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Abstract—Semi-supervised anomaly detection is an approach to identify anomalies by learning the distribution of normal data.
Backpropagation neural networks (i.e., BP-NNs) based approaches have recently drawn attention because of their good generalization
capability. In a typical situation, BP-NN-based models are iteratively optimized in server machines with input data gathered from the
edge devices. However, (1) the iterative optimization often requires significant efforts to follow changes in the distribution of normal data
(i.e., concept drift), and (2) data transfers between edge and server impose additional latency and energy consumption. To address
these issues, we propose ONLAD and its IP core, named ONLAD Core. ONLAD is highly optimized to perform fast sequential learning
to follow concept drift in less than one millisecond. ONLAD Core realizes on-device learning for edge devices at low power
consumption, which realizes standalone execution where data transfers between edge and server are not required. Experiments show
that ONLAD has favorable anomaly detection capability in an environment that simulates concept drift. Evaluations of ONLAD Core
confirm that the training latency is 1.95x~6.58x faster than the other software implementations. Also, the runtime power consumption
of ONLAD Core implemented on PYNQ-Z1 board, a small FPGA/CPU SoC platform, is 5.0x~25.4x lower than them.

Index Terms—On-device learning, neural networks, semi-supervised anomaly detection, OS-ELM, FPGA

1 INTRODUCTION

ANOMALY detection is an approach to identify rare data
instances (i.e., anomalies) that have different patterns
or come from different distributions from that of the major-
ity (i.e., the normal class) [1]. There are mainly three
approaches in anomaly detection: (1) supervised anomaly
detection, (2) semi-supervised anomaly detection, and (3)
unsupervised anomaly detection.

1) A typical strategy of supervised anomaly detection is
to build a binary-classification model for the normal
class versus the anomaly class [1]. It requires labeled
normal and anomaly data to train a model, however,
anomaly instances are basically much rarer than nor-
mal ones, which imposes the class-imbalanced prob-
lem [2]. Several works have addressed this issue by
undersampling the majority data or oversampling
the minority data [3], [4], or assigning more costs on
misclassified data to make the classifier concentrate
the minority classes [5].

2)  Semi-supervised anomaly detection, one of the main
topics of this paper, assumes that all the training
data belong to the normal class [1]. A typical strat-
egy of semi-supervised anomaly detection is to
learn the distribution of normal data and then to
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identify data samples distant from the distribution
as anomalies. Semi-supervised approaches do not
require anomalies to train a model, which makes
them applicable to a wide range of real-world tasks.
Various approaches have been proposed, such as
nearest-neighbor based techniques [6], [7], cluster-
ing approaches [8], [9], and one-class classification
approaches [10], [11].

3) Unsupervised anomaly detection does not require
labeled training data [1], thus its constraint is
the least restrictive. Many semi-supervised meth-
ods can be used in an unsupervised manner by
using unlabeled data to train a model because
most unlabeled data belong to the normal class.
Sometimes, unsupervised anomaly detection and
semi-supervised anomaly detection are not distin-
guished explicitly.

In this paper, we focus on semi-supervised anomaly
detection. Recently, neural network-based approaches [12],
[13], [14] have been drawing attention because in many
cases they achieve relatively higher generalization perfor-
mance than the traditional approaches for a wide range of
real-world data such as images, natural languages, and
audio data. Although there are some variants of neural net-
works, backpropagation neural networks (i.e., BP>-NNs) are
currently widely used.

Fig. 1 illustrates a typical application of BP-NN-based
semi-supervised anomaly detection models. The system
shown in the figure is designed for edge devices that imple-
ment their own models to detect anomalies of incoming
real-world data. In this system, the edge devices are sup-
posed to perform only inference computations (e.g., calcu-
lating anomaly scores), and training computations are
offloaded to server machines. The models are iteratively
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Fig. 1. Typical application of BP-NN-based semi-supervised anomaly
detection models.

trained in the server machines with a large amount of input
data gathered from the edge devices. Once the training loop
completes, parameters of the edge devices are updated with
the optimized ones. However, there are two issues with this
approach: (1) BP-NNs’ iterative optimization approach
often takes a considerable computation time, which makes
it difficult to follow time-series changes in the distribution
of normal data (i.e., concept drift). (2) Data transfers to the
server machines may impose several problems on the edge
devices such as additional latency and energy consumption
for communication.

1) As mentioned before, learning the distribution of
normal data is a key feature of semi-supervised
anomaly detection approaches. However, the distri-
bution may change over time. This phenomenon is
referred to as concept drift. Concept drift is a serious
problem when there are frequent changes in the sur-
rounding environment of data [15] or behavioral
state changes in data sources [16]. A semi-supervised
anomaly detection model should learn new normal
data to follow the changes, however, BP-NNs’ itera-
tive optimization approach often introduces a con-
siderable delay, which widens a gap between the
latest true distribution of normal data and the one
learned by the model [17]. This gap makes identify-
ing anomalies more difficult gradually.

2)  Usually, edge devices that implement machine lea-
rning models are specialized only for prediction
computations because the backpropagation method
often requires a large amount of computational
power. This is why training computations of BP-
NNss are typically offloaded to server machines with
high computational power. In this case, data trans-
fers to the server machines are inevitable, which
imposes additional energy consumption for commu-
nication and potential risk of data breaches on the
edge devices.

One practical solution to these two issues is the on-device
sequential learning approach illustrated in Fig. 2. In this
approach, incoming input data are sequentially learned on
edge devices themselves. This approach allows the edge
devices to sequentially follow changes in the distribution of
normal data and makes possible standalone execution
where no data transfers are required. However, it poses
challenges in regard to how to construct such a sequential
learning algorithm and how to implement it on edge devi-
ces with limited resources.
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Fig. 2. On-device sequential learning approach.

To deal with the underlying challenges, we propose an
ON-device sequential Learning semi-supervised Anomaly
Detector called ONLAD and its IP core, named ONLAD
Core." The algorithm of ONLAD is designed to perform fast
sequential learning to follow concept drift in less than one
millisecond. ONLAD Core realizes on-device learning for
resource-limited edge devices at low power consumption.

In this paper, we make the following contributions:

1)  ONLAD leverages OS-ELM [19], a lightweight neu-
ral network that can perform fast sequential learn-
ing, as a core component. In Section 3.1, we
theoretically analyze the training algorithm of OS-
ELM and demonstrate that the computational cost
significantly reduces without degrading the training
results when the batch size equals 1.

2) In Section 3.2, we propose a computationally light-
weight forgetting mechanism for OS-ELM based on
FP-ELM, a state-of-the-art OS-ELM variant with a
dynamic forgetting mechanism. Since a key feature
of semi-supervised anomaly detection is to learn the
distribution of normal data, OS-ELM should be able
to forget past learned normal data when the distribu-
tion changes. The proposed method provides such a
function for OS-ELM with a tiny additional compu-
tational cost.

3) InSection 3.3, we propose ONLAD, a new sequential
learning semi-supervised anomaly detector that
combines OS-ELM and an autoencoder [20], a neural
network-based dimensionality reduction model.
This combination, together with the other proposed
techniques to reduce the computational cost, realizes
fast sequential learning semi-supervised anomaly
detection. Experiments using several public datasets
in Section 5 show that ONLAD has comparable gen-
eralization capability to that of BP-NN based models
in the context of anomaly detection. They also con-
firm that ONLAD outperforms BP-NN based models
in terms of anomaly detection capability especially in
an environment that simulates concept drift.

4)  In Section 4, we describe the design and implementa-
tion of ONLAD Core. Evaluations of ONLAD Core in
Section 6 show that ONLAD Core can perform train-
ing and prediction computations approximately in
less than one millisecond. In comparison with soft-
ware counterparts, the training latency of ONLAD

1. This work is an extended version of our prior work [18].
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Fig. 3. Extreme learning machine.

Core is faster by 1.95x~6.58x, while the prediction
latency is faster by 2.29x~4.73x on average. They also
confirm that the proposed forgetting mechanism is
faster than the baseline algorithm, FP-ELM, by 3.21x
on average. In addition, our evaluations show that
ONLAD Core can be implemented on PYNQ-Z1
board, a small FPGA /CPU SoC platform, in practical
model sizes. It is also demonstrated that the runtime
power consumption of PYNQ-Z1 board that imple-
ments ONLAD Core is 5.0x~25.4x lower than the
other software counterparts when training computa-
tions are continuously executed.

The rest of this paper is organized as follows: Section 2
provides a brief review of the basic technologies behind
ONLAD. We propose ONLAD in Section 3. Section 4
describes the design and implementation of ONLAD Core.
ONLAD is evaluated in terms of anomaly detection capa-
bility in Section 5. ONLAD Core is also evaluated in terms
of latency, FPGA resource utilization, and power consump-
tion in Section 6. Related works are described in Section 7.
Section 8 concludes this paper.

