552

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 4, APRIL 2021

TurboDL.: Improving the CNN Training on GPU
With Fine-Grained Multi-Streaming Scheduling

Hai Jin“, Fellow, IEEE, Wenchao Wu

Ligang He

, Xuanhua Shi
, Member, IEEE, and Bing Bing Zhou, Member, IEEE

, Senior Member, IEEE,

Abstract—Graphics Processing Units (GPUs) have evolved as powerful co-processors for the CNN training. Many new features have
been introduced into GPUs such as concurrent kernel execution and hyper-Q technology. It is challenging to orchestrate concurrency
for CNN (convolutional neural networks) training on GPUs since it may introduce synchronization overhead and poor resource
utilization. Unlike previous research which mainly focuses on single layer or coarse-grained optimization, we introduce a critical-path
based, asynchronous parallelization mechanism, and propose the optimization technique for the CNN training that takes into account
global network architecture and GPU resource usage together. The proposed methods can effectively overlap the synchronization and
the computation in different streams. As a result, the training process of CNN is accelerated. We have integrated our methods into
Caffe. The experimental results show that the Caffe integrated with our methods can achieve 1.30X performance speedup on average
compared with Caffe+cuDNN, and even higher performance speedup can be achieved for deeper, wider, and more complicated

networks.

Index Terms—Deep learning, parallelism optimization, scheduling, GPU

1 INTRODUCTION

EEP neural networks (DNN) have been widely applied for
D solving problems in many practical fields such as
image classification, object detection, speech recognition,
and language translation. Since training deep neural net-
works is a very time and resource consuming task, general-
purpose graphics processing units (GPUs) are often used to
accelerate the neural network training process. Several deep
learning platforms have been developed to train DNN,
especially convolution neural networks on GPUs [1], [2], [3],
[4]. It should be noted that although the existing platforms
are optimized for current GPUs, they may need to be
revised as the GPU architectures evolve in order to make
efficient use of the added features in new architectures and
retain good performance. This type of re-optimization is a
non-trivial task.

Graphics Processing Units (GPUs) have evolved as powerful
co-processors for many applications. In addition to the signi-
ficant increase in on-chip resources, e.g., more and faster
compute cores, larger shared memory , and more registers,

e Hai Jin, Wenchao Wu, and Xuanhua Shi are with the National Engineering
Research Center for Big Data Technology and System, Services Computing
Technology and System Lab, Cluster and Grid Computing Lab, School of
Computer Science and Technology, Huazhong University of Science and
Technology, Wuhan, Hubei 430074, China. E-mail: {hjin, wcwu, xhshi}
@hust.edu.cn.

o [Ligang He is with the Department of Computer Science, University of
Warwick, CV4 7AL Coventry, United Kingdom.

E-mail: Ligang. He@warwick.ac.uk.

e Bing Bing Zhou is with the School of Computer Science, The University of

Sydney, NSW 2006, Australia. E-mail: bing.zhou@sydney.edu.au.

Manuscript received 15 Oct. 2019; revised 28 Feb. 2020; accepted 23 Mar.
2020. Date of publication 4 May 2020; date of current version 11 Mar. 2021.
(Corresponding author: Hai [in.)

Recommended for acceptance by Xuehai Qian and Yanzhi Wang.

Digital Object Identifier no. 10.1109/TC.2020.2990321

many new features have also been introduced recently, such
as Hyper-Q technology, concurrent kernel execution, and
dynamic parallelism. Since the NVIDIA Kepler architecture,
concurrent kernel execution is designed to enable the simulta-
neous running of multiple CUDA streams on GPU. Multiple
streams bring several desired advantages. For example, data
transfer between host memory and device memory can be car-
ried out in parallel with the kernel computation to effectively
overlap the computation with the communication/memory-
copy. The execution of multiple kernels can also be interleaved
to enhance the resource utilization. Many GPU programs have
applied the concurrent kernel technique to enhance the perfor-
mance. A well known example is the CNN (convolution neural
network) training framework Caffe+cuDNN [2], [5].

By applying the concurrent kernels, we can also effec-
tively enhance the performance of CNN training which
requires frequent synchronization during the computation.
A convolution neural network consists of a number of
layers, ranging from several to a few hundreds of layers. The
BP (back propagation) algorithm is widely used for CNN train-
ing. BP is an iterative computational algorithm and in each
iteration a forward computation is performed layer by layer
from the first layer to the last to obtain the losses. Then a
backward computation is performed to back-propagate the
losses to update weight parameters for each layer in the
reverse order.

In the CNN training it may take a model multiple mil-
lions of such iterations to converge. During this process, the
strict global synchronization is needed. Generally speaking,
simply creating multiple streams for a computational layer
between two consecutive synchronization points may not
give a substantial performance improvement as the accu-
mulative overhead from frequent global synchronization

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-0814-0919
https://orcid.org/0000-0002-0814-0919
https://orcid.org/0000-0002-0814-0919
https://orcid.org/0000-0002-0814-0919
https://orcid.org/0000-0002-0814-0919
https://orcid.org/0000-0001-8451-8656
https://orcid.org/0000-0001-8451-8656
https://orcid.org/0000-0001-8451-8656
https://orcid.org/0000-0001-8451-8656
https://orcid.org/0000-0001-8451-8656
https://orcid.org/0000-0002-5671-0576
https://orcid.org/0000-0002-5671-0576
https://orcid.org/0000-0002-5671-0576
https://orcid.org/0000-0002-5671-0576
https://orcid.org/0000-0002-5671-0576
mailto:hjin@hust.edu.cn
mailto:wcwu@hust.edu.cn
mailto:xhshi@hust.edu.cn
mailto:Ligang.He@warwick.ac.uk
mailto:bing.zhou@sydney.edu.au

JINETAL.: TURBODL: IMPROVING THE CNN TRAINING ON GPU WITH FINE-GRAINED MULTI-STREAMING SCHEDULING 553

may be high and can have significant impact on the overall
performance. Moreover, workloads often vary significantly
between inter-layer and inner-layer. Frequent synchroniza-
tion can result in poor resource utilization on GPU.

However, we argue that in each layer the computational
task can be partitioned into several sub-tasks with careful
dependency analysis for the whole training DAG. Although
all the sub-tasks need to be synchronized at the beginning
as they require the output of previous layers as their input,
some sub-tasks are just local sub-tasks, the output of which
is not passed to next layer as its input. Therefore these out-
puts do not need to be carried over. More specifically, in the
backward computation stage of training, feature maps,
weight, and bias in each layer need to be updated indepen-
dently by a loss function. The gradients for feature maps are
carried over as input of next layer, while the computation
and update of weight and bias gradient are local to each
layer. Therefore, the feasibility of fine-grained task parallel-
ism and the discrepancy of dependency between back-
propagation of losses and the updating of weight and bias
gradient bring opportunity to promote performance, if han-
dled properly.

Existing studies mainly focus on single layer optimiza-
tion, coarse-grained parallel or distributed communication
reduction. They fall short in matching the characteristics of
the network architecture and the dependency with the sup-
porting GPU, which may introduce synchronization over-
head and low resource utilization. In this work, we exploit
this global dependency discrepancy to embrace the new fea-
tures of GPU such as concurrent kernel executions, aiming
to improve GPU resource utilization while reducing the
synchronization cost. First, through the careful dependency
analysis of the network modelled as DAG (directed acyclic
graph). we apply the fine-grained task parallelism supported
with multi-stream to the inner-layer. Then, the asynchro-
nous execution is performed on inter-layers to eliminate the
synchronization cost and balance the workload between dif-
ferent layers. Last, a critical-path based scheduling strategy
is developed to both effectively use contending resources
and fully use idle resources. More specifically, we propose
the following methods.

1) Weapply the fine-grained task parallelism by careful
dependency analysis and utilize multiple streams on
GPU, each being responsible for one gradient
subtask. If one stream does not need all the comput-
ing cores, those idle cores can be allocated to
other streams so as to increase inner-layer resource
utilization.

2) Only the stream which computes the gradient of fea-
ture map has to be synchronized at both the begin-
ning and the end of the computation phase in each
layer. In order to overlap the synchronization and the
computation in different streams, we adopt the asyn-
chronous mechanism, such as events, to control the
execution of the streams for updating local weight
and bias. As a result, the strict global synchronization
can be eliminated. With the asynchronous execution,
the gradient computation of weight and bias in a layer
can be performed concurrently with the computation
in its successive layers. Consequently, the workload

among different layers can be balanced and resource
utilization can be improved.

3) We identify the streams which need strict synchroni-

zation discussed above. We call them critical streams.
The streams which update local parameters (thus do
not need synchronization) are called non-critical
streams. We propose a critical-path based priority
scheduling strategy. This way, the execution of non-
critical streams can be delayed and performed only on
idle computing cores left by the critical streams. By
doing so, we can effectively utilize the resources that
are either idle or contended in the whole iterations.

