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Abstract—Speculative execution side-channel vulnerabilities such as Spectre reveal that conventional architecture designs lack

security consideration. This article proposes a software transparent defense framework, named asConditional Speculation, against

Spectre vulnerabilities found on traditional out-of-order microprocessors. It introduces the concept of security dependence to mark

speculativememory instructions which could leak information with potential security risks. More specifically, security-dependent

instructions are detected andmarkedwith suspect speculation flags in the IssueQueue. All the instructions can be speculatively issued

for execution in accordancewith the classic out-of-order pipeline. For those instructions with suspect speculation flags, they are

considered as safe instructions if their speculative execution dose not refill new cache lines with unauthorized privilege data. Otherwise,

they are considered as unsafe instructions and thus not allowed to execute speculatively. To pursue a balance of performance and

security, we investigate two filteringmechanisms,Cache-hit-based Hazard Filter and Trusted Page Buffer-basedHazard Filter to filter

out false security hazards. As for true security hazards, we have two approaches to prevent them from changing cache states. One is to

block all unsafe access, the other is to fetch them from lower-level caches or memory to a speculative buffer temporarily, and refill them

after confirming that they are on the correct execution path. Our design philosophy is to speculatively execute safe instructions to

maintain the performance benefits of out-of-order execution while delaying the cache updates for speculative execution of unsafe

instructions for security consideration.We evaluateConditional Speculation in terms of performance, security, and area. The

experimental results show that the hardware overhead is marginal and the performance overhead is minimal.

Index Terms—Spectre vulnerabilities defense, security dependence, speculative execution side-channel vulnerabilities

Ç

1 INTRODUCTION

SPECULATIVE and out-of-order execution are fundamental
techniques to exploit instruction-level parallelism (ILP) in

modern high-performance processors. In typical handling of
mis-speculation, the pipeline states, such as integer and float-
ing registers, are rolled back to the fault instructions. How-
ever, some microarchitecture states, such as cache contents,
are usually not reverted, since such negligence does not vio-
late the architectural semantics. Unfortunately, recently
exposed Spectre and Meltdown, which are of speculative
execution side-channel vulnerabilities, have revealed the
security hazards of neglecting those unrecovered micro-
architectural states [1], [2], [3], [4], [5]. Attacks exploiting
speculative execution vulnerabilities usually induce a victim
to speculatively perform operations that would not occur
during correct program execution, but when occurring it

would leak the victim’s confidential information via a side
channel to the adversary. Speculative execution vulnerabil-
ities become a serious threat to commodity systems since
speculative execution is widely adopted in most modern
microprocessors [6], [7], [8].

Industrial researchers have responded rapidly to miti-
gate these threats [9], [10], [11], [12]. Retpoline, proposed by
Google, converts indirect jump instructions into a blocking
loop that combines return instructions to avoid unsafe spec-
ulative execution [13]. Intel has provided multiple micro-
code updates for their products and software developers
can invoke specific instructions to enable different granular-
ities of defense mechanisms to avoid interferences with the
branch predictor between applications running at different
privilege levels [9]. Various isolation mechanisms, such as
KAISER and Site Isolation, are developed to shut down the
observable channel between security domains [14], [15].
Although they effectively ease the security tensions, most
existing mitigation techniques are software-based and more
or less sacrifice transparency and/or performance.

To strike a balance between security, performance, and
transparency, it is essential to innovate the microarchitecture
design to safeguard the speculative execution. In the fourth
quarter of 2018, Intel released a series of Coffee Lake R pro-
cessors with hardware-based defenses against Meltdown and
Foreshadow [16]. However, other Spectre-type variants are
still mitigated by microcode together with the operating sys-
tem. To date, there has been no widely accepted hardware
solution for defending Spectre variants. This paper focuses on
the microarchitecture design innovations against the major
variants of Spectre (Spectre-V1, V2, V4, and SpectrePrime).
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More specifically, our work concentrates on vulnerabilities
associated with branch speculation and memory access
speculation. Overall, this paper makes the following
contributions:

1) We first propose the concept of Security Dependence.
Similar to data dependence and control dependence, this
kind of new dependence is used to depict the specu-
lative instructions which leak micro-architecture
information with potential security risks.

2) An effective and software transparent defense frame-
work against Spectre, named as Conditional Specula-
tion, is proposed. This framework consists of three
components to detect whether a speculative access is safe
or not according to Security Dependence dynamically,
then allow executing safe instructions as usual, and prevent
the execution of unsafe parts from changing cache states.�1
Security Hazard Detection is introduced in the Issue
Queue to identify suspected unsafe instructions with
security dependence.�2 Targeting at the different fea-
tures of multiple side-channel attacks, Hazard Filter is
deployed to filter out safe instructions which do not
leave observable traces in channels and allow them to
execute speculatively. �3 Security Hazard Response is
employed to prevent microarchitectural states from
being changed by unsafe instructions. This paper
describes how Conditional Speculation defends against
Spectre attacks based on the cache side channel.

3) Two filtering mechanisms are investigated to figure
out falsely identified security hazards, with the goal
of pursuing a balance of performance, security, and
transparency. The first proposed Cache-hit based Haz-
ard Filter targets the speculative instructions which
hit the cache. Since their speculative execution will
not change cache (content), they are safe. Another
proposed filter, Trusted Page Buffer based Hazard Filter
(TPBuf), identifies safe speculative instructions from
another perspective. For realistic and dangerous
Spectre variants that use the shared memory-based
cache side channel (e.g., Flush+Reload), their specu-
lative execution of malicious gadgets have a com-
mon feature named as S-Pattern. TPBuf is designed
to capture S-Pattern from all speculative execution.
For any speculatively executed memory instructions,
it is considered safe if it does not match S-Pattern.

4) TwoHazard Responsemechanisms are explored. The
straightforward one is to block all unsafe instructions.
Furthermore, inspired by InvisiSpec [17], a hardware-
based buffering mechanism, named as SPBuf, is
investigated for temporarily buffering speculative
traces. It can ensure security on the one hand, and
provides data for subsequent data-dependent opera-
tions, offering higher performance on the other hand.
We quantify the performance impact of the locations
of Speculative Buffer. Experiments show that deploy-
ing a speculative buffer in last-level cache can achieve
a similar performance as deploying in all caches
becauseHazard Filters can take advantage of the local-
ity of the private cache even without the Speculative
Buffer. This observation motivates us to propose a
lightweight Speculative Buffer design. In particular,

we only deploy Speculative Buffer with the last-level
cache, thus avoiding the complex cache coherence
modifications in the private caches.

The next section contains a brief description of Spectre.
Section 3 presents the threat model. The concept of security
dependence is introduced in Section 4. Section 5 introduces
the framework of Conditional Speculation. Sections 6, 7, and 8
describe the Hazard Detection, Hazard Filter, and Hazard
Response respectively. Section 9 evaluates the Conditional
Speculation. Section 10 is the discussion. And Section 11
summaries related works. Section 12 concludes this paper.