2 PRELIMINARIES

This section provides a brief introduction of the base tech-
nologies behind ONLAD: (1) Extreme Learning Machine
(ELM), (2) Online Sequential Extreme Learning Machine
(OS-ELM), and (3) autoencoders.

21 ELM

ELM [21] illustrated in Fig. 3 is a kind of single hidden layer
feedforward network (i.e., SLEN) that consists of an input
layer, a hidden layer, and an output layer. Suppose an
n-dimensional input chunk z € R¥" of batch size = k is
given; an m-dimensional output chunk y € R™™ is com-
puted as follows.

y=G(z -a+Db)B, (1)

where a € R”" denotes an input weight connecting the
input layer and the hidden layer, and g € RY*™ an output
weight connecting the hidden layer and the output layer.
b € R" denotes a bias vector of the hidden layer, and G an
activation function applied to the hidden layer output.

If an SLFN can approximate an m-dimensional target
chunk ¢ € R*™ with zero error, it implies that there exists g
which satisfies the following equation.

Glz-a+bp=t. (2)
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Let H € R™Y be the hidden layer output G(z - & + b); then
the optimal output weight g is computed as follows.

B=Ht, 3)

where H' is the pseudo inverse of H. H' can be calculated
with matrix decomposition algorithms such as Singular
Value Decomposition (SVD) [22]. In particular, if H TH or
HH? is non-singular, H' can be calculated in an efficient
way with H' = (H"H) '"H" or H' = H'(HH")".

The whole training process is completed simply by
replacing g with B. @ and b do not change once they have
been initialized with random values; the conversion from z
to H is random projection.

ELM does not use iterative optimization that BP-NNs
use, but rather one-shot optimization, which makes the
whole training process faster. ELM can compute the optimal
output weight faster than BP-NNs [21]. It is categorized as a
batch learning algorithm, wherein all the training data are
assumed to be available in advance. In other words, ELM
must be retrained with the whole dataset, including the
past training data, in order to learn new instances.

2.2 OS-ELM

OS-ELM [19] is an ELM variant that can perform sequential
learning instead of batch learning. Suppose the ith training
chunk {z; € R"*" t; € R¥*™} of batch size = k; is given;
we need to find B that minimizes the following error.

H, to
Bi—1 1 )

where H; is defined as H; = G(z; - @ + b). The optimal out-
put weight is sequentially computed as follows.

P,=P;, P, H (I+ HiPilelT)ilHiPifl

T (5)

Bi =B+ PiH; (t; — Hip; 1),

P, and B, are computed as follows.
Py o

By = PoH!t,.

The number of initial training samples kj should be greater
than that of hidden nodes N to make H H, nonsingular.

As shown in Equation (5), OS-ELM sequentially finds the
optimal output weight for the new training chunk without
memory or retraining using past training data, unlike ELM.
OS-ELM can also find the optimal solution faster than BP-
NNs [19].

2.3 Autoencoders

An autoencoder [20] illustrated in Fig. 4 is a neural network-
based unsupervised learning model for finding a well-
characterized dimensionality reduced form # € R*" of an
input chunk = € R™" (i < n). Generally, the output of an
intermediate layer is regarded as . ELM and OS-ELM have
only one intermediate layer; therefore, the hidden layer out-
put H is regarded as Z. Basically, the number of hidden nodes
n is constrained to be less than that of input nodes n. Such



1030

Input

Compressed representation Qutput

Encoder E Decoder —— Minimize
v L(y, t)

Fig. 4. Autoencoder.

autoencoders are specially referred to as undercomplete
autoencoders. However, sometimes they take the opposite
setting (i.e., n < n) where they are referred to as overcom-
plete autoencoders. Although overcomplete autoencoders
cannot perform dimensionality reduction, they can obtain
well-characterized representations for classification prob-
lems by applying regularization conditions or noise [23] to
their loss functions.

In the training process, input data are also used as targets
(i.e., t = x); therefore, an autoencoder is trained to correctly
reconstruct input data as output data. It is empirically
known that & tends to become well-characterized when the
error between input data and reconstructed output data
converges [20]. Labeled data are not required during the
whole training process; this is why an autoencoder is cate-
gorized as an unsupervised learning model.

Autoencoders have been attracting attention in the field
of semi-supervised anomaly detection [13], [24], too. In this
context, an autoencoder is trained only with normal data;
therefore, its output tends to have a relatively large recon-
struction error in the case of an anomaly. Thus, anomalies
can be detected by setting a threshold for the errors. This
approach is categorized as a semi-supervised anomaly
detection method since only normal data are used as train-
ing data.

Principal Component Analysis (PCA), another non-sta-
tistical dimensionality reduction algorithm, is often com-
pared with autoencoders. Sakurada et al. showed that
autoencoder-based models can detect subtle anomalies that
PCA fails to pick up [13]. Moreover, autoencoders can per-
form nonlinear transformations without costly computa-
tions that kernel PCA [25] requires.

3 ONLAD

As mentioned in the introduction, ONLAD leverages OS-
ELM as its core component. In this section, we provide a
theoretical analysis of OS-ELM and demonstrate that the
computational cost of the training algorithm significantly
reduces when batch size = 1 without any deterioration of
the training results. Then, we propose a computationally
lightweight forgetting mechanism to deal with concept
drift. Finally, we formulate the algorithm of ONLAD.

3.1 Analysis of OS-ELM

The training algorithm of OS-ELM (i.e., Equation (5)) mainly
consists of (1) matrix products and (2) matrix inversions.
Suppose the computational iterations of a matrix product
A € RP*1- B € R”" are pqr and those of a matrix inversion
C~' € R™ are r%; the total computational iterations of these
two operations in Equation (5) are calculated as follows.
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Lyod = 4kN? 4 k(2K + 2m + n) N
Iim) = k37

where 1., denotes the total computational iterations of the
matrix products, while I;,, denotes those of the matrix
inversions. n, N, and m are the numbers of input, hidden,
and output nodes of OS-ELM, respectively. k denotes the
batch size. For instance, the computational iterations of
H;P; 1 H! are calculated by dividing the computing process
into two steps: (1) H; € RPN . P, e RYN and ()
H,P,_, € R™V. HZT € RV**. In this case, these computa-
tional iterations are calculated as kN2 and k>N, respectively.

Let I;, be the total computational iterations of matrix prod-
ucts and matrix inversions in Equation (5) when batch size =
k. Accordingly, the following equations can be derived.

]k = 1prod + L',m)
= 4kN? + k(2k + 2m +n)N + &
= k(AN? + (2k + 2m +n)N + k?)

> k(AN? 4+ (24 2m +n)N +1) = k.

Finally, I > kI; is obtained. This inequality shows
that the training algorithm becomes computationally more
efficient when batch size = 1, rather than when batch size =
k (> 1). Please note that this insight does not always
make sense especially for software implementations
because this computational model does not take into
account the software-specific overheads such as memory
allocation and function calls. However, bare-metal imple-
mentations, including ONLAD Core, receive benefits from
this insight since they are free from such overheads. More-
over, when £ = 1, the computational cost of the matrix inver-
sion (I + H ,L'Pi,lHiT)_1 in Equation (5) is significantly
reduced, as the size of the target matrix I + H,iPi,lHiT is
k x k. In this case, the following training algorithm is
derived from Equation (5).

Pi—lh;hipi—l
1+ h;P;_ihl @)
Bi=Bi_1 + Pih! (t; — hiB; ),

P;=P; -

where h € RV denotes the special case of H ¢ R™V
when k = 1. Thanks to the above trick, OS-ELM can per-
form training without any costly matrix inversions,
which helps to reduce not only the computational cost
but also the hardware resources needed for ONLAD
Core. It also makes it easier to parallelize the training
algorithm, because there are no matrix inversions with a
low degree of parallelism in Equation (7). Furthermore,
the training results of OS-ELM are not affected even
when batch size = 1, because OS-ELM gives the same
output weight when training is performed N times with
batch size = k or Nk times with batch size = 1. This is a
notable difference from BP-NNs; their training results
get better or worse depending on the batch size. On the
basis of the above discussion, the batch size of OS-ELM
used in ONLAD is always set to 1.
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3.2 Lightweight Forgetting Mechanism for OS-ELM
In certain real environments, the distribution of normal data
may change as time goes by. In this case, ONLAD should
have a function to adaptively forget past learned normal
data with a tiny additional computational cost. To deal with
this challenge, we propose a computationally lightweight
forgetting mechanism based on Forgetting Parameters
Extreme Learning Machine (FP-ELM) [26], a state-of-the-art
OS-ELM variant with a dynamic forgetting mechanism.

3.2.1 Review of FP-ELM

This section provides a brief review of FP-ELM. The training
algorithm of FP-ELM is formulated as follows.

Ki = (X?Ki,l —+ HZTHl
Bi=Bi1+ (M +K)" ®
(HT( —Hip;_y) — M1— 0‘7;2).37:71)

Especially, K and B, are computed as follows.