We implement our methods into Caffe and develop an
efficient deep learning framework called TurboDL. The
experimental results show that TurboDL is able to improve
the performance by approximately 30 percent.

The rest of this paper is organized as follows. The detail
of TurboDL and the optimization methods are presented
in Section 2. The system design and implementation are
described in Section 3. The experiments with TurboDL are
presented and the results are analyzed in Section 4. Related
work is discussed in Section 5 and finally, the conclusions
and future work are presented in Section 6.

2 METHODOLOGY

In this section we elaborate our motivation first and then
propose a few simple yet effective optimization methods for
the CNN training, which include the fine-grained parallel-
ism in the inner-layer, an asynchronous execution mecha-
nism to eliminate the synchronization cost and balance the
inter-layer workload, a critical path based scheduling policy
to effectively utilize the resources that are either idle or con-
tended in the whole iterations.

2.1 Motivation

Changes of both neural network models and GPUs architec-
tures drive us to rethink the optimization scope for DNN
training. On the one hand, neural networks are becoming
wider and deeper with complicated, dense connections and
multi-paths due to the introduction of more convolution
layers with small kernels [31], depth-wise separable convo-
lution [11], deep residual learning [12], channel shuffle [13],
and dense connection [14]. On the other hand, advanced
features are gradually introduced to new generation GPUs,
such as concurrent kernel execution and hyper-Q technol-
ogy, which provide users more opportunities to improve
the performance of their applications.

We installed the popular deep learning frameworks,
Caffe [2] along with cuDNN, on morden NVIDIA GPUs
P100 and K20 and conducted a number of experiments
using typical neural networks such LeNet [33], VGG [30],
ResNet [12], GoogLeNet [31], CaffeNet [32] to identify the
performance issues of these popular frameworks. We uti-
lized the NVIDIA profile tool [27] to obtain the resource
usage of GPUs. Although Caffe+cuDNN uses the optimized
functions from cuDNN and applies concurrent streams and
batch techniques to enhance the resource utilization, we
observed poor GPU resource utilization while the kernel
occupancy was low (less than 30 percent on average) even
when being run with multi-streams. The warp occupancy

554

225
200

175

150 4

FLOPs(M)
g B
1 1

~
o
1

o
S
1

254

0.6 0.8 1.0 1.2 14

Fig. 1. Flops for main layers in AlexNet. C and F stand for convolution
and full connection layer respectively.

for most kernels was lower than 25 percent during the com-
putation. We also observed peaks and valleys in resource
utilization and periodic synchronization between the layers
during the whole training process (the detailed profiling
results are presented in Section 4.3 and the issues for other
frameworks are discussed in Section 3.3). Those results indi-
cate that it may not produce a substantial performance
improvement by simply applying multiple streams to CNN
training but being ignorant of the underlying network struc-
ture features and computation characteristics.

There are two issues which impact on the efficiency of
resource utilization. A typical CNN consists of multiple dif-
ferent layers such as convolution, polling, batch normaliza-
tion, and loss. The CNN training is a very time consuming
process. In particular, computation for the backward phase
is more expensive than that for the forward phase, and
most computations are performed in the convolution layers.
Since the computation is performed layer by layer, the
imbalanced workloads among different layers can signifi-
cantly affect the resource utilization. For example, in Alex-
Net as illustrated in Fig. 1, the workload in terms of flops
for main layers such as convolution and full-connection can
vary by as much as 56X. Even for the same type of convolu-
tion, the flops can vary from 74M to 223M. Other neural net-
works have similar characteristic. Since the output of one
layer is the input of the next layer, the parallelization in
most existing CNN platforms is coarse-grained and they
perform the computation synchronously from one layer to
another. Frequent synchronization between layers can also
reduce the resource utilization. Based on above observation,
we propose the techniques in the following subsections to
effectively address these problems.

2.2 Data Dependency Analysis and Fine-Grained
Task Partitioning

Multi-stream concurrency is an efficient way to utilize the
characteristic of GPUs multi-cores. For the complicated
GPU workloads such as CNN training, our studies suggest
that the fine-grained parallelism is feasible. Through depen-
dency analysis and data parallelism, we can decompose the
task into independent sub-tasks with each sub-task being
run by a kernel concurrently, so as to improve resource uti-
lization in GPU.

For the CNN training, previous research mainly focuses
on the parallelism 1) between layers such as independent
scale convolution layers in inception [31], 2) between

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 4, APRIL 2021

Fig. 2. Fine-grained decomposition of one in backward

propagation.

layer

different images in a mini-batch, and 3) between different
convolution groups in an image. We call those parallel
methods the coarse-grained parallelism [35]. Finding fine-
grained parallelism between different sub-tasks in a layer
for CNN training can potentially improve resource utiliza-
tion further. Specifically, a convolution layer involves the
following computations in CNN training.

A =W, ® A, + B (6))
VW, = VA, @A 2

VB, =Y VA, 3)
VA, =VA. eW,. 4)

The forward convolution computation can be expressed
by formula 1. In this formula 4;, W;, and B; are activation
(also called feature map), weight, and bias, respectively, in
convolution layer i. In the backward computation the gra-
dients computation for feature, weight, and bias of layer i,
denoted by VA;, VIW;, and V B;, respectively, are calculated
using Formulas 2, 3, and 4!

We can see from the above formulas that the computa-
tion of VA;, VW;, and VB; all need VA;;; from layer i + 1
in addition to local data A; and W; in backward stage , while
VA;, VW;, and VB; are independent to each other. More
general, several layers of a typical CNN architecture are
depicted in Fig. 2 to illustrate the data dependencies
between the layers.

In the figure, the rectangles represent the layers (Note it is
a non-linear CNN for generality and a linear CNN is just a
special case). The orange ellipses on the right represent sub-
tasks for VA, VW, and VB in two consecutive layers i and
1 + 1, while the data dependencies are denoted by the dashed
blue arrows. Using this representation we can easily draw a
fine-grained DAG to identify the data dependencies for back-
ward (or forward) computations in CNN training. Based on
the derived DAG, we implement those sub-tasks with indi-
vidual kernels and then create multiple streams, each for run-
ning one sub-task in a layer, to realize the concurrent kernel
execution. Moreover, the characteristic of the fine-grained
dependency provides us the space for further cross-layer
optimization, which will be discussed in next subsection. It is

1. For brevity, we have simplified the formulas to highlight their
core dependencies, in which ® stands for convolution operation, which
can be implemented by various methods (such as imtocol and then
matrix multiplication), while @ stands for the backward convolution
process by matrix multiplication or other methods.

JIN ETAL.: TURBODL: IMPROVING THE CNN TRAINING ON GPU WITH FINE-GRAINED MULTI-STREAMING SCHEDULING 555

Layer,, 8

Layer;; o

VB] VB;

VAL] VA

@

>

YWy VW,]

! timeline

i+1,, layer backward ith layer backward
(a) Synchronization between layers

Layer, , 4

Layer;; o

=]

VA, A)

VWi I VW,]

VB

i
i+1,, layer backward

! timeline
ith layer backward

(b) Asynchronous execution between layer (1)

Layer,, §

VB]‘ VB,]
VA, VA]
VWi J‘ VW,]

! timeline

i+1,, layer backward ith layer backward

(c) Asynchronous execution between layer (2)

Fig. 3. Synchronous/asynchronous execution between layers in back-
ward propagation. Blue striped rectangle indicates the synchronization
overhead.

worth noting that except weight definitions, this sub-task
decomposition can be applied to many layers with learnable
parameters such as convolution, full-connection.

2.3 Asynchronous Execution Between Layers
Now the computational task in each layer is partitioned into
several sub-tasks. Although all the sub-tasks will be syn-
chronized at the beginning as they require the output of the
previous layers as their input, the synchronization relation
of those sub-tasks may only rely on some particular parts of
the previous layers (not on the entire layers). The outputs of
some sub-tasks in previous layers are kept local and do not
need to be carried over to the current layer. We call these
sub-tasks local sub-tasks. This insight provides us new
scope for further performance improvement. We introduce
the pipeline mechanism along with asynchronous execution
to further improve the degree of parallelism between layers.
By doing so, we can eliminate strict global synchronization
in many occasions and also balance the workloads between
different layers.

After partitioning the task of a layer into several sub-
tasks and identifying the data dependencies, we can apply

concurrent kernels to execute the sub-tasks in each layer
simultaneously, as shown in Fig. 3a. As mentioned previ-
ously, simply running multiple streams may not achieve
substantial performance improvement. The main problem
is the strict synchronization between layers, that is, a global
synchronization is placed at the beginning of layer i to block
its computation until the completion of the computations in
layer 7+ 1. This kind of frequent global synchronization
incurs large overhead and causes severe load imbalance
across layers. As the consequence, GPUs resources may be
wasted, which causes low resource utilization, especially in
the backward computation stage.