2 UNDERSTANDING THE SPECTRE ATTACKS

Spectre attacks usually trick the processor into speculatively
executing instruction sequences that should not have been
executed under correct program execution. By influencing
which instructions are speculatively executed, this kind of
attacks is able to use a side channel to transmit/leak
victim’s information out. A typical Spectre attack has the
following three common key steps.

2.1 Induce Victim to Incorrect Speculation

There are two major approaches in Spectre attacks to induce
victim to incorrect speculation.

Branch Speculation. Through purposeful training of the
branch predictors, an adversary can change the control flow
to incorrect speculative execution path to access the unau-
thorized data [1], [4], [18], [19], [20], [21]. Some processors
use static branch predictor, which makes it much easier for
an attacker to construct mis-speculative execution. What’s
more, complete process- or thread-level isolation is rare in
branch predictor for existing high-end processor cores. It
makes cross-process or cross-thread attacks feasible.

Memory Speculation. Another possible approach to induc-
ing speculative execution is load speculation [11]. The load
instruction is usually allowed to be speculatively executed
even if the address of its older store instruction is unknown.
Attackers can exploit it to induce the load instruction to
speculatively access confidential data illegally.

2.2 Construct a Long Timing Window for Incorrect
Speculative Execution

To gather enough and stable information of the incorrect
speculation, a long timing window is essential for the adver-
sary. There are several ways to achieve this, and we intro-
duce two classic approaches.

DelinquentMemory Accesses. The attacker can use the cache
line flush instruction or other ingenious methods to evict
their source operands into off-chip memory [1], [3], [4], [11].
Such delinquent memory access will hold the predicated
instruction a long time in Issue Queue due to unready source
operand.

Long Dependence Chain. Constructing a long data depen-
dence chain for computing source operands can also be
used to provide a longer timing window for stable specula-
tive executions [22].

2.3 Infer Secrets From Side-Channel Leakages

During the long timing window, subsequent speculative
execution might leave traces in microarchitecture which can
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be observed by some side-channel methods. As a widely
used method now, cache side-channel attack exploits the
time difference of memory accesses to deduce whether a
victim process has loaded a specific cache line or not, and
then infer the offset address or execution path. There are
many well-studied cache side-channel attacks, including
Flush+Reload [23], Prime+Probe [24], Evict+Reload [25],
Flush +Flush [26] and Evict+Time [27].

3 THREAT MODEL

We have the following assumptions on an attacker. She can
execute her codes on the same machine with the victim pro-
cess without elevated privileges. And it is feasible for the
attacker to induce the target branch to jump to malicious
gadgets in the single or cross address space.

This paper aims at a large class of representative Spectre-
type attacks. They steal victims memory contents instead of
the value of registers (Note that stealing memory contents is
perhaps more dangerous than stealing register values). We
define the defense scope primarily for the following reasons.
The community has not yet found a way to enumerate all the
possible side channels. Many choices are possible for the
side-channel component, such as the cache hierarchy, AVX
units [28] and ports [29]. Thus it should be noted that Spec-
tre-type attacks do not restrict themselves to cache side chan-
nel only. However, identifying the existence of a side
channel is only the first, small step towards mounting highly
successful attacks. Compared with other side channels,
cache side channel seems much more mature and efficient
and has beenwidely used inmost of the documented Spectre
variants. Note that while we limit our discussion to this
threat model in this paper, the basic architecture can still
work for an expanded threat model.

4 SECURITY DEPENDENCE

Security is a complex issue. In this paper, we focus on the
type of problems caused by side-channel vulnerabilities
exploited by Spectre. These are essentially micro-architec-
ture information leakages due to mis-speculation. To help
capture the problems caused by unsafe speculative execu-
tion, we introduce the concept of Security Dependence.

Instruction j is security-dependent on Instruction i with
respect to leakage channel c if both conditions hold:

� i precedes j in program order.
� If j is speculatively executed ahead of i, j will leak-

age information into channel c.
Note that since leakage happens in a variety of chan-

nels, security dependence is defined with respect to the
particular channel. Given the above definition, Table 1
summarizes the major security dependence in Spectre vul-
nerabilities. In this paper, we focus on how to defend
against the first six variants based on cache (content) side
channels. In other words, if j does not change cache con-
tent, then it does not have a security dependence with
respect to cache content channel and we consider it to be
safe. We can find that security dependence comes from
two situations, including memory-memory speculation
and branch-memory speculation.

Security Dependence Under Memory-Memory Speculation.
One example is the Proof-of-Concept (PoC) X86 assembly
code piece of Spectre V4 in Listing 1, which exploits specu-
lative store bypass (also named as load speculation) [11].
Instruction 1 (i1 hereafter) is a store operation, and i2 is a
load operation. Assuming these two instructions access the
same memory address, there is a RAW dependence actu-
ally. The attacker might construct an environment in which
i1 is pending in the issue queue for the unprepared source
register (rdi), i2 is speculatively launched and get forwarded
stale sensitive data. Once the address of i1 is known, the
load mis-peculation occurs and the incorrect execution
results of i2 need to be discarded. However, the sensitive
data related cache line has already been refilled into L1
cache by i2 and i4, such information leakage allows attack-
ers to infer the sensitive data. Therefore, we say both i2 and
i4 are security dependent on i1.

Listing 1. PoC Code piece of Variant 4: Speculative Store
Bypass

1 mov [rdi+rcx],al ;unsolved store

2 movzx r8,byte [rsi+rcx] ;unsafe load

3 shl r8,byte 0xc ;shifted as a index

4 mov eax,[rdx+r8] ;dependent load

Listing 2. PoC Code piece of Variant 1: Bounds Check
Bypass

1 Loop:

2 mov rdi, -0x8(rbp)

3 mov 0x200a54(rip), eax

4 mov eax, eax

5 cmp -0x8(rbp), rax ;cache miss

6 jbe 40063f <Loop> ;unresolved branch

7 mov -0x8(rbp), rax ;unsafe load

8 add 0x601080, rax ;indirect index

Security Dependence Under Branch-Memory Speculation. In
case of Spectre V1 in Listing 2. In attackers’ well-designed
environment, the branch i6 stays in the issue phase, and the
i7 is speculatively executed ahead of time to access unau-
thorized sensitive data. As with the previous scenario, the
cache contents are changed in such mis-speculation and the
sensitive data might be inferred out via cache side channel.
According to our definition, i7 is security dependent on i6.