K, =H[H,

9

By = (M + H{ Ho) 'H{to, @
where X is the L2 regularization parameter for B. A limits
I8l so that it does not become too large to prevent overfit-
ting. 0 < a; <1 is the forgetting factor that controls the
weight (i.e., the significance) of each past training chunk.
Suppose the latest training step is ¢; then wy, the weight of
the kth training chunk, is gradually decreased from one
step to the next, as shown below.

Wi = H;‘:krﬂ o, (0 < k <i— 1) . (10)
1 (k=1)

Please note that «; is a variable parameter that can be adap-

tively updated according to the information in the arriving

input data or output error values.

3.2.2 Proposed Forgetting Mechanism

FP-ELM can control the weights of past training Chunks
However, it cannot remove the matrix inversion (Al + P; )
in Equation (8) even when the batch equals 1, because the
size of the target matrix \I + P; is N x N, where N denotes
the number of hidden nodes. To address this issue, we mod-
ify FP-ELM so that it can remove the matrix inversion when
batch size =1.

First, the following equations are derived by disabling
the L2 regularization trick (i.e., let A = 0) in Equation (8).

K,=d’K; ,+H'H,;

an
ﬁ ﬁt 1+K 1HT(

HﬂL 1)

Next, the update formula of K I'is derived with the Wood-

bury formula [27].2

2. (A+UCV) ' =A"'—AalU(Cc +vATU) VAL
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K!

= (a?Ki—l + HiTHiy1

Lo Lo T
= <a_2Ki—l) - (@Kiq)Hi
1 A B
(rem () ()
0[7 a;

Finally, the training algorithm is obtained by defining
P, =K'

1 1
P~ () - (P )t
1 p 1
“(I+H;(5Pi |H) 'H;( P4
(X1 ai
Bi =B, +PH/(t;— H; ,),

(12)

(13)

Py, and B, are computed with the same algorithm as
Equation (6). The proposed forgetting mechanism elimi-
nates the matrix inversion in Equation (13) when batch
size = 1 because the size of the target matrix I+
H,(Q%P7,1)HZT is k x k, where k denotes the batch size.
Equdtion (13) becomes equal to the original training
algorithm of OS-ELM when % ; is replaced with P;.
Thus, the proposed method p1‘0V1des a forgetting func-
tion with a tiny additional computational cost to the
original training algorithm of OS-ELM. However, it may
suffer from overfitting, since the L2 regularization trick
is disabled. The trade-off is quantitatively evaluated in
Section 5.

Algorithm 1. Example of Using ONLAD

1: a — random(), b < random/()
2: Hy — G(zg € R . a+b) {ky > N}
3: Py — (HZH[))_lrﬁo — P[)Hgt()
4: 91
5: foruntil {z; € R",0 < «; < 1} exists do
6: h; — G(z; -a+Db)
7: 1fe>1+h( 11)h then
8: prmt(”Smgular matrix encountered.”)
9: 1e—i+1
10: continue
11: end if
12: score «— L(x;, hiB;_,)
13: if score > 0 then
14: print(“Anomaly detected.”)
15: end if
16: Pi—l <—ai2Pi_1
" P hIRiPiy
17: P, — Pi,1 — W

18: B — Bi_y + Pih] (zi —
19: P—1+1
20: end for

hiB; 1)

3.3 Algorithm

ONLAD leverages OS-ELM of batch size = 1 in conjunc-
tion with the proposed forgetting mechanism. The follow-
ing equations are derived by combining Equations (7)
and (13).
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(1P/ DL hy( —PL 1)
P, = (a_12Pi—1)

i

ﬂi *ﬂzl+Ph(

1+h; (—Pl 1)hT

h’ﬂL 1)

(14)

ONLAD is built on an OS-ELM-based autoencoder to con-
struct a semi-supervised anomaly detector; t; = x; holds in
Equation (14). The training algorithm of ONLAD is as follows.

1 (_Pl l)h h(_P1 1)
Pi =P 1)—W

B =B+ Pihl(z hiﬂi—l)v

P, and B, are computed as follows (there are no changes
from Equation (6)).

(15)

Py = (HYHy) ™
By = PoH{ t.

(16)

As indicated in Equation (15), ONLAD performs training
and forgetting operations at the same time.
The prediction algorithm is formulated as follows.

score = amn

L(z,G(z-a+b)B),

where L denotes a loss function, and score is an anomaly
score of .

3.4 Stability of OS-ELM Training

OS-ELM has a training stability issue: if I+ H;P; 1 H LT in
Equation (5) is close to a singular matrix, the training beco-
mes unstable regardless of the batch size [19]. In the context
of ONLAD, the problem occurs when 1+ h; (1 P;_ 1)hT i
Equation (15) is close to 0. Thus, ONLAD should stop the
training whene > 1+ h; ( > Pi 1)L, where e denotes a small
positive value.

3.5 Example of ONLAD in Practical Use

The following is an example of ONLAD (shown in Algo-
rithm 1) intended for practical use. First, @ and b are initial-
ized with random values; then B, and P, are computed
with Equation (16). Please note that the number of initial
training samples k; should be larger than that of hidden
nodes N to make H{ H, nonsingular. At the ith training
step in the following loop, the inequality e > 1+
hi(;—gPi_l)h[T is evaluated, then the rest of the lines are
skipped if it is true. If it is false, then an anomaly score of z;
is computed with Equation (17). z; is judged to be an

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 7, JULY 2020

TABLE 1
Specifications of PYNQ-Z1 Board

Board Specifications

Linux PYNQ v2.4 (Ubuntu v18.04)
Image
SoC Chip  Xilinx ZYNQ XC7Z020-1CLG400C CPU: ARM
Cortext-A9 650MHz FPGA: Artix-7
DRAM DDR3 512MB
FPGA Specifications
BRAM 280 blocks
DSP 220 slices
FF 106,400 instances
LUT 53,200 instances

anomaly if the score is greater than a user-defined threshold
0; otherwise ONLAD judges z; to be a normal sample.
Finally, sequential learning is performed with Equation (15).

4 ONLAD CoRE

This section describes the design and implementation of
ONLAD Core, an IP core of ONLAD. To demonstrate that
ONLAD Core can be implemented on edge devices with
limited resources, we use PYNQ-Z1 board, a low-cost SoC
platform where an FPGA is integrated. Fig. 5 displays the
board, and its specifications are shown in Table 1. We
develop ONLAD Core with Vivado HLS v2018.3 and imple-
ment it on PYNQ-Z1 board using Vivado v2018.3. The clock
frequency of ONLAD Core is set to 100.0 MHz.

4.1 Overview of Board-Level Implementation

First, we provide a brief overview of our board-level imple-
mentation. Fig. 6 shows the block diagram. The Processing
System (PS) part is mainly responsible for preprocessing of
input data and triggering a Direct Memory Access (DMA)
controller. The DMA controller converts preprocessed input
data in DRAM to AXI4-Stream format packets and transfers
them to ONLAD Core. It also converts output packets of
ONLAD Core back to AXI4-Memory-Mapped format data,
and transfers them to DRAM. On the other hand, the Pro-
grammable Logic (PL) part implements ONLAD Core.
ONLAD Core performs training or prediction computations
according to the information in the header of input packets
(the details are to be described later).

4.2 Details of ONLAD Core

Fig. 7 illustrates the block diagram of ONLAD Core, with its
four important sub-modules: (1) Parameter Buffer, (2) Input
Buffer, (3) Train Module, and (4) Predict Module. The rest
of this section explains these sub-modules one by one.

Control
Interface
(AXI4-Lite)

ZYNQ PS M : Master Port
S : Slave Port

ZYNQ PL
MM

= Stream
64-bit

Stream
MM 4=

GP Port M e M
Memary
R/W

MM S

32-bit

Fig. 6. Block diagram of board-level implementation.
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Qutput Packet
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Fig. 7. Block diagram of ONLAD Core.

4.2.1 Parameter Buffer
Parameter Buffer manages the parameters of ONLAD Core
(i.e, a, B, P, and b). All the parameters are implemented
with BRAMs; hence, more BRAM instances are consumed
as the sizes of the parameters increase. Specifically, the total
number of matrix elements of Parameter Buffer (denoted as
Sparam) 18 calculated as follows.

Sparameter = N* + (2n + 1)N. (18)
Please note that n =m is applied in Equation (18), since
ONLAD is an autoencoder. Equation (18) shows that the uti-
lization of the BRAM instances of this module is propor-

tional to the square of the number of hidden nodes N? and
is also proportional to the number of input nodes n.

4.2.2 Input Buffer

Input Buffer stores a single input vector preprocessed in the
PS part and, like Parameter Buffer, is implemented with
BRAMs. The total number of matrix elements of Input
Buffer (denoted as .Sj,,;,,;) is calculated as follows.

Sinput =n. (19)
Equation (19) shows that the utilization of the BRAM instan-
ces of this module is proportional to the number of input
nodes n. This module is shared with Train Module and Pre-
dict Module so that they can read the input vector.