Fortunately, fine-grained task parallelism not only pro-
vides us with the opportunity to increase resource utiliza-
tion with kernel concurrency but also eliminate a lot of
synchronization overhead with asynchronous execution,
which is impossible in previous coarse-grained layer-centric
approaches. We can see from Fig. 2 that the sub-task for acti-
vation gradient map VA4, in layer i only needs VA, as its
input and can start immediately when V A;, becomes avail-
able from layer i + 1. Thus it is independent of both VW,
and VB;,; and no longer waits for completion for all com-
putation of layer ¢ + 1. Applying the asynchronous execu-
tion mechanism such as events to control the sub-task
execution, we may largely remove the strict global synchro-
nization as partial sub-tasks in a layer can be fully asynchro-
nous scheduled in a pipeline manner. An ideal case is
depicted in Fig. 3b. In the figure the computation of VA;
and VA, are still strictly synchronized. However, the syn-
chronization can effectively overlap the computation of
VWi, 1. The computation, e.g., of VW, in this example, in
layer i + 1 is also performed simultaneously with the com-
putation in layer i or other layers to achieve the workload
balance across the layers.

Two more issues need to be discussed here. First, to
make our asynchronous execution of multi-stream work,
the initial task partition is very important. We need to care-
fully partition the task into sub-tasks so that only a subset
of the sub-tasks need synchronization at both ends, while
different sub-tasks should be independent to each other.
Second, so far our optimization technique provides the
opportunity to overlap the computation and synchroniza-
tion across the layers. Fig. 3b shows one possible situation.
Another possible situation which is not ideal is depicted in
Fig. 3c. We can see from this figure that if VA;; takes the
longer time to complete in layer ¢ + 1, no computation in
layer i can start before completion of VA; . This is effec-
tively the similar situation as the one where strict global
synchronization is performed between layers. Another opti-
mization technique to address this problem is discussed in
next sub-section.

2.4 Critical Path Based Sub-Task Scheduling

As discussed above, fine-grained inner-layer parallelism and
asynchronous inter-layer execution produce a higher degree
of parallelism. When GPUs resource is sufficient, these dif-
ferent sub-tasks can execute concurrently in individual
streams and kernels, such as VA;, VIW;, VB;, VW, 1, and
VB, (note that VA;; has completed). However, GPUs
resource may not be always sufficient to afford running the
kernels in parallel especially when VA;,; is longer than

556

VWii1. When the resource shortage occurs, the problem
arises how we can schedule different sub-tasks in an efficient
manner so that the resource is efficiently utilized and the
overall iteration time is minimized.

From the perspective of DAG, different sub-tasks in a
layer have different characteristics, some are local sub-tasks
with long reuse distance between iterations (specifically, the
distance between the gradient computation point in current
iteration to the parameter usage point in subsequent itera-
tion for the same layer), while some are on the critical path
of the DAG. Based on this observation on the discrepancy of
dependency, we propose a novel critical-path based sched-
uling mechanism, which assigns different priorities to the
sub-tasks according to their paths in CNN training.

The execution order of the sub-tasks affects the global
iteration time and resource efficiency. If the output of a sub-
task (e.g., the one for computing VA;.) in layer ¢ + 1 needs
to be synchronized and used immediately as the input of
layer ¢ in the backward phase, the sub-task is deemed as a
critical sub-task. The critical sub-tasks then constitute the
critical path. The sub-tasks whose outputs are not needed
immediately (for example, the sub-tasks for calculating
VW; and VB;, whose outputs are only needed in next itera-
tion) are classified as non-critical sub-tasks. The paths con-
taining the non-critical sub-tasks are non-critical paths.

Then we assign different priorities to those paths utiliz-
ing path discrepancy. The rationale behind this assignment
strategy is that 1) prioritizing the execution of critical tasks
will advance the execution of the following layers, and can
also effectively overlap the computation of non-critical sub-
tasks with the synchronization of the critical sub-tasks; 2)
the streams that run the non-critical sub-tasks can take full
advantage of idle resources in GPU. The non-critical sub-
tasks are not restricted to run in the same layer as the critical
sub-tasks, but can be run in other layers in which there are
free GPU resources. For example, the computations of
VWii1 and VB, are not restricted to layer i + 1, but can be
run in a layer (e.g., layer ¢) which is the predecessor accord-
ing to the topological order when there are idle resources in
the layer. This strategy not only speeds up the execution of
critical sub-tasks, but also significantly improves the
resource utilization during the whole training process. Next
we will discuss the priority policy in detail by conducting
the analysis for the critical paths, starting from the analysis
in a single layer to the analysis for the entire network.

Path Analysis in a Single Layer. In a single layer, there are
different types of computation paths as follows in the CNN
training. 1) Parameter gradient paths such as VI¥; and V B;.
2) Activation gradient paths, such as VA;. 3) Parameter
update paths, which update the weight according to gradi-
ent. 4) Data transfer paths, which exchange the gradients in
the parameter server [19], [20] architecture with multiple
nodes or one node equipped with multiple GPUs.

These computation paths have different characteristics.
For example, activation gradient computation paths are crit-
ical paths as their outputs are needed immediately by the
subsequent layers along with strict synchronization. There-
fore, delaying the execution of the sub-tasks on this type of
paths will also delay the start of the subsequent layers.
Scheduling the sub-tasks in these paths with the high prior-
ity can reduce the overall training time.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 4, APRIL 2021

Parameter gradient paths are non-critical since the execu-
tion of a sub-task on these paths can be delayed as long as it
can finish before the forward computation in next iteration
for the same layer. Therefore, it is possible to postpone the
executions of the sub-tasks in these paths until better tim-
ing, such as when GPUs resource utilization is low or the
critical sub-tasks are in synchronization.

Transfer paths in the parameter server architecture have
the similar feature as the parameter gradient paths since the
sub-tasks in these paths can overlap their communication
with the computation by starting pushing the data to
parameter server after the computation of parameter gradi-
ent and finishing pulling from parameter server before the
computation in next iteration for the same layer.

Take the situations in Figs. 3a and 3b as an example.
When the critical-path based scheduling is applied, VA,
is assigned with a high priority as it is on the critical paths
according to the above analysis. Therefore thread blocks
from kernel VA4, have the higher priority to be scheduled
and run on GPUs, which leads to the prompt start of the ith
layer. On the contrary, VW;,, is on the non-critical paths.
Its execution can be postponed until fewer critical sub-tasks
are utilizing the GPU resources (e.g., VA is in synchroniza-
tion, or the workload of VA is low in some particular
layers). Moreover, VW, as the non-critical sub-task does
not have to be restricted to run in layer ¢ + 1, but can be run
concurrently with the sub-tasks in other layers. By doing so,
it not only balances the workload among all layers, but also
reduces the idle GPU resources in the whole iterations as
much as possible. This method reduces the computation
time of the critical sub-tasks significantly in the whole train-
ing process while imposing no side effect on the execution
of non-critical sub-tasks.

Path Analysis of the Entire Network. In the entire network,
there are multiple groups of convolution channels for one
image or a mini-batch. Moreover, there are multi-scale con-
volutions and dense connections to previous layers. All
these complicated connections among layers increase both
the quantity and the complexity of the paths in a network.
In this section, we extend the path analysis in a single layer
to that in the entire network.

In order to gain insight into this complex network struc-
ture, we would like to identify the global critical path in the
entire network. We abstract the DAG representing the entire
network to a sequence of layer blocks. Each layer block
includes of a number of layers. Each block starts from a fork
layer and ends with a merge layer, which represents syn-
chronization. Fig. 4 illustrates the structure of an exemplar
network in terms of layer blocks. The entire network con-
sists of two layer blocks (blocks 1 and 2) in this figure. Block
1 starts from layer L1 (a fork layer) and ends with layer L6,
which is a merge (i.e., synchronization) layer. After block 1
is completed, block 2 then starts from Layer L7 (fork) and
ends with Layer 13 (merge). The layer-block structure of
this type is ubiquitous in many networks, such as inception
unit in GoogLeNet [31], residual block in ResNet [12], and
dense block in DenseNet [14].

Since the layer blocks are run in sequence, we only need
to analyze the critical paths in each layer block. In a layer
block, there are different paths from the fork layer to the
merge layer, which we call layer paths since a path consists

JIN ETAL.: TURBODL: IMPROVING THE CNN TRAINING ON GPU WITH FINE-GRAINED MULTI-STREAMING SCHEDULING 557

L2 L3 L8 L9

- DN g—

VA N [va ‘

o vw
w6

| |
Layer blockl Layer block2

Fig. 4. The path analysis for the entire network.

of layers. We assign different priorities to different layer
paths (Note that there are two levels of priorities, the prior-
ity for layer path and the priority for sub-tasks as presented
in previous subsection). The path priority is assigned as fol-
lows. We estimate the computation time of activation gradi-
ent (i.e.,, VA;) in each layer in a path. The total computation
time of V4; in all layers of a path is regarded as the distance
of the path. The longest layer path in a layer block, which is
the critical path in the block, is assigned with the highest
priority. Note that when assigning the path priority, we
only consider the computation time of VA;, not VB; and
VW;, since VB; and VIW; can be run fully asynchronously
with the layers in other layer blocks. Take Fig. 4 as an exam-
ple.” We assign the highest priority to the yellow layer path
in the backward layer block 1, which includes layers L1, L2,
L3, and L6, since it is the longest layer path in the block.
After assigning the priorities to the layer paths, the
method presented in path analysis in a single layer is then
applied to assign the priorities to individual sub-tasks in
each layer. With this hierarchical priority assignment, our
scheduling strategy is aware of the underlying network
structure as a DAG and is able to work effectively in the
ever-increasingly complicated networks as they evolve
towards the trend with denser connections and more paths.