TABLE 1
Security Dependence in Spectre Variants(Instr: Instruction,

Mem: Memory Access, and br: Branch Instruction)

Variants Instr i Instr j Channel c1

Spectre V1 [1] conditional br mem cache
Spectre V1.1 [19] indirect br mem cache
Spectre V2 [1] indirect br mem cache
Spectre V4 [11] mem mem cache
SpectrePrime [4] conditional br mem cache
SpectreRSB [20] return mem cache
ret2spec [21] return mem cache
NetSpectre [28] conditional br mem/AVX cache/AVX
SMoTherSpectre [29] indirect br conditional br port contention

1Side channel c listed in this table is the method used in corresponding docu-
mented papers.
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5 CONDITIONAL SPECULATION FRAMEWORK

Speculation and cache side-channel information leakages are
critical factors for Spectre attacks. A straightforward defense
policy is to prohibit any speculation of memory instructions
at the cost of severe performance slowdown. Actually, not all
speculative memory access instructions pose a risk of leaking
information. Therefore, we propose a defense framework,
named asConditional Speculation, which detects whether a specu-
lative access is safe or not according to security dependence dynami-
cally, then allows executing safe instructions as usual, and prevents
the execution of unsafe parts from changing cache states. The
framework of Conditional Speculation is summarized in Fig. 1
with three major components. Guided by this framework, we
propose a generic design of core microarchitecture, as shown
in Fig. 2.

Security Hazard Detection is integrated into the Issue
Queue to identify the security dependent memory access
instructions and assigns each instruction with a suspect spec-
ulation flag to indicate they POSSIBLY change cache con-
tents due to mis-speculation.

Security Hazard Filters are integrated into the load store
queue (LSQ) and L1 DCache to identify whether instruc-
tions tagged with suspect speculation are safe or not. With the
goal of pursuing a balance of performance and security, we
propose two filters in LSQ and L1 DCache to remove false
security hazards. The proposed Cache-hit based Hazard Filter
targets the instructions which hit in L1 DCache without any
cache (content) side-channel information leakage. From
another perspective, Trusted Page Buffer based Hazard Filter
(TPBuf Filter) identifies more safe speculative instructions.

Since Spectre variants that use the shared memory-based
cache side channel, in which secret data and memory region
used for constructing side-channel usually located at differ-
ent memory pages, their speculative execution of malicious
gadgets has a common feature (S-Pattern) described in
Section 7.2. It is considered safe if a suspicious access does
not match S-Pattern. The instructions that survive the filters
are allowed to be speculated normally, thereby obtaining
better performance in the context of security.

Security Hazard Response handles the remaining unsafe
instructions. We investigate two approaches to prevent them
from changing cache states. One approach is blocking all
unsafe accesses (Blocking), which sends back a signal from L1
Dcache to Issue Queue that the re-issue logic is applied to the
memory instruction until its security dependence is resolved.
The Blocking approach requires only minor modifications to
the processor but might have negative impacts on perfor-
mance. The other method, named as SPBuf, makes unsafe
accesses invisible to caches hierarchy and allows them to load
data speculatively to subsequent data-dependent instruc-
tions. InConditional Speculation, we find that deploying Specu-
lative Buffers only in last-level cache can achieve a similar
performance as deploying in all level caches for the benefits of
Hazard Filter. Thuswedeploy the buffer in the last level cache
only, which avoids modifying cache coherence logic in pri-
vate caches for SPBuf.

6 SECURITY HAZARD DETECTION

We design a Hazard Detection logic based on bit matrices as
shown in Fig. 3, which zooms in the Issue stage in Fig. 2.
Bit-matrix is a popular way used by some commodity pro-
cessors to track data dependence and age information [30],
[31]. With a security detection module, the security depen-
dence becomes one of the factors to determine whether an
instruction to be issued, together with data dependence and
age information.

Matrix Organization. Assuming that the Issue Queue (IQ)
has N items, the security dependence matrix will contain a
register array of NxN bits. The number of read ports of this
matrix is equal to the dispatch width, and the number of
write ports is equal to the issue width. This matrix is
indexed by IQPos (Issue Queue Position) of each instruc-
tion. Given any Instruction X, IQPos_X denotes its location
in the IQ. If the value of the Matrix[IQPos_X, IQPos_Y] is 1,

Fig. 1. The framework of Conditional Speculation (red shadow indicates
a risk of leaking sensitive information, while green shadow means that
no sensitive trace remains in caches).

Fig. 2. The microarchitecture overview of conditional speculation mechanism.
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X has security dependence on Y. Otherwise, it means there
is no security dependence between them.

Matrix Initialization. When the new instruction X is dis-
patched into the IQ, one row is allocated with the index
IQPos_X. For each Instruction Y which is valid in the IQ at
this moment, Matrix[IQPos_X, IQPos_Y] determines the
security dependence between instructions according to the
following formula. There are three conditions:�1 If Y is valid
and precedes X, which means Y is dispatched into the IQ
before X. �2 According to our threat model, we check if a
memory instruction is security-dependent on the previous
branch or memory instructions. �3 If the preceding branch
or memory instructions are still waiting in the IQ when a
memory instruction is issued, this memory instruction will
be considered to have security dependence.

Matrix½X;Y � ¼ðIssueQ½X�:opcode ¼¼ MEMÞ
&ðIssueQ½Y �:opcode ¼¼ MEMorBRÞ
&IssueQ½Y �:valid
&!IssueQ½Y �:issued:

Hazard Detection. Fig. 3 illustrates the three-stage options
of the Issue Queue. At the 1st stage, the data dependence
matrix generates a dependence vector. At the 2nd stage, this
vector is then sent to the age matrix to select the oldest ready
instruction to be issued. At the 3rd stage, for those instruc-
tions selected to be issued, the security dependence matrix is
queried to get their security dependence, and then the states
of corresponding entries of Issue Queue are updated. In par-
ticular, bits in each row of the security dependence matrix
are processed by OR operation and the result demonstrates
whether there is a potential security hazard. When an
instruction is selected to be issued and a security hazard is
detected, it will be taggedwith a suspect speculation flag.

Matrix Clearance. After an instruction X is issued, the cor-
responding bit in Update Vector Register will be set as 0. The
column of security dependence matrix indexed by IQPos_X
will be reset at the next cycle. Such operation means that the
security dependence between corresponding instructions
and X is cleared.

7 SECURITY HAZARD FILTER(S)

According to the security dependence under branch-memory
andmemory-memory speculation, a large number ofmemory
access instructions are justified as suspect byHazard Detection
module. Employing a conservative approach to execute these
instructions causes significant performance slowdown. How-
ever, some speculative memory accesses are safe because of
no observable traces left. Kinds of filters are investigated to
figure out these safe instructions and allow them to be exe-
cuted speculatively. Focus on Spectre variants based on cache
side channels, we propose two filters, Cache-hit based Hazard
Filter andTrusted Pages Buffer based Hazard Filter.

7.1 Cache-Hit Based Hazard Filter

When a memory instruction is speculatively issued to the
memory access pipeline, it is tagged with its suspect specula-
tion flag. If the suspect memory access hits in L1 DCache, it
will continue as a normal memory instruction. However, if
it encounters a miss in L1 DCache, the missing request will
be marked as unsafe and the memory access will be sent to
Hazard Response module. This design requires only minimal
changes in the L1 DCache control logic.

