique can be extended to other GPUs
andmulti-GPUplatform straightforwardly.

7.2 Single Layer Performance

To evaluate the performance of kernel fusion on Winograd
convolution algorithm, we test our fusion technique using
several typical 3x3 layers from the state-of-the-art networks:
YOLO-v3 [1], ResNet-50 [3], VGG-16 [16] and DenseNet-161
[17]. These convolution networks are widely used in com-
puter vision tasks such as classification and object detection.
They are also representative as benchmarks for the perfor-
mance of convolution implementations.

Table 2 shows the parameters of different 3 x 3 convolu-
tion layers in our experiment. Stride and padding values
are both 1 for every layer. We set the batch size of convolu-
tion to 64, and we only test the forward pass. We benchmark
our fused, non-fused implementations with cuDNN’s fused,
non-fused Winograd implementation. Our implementation
of convolution is based on NHWC-layout. Since cuDNN’s
performance on NHWC-layout is extremely slow (2�3
times slower than NCHW-layout), we evaluate the perfor-
mance of our implementation with cuDNN’s implementa-
tion on NCHW-layout. The numerical result of our fused
kernel is the same as cuDNN’s NHWC version.

We set cuDNN’s non-fused implementation as a baseline
and evaluate the speedup of the other three implementations
as shown in Fig. 7. For cuDNN convolution, the fused version
is only faster than the non-fused version when channel size is
smaller than 128 (ResNet-1, YOLOv3-1, YOLOv3-2). When
channel size grows larger, the performance of fused cuDNN
degrades heavily. On average, our non-fused kernels is
6 percent slower than cuDNN’s faster implementation
because of the slowerGEMMkernels. For 12 of 13 convolution
layers, our fused kernels outperform cuDNN’s both fused and
non-fused algorithm. Our fused kernels achieve an average
speedup of 1.25X over cuDNN-nonfused, 1.7X over cuDNN-
fused, and 1.13X over cuDNN’s faster implementation.

Our fused kernel is only 1 percent slower than cuDNN-fused
version onYOLOv3-5 layer.

7.3 Analysis on Channel and Problem Size

Here, we analyze the influence of channel size and problem
size on the performance.

Channel Size. Fig. 8 shows the performance speedup of
our fused kernel versus our non-fused kernel when the
channel size varies. X-axis is the sum of the input channel
size C and output channel size K, and Y -axis is the
speedup. We observe that the speedup of kernel fusion
decreases as channel sizes grow larger. The reason comes
from two aspects. First, for convolution with large channel
size, the execution time of transformation tasks is far less
then GEMM tasks. The effect of resource balancing on ker-
nel fusion is not significant, and the overall performance is
still bounded by GEMM computation which cannot be
decreased. Second, for layers with small channel sizes, the
producer-consumer data reuse optimization eliminates a
huge amount of global memory transactions in the fused
kernel, but it cannot be achieved in large channels because
of the limited cache size.

Problem Size. Problem size for fast convolution algorithms
can be represented as Tiles per Image�Batch size. As the
layers going deeper, the channel size increases but
Tiles per Image decreases, so problem size also decreases.
Obviously, our fusion technique prefers larger problem size
for more performance speedup. With problem size growing
larger, the number of task increases, but the number of
infusible tasks at front and tail remain unchanged. Thus,
overall resource balancing is improved. In our experiment,
VGGNet layers have same channel size as ResNet layers,
but their number of tiles are different. We don’t observe per-
formance speedup on large problem size over small prob-
lem size compared with cuDNN, because cuBLAS is
optimized for larger GEMMs. When compared with our
non-fused version, larger problem size still has benefits.

7.4 Analysis on Task Mapping Parameters

Our task mapping algorithm relies on parameters to main-
tain task distance and group size. For each layer, we select
the parameters which generate fused kernel with the best
performance. Now we discuss the effect of task mapping
parameters on different layers.

We evaluate the performance of fused kernel with differ-
ent DIG and M value on four layers from ResNet. Results

TABLE 2
Convolution Layer Specifications

K C H W

ResNet-1_x 64 64 56 56
ResNet-2_x 128 128 28 28
ResNet-3_x 256 256 14 14
ResNet-4_x 512 512 7 7
YOLOv3-1 64 32 128 128
YOLOv3-2 128 64 64 64
YOLOv3-3 256 128 32 32
YOLOv3-4 512 256 16 16
YOLOv3-5 1024 512 8 8
VGGNet-1 128 128 112 112
VGGNet-2 256 256 56 56
VGGNet-3 512 512 28 28
DenseNet-1 48 192 56 56

Fig. 8. Speedup on different channel size.

994 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 7, JULY 2020



are shown in Figs. 9 and 10. For convolution with small
channel size (ResNet-1), small task distance and group size
bring better performance. In this case, speedup mainly
comes from producer-consumer data reuse, which requires
a smaller distance between parent and child tasks.

For convolution with larger channel size, only filter
matrix reuse and input tensor reuse are feasible. Larger task
distances are maintained to reduce dependency overhead,
and larger group size is used for filter matrix reuse. But
when the parameters grow even larger, the number of infus-
ible tasks increases and performance will slow down.