3 SYSTEM DESIGN AND IMPLEMENTATION

We apply our methods discussed in previous section into
the CNN training. Then based on Caffe [2], we develop a
highly efficient neural network training framework, called
TurboDL. In this section, we first present the architecture of
our system by introducing the main components. Then we
describe how we integrate our three methods into Caffe [2]
and also discuss a few issues.

3.1 System Overview

Fig. 5 shows the system architecture of TurboDL. The system
contains four main modules: network decomposition mod-
ule, critical path identification module, schedule module,
and dependency maintenance module. Network decomposi-
tion module receives the network as input, then decomposes
the network into fine-grained sub-tasks. The critical path
identification module identifies the critical paths in the
decomposed DAG by taking into account network structure
and computation dependency. The schedule module sched-
ules the kernels of different paths to run in parallel on GPUs

2. Note that some layers may not have W or B such as the MaxPool-
ing layer.

[Network Input]

89 ;
DBk DCEEEEEten WISElts [>[Critical Path Identification Module]
i ined parallel L g
S : * 388
é> Schedule Module
[Dependent Maintenance Module]Ef} T S ;;priority H
T 5
multij
St:‘e;mls
(==E====== =
L6
(D v v v (Csv) opu |

Fig. 5. System architecture.

with different priorities (specially, with multiple streams).
The dependency maintenance module maintains the syn-
chronization through events and callback to guarantee the
correct training.

Network Decomposition Module. The network decomposi-
tion module automatically processes the network file (such
as prototxt file). By doing so, TurboDL does not require any
change in users’ program codes and therefore TurboDL is
transparent to the users. It collects the whole network infor-
mation including connection relatives of each layer, layer
type, input tensor dimensions, whether the parameters of
each layer needs to be updated, memory footprint through
automatic inference, GPUs information such as the number
of cores, register, shared memory capacity, peak flops. Note
that we use the same methods from [10], [17] to estimate the
calculation time of each layer and each sub-task, and revise
it with profiling the stand-alone running of one iteration
since it has been shown that the CNN training has the char-
acteristic of repetitive computation and predictability [34].

Based on these information, we further decompose the
network into fine-grained sub-tasks in each layer such as
parameter gradient computation, activation gradient com-
putation, and parameter updating, and implement these
sub-tasks in individual kernels. Then edges among these
fine-grained sub-tasks are reconstructed according to their
dependencies. In our current implementation, the sub-task
decomposition process for a layer is manual. We analyze
the mathematical relationship between the input and output
of the layer, obtain independent computational subsets for
each input through the automatic derivative function. If an
unknown layer is encountered, it can be decomposed recur-
sively into basic known operations such as linear layer, and
the dependency among the subtasks corresponding to each
part of the input is then recorded. After the decomposition,
the entire fine-grained DAG is constructed automatically
according to the dependency.

We batch all the images in a mini-batch to form a big ker-
nel as cuDNN [5]. Thus, it reduces the cost of kernel launch-
ing because a bigger matrix multiplication is more efficient
than multiple small matrix multiplications [6]. We rebuild a
more accurate DAG in which each vertex represents a com-
putation sub-task with its estimated time and each edge rep-
resents their reading after writing dependency. Therefore it
is completely different from the original DAG in Caffe [2],
MXNet [1], and TensorFlow [4]. If the vertices of an edge in
the DAG are in different paths, the edge leads to the auto-
matic injection of synchronization codes. The DAG construc-
tion is conducted automatically. First, the popular layers

558

(about 15 typical layers) are decomposed into sub-tasks
(individual kernels) offline. Then when the network is pro-
vided online, the DAG is re-factored layer by layer according
to the topological order. In particular, the fine-grained nodes
and edges are added based on the dependency between the
layers. This process is conducted only once for the whole
training with thousands of iterations. Moreover, it is scalable
as its complexity depends on the number of layers in the net-
work, which is usually in the range of dozen to hundreds.

Algorithm 1. Critical Path Identification and Construc-
tion Algorithm

Inpput: G:fine-grained graph; g, a:relative priority adjustment
parameter
Output: paths:paths consisting of all sub-tasks with priority
: for each node € G do

compute DD(node) using SSP;
end for
: topological sorting for each node in G
: segment G into layer_blocks
: for each block in layer_blocks do
for each layer_path in block do

t(layer_path)« > time(V A;)(i€layer_path)

9: end for

10: Sort(layer_path,t)
11: assign priority to layer_path according to order
12: for each layer_path in blocks do

PN XN

13: create paths[sub-task.type.num]

14: for each layer in layer_path do

15: for each sub_task in layer do

16: AssignPath(sub_task, DD(sub_task), paths)
17: if DD(sub_task)==1 then

18: sub_task.path«—criticalpath

19: end if

20: end for

21: end for

22: for pathepaths do

23: if path.sub_task.type == V B then

24: path.priority<—layer_path.priority — B
25: else

26: if path.sub_task.type == VW then
27: path.priority—layer_path.priority — o
28:

29: else

30: path.priority—layer_path.priority
31: end if

32: end if

33: end for

34: end for

35: end for

Critical Path Identification Module. After the fine-gradient
DAG graph is built, more opportunities for inner-layer and
inter-layer parallelization can be exploited. The critical path
identification module is responsible for path identification,
classification, and construction. We implement the critical
path analysis and hierarchical priority assignment for each
layer block. The critical-path identification algorithm is out-
lined in Algorithm 1. In the algorithm, DD (dependency dis-
tance) is the metrics to quantify the importance of different
sub-tasks, defined by the distance from a certain node (sub-
task) to its first reused node across iterations, which is similar

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 4, APRIL 2021

most critical path s critical path no-critical path

[nigest priority stream [] less priority stream least priority stream

VAL || [VA ztfeam ;
VB, v tream
e B: Stream 3
[VWi W
- N
~ s N/
el VAL { o VA, Stream 4
VB, | VB, Stream 5
‘ VW, ‘ YW, Stream 6
o .
»
[VA VA, Stream 7
| Ve By Stream 8
1-3 YW,
‘ VW3 sty Stream 9

Fig. 6. A scheduling example with multiple streams.

to the aforementioned reuse distance. It is worth noting that
when there are group convolution applied to a convolution
layer, we only need to build the streams for each convolution
group as they can be executed in parallel. Thus we omit it in
our algorithms for simplicity. Through the critical path iden-
tification module, we only need to build as many steams as
the number of the layer paths, rather than the total number
of sub-tasks for all the layers. This method can reduce the
overhead of streams creation, management while retaining
the correct dependency relation.

Schedule Module. The schedule module is responsible for
scheduling at run-time and implementing our asynchro-
nous and critical-path based schedule strategy. It first builds
multiple streams with different priorities using the CUDA
API cudaStreamCreateWithPriority and assigns the paths
to the streams. At run-time, the schedule module schedules
the vertex in the DAG to the corresponding streams and all
vertexes in the same path will be assigned to the same
stream. These vertexes in the same path can safely maintain
dependency and correctness since the kernels in the same
stream are executed sequentially. Moreover, different ver-
texes in different paths can be executed concurrently across
the streams as long as there are GPU resources available.
If the kernels in different streams have a dependency edge,
the dependency maintenance module will apply the event-
based lightweight synchronization and callback mechanism
to enforce the dependency, which will be presented in next
subsection.

As illustrated in Fig. 6, we use a typical partial network
architecture with six layers as an example. In the figure, the
backward-propagation of the layers is decomposed into nine
independent computing paths. Calculations of VA;.9, VA1,
V A; are on the critical layer path. Thus we assign them to the
stream with the highest priority. While VA;_;, VA;_5 are on
the less critical path, they have higher sub-task priorities than
other sub-tasks for calculating VW and V5. VIV and VB are
in the stream with the least priority. Since VA; is dependent
on VA;1, we put them into the same stream. VW;, VA;, VB,
have no dependency with VW, ; and VB, the execution of
VW1 and VB, can be delayed and executed in parallel
with other kernels in the subsequent phases until when GPU
resource utilization is low. Because VA, is in the stream
with the highest priority, the waiting time of VA; can be
reduced, which, as a result, shortens one iteration time.