Secure Update for Cache Replacement Logic. It should be
noted that if speculative accesses that hit L1 DCache under
update cache replacement metadata (e,g, LRU bits), secret
information is possible to be observed [32]. For example, an
attacker can train the LRU bits of given sets, then carefully
induce the victim to change the LRU bits speculatively, then
figure out which sets have been accessed, and finally infer
sensitive data. To prevent such attacks, we propose two
secure update policies and evaluate them in Section 9.3.

1) No update policy skips LRU updates for speculative
accesses that hit the L1 DCache. For speculative
accesses that eventually become non-speculative, not
updating LRU bits can diminish the effectiveness of
L1 DCache replacement policy.

2) Delayed update policy sets a pending LRUupdate tagwhen
a speculative access hits in the L1 DCache and per-
forms the actual LRU update when the access reaches

Fig. 3. Security hazard detection based on security dependence matrix.
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the head of the ROB (or becomes non-speculative) and
the corresponding LRU array is not being used by
accesses from the load/store pipelines.

7.2 Trusted Pages Buffer Based Hazard Filter

Trusted Pages Buffer based Hazard Filter aims at the Spectre
variants based on cache side channels with shared pages,
which is realistic and widely used in existing Spectre var-
iants. The specific analysis is described in Section 9.2. These
variants obey a common feature, named as S-Pattern in this
paper. By dynamically identifying more safe instructions
based on Cache-hit Filter, this filter gets better performance.

1) S-Pattern
As shown in Fig. 4, the speculative execution of mali-

cious gadgets can be concluded into a common feature. In
particular, it is observed that the malicious speculative exe-
cution flow always contains two special memory instruc-
tions (A and B). These two instructions have the following
usages and behaviors.

1) A is used to speculatively access sensitive data. And B
speculatively accesses the memory region shared
with the attacker, which is used for building the cache
side-channel between the victim and the attacker.
Since secret data and shared memory regions usually
locate at different memory pages, these two instruc-
tions access different pages. For example, confidential
pages and non-secure pages are taggedwith different
flags in SGX and TrustZone. Therefore, if an attacker
needs a shared non-secure page to construct a side
channel, it always locates on a different page from
secrets.

2) B is data-dependent on A. The result of A is used to
calculate the index of the sharedmemory region. Such
well-designed dependence is also another important
point for the attacker to infer the secret values.

3) In order to build a cache side-channel, the attacker
needs to first flush the specific shared memory data.
Then, the induced speculative execution of B has a

cache miss and thus reloads the cache line into L1
DCache. This change in state information can be per-
ceived by the attacker through the cache side chan-
nel. Thus the cache miss of B is essential to leak
sensitive information over the cache side channel.

Motivated by the aforementioned observation, we call
the above common characteristic behavior as S-pattern. Spe-
cifically, if the instruction sequence of speculative execution
is observed to have the following characteristics, we con-
sider this sequence of speculative instruction has S-pattern
behavior.

1) There are at least two instructions (A and B) that sep-
arately access different memory pages.

2) Instruction B has data dependence on instruction A.
3) Instruction B results in an L1 DCache miss.
Although the malicious gadgets of Spectre attacks are

featured as S-Pattern behaviors, it should be noted that the
instruction flow with S-Pattern is not necessarily a Spectre
attack. For example, instruction A may read secret data
from registers, and the instruction B may propagate trans-
mits the secrets to attackers. While such leakage is impor-
tant to address, it is clearly less dangerous than leaking
from cache hierarchy. Therefore, we consider such leakage
out of scope.

2) Microarchitecture implementation of TPBuf
TPBuf is designed to capture memory access behaviors

with S-Pattern from all speculative executions. It records all
the on-the-fly speculative memory access requests and
tracks their execution status (e.g., whether the requested
cache line is refilled or not). When a new memory request
which misses in the L1 DCache, TPBuf compares its page
address with its history records. And it decides whether
this new speculative instruction is safe based on the logic
described in Table 2.

The microarchitecture of TPBuf is shown in Fig. 5. One
main design principle is to utilize the existing logics as much
as possible to reduce the complexity of implementation.
TPBuf is placed close to the Load Store Queue (LSQ) and its
entries have a 1:1 mapping with the entries of LSQ. The allo-
cation, commit and squash of TPBuf’s entries are operated
along with the movement of the LSQ’s Head and Tail
pointers. Besides, TPBuf covers all on-the-fly speculative
memory instructions in the speculative execution window.
In order to prevent the attacker from speculatively accessing
unauthorized data directly and then spreading the data to
his own memory space, the access address must be checked

Fig. 4. Typical instruction flow of malicious gadget for shared memory
(e.g., Flush+Reload) based Spectre attack.

TABLE 2
Filter Strategy for one Incoming Request

Query Result Decision

There is at least one valid entry whose
request accesses different memory pages,
and this request is in Writeback status.

UnSafe

Others Safe

Fig. 5. The microarchitecture design of TPBuf.
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and get physical page number (PPN) using TLB first. TPBuf
records and uses the PPN as the tag of each entry (PPN is
part of the physical address which is stored in PAddr). In
addition, each TPBuf entry stores a mask and a number of
status bits. TPBuf detects the S-pattern and passes the results
to Cache-hit filter which decides whether a suspect specula-
tive miss request is safe. In this way, the original memory
consistencymodel and cache coherence are unaffected.

Allocation. When memory access instructions are allo-
cated in LSQ, they also are allocated in TPBuf and A bit is
set. And Mask is generated according to A bits in TPBuf. It
indicates which memory instructions in TPBuf are older
than the new entry in the program order.

Update. The S bit is updated with the suspect speculation
flag attached with the memory instruction. When the PPN
is recorded in TPBuf, the V bit is set. The W is set when data
fetched by the memory instruction becomes available to
other instructions.

Detection. When an incoming request enters TPbuf, the
TPBuf compares its PPN with the PPN of existing entries
and then generates an address-match vector(Match). These
vectors, including Match,V, W, and S, are used as inputs of
the logic of equation 1 to determine whether the requests
are safe. Specially, ‘ j ’ means reduction OR, which operates
OR on all of the bits in a vector to generate 1-bit output.

safe ¼ ! ð jð V & W& S & MatchÞÞ: (1)

8 SECURITY HAZARD RESPONSE

To handle the unsafe memory accesses, two Hazard Response
mechanisms are explored. Blocking Hazard Response: A
straightforward scheme is to block unsafe speculative
accesses and bounce them back to Issue Queue where they
wait for the clearance of security dependence before being
re-issued. SPBuf Hazard Response: Inspired by InvisiSpec, we
propose the SPBuf Hazard Response. InvisiSpec [17] is a
prior mitigation against Spectre variants based on cache side
channels. InvisiSpec considers all suspect instructions as
unsafe and employs SpecLoads to retrieve data into Specula-
tive Buffers deployed next to the private and shared last-level
caches temporarily, and does not update the caches until the
accesses become safe. Different from it, Conditional Specula-
tion identifies most safe instructions by Hazard Filters and
allows them to execute normally. For the remaining unsafe
instructions, we propose lightweight Speculative Buffers and
SpecLoads. This section mainly focuses on the two light-
weight features of SPBuf Hazard Response in detail.