7.5 Convolution Network Performance

To evaluate the performance of our fused kernel on whole
convolution networks, we integrate our kernel as a custom
extension in PyTorch deep learning framework. The result is
shown in Fig. 11. We replace the 3� 3 convolution
(nn:Conv2d op with kernel size = 3 and stride = 1) operation
with our fused kernel, andmeasure the overall time speedup
of every 3� 3 convolution layers in the convolution network.
The shape of input image is (N, C, H,W) = (64, 3, 224, 224) for
every networks. Batch size for DenseNet-161 is 48 due to lim-
itation of devicememory.

For 3� 3 layers in DenseNet, our fused kernel can achieve
50 percent speedup over cuDNN, because DenseNet is com-
posed of ðK;CÞ ¼ ð48; 192Þ convolution layers. Channel sizes
are relatively small so fusion can achieve considerable
speedup. The other three networks are mainly composed of
layers with large channels (channel size 	 256), so our fused
kernels only achieve about 10 percent speedup.

7.6 Comparison With Other Works

Apart from cuDNN Winograd-based convolution, we also
compared our result with other convolution algorithm
(cuDNN-GEMM) and other previous works on ResNet 2_x
layer. The result is shown in Fig. 12. TVM [18] provides a
code-generation approach for convolution optimization
based on winograd convolution, but their performance is

slower than cuDNN. [19] provides a tiling and batching
engine based on GEMM convolution. Although their perfor-
mance is faster than cuDNN-GEMM, it’s slower than
cuDNN-Winograd. Our approach is the only work that out-
performs the fastest cudNN algorithm.

8 RELATED WORK

Fast Processing of Neural Networks. Thanks to the massive par-
allelism capability, GPU is the most widely used accelerator
for DNNs. Implementation of operations such as convolu-
tion, pooling, and activation layers are supported in various
deep learning frameworks and libraries [9], [10], [20]. A sig-
nificant progress of DNN processing is the discovery of fast
algorithms, namely FFT convolution [21] andWinograd con-
volution [8], which reduces the arithmetic complexity for
convolution. NVIDIA and Nervana implement the fast algo-
rithms to their GPU deep learning library Neon and cuDNN.
However, Neon’s implementation of Winograd convolution
is based on assembly code of earlier architectures, and we
are not able to evaluate them. NVIDIA also presented a high-
performance open-source linear algebra library CUTLASS
[22]. Recent works also proposed effective implementations
of Winograd convolution algorithm on Manycore CPU plat-
form [23], and FPGAplatform [24].

Apart from the optimization on convolution algorithm,
other works focus on the optimization of neural network
processing with the consideration of hardware architecture
[25], [26]. Some works discuss factors of memory layout,
and optimizes register/memory efficiency and tiling strate-
gies of GEMM-based convolution [19], [27], [28], pooling
and softmax layers [29], [30], [31]. In [32], the authors also
use kernel fusion to eliminate data transfer with off-chip
memory, but their fusion is cross-layers, which is different

Fig. 9. Effect of task distance.

Fig. 10. Effect of group size.

Fig. 11. Speedup for convolutional networks.

Fig. 12. Speedup comparison with other works for ResNet 2_x.
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from our technique that apply kernel fusion within a single
layer.

Code generation is a different approach for high-perfor-
mance computation of DNNs. By building an optimization
system, code generator is able to auto-tune the optimized
implementation for specific workload and hardware.
Halide, TVM, Tensor Comprehension and other tools are
able to generate CUDA source code of DNN kernels [18],
[33], [34], [35].

GPU Task Scheduling. The fused convolution is consid-
ered as an irregular workload on GPUs, because tasks can
have heavy dependency on each other, and cannot be fully
parallel. Many scheduler for irregular GPU workloads are
based on persistent thread design [11], while the same num-
bers of TBs stay active during the entire execution process.
Kernel fusion and fission have be proposed to effectively
reorganize the execution of GPU kernels [36]. Tzeng et al.
[37] focus on the dependency between GPU tasks, and pre-
sented static and dynamic scheduling schemes to handle
task dependencies on GPUs. The static scheduling is the
same as our fusion model. Some other works intend to
reduce the scheduling overhead. R Nasre et al. [38] presents
atomic synchronization and lock-free synchronization for
inter-block GPU data communication to implement barriers.
B Wu et al. presented an approach to flexibly control GPU
task scheduling [39]. For cache-level optimization, Chen
et al. [40] studied on cache-friendly GPU scheduling techni-
ques, and Xie et al. presents a cache bypassing technique for
GPUwarp scheduler and a compiler-level optimizer for reg-
ister and cache optimization [41], [42]. Liang et al. [43] ana-
lyzed the resource utilization and partition for GPU
multitasking. Zheng et al. [12] discussed different task
scheduling strategies, including Megakernels and different
pipelined scheduling models.

9 CONCLUSION

This paper proposes a kernel fusion technique targeting the
efficient processing of fast convolution algorithms on GPU.
We use a MegaKernel-based fusion technique which assign
different tasks to different GPU thread blocks. We develop
a static task mapping algorithm to assign tasks into thread
blocks with the consideration of GPU performance. We use
a task scheduler to maintain correct task dependency rela-
tionship on execution. Our kernel fusion technique enables
better resource balancing and data reuse with minimized
dependency overhead. Evaluation on modern CNNs shows
that our technique can achieve an average of 1.25X and 1.7X
speedup over cuDNN’s non-fused and fused implementa-
tions on Winograd convolution algorithm.
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