Dependency Maintenance Module. We assign different sub-
tasks in different streams to fully exploit the parallelism.
However, problems arise when the reading-after-writing
dependency is broken, which may cause the incorrect train-
ing results. In Fig. 6, VIW; and VB; depend on the results of

JINETAL.: TURBODL: IMPROVING THE CNN TRAINING ON GPU WITH FINE-GRAINED MULTI-STREAMING SCHEDULING 559

VA;;1. If this dependency is not met, VIW; and VB; will get
the stale result from last iteration, which can affect the conver-
gence speed. To synchronize VA; , before VIV; and VB;, we
apply the CUDA event and light-weight synchronization
between the streams. When visiting the DAG, if there is a
dependency edge between the kernels in different paths,
we use CUDA API cudaFventCreate to create an event
and record the event at the synchronization point in the
source stream by using cudaFventRecord, and then use
cudaStreamWait Event to synchronize and wait in the target
stream. For example, we assign event;; to streaml after ker-
nel VA;;;, and synchronize this event before issuing VIW;
and VB, to the stream?2 and stream3. Moreover, the callback
functions are added by calling cudaStreamAddCallback for W;
and B;. This way, we can update the parameters further asyn-
chronously according to their gradients. In order to reduce
the synchronization cost, we use cudaStreamWaitEvent
instead of cudaDeviceSynchronize because the former is light
while the later synchronizes all the streams, which incurs a
higher cost.

3.2 Integrate Into Caffe

We integrate the proposed methods into Caffe, and modify
the layer schedule code in the Net class, which is responsible
for layer schedule and kernel execution. Unlike Caffe-
cuDNN, we create the streams in Net globally rather than cre-
ate the streams per-layer. By doing so, we can facilitate the
global scheduling, easily enforcing our priority assignment in
different paths and adding the dependencies if necessary. In
the per-layer implementation, we modify the forward and
especially backward process to decompose the layer into the
fine-grain sub-tasks and implement them in individual ker-
nels, which can then be launched independently.

3.3 Discussion

Some Implement Issues. In this paper, we assign different pri-
orities to the sub-tasks in order to efficiently utilize the
GPUs resources across different layers. We implement this
method based on the accurate global dependency analysis,
the support of multiple streams, and hierarchical priority
assignment. There are multiple levels of priority (e.g., there
are three priorities, which are highest, less, and least prior-
ity, in Fig. 6). However, in our testbed 100, there are only
two priorities (-1 and 0). To solve this problem, we propose
two methods, In method one, we assign the kernel with
least priority to the hardware stream with the priority of 0
(low priority). Both the kernels with the highest and the less
priority are assigned to the stream with priority -1. But we
control the running order of these two kernels by control-
ling when the kernels are put into the run-queue of the
stream as well as their positions in the queue.

In method two, we add additional synchronization to
simulate priority difference between multiple streams with
the same setting of original priority. For example in Fig. 6,
we set stream 1, 4, 7 with high priority (eg, -1 for P100), and
add a synchronization from VA;;; to VA;_» and VA4, 3.
This method makes the overall priority of stream 1 higher
than streams 4, 7. Although both methods may introduce
some overhead, our hierarchical path and priority analysis
can be applied to the higher-end or future generation GPU
devices, in which more priority levels are supported.

Extension to Multiple GPUs. Our method is general and it
can be easily extended to the system with multiple GPUs. In
the system setting with multiple GPUs, the main difference
is an extra parameter propagation process across multiple
GPUs through the communication scheme such as using the
CPU to act as the Parameter Server and collect the local
updates from multiple GPUs [19], [20], or using the all-
reduce communication to aggregate local updates [40]. The
computation process in each GPU is the same as in Section 2.
We can use the following mechanism to further improve the
performance of running TurboDL in the multi-GPU setting.
In the backward propagation phase, we can use the no-wait
propagation optimization presented in [16] to communicate
the gradients. Namely, once the gradient of a layer is calcu-
lated, we assign the kernel for the gradient propagation to
an individual stream and move on to calculate the gradient
of the previous layer. By doing so, we can effectively over-
lap the communication and the computation of the gra-
dients by making use of the GPU support for concurrent
communication and computation.

In next iteration, the forward phase of a layer cannot start
until its parameters have been updated. Thus we can add a
synchronization event between the parameter updating and
the forward computation. By using the fine-grained subtask
synchronization within a layer across iterations as above,
we can effectively eliminate the global synchronization at
the beginning of each iteration. This way, we can fully over-
lap communication and computation, and make next itera-
tion start earlier. Moreover, we can assign different
priorities to individual communication streams (for com-
municating the gradients of the layers). When the reuse dis-
tance of a gradient (the reuse distance is defined at the
beginning of the second paragraph in Section 2.4) is shorter,
the communication stream for sending this gradient can be
assigned with a higher priority. This way, we can reduce
the waiting time of subtasks.

Extension to Other Applications. Although in this paper,
we mainly utilize CNN as the example to show the effec-
tiveness of our methods, our methods have an excellent
potential to be applied to other complicated multi-stage
applications, such as database query processing, and other
network architectures, such as RNN, tree neural network,
generative adversarial network, Graph-based Convolutional
Neural network (GCN). This is because the characteristics of
those workloads indicate that the critical path analysis and
the asynchronous execution proposed in this work should
also be applicable to improve the performance, although
more complicated dependencies may have to be taken into
account. For example, in RNN, we can build the critical
paths not only for the layers but also for the steps within a
layer to capture the time dependency. For GCN, we need to
analyze the critical path and apply the pipeline and the
asynchronous optimization between the layers among the
consecutive graph levels. We leave these detailed extension
work in these aspects to future work.

Applicability to Other Frameworks. It is worth noting that
our methods are equally applicable to other data-flow based
deep learning frameworks such as MXNet [1], TensorFlow
[4], Caffe2 [3], and PyTorch [41]. Those graph-based analysis
systems utilize the data-flow based mechanism to schedule
the operators. As long as the inputs for an operator are ready,

560

the operator can be scheduled to execute. Even though those
systems apply many techniques to optimize the graph execu-
tion such as operator fusion, common subexpression elimi-
nation, they lack the fine-grained decomposition within the
operators and ignore the dependency difference between
fine-grained subtasks. Also they do not consider the critical
path in the network, but use a simple topological order. Due
to their coarse-grained nature, those systems also incur the
unnecessary synchronization overhead between layers (or
operators), lower the resource usage, and cause the limited
degree of parallelism as what happen in Caffe-cuDNN.
These three optimization methods developed in TurboDL
can be applied to those systems too. Extending the existing
framework to integrate our method includes the following
work: 1) modifying the schedule module of the existing
framework, 2) conducting fine-grained decomposition based
on the existing DAG, 3) utilizing automatic derivative func-
tion and kernels inside the operation to build a fine-grained
DAG, 4) analysing the cross-iteration dependency distance
to prioritize different streams for different paths before
scheduling. The applicability of our methods have been
demonstrated by the implementation of the methods in Caffe
for fast prototype implementation.

4 EVALUATION

To evaluate the efficiency of our proposed optimization
methods, we integrate those methods into Caffe [2], a popu-
lar deep learning framework used in many deep learning
research due to its easy programming feature. Users only
need to write a network file to construct their custom net-
work and specify the hyper-parameters. Moreover, Caffe
can utilize highly optimized deep learning library such as
cuDNN [5] to accelerate the computation for most layers
optimized for NVIDIA GPU. Our experiments are con-
ducted on different NVIDIA GPUs with many well-known
networks.

4.1 Experiment Setup

Cluster Configuration. We conduct our experiments on two
different GPUs, P100 and K20, those two GPUs have differ-
ent number of cores from diverse architecture generations
(Pascal and Kepler respectively) and with different compu-
tation capacity. Both of them support multiple streams and
hardware-managed connection from Hyper-Q, which allow
the parallel execution of more kernels without the effect of
false dependency. Our testing platform is equipped with
two eight-core Xeon-2670 2.60 GHz CPUs with 32 GB mem-
ory, we run our system on CenterOS 7.5, with the gcc ver-
sion 4.9. We use cuda 9.0 with cudnn V7.4.2 for all the
experiments. The experiments are conducted on a single
NVIDIA P100 GPU except the experiments in Fig. 10, which
are conducted on K20 and P100.