4.2.3 Train Module

Train Module executes the training algorithm (i.e., Equa-
tion (15)) in order to update the parameters in Parameter
Buffer. Fig. 8 shows the processing flow. Each processing
block is sequentially executed. According to the discussion
in Section 3.4, Train Module is designed to interrupt the
computation when O3 < ¢ holds. In our implementation, e
is set to 1le~*. The output signal of Success indicates whether
the inequality is satisfied or not (1/0 means satisfied /not
satisfied). All the matrix operations, including matrix prod-
ucts, matrix adds, matrix subs, and element-wise multiplies
are implemented with arithmetic units of 32-bit fixed-point
precision using DSPs. To save hardware resources, these
matrix operations are designed to use a specific number of
arithmetic units regardless of the number of input and hid-
den nodes. The matrices shown in the processing flow (.e.,
O1.s and h;) are implemented with BRAMs.
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0 i.p. P,=0 _&
1 12 i-1 i 03
v H
’ 0,=0,h! | ‘ 0y =P;-h] |
H H
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Fig. 8. Processing flow of train module.

The total number of matrix elements of Train Module
(denoted as S;,4,) is calculated as follows.

Sirain = 2N* + 4N + 2n + 1. (20)

Equation (20) shows that the utilization of the BRAM instan-
ces of this module is proportional to the square of the num-
ber of hidden nodes N? and is also proportional to the
number of input nodes n.

Iirain below denotes the total computational iterations
needed to finish the processing flow, calculated in the man-
ner described in Section 3.1.

The computational cost is proportional to the square of the
number of hidden nodes N?, and is also proportional to the
number of input nodes n.

4.2.4  Predict Module
Predict Module executes the prediction algorithm (.e.,
Equation (17)) to output anomaly scores. Fig. 9 shows the
processing flow. Predict Module follows the design meth-
odology of Train Module.

The total number of matrix elements of Predict Module
(denoted as Sygict) is calculated as follows.

Sprc(lict = N +n. (22)

Equation (22) shows that the utilization of the BRAM instan-
ces of this module is proportional to the numbers of hidden
nodes N and input nodes n.

Ipredict below denotes the total computational iterations to
finish the processing flow.

h=G(x-a+b)

T
¥
01=hB

¥
score = L(x,0,)

T
i
1
v
Score = score

Fig. 9. Processing flow of predict module.
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Input Packet (64-bit) Output Packet (32-bit)
Mode Field Data Field
3-bit 29-bit 32-bit 32-bit
update_params s i Ukiiigas
(3°'b000~3'06011) -
1
update_input e 1
{3'b100) |I1dQX - Unused
i
uRga.t,‘E.ll ff Unused _: Unused
(3'p101 i
do_training Success
(3'b110) Unused (32°b1 or 32°b0)
do_prediction
~(3b111) Unused
MSB [ 32-bit fixed point (integer: 10-bit, decimal: 22-bit) LSE MSB LSB

[ 29-bit unsigned int

Fig. 10. Packet formats.

Lyyedicc = 2nN. (23)

The computational cost is proportional to the numbers of
hidden nodes N and input nodes n.

4.2.5 Implementation of Matrix Operations

In ONLAD Core, matrix operations, such as matrix product,
matrix add, matrix sub, and element-wise multiply, are
implemented as a dedicated circuit. These matrix operations
are designed with C-level language and synthesized with
Vivado HLS. Loop unrolling and loop pipelining directives
are used in the innermost loops of these operations for par-
allelization. In this design, unrolling factor is set to 2, so that
they are parallelized with two arithmetic units.

4.3 Instructions of ONLAD Core
ONLAD Core is designed to execute the following instruc-
tions: (1) update_params, (2) update_input, (3) update_ff, (4)
do_training, and (5) do_prediction. The packet format of each
instruction is detailed in Fig. 10. An input packet is of 64
bits long. The first 3-bit field (i.e., Mode Field) specifies an
instruction to be executed on ONLAD Core. The following
61-bit field (i.e., Data Field) is reserved for several uses
according to the instruction. An output packet is of 32 bits
long and embeds an output result of Train Module or Pre-
dict Module.

In the rest of this section, we describe how the sub-modules
of ONLAD Core work according to each instruction.

4.3.1 update_params

This instruction updates Parameter Buffer. The packet for-
mat is shown in the first row of Fig. 10. The target parameter
is specified in Mode Field of an input packet. Index in Data
Field embeds an index of the target parameter, and Value
an update value. The target parameter is updated as below.

target[Index] «— Value. (24)

Please note that all the parameters are managed as row-
major flattened 1-D arrays in Parameter Buffer.

4.3.2 update_input

This instruction updates Input Buffer. The packet format
(the second row of Fig. 10) is almost the same as update_par-
ams instruction except for Mode Field.

z[Index] «— Value. (25)
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Input Buffer is updated with the above formula. Please note
that n input packets are required to create an n-dimensional
input vector.

4.3.3 update_ff

This instruction updates the forgetting factor o; managed in
Train Module. The packet format of this instruction is
shown in the third row of Fig. 10. Value in Data Field
embeds an update value. «; is updated as follows.

o; < Value. (26)

4.3.4 do_training

This instruction executes training computations with Train
Module. Train Module first reads the latest parameters (i.e.,
Bi_, and P;_;) from Parameter Buffer, and an input vector
from Input Buffer. Then, it executes the training algorithm
and updates Parameter Buffer with the new parameters
(i.e., B; and P;).

The packet format is shown in the fourth row of Fig. 10. An
input packet of this instruction is just a trigger to perform
training. An output packet of this instruction embeds an eval-
uation result (denoted as Success) of the inequality described
in Section 4.2.3 (1/0 means satisfied /not satisfied).

4.3.5 do_prediction

This instruction executes prediction computations with Pre-
dict Module. Predict Module reads the latest output weight
if it is updated, and an input vector in the same way as
Train Module. Predict Module then executes the prediction
algorithm and outputs an anomaly score of the input vector.

The packet format is shown in the last row of Fig. 10.
An input packet of this instruction is also just a trigger for
prediction. An output packet of this instruction embeds
an output anomaly score (denoted as Score) computed by
ONLAD Core.

5 EVALUATIONS OF ANOMALY DETECTION
CAPABILITY

In this section, the anomaly detection capability of ONLAD
is evaluated in comparison with other models. A common
server machine (OS: Ubuntu 18.04, CPU: Intel Core i7 6700
3.4 GHz, GPU: Nvidia GTX 1070 8 GB, DRAM: DDR4 16
GB, and Storage: SSD 512 GB) is used as the experimental
machine in this section and Section 6.

5.1 Experimental Setup
ONLAD is compared with the following models: (1)
FPELM-AE, (2) NN-AE, and (3) DNN-AE. FPELM-AE is an
FP-ELM-based autoencoder. This model is used to quantita-
tively evaluate the effect of disabling the L2 regularization
trick in ONLAD. NN-AE is a 3-layer BP-NN-based autoen-
coder, and DNN-AE is a BP-NN-based deep autoencoder
consisting of five layers. These models are used to compare
OS-ELM-based autoencoders (i.e., FPELM-AE and ONLAD)
with BP-NN-based ones. All the models, including
ONLAD, were implemented with TensorFlow v1.13.1 [31].
For a comprehensive evaluation, two testbeds: (1) Offline
Testbed and (2) Online Testbed are conducted. Offline Testbed
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TABLE 2 TABLE 4
Datasets AUC Scores on Offline Testbed
Name Samples Features Classes  Dataset ONLAD FPELM-AE NN-AE DNN-AE
Fashion MNIST [28] 70,000 784 10 Fashion MNIST 0.905 0.905 0.925 0.913
MNIST [29] 70,000 784 10 MNIST 0.944 0.945 0.958 0.961
Smartphone HAR [30] 5,744 561 6 Smartphone HAR  0.929 0.928 0.922 0.910
Drive Diagnosis [30] 58,509 48 11 Drive Diagnosis 0.939 0.943 0.952 0.961
Letter Recognition [30] 20,000 16 26 Letter Recognition  0.952 0.950 0.978 0.985
TABLE 3
Search Ranges of Hyperparameters 5.2 Experimental Method
This section describes the experimental methods of Offline
ONLAD FPELM-AE Testbed and Online Testbed, respectively.
Glhidden {Sigmoid [32], Identity4} {Sigmoid, Identity}
p(z) Uniform [0,1] Uniform [0,1]
L MSE® MSE Algorithm 2. Offline Testbed
o {0.95, 0.9, ..., 1.00} {0.95, 0.9, ..., 1.00} ] —_ w0 6) [y)
Ny {8, 16, 32, ..., 256} {8, 16, 32, ..., 256} L Xirain = P((O’)T ain? ()1()”"”'”’ B 'gcﬁt)m" }
A 0026 20 Xiest = [Xz‘est7 Xtesz‘7 RS} Xtesf }
NN-AE DNN-AE 3: average_auc < 0
a Si 'd Relu [33]] = 4 Relu) 4: fori —0toc—1do
hidden, 1gmoid, kelu 1igmoid, Relu ) _ ()
Gout Sigmoid Sigmoid 5 Xnormal_train )((ifjmm
L MSE MSE 6: XnOfrmal,tcst — Xte,',-f,
0O Adam [34] Adam 70 Xunomaly — Xgizé;)
B (8, 16, 32) (8, 16, 32} 8:  num_anomalies — len(Xormal_test) X 0.1
E 5,10, 15, 20} 5,10, 15,20} : i rormatdest) -
N 18,16, 32, ..., 256} 8,16,32,..,256) % Kanomaty — sample(Xunomary, num-anomalies)
]\72 (8,16, 32, ..., 256} 10: m()d(il.tT(I/L'TY/(XnOTmal_tmm)
N; (8,16, 32, ..., 256} 11:  scores «— model.predict(concat([ X nommai_tests X anomaly)))