1) First lightweight feature: Deploying Speculative Buffer only
in Last-Level Cache

We quantify the performance impacts of deploying Spec-
ulative Buffers in different level caches. Experiments show
that deploying a Speculative Buffer in LLC can achieve a simi-
lar performance as deploying in all caches because Hazard
Filters can take advantage of the locality of the private
caches even without Speculative Buffer. Therefore, we deploy
a Speculative Buffer in LLC (LLC-SPBuf) only, which
reduces the complexity to support cache coherence and
maintain memory consistency for private caches.

Similar to TPBuf, the LLC-SPBuf has the same size as the
Load Queue. LLC-SPBuf is indexed with the index of Load

Queue, and each entry consists of the valid flag, cache line,
and corresponding physical address. For a single-core pro-
cessor, when a SpecLoad misses in LLC, it first checks
whether its cache line has been loaded in LLC-SPBuf by ear-
lier SpecLoads. If it hits in LLC-SPBuf (same physical
address), the cache line will be copied to its entry and
responded to the private caches. Otherwise, the request is
sent to the main memory and copies the responded cache
line to the LLC-SPBuf. When the unsafe access is committed
eventually, an Update request is sent to invalidate all entries
with the same physical address and copy the cache line
from LLC-SPBuf to LLC directly, eliminating the traffic
overhead of reloading data from main memory. In this
paper, we primarily focus on the effect of Conditional Spec-
ulation in single-core processors at the performance. As for
the implementation details for multi-core processors, such
as how to support memory consistency models, cache
coherence and so on, we can make a reference to InvisiSpec.

2) Second lightweight feature: Transforming Validation into
Exposure

SpecLoad is a type of memory requests which is intro-
duced to inform the cache hierarchy that this unsafe access
only reads data back to the pipeline and does not change
any cache state, such as coherence state, LRU. Therefore, the
pipeline may fail to receive if there is any invalidations
directed to the line loaded by SpecLoads. To avoid this viola-
tion of memory consistency, Validation and Exposure are pro-
posed in InvisiSpec. Compared to Validation, Exposure has
low overhead because a load instruction can be committed
as soon as the Exposure is issued, whereas the instruction
cannot be committed until the completion of a Validation. In
Conditional Speculation, there are few SpecLoads for the ben-
efits of Hazard Filter, so we can transform the Validation to
Exposure by scheduling the issue of SpecLoads as following.
Consider TSO first, SpecLoads are initiated when all of the
earlier loads accessing the same cache line in LSQ have initi-
ated their SpecLoads. As a result, TSO would not require
squashing the load on the reception of invalidation to the
line it loaded. The SpecLoad just needs Exposure, not Valida-
tion. Now consider RC, only speculative loads that read
when there is at least an earlier fence in the LSQ will be
squashed by an invalidation to the line. Hence, their Spec-
Loads are initiated when the earlier fence is committed.

When the instruction is committed normally, an Exposure
is issued to refill corresponding cache lines to the caches
and update cache states. When a SpecLoad request is initial-
ized for the instruction and sent to the lower caches, a new
entry is allocated in the miss handler (MSHR)s. Tradition-
ally, requests accessing the same cache line in MSHR can be
merged to a single request and sent to the lower cache hier-
archy. As for an incoming SpecLoad request, it can be
merged into an earlier SpecLoad request to the same cache
line, but cannot be merged to common requests for the con-
sideration of security. Similarly, an Exposure request can be
merged to earlier Exposure requests.

9 EVALUATION

9.1 Methodology

We evaluate Conditional Speculation on a cycle-accurate sim-
ulator (Gem5) and a real hardware in terms of security,
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performance, and area cost. We simulate an Out-of-Order
processor with Conditional Speculation to evaluate the fea-
tures in terms of performance on the complexity of Out-of-
Order core. Table 3 lists the key parameters of the simulated
processor. To corroborate the validity of the results, we
build an FPGA prototype based on open-source Berkeley
Out-of-Order RISC-V processor (BOOM) [33]. The most
important part of Conditional Speculation, including Cache-hit
Filter based Hazard Filter and Trusted Pages Buffer based Hazard
Filter, are evaluated in this prototype.

Security features are evaluated by analyzing Proof-of-
Concept (PoC) codes. For Gem5, we adopt SPEC CPU 2006
benchmarks with reference input size for performance eval-
uation. The simulator is warmed up for one billion instruc-
tions, and then run another billion instructions in the cycle-
accurate mode. For real hardware, the BOOMprocessor runs
all the SPEC CPU 2006 benchmark suite with train input
size. Finally, the Security DependenceMatrix, TPBuf and SPBuf
is implemented using Register-Transfer Level (RTL) code
and then synthesized and implemented with SMIC 40nm
technology for area and timing evaluations.

Different mechanisms of Conditional Speculation are
named in the following abbreviations:

Baseline. Base out-of-order processor with the configura-
tion listed in Table 3, without any defense mechanism.

Naive Policy. Simply considers all the security-dependent
memory accesses as unsafe and block their execution.

[F]-Blocking. Conditional Speculation with Blocking Haz-
ard Response. ‘F’ means the mechanism of Hazard Filter, with
‘CF’ indicating Cache-hit Filter and ‘CTF’ indicating Cache-hit
Filter and TPBuf Filterworking together.

[F]-SPBuf-[C]. Conditional Speculation with SPBuf Hazard
Response. ‘F’ means the Hazard Filter and ‘C’ means which
level cache is deployed with Speculative Buffer (‘ALC’ for all
level caches and ‘LLC’ for last level cache respectively). For
example, ‘CF-SPBuf-ALC’ employs Cache-hit Filter and
deploys Speculative Buffer in all level caches.

9.2 Security Analysis

Hazard Detection is the initial detection of security depen-
dence and only tags a suspect flag for each instruction, the
security of Conditional Speculation depends on the combina-
tion of Hazard Filter and Hazard Response mechanisms.
Table 4 summarizes the security analysis. In this table, Spec-
tre variants based on cache side channels are divided into

six typical scenarios classified by different combinations of
cache side-channel attacks and page sharing mode.

Hazard Filter. Cache-hit Filter (CF) does not load data for
speculative memory accesses that miss in L1 DCache, which
is the prerequisite of observing secrets from cache side
channels. Cache-hit Filter and TPBuf Filter (CTF) identifies
the unsafe speculative memory accesses according to S-Pat-
tern, which is the common feature of cache side-channel
attacks based on shared data. Therefore, CF succeeds in
defending against all six types of variants and CTF can
defend against the first four types in Table 4. It should be
noted that shared pages based channels are widely used in
PoC codes of existing Spectre variants, including “Flush
+Reload, share data” based variants (Spectre V1, V1.1, V2,
V4), and “Prime+Probe, share data” based SpectrePrime.