Workload Configuration. Our experiments use three famous
datasets for image classification. (1) MNIST, which contains
60K images for training and 10K for testing with 10 catego-
ries. (2) CIFAR-10, which contains 50K colored images for
training and 10K for testing with 10 categories. (3) ILSVRC-
12, which contains 1.28 million training set and 50K test set
with 1000 categories. We test our system efficiency with vari-
ous kind of networks: (1) LeNet [33], (2) AlexNet [29], (3)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 4, APRIL 2021

Iﬂ

caffe+cuDNN TuboDL

150 400

300
100
g E 200
g 50
E E 100
=
0

caffe+cuDNN TuboDL caffe+cuDNN TuboDL

tlme ms

(a) AlexNet (b) VGG-16 (C) ResNet

400

300

g200 E
’ caffe+cuDNN TuboDL caffe+cuDNN TuboDL caffe+cuDNN TuboDL
(d) CaffeNet (e) LeNet (f) GoogLeNet

Fig. 7. End-to-end training time of one iteration. X-axis is different sys-
tems (Caffe-cuDNN, TurboDL), and Y-axis is the time of one iteration in
milli-seconds.

CaffeNet [32], (4) VGG [30], (5) GoogLeNet [31], (6) ResNet
[12]. These networks are the most typical deep convolution
networks in the field of image classification.

System Configuration. We use the latest version of Caffe
(V1.0) as our system prototype and integrate our methods
into it (the improved system is called TurboDL). We con-
duct the experiments to compare TurboDL with the Caffe
accelerated with cuDNN [5] (denoted by Caffe-cuDNN).

4.2 Running Time Evaluation

Fig. 7 shows the end-to-end training time of six different net-
works on different systems. The batch sizes for these six net-
works are CaffeNet(256), VGG-16(100), LeNet(64), ResNet
(32), GoogLeNet(32), AlexNet(128), respectively. Our pro-
posed methods outperform Caffe-cuDNN in all those cases.
TurboDL can achieve significant speedup (5.3X on average)
compared with the original Caffe (its running time is not pre-
sented as it does not represent the best performance in the
state of the art). This result supports our claim that our fine-
grained parallel method can benefit from combining concur-
rent kernel execution with the network computation charac-
teristic as original Caffe runs different sub-tasks in a layer in
sequence. We achieve the 1.30X performance speedup on
average compared with Caffe-cuDNN and LeNet (1.38X),
VGG-16 (1.27X), Alexnet (1.21X), GoogleNet (1.30X), ResNet
(1.35X), CaffeNet (1.31X), respectively. The speedup is lower
than the speedup over original Caffe because Caffe-cuDNN
utilizes multiple streams for parallel execution and the
batching technique with the dedicated implementation for
each kernel on NVIDIA GPUs. However, our methods elimi-
nate the synchronization overhead between layers and
exploit the characteristic of the network architecture to accel-
erate the critical computations, thus further reduce one itera-
tion time.

From the figures, we observe that TurboDL shows differ-
ent speedup for different networks. For example, our meth-
ods achieve higher speedup on ResNet (35 percent)
compared with VGG (27 percent). This is due to the differ-
ence between their network architectures. ResNet has more
complicated dense connections (e.g., residual paths) and
deeper layers (e.g., tens to hundreds layers). Thus it provides
more opportunity for concurrent execution of kernels and
more valley of GPU resource utilization from different

JINETAL.: TURBODL: IMPROVING THE CNN TRAINING ON GPU WITH FINE-GRAINED MULTI-STREAMING SCHEDULING

64 %0000

AT s

A

ResNet caffeNet

VGG-16 AlexNet GoogleNet

Fig. 8. The end-to-end training time speedup of one iteration for different
batch-size. The number on each data bar represents the batch size.

layers, which can be used by other non-critical sub-tasks.
This result also indicates that our approaches will bring
greater benefits for future networks which are shown to bear
the trend of having denser and more paths and even having
the combination of multiple models.

Fig. 8 presents the speedup of TurboDL with different
batch-size of LeNet, VGG-16, AlexNet, GoogLeNet, ResNet,
CaffeNet on P100. Compared with Caffe-cuDNN, our perfor-
mance advantage decreases when the batch size increases for
those networks. For example, the performance advantage
decreases from 27 to 18 percent for VGG-16 when the batch
size increases from 100 to 400. This is to be expected because
when the batch size increases, the computation complexity
of sub-tasks also increases linearly as we batch all images in
a mini-batch to a bigger kernel for efficiency, making kernels
harder to execute in parallel and leaving little idle resource
for inner-layer processing. Therefore the sub-tasks in non-
critical paths will block the whole iteration due to the
resource shortage. Even in this situation, our methods out-
perform Caffe-cuDNN because of the better usage of the
cross-layer resources. Although large batch improves the

M caffe+cuDNN ® TuboDL W caffe+cuDNN ® TuboDL

1000 400 1500

M caffe+cuDNN M TuboDL

561

@ caffe-cuDNN O TuboDL

time:ms
8
8

200
b .
0

layersize=18

]
]

layersize=34 layersize=50 layersize=101 layersize=152

Fig. 9. The running time of one iteration of ResNet with different layer
size.

computation efficiency, it hinders the statistical efficiency
and requires more epochs to converge [39].

Fig. 9 shows the running time of one iteration when the
number of layers increases from 18, 34, 50, 101 to 152 with
the batch size being 32, 32, 32, 28, and 18, respectively. We
reduce the batch size for the last two cases because of the out
of memory problem on P100). Our methods achieve the
speedup of 1.27X, 1.29X, 1.35X, 1.38X, and 1.40X compared
with Caffe-cuDNN, which shows the increasing trend
because the path experienced by one iteration becomes lon-
ger when the number of layers increases. Since TurboDL is
based on the critical path and the asynchronous execution of
sub-tasks, it can fill the idle resources between the layers
with non-critical calculations, resulting in higher perfor-
mance. We also measure the performance on different GPUs,
K20 and P100. The results are presented in Fig. 10. Our meth-
ods achieve better performance compared with Caffe-
cuDNN on different GPUs. The speedup on P100 is higher
than on K20. This is because there are much less cores and
less support of hardware parallelism on K20. The results

M caffe+cuDNN ® TuboDL

500 , B caffe+cuDNN M TuboDL

800 300 400 3
1000
600 300
2 £ 200 g 2 a
E w0 & £ 500 £ 0 £
£ £ 100 £ £ £ 1
= 200 = = = 100 . =
o Il o HE . o HET . .
P100 K20 P100 K20 P100 K20 P100 K20 P100
(a) AlexNet (b) VGG-16 (c) CaffeNet (d) GoogLeNet (e) LeNet
Fig. 10. The comparison of running time between different GPUs (P100 and K20).
Cri+Asy+Stream - 2”
R Asy+Stream 149 Sy
800 4 - caffe-cuDNN
caffe-origin

700+

time(ms)

300+

200+

100 4

LeNet

AlexNet VGG-16 ResNet CaffeNet GooglLeNet

(a) Runtime time of different strategies

N
!

i WH

AlexNet VGG-16 ResNet(50) LeNet

Caffenet Googlene|

(b) Speedup of different strategy

Fig. 11. (a). Running time of different strategy combinations for one iteration. (b). Improvement of different strategy combinations compared with the
baseline performance obtained by Caffe-cuDNN (speedup=1). “Asy” stands for asynchronous parallel, and “Cri” stands for critical path based scheduling.

562

I kernel

Convolution
Layer 4-2 i
Convolution ~ Laver4-3 backward —
backward 1
Layer 5-1
backward —

Convolution

Convolution
Layer 5-2
backward

Convolution
Layer 5-3
backward

(a) caffe-cuDNN

(b) TurboDL

Fig. 12. Profiling results of VGG-16. The X-axis is the time line, and the
colored rectangles represent different kernels.

suggest that TurboDL can gain more benefits when the GPUs
are more powerful and have higher parallel capacity.

In order to evaluate how much each optimization strategy
in Section 2 contributes to the final performance gain, we
conduct the experiment with different combinations of the
methods to break down where the gains come from. The run-
ning time of different strategies is presented in Fig. 11a for
LeNet, VGG-16, AlexNet, GoogLeNet, ResNet, and Caffe-
Net. Since the effectiveness of fine-grained parallelism with
multiple streams can be verified by significant improvement
over original Caffe. In Fig. 11b, we only depict other two
strategies with Caffe-cuDNN as the baseline. For example,
when only inner-layer asynchronous parallelism and inner-
layer multiple streams are applied on ResNet (50), our meth-
ods can achieve the speedup of about 1.15X over Caffe-
cuDNN. After adding the critical-path based scheduling, the
speedup increases to 1.35X. The result shows both methods
contribute to the final performance improvement for differ-
ent networks.

4.3 Resource Evaluation
Fig. 12 shows the resource profiling results for VGG-16 on
Caffe-cuDNN and our system TurboDL. We only present
VGG since other networks have similar results. We obtain
the line of the execution time by using the NVIDIA visual
profiler tools [27]. For Caffe-cuDNN, even if there are multi-
ple streams the profiling result in Fig. 12a shows that: 1)
Periodic synchronizations between successive layers exist
throughout the whole backward process. 2) Workloads vary
significantly from layer to layer. 3) The kernel concurrency
is very low in each layer. We also profile major kernels in
the training phase. We find that the warp occupancy for
most kernels is low (about 25 percent).