simulates an environment where all training and test data
are available in advance and no concept drift occurs. This is
a standard experimental setup to evaluate semi-supervised
anomaly detection models. The purpose of Offline Testbed
is to measure the generalization capability of ONLAD in the
context of anomaly detection. This testbed is not used to
evaluate the proposed forgetting mechanism (i.e., «; is
always fixed to 1), since no concept drift occurs in this
testbed. On the other hand, Online Testbed simulates an
environment where at first only a small part of a dataset is
given and the rest arrives as time goes by. Online Testbed
assumes that concept drift occurs. The purpose of this
testbed is to evaluate the robustness of the proposed for-
getting mechanism against concept drift in comparison
with the other models.

Several public classification datasets listed in Table 2
are used to construct Offline Testbed and Online Testbed.
All data samples are normalized within [0, 1] by using min-
max normalization. Hyperparameters of each model are
explored within the ranges detailed in Table 3.%

3. Ghidgden: an activation function applied to all the hidden layers.
Gy an activation function applied to the output layer. p(z): a probabil-
ity density function used for random initialization of ONLAD and
FPELM-AE. N;: the number of nodes of the ith hidden layer. L: a loss
function. «;: the forgetting factor of ONLAD and FPELM-AE. X: the L2
regularization parameter of FPELM-AE. O: an optimization algorithm.
B: batch size. E: the number of training epochs.

4.G(z) == )

5. L(z,y) = L0 (@ — )

6. This value was used for the experiments in the original paper of
FP-ELM (i.e., [26]).

12:  average_auc — average_auc + calc_auc(scores)
13:  model.reset()
14: end for

15: average_auc « “HEEE

Algorithm 2 shows the experimental method of Offline
Testbed. In this testbed, a dataset is divided into training
data Xi4n (80 percent) and test data X, (20 percent),
respectively. Suppose we have a dataset that consists of ¢
classes in total; training data of class ¢ are used as normal
data for training (denoted as X,,rmai_train) and test data of
class ¢ are as normal data for testing (denoted as
Xoormai_test). Test data of class j # i are used as anomaly
data (denoted as Xgnoma). The number of samples in
Xanomaly is limited up to 10 percent of that of X,ommai_test
to simulate a practical situation; anomaly data are much
rarer than normal data in most cases. A model is trained
with X,ormai_train AINN-AE and DNN-AE are trained with
batch size = B for E epochs). Once the training procedure
is finished, the model is evaluated with a test set that
mixes X, ormal_test and Xanomary, then an AUC (Area Under
Curve) score is calculated. AUC is one of the most widely
used metrics for evaluating the accuracy of anomaly
detection models independently of particular anomaly
score thresholds. The above process is repeated until
i < ¢, then all the ¢ AUC scores are averaged. The output
score is recorded as a result of a single trial; the final
AUC scores reported in Table 4 are averages over 50 tri-
als. 10-fold cross-validation is conducted for hyperpara-
meter tuning.

Algorithm 3 shows the experimental method of Online
Testbed. In this testbed, a dataset is divided into initial
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TABLE 5
AUC Scores on Online Testbed

Dataset ONLAD- ONLAD FPELM- NN- DNN-

NF AE AE AE
Fashion MNIST 0.575 0.869 0.866  0.685 0.697
MNIST 0.591 0.899 0.898  0.787 0.755
Smartphone 0.558 0.781 0.788  0.785 0.799
HAR
Drive Diagnosis ~ 0.552 0.786 0.849 0.744 0.853
Letter 0.548 0.882 0.879  0.737 0.788
Recognition

data X;,;; (10 percent), test data X,.o (45 percent), and
validation data X,.q (45 percent). X,,; represents for
data samples that exit in the begining. Xy and X,qq
represent for data samples that sequentially arrive as
time goes by. Xy is used to measure the final AUC
scores, while X4 is only for hyperparameter tuning.
Both are further divided into normal data X,,,rmaq (90 per-
cent) and anomaly data X,,omay (10 percent). In the first
step, a list (denoted as indices) consisting of integers
0~ c—1 is constructed and randomly shuffled. The out-
put indicates the normal class of each concept; e.g., sup-
posing that indices = [2,0, 1], the normal class of the 0/1/
2th concept is 2/0/1. The ith concept X oy [i] mixes nor-
mal data of class indicesi] and anomaly data of class
J # indices[i|. The number of anomaly samples per one
concept is limited to 10 percent of that of normal samples.
A model is trained with initial data of the first normal
class X!""“)(NN-AE and DNN-AE are trained with
batch size = B for E epochs). Then, the model computes
an anomaly score for each data sample continuously
given from X oncept[0] ~ Xeoneept[c — 1]. Every time an
anomaly score is computed, the model is trained with the
data sample (all the models, including NN-AE and DNN-
AE, are trained with batch size = 1 to sequentially follow
the transition of the normal class). After all the data sam-
ples are fed to the model, an AUC score is calculated
with the anomaly scores. This AUC score is recorded as a
result of a single trial; the final AUC scores reported in
Table 5 are averages over 50 trials. Hyperparameter

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 7, JULY 2020

tuning is conducted with the same algorithm for 10 trials
by replacing X, with X, in Algorithm 3.

Algorithm 3. Online Testbed

1o Xt = [Xf?,?warl,?w ceo Xfi;l)}

2 Xiewt = [nggtann e 7X§:::z‘1)}

3: Xnormalv Xanomaly — Split(Xtestvug : l”)

4: indices — [0,1,...,¢c — 1]

5: shuffle(indices)

6: X concept < H

7: fori—toc—1do

8 concept — [Xio)

9:  num_anomalies <+ len(X 5;:3{;;[!])) x 0.1
10:  concept.append(sample(X, i{ily;ﬁg“m, num_anomalies))
11: Xeoncept-append(shuf, fle(concat(concept)))
12: end for o
13: 14: model.tr*ain(XEjﬁT'mS[O]))

15: scores — ||

16: fori —toc—1do

17 forall z in X opcepe[i] do
18:  score «— model.predict(x)
19:  scores.append(score)
20:  model.train(x)

21: end for

22: end for

23: auc « calc_auc(scores)

5.3 Experimental Results

The experimental results for Offline Testbed are shown in
Table 4. The hyperparameter settings are also listed in
Table 6. Here, NN-AE and DNN-AE achieve slightly higher
AUC scores than those of ONLAD by approximately
0.01~0.03 point on almost all the datasets. This result
implies that BP-NN-based autoencoders have slightly
higher generalization capability than that of OS-ELM-based
ones in the context of anomaly detection. However, NN-AE
and DNN-AE have to be iteratively trained for some epochs
in order to achieve their best performance (here, they were
trained for 5~20 epochs). In contrast, ONLAD always finds
the optimal output weight in only one epoch. Also, ONLAD
achieves its best AUC scores with an equal or smaller size
compared with NN-AE and DNN-AE for all the datasets,

TABLE 6
Hyperparameter Settings on Offline Testbed
Dataset ONLAD FPELM-AE
{G/ridde'n,7 p(z)7 va L7 al} {Ghirldf’mp(x)u N17 L1 o, >\}
Fashion MNIST {Identity, Uniform, 64, MSE, 1.00} {Identity, Uniform, 64, MSE, 1,00, 0.02}
MNIST {Identity, Uniform, 64, MSE, 1.00} {Identity, Uniform, 64, MSE, 1.00, 0.02}
Smartphone HAR {Identity, Uniform, 128, MSE, 1.00} {Identity, Uniform, 128, MSE, 1.00, 0.02}

Drive Diagnosis
Letter Recognition

{Sigmoid, Uniform, 16, MSE, 1.00}
{Sigmoid, Uniform, 8, MSE, 1.00}

{Sigmoid, Uniform, 16, MSE, 1.00, 0.02}
{Sigmoid, Uniform, 8, MSE, 1.00, 0.02}

Dataset

NN-AE
{Ghiddmu Gout> N17 L> 07 37 E}

DNN-AE
{Ghiddem Gouh N17N27N3>L7 O: B7 E}

Fashion MNIST
MNIST
Smartphone HAR
Drive Diagnosis
Letter Recognition

{Rely, Sigmoid, 64, MSE, Adam, 32, 5}
{Relu, Sigmoid, 64, MSE, Adam, 32, 5}
{Relu, Sigmoid, 256, MSE, Adam, 8, 20}
{Relu, Sigmoid, 256, MSE, Adam, 8, 10}
{Relu, Sigmoid, 256, MSE, Adam, 8, 20}