Hazard Response. Both Blocking and SPBuf prevent unsafe
accesses from leaving sensitive traces on caches, so they do
not influence the security for their defense ability of Hazard
Filter. Furthermore, it should be noted that the Blocking
mechanism can additionally mitigate side channels through
the memory system (e.g., DRAM contention).

In summary, both Blocking and SPBuf based Hazard
Response mechanisms do not influence the defense ability
for cache side channels. As for Hazard Filtermechanisms, CF
defenses against all Spectre variants based on cache side
channels, and TPBuf Filter is able to prevent widely used
variants exploiting shared pages, but fails to block variants
that don’t need shared data.

9.3 Performance Evaluation on Simulator

Fig. 6 compares the performance impacts of three different
mechanisms of Conditional Speculation. Not surprisingly, the
Naive Policy causes the largest performance degradation
(54.6 percent performance degradation on average, and the
worst case is 146.8 percent for hammer). In contrast, CF-
Blocking provides a certain degree of relaxation. By dynami-
cally identifying false security hazard, it allows the memory
instructions that hit L1 DCache to be executed. Such a filter
significantly improves the performance (on average reduce
performance degradation from 54.6 to 13.2 percent). In par-
ticular, CF-Blocking recognizes 86.3 percent speculative
accesses as safe due to the high L1 DCache hit rate for SPEC

TABLE 3
Simulator Configurations

Parameter Configuration

Architecture ALPHA at 2.5 GHz

Core

4-way out-of-order, 15 stages, 32 Load Queue
entries, 24 Store Queue entries, 192 ROB entries,
64 Issue Queue entries, Tournament predictor,
4096 BTB entries

ITLB/DTLB 64 entries
L1 ICache 64 KB, 4-way, 64B line, 2 cycle hit
L1 DCache 64 KB, 4-way, 64B line, 2 cycle hit
L2 Cache 2 MB, 16-way, 64B line, 10 cycle hit
L3 Cache 8 MB, 32-way, 64B line, 60 cycle hit
Memory 8 GB, 192 cycle latency

TABLE 4
Security Analysis

Attack CF CTF

Classification Blocking SPBuf Blocking SPBuf

Flush+Reload, @ @ @ @
share pages

Flush+Flush, @ @ @ @
share pages

Evict+Reload, @ @ @ @
share pages

Prime+Probe, @ @ @ @
share pages

Prime+Probe, @ @ � �
no shared pages

Evict+Time, @ @ � �
no shared pages
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CPU benchmarks. CTF-Blocking gets further performance
improvements. S-Pattern depicts the memory access pattern
with malicious behaviors in Spectre attacks. For any specu-
lative instruction which misses L1 DCache, if it does not
match S-pattern, it is considered safe and can still be specu-
latively executed. It can be observed that CTF-Blocking fur-
ther reduces the performance overhead to 7.0 percent on
average.

1) Performance overhead for Naive Policy
The security dependence comes from two major situa-

tions, branch-memory speculation and memory-memory
speculation. In order to have a better understanding on the
performance loss, we make in-depth analysis as below.

We first model a branch-memory dependence matrix
which recognizes speculative memory accesses dependent
on branch instructions as unsafe. It introduces 23.1 percent
performance degradation on average. As expected, the
more branch instructions exist, the more speculative mem-
ory accesses will be tagged as unsafe. In addition, high
misprediction rate might further reduce the performance.
As shown in Table 5, the worst case of astar (65.5 percent
overhead) has a high branch misprediction rate (8.5 per-
cent). Besides, 16.7 percent instructions are unresolved
branch instructions when they are allocated in the Issue
Queue, and 27.2 percent memory instructions are marked
as unsafe.

Fig. 6. Performance evaluation for blocking policy (All the values in this figure are normalized to Baseline).

TABLE 5
Dependence Analysis for Branch-Memory Dependence only and Memory-Memory Dependence

Benchmark

Branch-Memory Branch-Memory and
Dependence only Memory-Memory Dependence

Performance Unresolved Unsafe Memory Misprediction Rate Performance Resolving

Overhead Branch Rate Access Rate in Issue Stage Overhead Time Ratio

astar 65.5% 16.7% 27.2% 8.5% 71.3% 2.3
bwaves 0.7% 0.7% 2.6% 0.1% 94.5% 1.7
bzip2 53.5% 7.8% 24.8% 5.2% 73.7% 2.6
dealII 3.7% 6.2% 8.1% 1.1% 21.2% 2.7
gamess 20.7% 5.6% 14.4% 2.1% 59.5% 1.8
GemsFDTD 40.8% 16.4% 22.9% 1.8% 54.4% 0.7
gobmk 43.6% 13.0% 25.0% 8.3% 59.6% 2.8
gromacs 16.7% 3.4% 8.7% 6.5% 63.9% 3.0
h264ref 9.7% 6.7% 15.4% 3.1% 35.6% 1.6
hmmer 1.4% 2.3% 12.8% 0.3% 146.9% 3.6
lbm 53.5% 1.0% 7.9% 0.4% 92.5% 184.3
leslie3d 0.5% 1.2% 9.1% 0.9% 46.5% 2.2
libquantum 22.4% 8.5% 28.4% 0.0% 29.3% 15.2
mcf 9.2% 20.4% 35.5% 2.1% 22.7% 92.1
milc 2.1% 1.0% 10.3% 0.1% 36.0% 4.3
namd 32.9% 11.0% 21.6% 2.8% 51.2% 1.1
omnetpp 27.4% 26.7% 19.7% 1.8% 30.0% 2.7
sjeng 30.8% 15.0% 25.1% 7.3% 46.4% 2.4
soplex 4.0% 9.3% 13.6% 4.1% 4.3% 9.9
sphinx3 45.0% 10.7% 25.4% 3.0% 63.1% 3.3
zeusmp 0.1% 4.5% 7.8% 0.3% 49.7% 2.3
Average 23.1% 9.0% 17.4% 2.8% 54.9% 8.3
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After appending the memory-memory dependence, the
proportion of unsafe speculative memory accesses increases.
More seriously, other instructions that are dependent on
these unsafe operations have to be blocked in the issue
queue. Experiments show that some cases are particularly
sensitive to memory-memory security dependence. For
example, the performance overhead of lbm increases from
53.5 to 92.4 percent, and it takes more than 180 times longer
to resolve a branch than the Baseline case. As depicted in
Table 6, the Naive policy will block almost 73.3 percent spec-
ulativememory accesses on correct execution path.