The result regarding TurboDL is presented in Fig. 12b, we
can see that the kernel concurrency is very high as most

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 4, APRIL 2021

TABLE 1
The Convergence Comparison
Iteration Loss Iteration Loss
Caffe-cuDNN TurboDL Caffe-cuDNN TurboDL
0 7.21 7.20 1000 1.77 1.75
200 2.52 2.52 1200 1.66 1.62
400 2.29 2.31 1400 1.75 1.62
600 2.07 2.05 1600 1.63 1.59
800 1.91 1.98 1800 1.59 1.58

kernels from no-critical paths overlap with the kernels in crit-
ical paths. At the same time, there are not periodic synchroni-
zations between layers, and the kernels on non-critical paths
mostly overlap with other kernels from different layers. This
complete asynchronous execution is achieved thus TurboDL
can utilize resources from different layers and balance the
workloads between different layers as much as possible.
Moreover, from the figure, the critical paths are mostly busy,
suggesting that the critical paths are prioritized to execution
than other less or non-critical paths computations, which
results in the shorter overall iteration time. Last, there are
tens to hundreds of streams on Caffe-cuDNN (e.g., 38
streams on VGG-16), while there are only a few streams on
TurboDL (e.g., 3 for VGG-16). Fewer streams lead to less
overhead of creating, managing, and scheduling streams.
We also observe the inefficiency of single kernel execution
because of the contention of register allocation and under-
utilization of share memory. We leave these to future work.

4.4 Convergence Evaluation

In order to verify that our proposed methods guarantee the
correctness through only retaining the least but necessary
dependencies, we compare the convergence speed every
200 iterations for VGG-16 with cifarl0 dataset as an exam-
ple. Table 1 shows that the loss decreases as the iteration
increases. Our methods have nearly the same loss rate as
Caffe-cuDNN, which shows the correctness of our system.
Moreover, our methods have shorter time with the same
convergence for one iteration. Therefore the overall training
time to convergence with thousands of iterations can be
reduced. Both systems show uneven convergence trend for
model parameters with a long tail effect. This provides the
opportunity for future optimization, which we also plan to
leave for future work.

We test the inference accuracy on those models trained
by TurboDL and Caffe-cuDNN with the identical setting
(such as dataset, iteration number, hyper-parameter). The
result is the same (the accuracy result is not presented here
due to the space limitation). Note that the data dependen-
cies between layers are correctly maintained in TurboDL
and consequently, the accuracy of the results is ensured,
which is achieved not by modifying the algorithm, but by
improving the inner-layer parallelism, removing unneces-
sary inter-layer synchronization cost, and optimizing the
scheduling of fine-grained sub-tasks for the iterations of the
whole network. Moreover, our fine-grained decomposition,
critical path identification, and priority assignment are all
included in the pre-processing phase, which can be amor-
tized by thousands of iterations.

JINETAL.: TURBODL: IMPROVING THE CNN TRAINING ON GPU WITH FINE-GRAINED MULTI-STREAMING SCHEDULING 563

5 RELATED WORK

GPU Memory Optimization for DL. As GPU memory becomes
a bottleneck when training large-scale network, several
methods are proposed to solve this problem. vDNN [9] and
GeePS [8] propose a mitigation strategy to offload intermedi-
ate results to host memory and pre-fetch them before needed
in backward. Chen et al. [21] propose re-computation to trade
off computation cost and memory occupancy. MXNet [1]
provides a re-use strategy to share memory space for differ-
ent data through lifetime analysis. However, large models
limit practical deployment such as in embedded devices.
Many researches try to construct models with less parame-
ters and fewer computation complexity which reduce model
size from several thousand MB to several MB, making GPU
memory optimization less particularly important.

Dynamic Graph Optimization for DL. Recent deep learning
models are moving toward dynamic neural network structure,
making training inefficiently for hard-to-batching problem. To
solve this, TensorFlow Fold [22] proposes dynamic batching
technology to batch different inter-input and inner-input oper-
ations. Cavs [7] introduces GAS model from graph processing
system and represents dynamic network as static vertex func-
tion with a dynamic instance-specific graph to avoid repeated
graph construction cost, and facilitates to incorporate static
graph optimization technologies. Yu ef al. [24] propose a pro-
gramming model for distributed machine learning with
dynamic control flow support on TensorFlow. Jeong et al. [23]
add recursion to the existing programming framework and
exploit efficient parallel among nodes. Gao et al. [25] propose
cellular batching to improve latency and throughput for RNN
inference. Those methods try to improve the expressiveness
and efficiency for dynamic and recursive networks as they are
the important trend for machine learning model in realistic
deployment. Our methods are orthogonal to these methods in
the literature and can also be applied to these dynamic
networks to improve their efficiency.

Training Optimization of Computation for DL. Our work
focuses on the CNN training phase with complicated bi-
directional dependency between forward and backward
computation and iterative characteristic. Li ef al. [15] try to
improve training performance by increasing memory access
efficiency. They transform the storage dimension of data and
apply kernel fusion technology. In order to add parallelism
of operations, data-flow based execution model has been
applied to many deep learning frameworks such as Tensor-
Flow [4], MXNet [1], however, those frameworks apply a
simple topological order to schedule coarse-grained opera-
tions, ignoring the path importance characteristics for the
network structure, thus leading to suboptimal performance.

Many hardware manufacturers have proposed efficient
linear algebra and deep learning libraries like Intel MKL
[26], cuBLAS [28], cuDNN [5], however, those libraries
mainly focus on single layer, coarse-grained operation opti-
mization which fall short in small matrix computation [6]
and can not be aware of network feature to adapt to the
underlying GPU hardware feature. PipeDream [36] proposes
a generalized pipeline method with the model being parallel-
ized on multiple workers, which is inherently coarse-
grained. Peng et al. [37] propose a generic communication
scheduler by introducing a unified abstraction and a

Dependency Proxy mechanism. These two works focus on
the distributed DNN training in which the communication
cost is a bottleneck, while our work focuses on increasing the
computation efficiency of a single GPU.

Jia et al. [38] propose a computation graph optimizer that
automatically generates graph substitutions with a formal
theorem prover and a cost-based backtracking search to
find an optimized graph. Our work is orthogonal to the
work discussed above, and acts as a complementary tool to
further enhance the performance. The most similar and lat-
est work with us is GLP4NN [18], which tries to improve
parallelism by incorporating concurrent kernel execution.
However, it only optimizes single layer not the whole train-
ing process, which is completely different and orthogonal to
our work as we conduct whole network architecture optimi-
zation by fine-grained, asynchronous execution, and critical
path based schedule with priority.

6 CONCLUSION

In this paper, we develop TurboDL, an efficient deep learn-
ing framework to accelerate the deep learning training.
Three key optimization methods are developed in TurboDL,
including i) a fine-grained parallel mechanism, which
decomposes the computation of a layer to expose more par-
allel opportunity through accurate dependency analysis, ii)
an asynchronous execution strategy to eliminate synchroni-
zation cost, break the isolation between layers, overlap com-
putation and balance workloads, and iii) a critical-path
based schedule mechanism to reduce overall running time.
Although in this paper we mainly utilize CNN as the exam-
ple to show the effectiveness of our methods, our methods
have an excellent potential to be applied to other compli-
cated multi-stage applications. We leave these detailed
extension of our work to future work.

ACKNOWLEDGMENTS

This work was supported by the National Key Research and
Development Program under Grant 2017YFC0803700 and
NSFC Grant 61832006.

REFERENCES

[1] T. Chen et al.,, “MXNet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” 2015,
arXiv:1512.01274.

[2] Y. Jia et al., “Caffe: Convolutional architecture for fast feature
embedding,” in Proc. ACM Int. Conf. Multimedia, 2014, pp. 675-678.

[3] Caffe2, 2017, Accessed: Sep. 5, 2019. [Online]. Available: https://
caffe2.ai/

[4] M. Abadi et al., “TensorFlow: A system for large-scale machine
learning,” in Proc. USENIX Conf. Operating Syst. Des. Implementa-
tion, 2016. pp. 265-283.

[5] S. Chetlur ef al., “cuDNN: Efficient primitives for deep learning,”
2014, arXiv:1410.0759.

[6] M. Zhang, S. Rajphandari, W. Wang, and Y. He, “DeepCPU: Serv-
ing RNN-based deep learning models 10X faster,” in Proc. USE-
NIX Conf. Usenix Annu. Techn. Conf., 2018, pp. 951-965.

[7] S.Xuetal, “Cavs: An efficient runtime system for dynamic neural
networks,” in Proc. USENIX Conf. Usenix Annu. Tech. Conf., 2018,
pp- 937-950.