{Reluy, Sigmoid, 64, 32, 64, MSE, Adam, 8, 10}
{Relu, Sigmoid, 64, 32, 64, MSE, Adam, 8, 10}
{Rely, Sigmoid, 128, 256, 128, MSE, Adam, 8, 20}
{Relu, Sigmoid, 128, 256, 128, MSE, Adam, 8, 20}
{Relu, Sigmoid, 128, 256, 128, MSE, Adam, 8, 20}
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TABLE 7
Hyperparameter Settings on Online Testbed
Dataset ONLAD FPELM-AE
{Ghidden, p(), N1, L, @i } {Ghidden; p(x), N1, L, i, A}

Fashion MNIST {Sigmoid, Uniform, 64, MSE, 0.99} {Sigmoid, Uniform, 64, MSE, 0.99, 0.02}
MNIST {Sigmoid, Uniform, 64, MSE, 0.99} {Sigmoid, Uniform, 64, MSE, 0.99, 0.02}
Smartphone HAR {Identity, Uniform, 16, MSE, 0.97} {Sigmoid, Uniform, 16, MSE, 0.97, 0.02}

Drive Diagnosis
Letter Recognition

{Sigmoid, Uniform, 16, MSE, 0.99}
{Identity, Uniform, 8, MSE, 0.95}

{Sigmoid, Uniform, 16, MSE, 0.97, 0.02}
{Identity, Uniform, 8, MSE, 0.95, 0.02}

Dataset NN-AE DNN-AE

{Ghiddena G()HI? N17 L7 O) B7 E} {Ghi(ldenv Goutu N17 N27 ]\737 L1 07 B7 E}
Fashion MNIST {Relu, Sigmoid, 64, MSE, Adam, 32, 5} {Relu, Sigmoid, 64, 32, 64, MSE, Adam, 8, 10}
MNIST {Relu, Sigmoid, 64, MSE, Adam, 32, 5} {Relu, Sigmoid, 64, 32, 64, MSE, Adam, 8, 10}
Smartphone HAR {Sigmoid, Sigmoid, 32, MSE, Adam, 8, 20} {Sigmoid, Sigmoid, 32, 2, 32, MSE, Adam, 8, 20}

Drive Diagnosis
Letter Recognition

{Sigmoid, Sigmoid, 16, MSE, Adam, 8, 10}
{Relu, Sigmoid, 16, MSE, Adam, 8, 20}

{Sigmoid, Sigmoid, 16, 8, 16, MSE, Adam, 8, 20}
{Relu, Sigmoid, 16, 8, 16, MSE, Adam, 8, 20}

which helps to reduce the computational cost and save on
hardware resources required to implement ONLAD Core.
In addition, the differences between the AUC scores of
ONLAD and FPELM-AE are within 0.001~0.004 point;
ONLAD keeps favorable generalization performance even
when the L2 regularization trick is disabled. In summary,
ONLAD has comparable generalization capability to that of
the BP-NN-based models in much smaller training epochs
with an equal or smaller model size.

The experimental results for Online Testbed are shown in
Table 5. The hyperparameter settings are also listed in
Table 7. Here, another model, named ONLAD-NF (ONLAD-
No-Forgetting-mechanism) is introduced in order to exam-
ine the effectiveness of the proposed forgetting mechanism.
ONLAD-NF is the special case of ONLAD, where the for-
getting mechanism is disabled by setting «; to 1. The hyper-
parameter settings of ONLAD-NF are the same as those of
ONLAD, except for o;. As shown in the table, ONLAD-NF
suffers from significantly lower AUC scores than ONLAD.
The reason is quite obvious; ONLAD-NF does not have any
functions to forget past learned data, therefore it gradually
becomes more difficult to detect anomalies every time con-
cept drift happens. NN-AE and DNN-AE, on the other hand,
achieve much higher AUC scores than ONLAD-NF because
BP-NNs have the catastrophic forgetting nature [35], which
works as a kind of forgetting mechanism. However, BP-NNs
do not have any numerical parameters to analytically control
the progress of forgetting, unlike ONLAD. For this reason,
ONLAD stably achieves more favorable AUC scores. Addi-
tionally, ONLAD and FPELM-AE have similar AUC scores
on most of the datasets, as with the results on Offline
Testbed. This result shows that the proposed forgetting
mechanism is not significantly affected by the L2 regulariza-
tion trick on these datasets. In summary, ONLAD achieves
much higher AUC scores than those of NN-AE and DNN-
AE by approximately 0.10~0.18 point on three datasets out

of the five ones. It also achieves comparable AUC scores to
those of the BP-NN-based models on the other two datasets.

6 EVALUATIONS OF PERFORMANCE AND COST

In this section, ONLAD Core is evaluated in terms of
latency, FPGA resource utilization, and power consumption
in comparison with software implementations.

6.1 Experimental Setup

ONLAD Core is evaluated in comparison with the follow-
ing software implementations: (1) NN-AE-CPU, (2) DNN-
AE-CPU, (3) NN-AE-GPU, (4) DNN-AE-GPU, (5) FPELM-
AE-CPU, and (6) FPELM-AE-GPU. {*}-CPU is executed
only with a CPU, while {*}-GPU is executed with a GPU
in cooperation with a CPU. All of these implementations
are developed with Tensorflow v1.13.1. Here, Tensorflow
v1.13.1 is built with AVX2 (Advanced Vector eXtensions 2)
instructions and -O3 option to accelerate CPU computa-
tions. It is also built with CUDA [36] v10.0 to enable GPGPU
execution.

The hyperparameter settings of the above implementa-
tions are detailed in Table 8. p(z), o;, A and E have been
omitted from the table because these parameters are unre-
lated to any of the evaluation metrics (i.e., latency, FPGA
resource utilization, and power consumption). The batch
size (i.e., B) of NN-AE-{*} and DNN-AE-{*} is fixed to 1, as
with ONLAD Core and FPELM-AE-{*} in order to conduct
fair comparisons of latency and power consumption.

6.2 Latency
6.2.1 Training/Prediction Latency

Here, we refer to “training latency” as the elapsed time from
when a model receives an input sample until the training
algorithm is computed. “Prediction latency” is the elapsed

TABLE 8
Hyperparameter Settings in Section 6

ONLAD Core
{Ghi(]df'nv Nl ) L}

NN-AE-CPU and NN-AE-GPU
{Gh'ﬁdds*n-, G()Ut‘, va L7 07 B}

DNN-AE-CPU and DNN-AE-GPU
{Gh,id{]eny Goutv Nl; Nla ]Vlis L7 O', B}

FPELM-AE-CPU and FPELM-AE-
GPU {Ghi,(ldmn va L}

{Identity, N, MSE}  {Relu, Sigmoid, N, MSE, Adam, 1}

{Relu, Sigmoid, 2N, N, 2N, MSE, Adam, 1}

{Identity, N, MSE}
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Fig. 12. Comparison of prediction latency.

time from when a model receives an input data sample until
an anomaly score is calculated.

Figs. 11 and 12 show the training and prediction latency
times of each implementation versus the numbers of input
and hidden nodes (all the reported times are averages over
50,000 trials). To measure practical latency times, the explo-
ration range of the number of input nodes is set to {128, 256,
512, 1,024}, while that of the number of hidden nodes is set
to {16, 32, 64} on the basis of the hyperparameter settings of
ONLAD in Section 5.

As shown in the figures, the latency times of the software
implementations remain almost constant as the number of
input nodes increases. This outcome shows that most of
their execution times are occupied with software overheads
to invoke training and prediction tasks.” The GPU-based
implementations especially suffer from high latency times
because of the communication cost between a GPU and a
CPU in addition to the software overheads. In contrast,
ONLAD Core is free from these overheads. Consequently,
ONLAD Core achieves 1.95x, 2.45x, 2.56x, 3.38x, 4.51x, and
6.58x speedups on average over NN-AE-CPU, DNN-AE-
CPU, FPELM-AE-CPU, NN-AE-GPU, DNN-AE-GPU, and
FPELM-AE-GPU in terms of training latency, and 2.29x,
2.37x, 2.36x, 4.38x, 4.73x, and 4.57x speedups on average
over them in terms of prediction latency. ONLAD Core can

7. If this observation is true, the latency times of the software imple-
mentations must become proportional to the number of input nodes
when their computational costs increase. Figs. 15 and 16 show the train-
ing and prediction latencies of NN-AE-CPU and DNN-AE-CPU with
quite large input sizes (> 1,024) and hidden node size (= 512). As
shown in these graphs, the latency times are proportional to the num-
ber of input nodes, which validates the observation.