2) Performance overhead from secure update for Cache replace-
ment logic

To understand the performance implication of secure
update policy, we evaluated them on top of CTF-Blocking
using the same set of benchmarks in Fig. 6. The results
show that no update policy introduces 0.71 percent perfor-
mance degradation. For delayed update policy, our experi-
ments show that it improves no update policy by 0.26
percent. There is little difference in the performance impact
of the two policies. Considering the complexity of this policy,
we believe that no update policy is the better option due to its
simplicity and this policy is used for the following experiments.

3) Performance gain from Filters
Cache-Hit Filter (CF). This filter exploits the locality of

memory access behaviors of normal workloads. Compared
toNaive Policy, CF improves the performance by 26.7 percent
on average as shown in Fig. 6. Take GemsFDTD in Table 6 as
an example, the cache hit rate is more than 99.9 percent, and
then only 0.1 percent speculativememory accesses are recog-
nized as unsafe. In case of lbm, milc and zeusmp, they have
higher L1 DCache miss rates. Thus their performance
improvements brought by CF are low. Such analysis is dem-
onstrated in Fig. 6. Most of the programs in SPEC CPU 2006

have high cache hit rates, this filter on average successfully
recognizes 86.3 percent speculative accesses as safe, and
blocks only 3.8 percent speculative memory accesses on the
correct execution path.

Cache-Hit Filter and TPBuf Filter (CTF): Besides exploiting
the locality ofmemory access, the performance improvements
are also related to the proportion of cachemisseswhich do not
match the S-Pattern. For most cases with high cache hit rates
(such as dealII, hmmer and namd), there is little space for
optimization. But for applications with low speculative cache
hit rates, high S-Pattern mismatch rate denotes that there are
large proportions of safe speculative cache misses, which can
be recognized by TPBuf Filter and executed speculatively as
normal. Therefore, significant performance improvements
can be achieved after introducing TPBuf Filter to Cache-hit
Filter. For instance, lbm has a lower L1 DCache hit rate (61.8
percent), and there are 86.2 percent speculative accesses mis-
matching S-Pattern. In this case,CTF captures those safe spec-
ulations and brings 38.1 percent performance improvement
in comparison with CF. Another interesting case is libquan-
tum. Although it has also a lower cache hit rate (79.6 percent),
more than 99.9 percent accesses belong to S-Pattern. These
operations are considered unsafe and are blocked for specula-
tion. Thus the performance benefit from CTF is limited for
libquantum. On average, this mechanism improves the per-
formance by 5.4 percent in contrast withCF.

4)] Performance gain from SPBuf
Fig. 7 shows Conditional Speculation configured with

SPBufs has a further performance improvement. Speculative
Buffer in LSU and LLC, there are two major reasons for per-
formance improvement, one is spatial locality in L2, and the
other is to shorten the time to access main memory. As dem-
onstrated in Table 6, the majority of cases, such as astar,
gamess, and hmmer, have excellent locality (more than 99.9

TABLE 6
Filter Analysis (Blocked Rate Means the Proportion of Blocked Speculative Memory Accesses in Correct Path)

Benchmark

Baseline Naive Policy CF-Blocking CTF-Blocking CTF-SPBuf-ALC

L1 Hit Blocked Blocked L1 Hit Rate of Blocked S-Pattern L2 Hit Rate

Rate Rate Rate Speculative Access Rate Mismatch Rate of USL

astar 94.4% 74.6% 3.3% 90.4% 2.2% 14.5% >99.9%
bwaves 81.3% 73.0% 5.6% 90.3% 5.5% 1.5% 60.8%
bzip2 96.7% 77.8% 1.6% 95.5% 1.3% 5.0% 95.6%
dealII 97.3% 58.7% 0.1% 99.4% 0.1% 15.5% 98.8%
gamess 96.0% 75.0% 0.5% 98.8% 0.4% 10.8% >99.9%
GemsFDTD >99.9% 79.1% <0.1% 99.9% <0.1% 0.2% >99.9%
gobmk 95.3% 72.5% 1.6% 96.3% 0.2% 39.4% 96.5%
gromacs 93.8% 71.4% 2.1% 94.8% 1.1% 19.0% 97.4%
h264ref 99.1% 62.5% 0.3% 98.3% <0.1% 47.0% 99.6%
hmmer 97.9% 65.4% 0.3% 99.4% 0.3% 2.1% >99.9%
lbm 61.8% 65.9% 15.8% 60.7% 0.3% 86.2% 80.9%
leslie3d 95.1% 85.3% 1.6% 96.5% 1.2% 17.2% 65.11%
libquantum 79.6% 88.4% 1.6% 95.2% 1.6% <0.1% 77.2%
mcf 73.9% 65.2% 9.3% 75.1% 3.2% 32.6% 80.6%
milc 66.2% 77.9% 13.0% 67.6% 9.2% 6.3% 76.9%
namd 97.5% 77.4% 0.2% 99.6% 0.1% 31.9% 97.8%
omnetpp 92.9% 76.7% 4.4% 78.2% 4.1% 0.8% 99.9%
sjeng 99.4% 78.1% <0.1% 99.7% <0.1% 11.9% 85.0%
soplex 84.9% 71.0% 3.3% 82.1% 3.3% 0.3% >99.9%
sphinx3 97.9% 77.4% 0.3% 96.6% 0.2% 13.1% 76.5%
zeusmp 55.3% 67.0% 15.0% 61.5% 3.9% 26.9% 79.64%
Average 88.4% 73.3% 3.8% 86.3% 1.8% 18.2% 87.9%
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percent) for SpecLoads in L2, which succeeds in providing
data to pipeline and accelerating subsequent execution. For
cases with low spatial locality, the mechanism helps to
shorten the waiting time to refill data from memory, which
will improve performance effectively as well. For example,
astar, libquantum and zeusmp have large amounts of Spec-
Load requests to memory and there are good performance
improvements as shown in Fig. 7. Although milc has poor
locality in caches as well, there are too many consecutive
SpecLoads accessing different cache lines, then the miss han-
dler will always be blocked and cannot handle other Spec-
Load requests. Therefore, there is less improvement for
milc. Shown in Fig. 7, this mechanism significantly reduces
the performance overhead to 1.7 percent on average.

In addition, we find that there is a small difference in per-
formance impact between CF-SPBuf-LLC and CF-SPBuf-ALC
as shown in Fig. 7. This shows that deploying Speculative
Buffers in private caches does not significantly improve per-
formance because most of the performance improvement of
Speculative Buffer in private cache comes from the locality
of the private caches, while the locality has been fully uti-
lized by Cache-hit Filter in Conditional Speculation. Considering
the complexity of deploying SPBuf in private caches, we believe
that deploying Speculative Buffer in LLC only is the better option
due to its efficiency.