[8] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing,
“GeePS: Scalable deep learning on distributed GPUs with a GPU-
specialized parameter server,” in Proc. Eur. Conf. Comput. Syst.,
2016, pp. 4:1-4:16.

https://caffe2.ai/
https://caffe2.ai/

564

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]
[22]

[23]

[24]
[25]
[26]
[27]
[28]

[29]

[30]
[31]

[32]

[33]

M. Rhu, N. Gimelshein, J. Clemons, A. Zulfigar, and S. W. Keckler,
“vDNN: Virtualized deep neural networks for scalable, memory-
efficient neural network design,” in Proc. Annu. IEEEJACM Int.
Symp. Microarchit., 2016, pp. 18:1-18:13.

M. Song, Y. Hu, H. Chen, and T. Li, “Towards pervasive and user
satisfactory CNN across GPU microarchitectures,” in Proc. IEEE
Int. Symp. High Perform. Comput. Archit., 2017, pp. 1-12.

F. Chollet, “Xception: Deep learning with depthwise separable
convolutions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2017, pp. 1800-1807.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770-778.

X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely
efficient convolutional neural network for mobile devices,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 6848-6856.

G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 2261-2269.

C.Li, Y. Yang, M. Feng, S. Chakradhar, and H. Zhou, “Optimizing
memory efficiency for deep convolutional neural networks on
GPUs,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage
Anal., 2016, pp. 633-644.

H. Zhang et al., “Poseidon: An efficient communication architec-
ture for distributed deep learning on GPU clusters,” in Proc. USE-
NIX Conf. Usenix Annu. Tech. Conf., 2017, pp. 181-193.

M. Song et al., “Bridging the semantic gaps of GPU acceleration
for scale-out CNN-based big data processing: Think big, see
small,” in Proc. Int. Conf. Parallel Architectures Compilation, 2016,
pp- 315-326.

H. Fu, S. Tang, B. He, C. Yu, and J. Sun, “GLP4NN: A convergence-
invariant and network-agnostic light-weight parallelization frame-
work for deep neural networks on modern GPUs,” in Proc. Int.
Conf. Parallel Process., 2018, pp. 33:1-33:10.

M. Li et al., “Scaling distributed machine learning with the param-
eter server,” in Proc. USENIX Conf. Operating Syst. Des. Implemen-
tation, 2014, pp. 583-598.

E.P. Xing et al., “Petuum: A new platform for distributed machine
learning on big data,” in Proc. ACM SIGKDD Int. Conf. Knowl. Dis-
covery Data Mining, 2015, pp. 1335-1344.

T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets
with sublinear memory cost,” 2016, arXiv:1604.06174.

M. Looks, M. Herreshoff, D. Hutchins, and P. Norvig, “Deep learn-
ing with dynamic computation graphs,” 2017, arXiv: 1702.02181.
E.Jeong,]. S. Jeong, S. Kim, G.-I. Yu, and B.-G. Chun, “Improving
the expressiveness of deep learning frameworks with recursion,”
in Proc. Eur. Conf. Comput. Syst., 2018, pp. 19:1-19:13.

Y. Yu et al, “Dynamic control flow in large-scale machine
learning,” in Proc. Eur. Conf. Comput. Syst., 2018, pp. 18:1-18:15.
P.Gao, L. Yu, Y. Wu, and J. Li, “Low latency RNN inference with cel-
lular batching,” in Proc. Eur. Conf. Comput. Syst., 2018, pp. 31:1-31:15.
Intel MKL, 2012, Accessed: Sep. 5, 2019. [Online]. Available:
https:/ /software.intel.com/en-us/mkl

NVIDIA Visual Profiler, 2008, Accessed: Sep. 5, 2019. [Online].
Available: https:/ /developer.nvidia.com/nvidia-visual-profiler
NVIDIA cuBLAS, 2013, Accessed: Sep. 5, 2019. [Online]. Avail-
able: https://developer.nvidia.com/cublas

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” in Proc. Int.
Conf. Neural Inf. Process. Syst., 2012, pp. 1097-1105.

K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” 2014, arXiv:1409.1556.

C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1-9.

CaffeNet, 2014, Accessed: Sep. 5, 2019. [Online]. Available:
https://github.com/BVLC/ caffe/tree/master /models/
bvlc_reference_caffenet

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” in Proc. IEEE, vol. 86,
no. 11, pp. 2278-2324, Nov. 1998.

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

o™

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 4, APRIL 2021

M. Sivathanu, T. Chugh, S. S. Singapuram, and L. Zhou, “Astra:
Exploiting predictability to optimize deep learning,” in Proc. Int.
Conf. Architectural Support Program. Languages Operating Syst.,
2019, pp. 909-923.

M. G. Tallada, “Coarse grain parallelization of deep neural
networks,” in Proc. ACM SIGPLAN Symp. Principles Practice Paral-
lel Program., 2016, pp. 1:1-1:12.

D. Narayanan ef al., “PipeDream: Generalized pipeline parallel-
ism for DNN training,” in Proc. ACM Symp. Operating Syst. Princi-
ples, 2019, pp. 1-15.

Y. Penget al., “A generic communication scheduler for distributed
DNN training acceleration,” in Proc. ACM Symp. Operating Syst.
Principles, 2019, pp. 16-29.

Z. Jia, O. Padon, J. Thomas, T. Warszawski, M. Zaharia, and
A. Aiken, “TASO: Optimizing deep learning computation with
automatic generation of graph substitutions,” in Proc. ACM Symp.
Operating Syst. Principles, 2019, pp. 47-62.

A. Koliousis, P. Watcharapichat, M. Weidlich, L. Mai, P. Costa,
and P. Pietzuch, “CROSSBOW: Scaling deep learning with small
batch sizes on multi-GPU servers,” in Proc. Very Large Data Base
Endowment, vol. 12, no. 11, pp. 1399-1412, 2019.

A. Sergeev and M. D. Balso, “Horovod: Fast and easy distributed
deep learning in TensorFlow,” 2018, arXiv: 1802.05799.

A. Paszke et al., “Automatic differentiation in PyTorch,” in Proc.
Int. Conf. Neural Inf. Process. Syst. Workshop, 2017.

Hai Jin (Fellow, IEEE) received the PhD degree
in computer engineering from the Huazhong Uni-
versity of Science and Technology, in 1994. He is
a Cheung Kung Scholars chair professor of com-
puter science and engineering with the Huazhong
University of Science and Technology (HUST), in
China. In 1996, he was awarded a German Aca-
demic Exchange Service Fellowship to visit the
Technical University of Chemnitz in Germany. He
worked at The University of Hong Kong between
1998 and 2000, and as a visiting scholar at the

University of Southern California between 1999 and 2000. He was
awarded Excellent Youth Award from the National Science Foundation
of China in 2001. He is the fellow of CCF and a member of ACM.

Wenchao Wu is currently working toward the PhD
degree with the National Engineering Research
Center for Big Data Technology and System,
Services Computing Technology and System Lab,
Cluster and Grid Computing Lab, School of Com-
puter Science and Technology, Huazhong Univer-
sity of Science and Technology, China. He is doing
research on deep learning system.

Xuanhua Shi (Senior Member, IEEE) is currently a
professor with the School of Computer Science
and Technology, Huazhong University of Science
and Technology, China. He is the deputy director of
the National Engineering Research Center for Big
Data Technology and System (NERC-BDTS). His
current research interests include focus on cloud
computing, big data processing, and Al systems.
He published more than 100 peer-reviewed
publications (such as ASPLOS, VLDB, the ACM
Transactions on Computer Systems, the |EEE

Transactions on Parallel Distributed Systems). He received research sup-
port from a variety of governmental and industrial organizations, such as
the National Science Foundation of China, Ministry of Science and Tech-
nology, Ministry of Education, European Union.

https://software.intel.com/en-us/mkl
https://developer.nvidia.com/nvidia-visual-profiler
https://developer.nvidia.com/cublas
https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet
https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet

Ligang He (Member, IEEE) is currently a reader
with the Department of Computer Science, Uni-
versity of Warwick, United Kingdom. His research
interests include parallel and distributed comput-
ing, high performance computing, and bigdata
analysis. He has published more than 100 papers
in journals (such as the IEEE Transactions on
Parallel Distributed Systems, ACM Computing
Surveys, Journal of Parallel and Distributed Com-
puting, Journal of Computer and System Scien-
ces) and conferences (such as IPDPS, ICPR,
ICWS, VLDB, SC).

JINETAL.: TURBODL: IMPROVING THE CNN TRAINING ON GPU WITH FINE-GRAINED MULTI-STREAMING SCHEDULING 565

Bing Bing Zhou (Member, IEEE) received the
graduate’s degree in electronic engineering from
the Nanjing Institute of Technology in China, in
1982, and the PhD degree in computer science
from Australian National University, Australia, in
1989. He is currently an associate professor with
the School of Computer Science, University of
Sydney, Australia. He has been a member of the
technical program committees of several interna-
tional conferences and acted as a reviewer for
many international journals, including the IEEE
Transactions on Computers and the IEEE Transactions on Parallel and
Distributed Systems.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