Input Nodes (Hidden Nodes = 32)

Input Nodes (Hidden Nodes = 64)

perform fast sequential learning and prediction to follow
concept drift approximately in less than one millisecond.

However, please note that ONLAD Core may become
slower than the others when there are many input nodes
since the computational cost of Train/Predict Module is
proportional to the number of input nodes, as shown in
Equations (21) and (23). Hence, ONLAD Core has difficulty
achieving speedups beyond 1.0x over the software imple-
mentations when there are thousands of input nodes.

Moreover, the computational cost of Train Module is
proportional to the square of the number of hidden nodes,
too. However, contrary to expectations, Fig. 14 shows that
the latency times are almost proportional to the number of
hidden nodes. This is because (3n + 1)N > 4N? holds as
long as n>> N in Equation (21). In other words, the
computational cost of Train Module stays almost propor-
tional to the number of hidden nodes as long as the num-
ber of input nodes is much greater than that of hidden
nodes. The practicality of this condition is empirically
demonstrated; the best hyperparameter settings of ONLAD
Core satisfy n > N as shown in Tables 6 and 7. Hence, in
practical situations, the computational cost of ONLAD
Core does not excessively increase even when the number
of hidden nodes is increased.

6.2.2 Computational Cost of Proposed Forgetting
Mechanism

Here, the proposed forgetting mechanism of ONLAD Core

and the baseline algorithm (i.e., FP-ELM) are compared in

terms of computational cost. Since the forgetting operation

of ONLAD Core or FP-ELM is unified into the training algo-

rithm, we use training latency times to compare them. Also,
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Fig. 13. Comparison of training latency of proposed forgetting mechanism and FP-ELM.

to make a fair comparison of their computational costs, we
compare a CPU implementation of ONLAD Core and
FPELM-AE-CPU, both of which are implemented with the
same library (i.e., Tensorflow).

Fig. 13 shows the experimental results, where the explo-
ration ranges of input and hidden nodes are set to 8x larger
than those of Figs. 11 and 12, in order to increase the ratio of
computation time of the models and make a clear compari-
son of their computational costs. Consequently, our for-
getting mechanism is faster than FPELM-AE-CPU by 3.21x
on average. The computational cost of our forgetting mecha-
nism is O(N 2) as shown in Equation (21), however, that of
FP-ELM is O(N?) since the matrix size of the matrix inver-
sion of FP-ELM is N x N; the gap of their computation
times gradually widens as the number of hidden nodes
increases.

6.3 FPGA Resource Utilization

This section evaluates FPGA resource utilization of ONLAD
Core by varying the numbers of input and hidden nodes.
The exploration range of the number of input nodes is cho-
sen to be {128, 256, 512, 1,024}, and that of the number
of hidden nodes is to {16, 32, 64} on the basis of the results
in the previous section. For ease of analysis, we use pre-
synthesis resource utilization reports produced by Vivado
HLS as experimental results.

Table 9 shows the experimental results. The DSP uti-
lization remains almost constant even as the numbers of
input and hidden nodes increase. This is a reasonable
outcome since the DSP slices are consumed only for Train
Module and Predict Module, and both of them are designed
to use a specific number of arithmetic units regardless of
the number of input and hidden nodes, as mentioned in
Sections 4.2.3 and 4.2.4.

=¢=IN =128 =O=IN=256 =pr=IN=512 =x~IN=1024
1.200
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E
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g

=
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5
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Hidden Nodes

Fig. 14. Relationship between training latency of ONLAD Core and
hidden nodes.

However, ONLAD Core consumes more BRAM instan-
ces as the model size increases. S,,.q below denotes the
total number of matrix elements of the entire ONLAD Core.

S(mlad = Spa,'ramfzter + Sinput + Stm,in + Spredim‘,

. - (27)
=5N"+ (5n+4)N + 2n + 1.

Equation (27) shows that the utilization of the BRAM instan-

ces of ONLAD Core is linearly increased as the number of

input nodes n increases. The experimental results shown in

Table 9 are consistent with Equation (27); the BRAM utiliza-

tion is proportional to the number of input nodes.

Equation (27) also shows that the utilization of the BRAM
instances is proportional to the square of the number of hid-
den nodes N2, too. However, the BRAM utilization ratios of
ONLAD Core are almost proportional to the number of hid-
den nodes, as shown in Fig. 17. The same logic as in the pre-
vious section can explain this outcome; (5n +4)N > 5N?
holds as long as 7 > N in Equation (27). The practicality of
the condition n >> N is also as described in the previous sec-
tion. Hence, in practical situations, the BRAM utilization of
ONLAD Core is suppressed and does not excessively
increase even if the number of hidden nodes increases. Con-
sequently, except for the largest setting (n, N) = (1,024, 64),
all the utilization rates of ONLAD Core are under the limit.

6.4 Power Consumption

This section evaluates the runtime power consumption of our
board-level implementation in comparison with the other
software implementations. We use an ordinary watt-hour
meter to measure the power consumption of PYNQ-Z1
board. For the software implementations, s-tui and nvidia-
smi are used. s-tui [37] is an open-source CPU monitoring
tool; we use it to measure the power consumption of the CPU
(i.e., Intel Core i7 6700 3.4 GHz) equipped in the experimental
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Fig. 15. Training latency versus input node size (hidden nodes = 512).
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Fig. 16. Prediction latency versus input node size (hidden nodes = 512).
TABLE 9

FPGA Resource Utilization of ONLAD Core
(Pre-Synthesis Results)

Hidden Nodes = 16

Input Nodes BRAM [%] DSP [%] FF [%] LUT [%]
128 10.0 40.0 16.0 29.9
256 12.9 40.0 16.1 30.0
512 18.6 40.0 16.1 30.0
1,024 30.0 40.0 16.1 30.0
Hidden Nodes = 32
Input Nodes BRAM[%] DSP[%] FF[%] LUT[%]
128 13.6 40.0 16.0 29.9
256 19.3 40.0 16.0 30.0
512 30.7 40.0 16.0 30.0
1,024 53.6 40.0 16.0 30.0
Hidden Nodes = 64
Input Nodes BRAM|[%] DSP[%] FF[%] LUT[%]
128 243 40.0 15.9 30.0
256 35.7 40.0 15.9 30.0
512 58.6 40.0 16.0 30.0
1,024 104.2 40.0 16.0 30.1

machine. On the other hand, nvidia-smi is a GPU monitoring
utility provided by Nvidia. We use it to measure the power
consumption of the GPU (i.e.,, Nvidia GTX 1070 8 GB)
equipped in the experimental machine.

The input and hidden nodes of all the implementations
are commonly set to 512 and 64. This setting has been con-
firmed to consume the largest amount of resources in
Table 9. The resource utilization report of ONLAD Core is
shown in Table 10.

Fig. 18 shows the power consumption of each implementa-
tion when training computations are continuously executed.
As shown in the figure, our implementation consumes 3.1 W,
5.0x~25.4x lower than the others. The reported power con-
sumption of our implementation includes not only that of
ONLAD Core, but also that of other components such as a
dual-core ARM CPU. Hence, the power consumption of
ONLAD Core itself is even lower than 3.1 W.

7 RELATED WORK

7.1 On-Device Learning

Data play an important role in machine learning, although
sometimes they can be privacy-sensitive. Here, on-device
prediction/learning is a way to ensure data privacy because
it does not require user data transfers with external server
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TABLE 10
FPGA Resource Utilization of ONLAD Core
(Post-Synthesis Result)

BRAM [%] DSP [%] FF [%] LUT [%]
55.4 32.7 11.6 25.8
mCPU NGPU *PYNQ-Z1

e & & & &
= QQ{(’\‘ - o\\ o

Fig. 18. Comparison of power consumption.

machines. Ravi ef al. proposed ProjectionNet [38] to make
existing BP-NN-based models smaller and reduce the mem-
ory they take up on user devices without significantly
degrading accuracy. This is done by leveraging an Locality
Sensitive Hashing (LSH) based projection method and a dis-
tillation training framework. Konecny et al. proposed a fed-
erated learning framework [39], which utilizes user devices
as computational nodes to train a global model. In this
framework, user devices are supposed to perform training
only with their local data; then, the updated weights are
aggregated into the global model. Zhu et al. and Park et al.
studied federated learning approaches with edge devices
on wireless sensor networks [40], [41]. They explored their
essential building blocks and pointed out underlying chal-
lenges. Our approach shares a common idea that edge devi-
ces themselves perform training, although the aim is not to
create a global model; our work tries to create a locally per-
sonalized model for the target edge device.

7.2 Anomaly Detection With OS-ELM

Since sequential learning approaches are capable of learning
input data online, they have been utilized for anomaly
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TABLE 11
Comparison of NN-Based Hardware Implementations for Anomaly Detection
Akin et al. [53] Wess et al. [54] Moss et al. [55] Alrawashdeh [56] ONLAD Core
Approach supervised supervised semi-supervised supervised semi-supervised
(classification) (classification) (autoencoder) (classification) (autoencoder)
NN Model BP-NN BP-NN BP-NN DBN OS-ELM
Layers 3 3 5 4 3
Weight 12 ~84 1,280 N/A ~131,072
Parameters
Platform Altera Cyclone Il ~ Avnet Zedboard Ettus USRP X310 Xilinx ZC706 Digilent PYNQ-Z1
Devkit
Tools Quartus II (VHDL)  Vivado (HLS) Vivado (HLS) Vivado (Verilog) Vivado (HLS)
Training No No No Yes Yes
Supported ?
Frequency 50 MHz N/A 200 MHz N/A 100 MHz
Prediction ~2 msec ~100 cycles 105 nsec 8usec ~1 msec
Latency
Training Latency N/A N/A N/A N/A ~1 msec
Power N/A N/A N/A N/A 31 W
Consumption
Power Efficiency N/A N/A N/A 37 Gops/W N/A

detection where real-time adaptation and prediction are
often required. OS-ELM is no exception; several studies have
been reported on anomaly detection using OS-ELM. Nizar
et al. proposed an OS-ELM-based irregular behavior detec-
tion system of electricity customers to prevent non-technical
losses such as power theft and illegal connections [42]. They
compared their system with SVM based ones and showed its
superiority. Singh et al. proposed an OS-ELM-based network
traffic Intrusion Detection System (IDS). They showed that
the system can perform training on a huge amount of traffic
data even with limited memory space [43]. Bosman et al. pro-
posed a decentralized anomaly detection system for wireless
sensor networks [44]. On the other hand, we utilize OS-ELM
for semi-supervised anomaly detection in conjunction with
an autoencoder. As far as we know, we propose the combina-
tion as the first work.

7.3 OS-ELM Variants With Forgetting Mechanisms
Over the past several years, several OS-ELM variants with
forgetting mechanisms have been proposed. Zhao et al.
were the first to study a forgetting mechanism for OS-ELM,
called FOS-ELM [45]. FOS-ELM takes a sliding-window
approach, where the latest s training chunks are taken into
account (s is a fixed parameter of window size). On the
other hand, A\prrOS-ELM [46] and FP-ELM [26] introduce
variable forgetting factors to forget old training chunks
gradually. They adaptively update the forgetting factors
according to the information in arriving input data or out-
put error values. Our approach is based on FP-ELM, though
it is modified to provide the forgetting mechanism with a
tiny additional computational cost to the original algorithm
of OS-ELM.

7.4 Hardware Implementations of OS-ELM

Several papers on hardware implementations of ELM [47],
[48], [49], [50] have been reported since 2012. However, imple-
mentations of OS-ELM have just started to be reported. Tsu-
kada et al. provided a theoretical analysis for hardware

implementations of OS-ELM to significantly reduce the
computational cost [18]. Villora et al. and Safaei et al. proposed
fast and efficient FPGA-based implementations of OS-ELM
for embedded systems [51], [52]. In this paper, we propose an
IP core that implements the proposed OS-ELM-based semi-
supervised anomaly detection approach. This IP core can be
implemented on edge devices of limited resources and works
atlow power consumption.

7.5 Neural Network Based Hardware
Implementations for Anomaly Detection

In this section, we compare several NN-based anomaly detec-
tion hardware implementations in Table 11. Akin et al. pro-
posed an FPGA based condition monitoring system, whose
prediction time is less than 2 msec, for induction motors [53].
The proposed system employs a supervised anomaly detec-
tion approach using a 3-layer binary-classification model; it
requires both anomaly data and normal data for training.
Wess et al. proposed an electrocardiogram anomaly detection
approach based on FPGA [54]. The proposed system consists
of (1) feature extraction, (2) dimensional reduction, and
(3) classification, in which (3) is implemented as a dedicated
circuit on FPGA. They reported that the prediction latency is
approximately less than 100 cycles, although their approach
is also based on a classification model as well as [53]. In con-
trast to the above implementations, ONLAD Core adopts a
semi-supervised approach, where only normal data are
required for training.

Moss et al. proposed an FPGA based anomaly detector
for radio frequency signals [55]. The proposed IP core real-
izes semi-supervised anomaly detection using a BP-NN
based autoencoder, which is a similar approach to our
work. Also, its prediction latency is as fast as 105 nsec. How-
ever, the model size (i.e., weight parameters) is 100x smaller
than ONLAD Core, and the FPGA platform is much larger
than ours. Besides, their IP core does not support training
computations. Alrawashdeh et al. proposed a Deep Belief
Network (DBN) based IP core that supports training as with
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ONLAD Core for anomaly detection [56]. They proposed a
cost-efficient training model for the contrastive divergence
algorithm of DBN and reported that the performance of the
IP core achieves 37 Gops/W. However, the model adopts a
classification based approach as with [53] and [54]. On the
other hand, ONLAD Core supports training, and at the
same time it adopts a semi-supervised anomaly detection
approach, which makes it more applicable to a wide range
of real-world applications.

7.6 Design Tools for Hardware Implementation of
Neural Networks

The PYNQ-Z1 board used in this work provides the PYNQ
library [57] which allows the developers to design CPU-
FPGA co-architecture with Python codes, although it is not
specialized for implementing neural networks. fpgaConv-
Net [58] is an automated design framework for Convolu-
tional Neural Network (CNN) based classification models
on FPGA platforms. This framework adopts a synchronous
dataflow model where the design space of performance and
cost is explored, while taking into account platform-specific
constraints. DnnWeaver [59] is a design tool that generates
synthesizable DNN accelerators from high-level configura-
tions in Caffe. The DnnWeaver compiler tiles, schedules,
and batches DNN operations to maximize data reuse and
utilize target FPGA’s memory. Zhao et al. proposed a high-
level design framework for Binarized Neural Networks
(BNNs) [60]. Since the main arithmetics of BNNs are simple
bitwise logic operations instead of costly floating-point
operations, the computational cost and FPGA resources
required to implement the accelerator can be significantly
reduced compared with conventional CNNs. GUINNESS
[61] is a GUI based design tool for implementing BNNs on
Xilinx SoC platforms. In this tool, the designers do not need
to write any RTL codes or scripts, which enables software
designers to develop prototypes of BNN-based accelerators
without knowledge of hardware.

8 CONCLUSION

8.1 Summary

In this work, we proposed ONLAD which realizes fast
sequential learning semi-supervised anomaly detection by
constructing an autoencoder with OS-ELM. We showed that
the computational cost of OS-ELM is significantly reduced
when the batch size is fixed to 1, which contributes to speedup
of ONLAD. Also, we proposed a computationally lightweight
forgetting mechanism for OS-ELM, based on FP-ELM. It ena-
bles ONLAD to follow concept drift at a low computational
cost. In addition, we proposed ONLAD Core in order to real-
ize on-device execution of ONLAD on resource-limited edge
devices at low power consumption. Since ONLAD Core does
not need to offload training computations to external remote
server machines, it enables standalone execution where no
data transfers to server machines are required.

Experimental results using public datasets showed that
ONLAD has comparable generalization capability to that of
BP-NN-based models in the context of anomaly detection.
We also confirmed that ONLAD has favorable anomaly
detection capability especially in an environment that simu-
lates concept drift.
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Evaluations of ONLAD Core confirmed that it can perform
training and prediction computations faster than software
implementations of BP-NNs and FP-ELM by 1.95x~6.58x
and 2.29x~4.73x on average. They also comfirmed that the
proposed forgetting mechanism is faster than FP-ELM by
3.21x on average. In addition, our evaluations showed that
ONLAD Core can be implemented on PYNQ-Z1 board in
practical model sizes. We demonstrated that the runtime
power consumption of PYNQ-Z1 board that implements
ONLAD Core is 5.0x~25.4x lower in comparison with the
other software implementations when training computations
are continuously executed.

8.2 Future Directions

BP-NNs are known to achieve higher generalization perfor-
mance to some extent by stacking more layers. Although
the original OS-ELM algorithm is limited to have only one
hidden layer, Multi-Layer Online Sequential Extreme
Learning Machine (ML-OSELM) [62] proposed by Mirza
et al. provides a multi-layer framework for OS-ELM.
According to [62], ML-OSELM outperforms OS-ELM on
well-known open classification datasets by 0.15~2.58% in
terms of test accuracy. Thus, anomaly detection capability
of ONLAD can be further improved by replacing OS-ELM
in ONLAD with ML-OSELM. We plan to work with the
multi-layer version of ONLAD and ONLAD Core.

In real world, there are some systems that have multiple
action modes such as air conditioners, robot arms, and gas
turbines. In the context of anomaly detection, such systems
are often formulated as mixture models which consist of
multiple sub-distributions of normal data. Recently, a mix-
ture model framework that utilizes multiple OS-ELM
instances was proposed in [63]. We plan to apply this frame-
work to ONLAD and ONLAD Core.
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