5) Breakdown of performance benefits from different
components

We analyze in detail the percentage of eachmechanism for
performance gains, which is shown in Fig. 8. In conclusion,

compared to Naive Policy blocking all unsafe speculative
loads, the SPBuf mechanism significantly improves perfor-
mance by 34.1 percent. On average, the improvement rates
of Cache-hit Filter, TPBuf Filter, and SPBuf are 26.7, 4.1,
and 3.3 percent respectively. Most cases have a high L1 hit
rate, therefore, Cache-hit Filter is the major contributes the
most. For the reason that the characteristics of dynamic
execution vary from different cases, the effect of the other
two mechanisms is not quite similar. In lbm, mcf, milc,
and zeusmp, many unsafe speculative loads do not match
S-Pattern, so there is a significant performance boost intro-
duced by TPBuf Filter. For the cases of bwaves, libquan-
tum, and zeusmp, SPBuf dramatically reduces the waiting
time for loading data for unsafe speculative loads, result-
ing in great performance improvements.

6) Comparison with InvisiSpec
InvisiSpec [17] is a prior work for employing speculative

buffer to block Spectre attacks. Based on the same simulation
configuration, we compare the performance overhead of Con-
ditional Speculation with InvisiSpec. It is noted that we used
open-source code implemented by InvisiSpec, which does not
have L3 Cache. In our evaluation, InvisiSpec is configured to
defeat existing Spectre attacks through cache side channel, as
known as InvisiSpec-Spectre. As shown in Fig. 7, the average
performance loss of InvisiSpec is 6.5 percent, which is close to
CTF-Blocking. For the cases of bwaves, bzip2, leslie3d and
sphinx3 that benefit less from the Hazard Filters, InvisiSpec
performs better than CTF-Blocking. However, for the cases
that have high cache hit rates, such as GemsFDTD, hmmer,
and soplex, CTF-Blocking reaches lower performance over-
head. What’s more, all configurations of Conditional Specula-
tion with SPBuf Hazard Response (CF-SPBuf-LLC, CF-SPBuf-
ALC, CTF-SPBuf-LLC, CTF-SPBuf-ALC) have better perfor-
mance than InvisiSpec. Especially for libquantum that has
nether good spatial locality nor high S-pattern mismatch rate,
Conditional Speculation with SPBuf Hazard Response further
improves the performance.

9.4 Evaluation on Hardware

1) Performance evaluation on RISC-V FPGA platform
Conditional Speculation with CTF-Blocking has been

implemented on the open-source RISC-V-based Berkeley
Out-of-Order Machine (BOOM) processor to observe

Fig. 7. Performance evaluation of SPBuf (Each case is normalized to its baseline).

Fig. 8. Performance improvement of three different mechanisms normal-
ized to Naive Policy.
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performance impacts and its defense ability in the real
hardware. In our experiments, this processor is configured
with a 4-way 10-stage pipeline and a two-level cache hier-
archy (L1D/L1I Cache: 32 KB, L2 Cache: 1 MB). And there
are 16 entries in the LSQ, 48 entries in the ROB and
20,16,10 entries for memory, integer and float point respec-
tively in the issue queue.

All the benchmarks of SPEC CPU 2006 with train input
size run on the Xilinx VC709 FPGA platform at the fre-
quency of 50 MHz. For the software transparency of Condi-
tional Speculation, the benchmark cases can run successfully
without any modification. As shown in Fig. 9, the perfor-
mance overhead of CTF-Blocking on FPGA platform is 2.8
percent on average. Different from simulating a part of the
programs in Gem5, the entire programs of benchmarks are
simulated in experiment on the FPGA, resulting in the
inconsistency of results. However, both of them demon-
strate that Conditional Speculation does introduce only mini-
mal performance overhead. Finally, we port the previously
disclosed Spectre V1 PoC [1] to the processor to evaluate the
effectiveness of Conditional Speculation against the real-
world attack. And experiments show that this mechanism
succeeds to defend against this attack.

2)] Hardware overhead evaluation
The security dependence matrix is implemented at Regis-

ter-Transfer Level (RTL). Based on SMIC 40 nm technology,
we use Synopsys ASIC design flow and tools to assess the
timing and area cost for such matrix and related control
logic. For the issue queue with 64 entries, the additional
area occupied by this matrix is 0.05 mm2 on average, which
is only 3.5 percent of a 4-way 32 KB Cache. Synthesizing
with TT corner using Design Compiler, the timing of the
critical path is only increased by 1.4 percent.

In the implementation of Cache-hit Filter, the RTL level
modification is marginal, as it only needs to check the safe
flag. For the TPBuf implementation, TPBuf is placed close to
the Load Store Queue (LSQ) and its entries have a 1:1 map-
ping with the entries of LSQ. The additional area occupied
by TPBuf is 0.00079 mm2 on average, which is about 0.055
percent of a 4-way 32 KB Cache. Compared to the complex-
ity of store-load forwarding and ordering-failure detection
in LSQ, TPBuf only involves PPN address comparison logic
and does not introduce new critical paths.

We implement the Speculative Bufferwith a 1 KB SRAM. It
takes up 0.017mm2 on average,which is about 1.2 percent of a
4-way 32KBCache. In general, its critical path is less than L1D
Cache. So it doesn’t have an impact on critical paths.

10 DISCUSSION

10.1 Extend Conditional Speculation Beyond
DCache Side Channel

As explained in our threat model, this paper aims at Spectre
attacks based on cache side channel. However, the micro-
architecture states are far beyond cache contents, which can
also include physical registers, various queues, TLB and
ICache etc. Any other future unknown side channel might
be fundamentally different from all the known side chan-
nels. Hence, we do not argue that our defense method can
effectively cope with all the unknown covert channels. It is
worth pointing out that this is a good research problem. We
need to combine the idea of Conditional Speculation with a
new kind of dedicated filter for the new side channel.

One case study is to extend conditional speculation to
defend the Spectre variants based on port-contention side
channel, such as SMoTherSpectre [29]. The key of this attack
is that attackers lure a victim process to speculatively exe-
cute a specific gadget. The gadget occupies different execu-
tion ports according to the jump direction of the conditional
branch instruction, which is data-dependent on the secret.
Therefore, the attackers can infer the outcome of conditional
branch through port-contention side channel and finally
steal the secrets. To defend such kind of attacks, Conditional
Speculation marks all these speculative conditional branch
instructions as unsafe, and blocks them in the issue stage
until they become non-speculative. Since the speculative
execution of conditional branch instructions are blocked, it
is only possible for the branch predictor instead of the secret
to cause the port contention, and then the attacker can’t
infer the secret by timing the port competition in the specu-
lative window. In terms of performance, it is noted that Con-
ditional Speculation delays the execution of speculative
conditional branch, but their subsequent instructions are
still allowed to be speculatively executed as normal. So it
won’t have a significant impact on performance. Even so, a
hazard filter can be introduced to further reduce perfor-
mance loss. One possible approach is to use the compiler to
identify the gadgets that might be used to construct the
port-contention side channel and mark their dependent con-
ditional branch as unsafe. Compiler will insert instructions
or attach additional tag to initialize the specific filter. With
this hazard filter equipped, Conditional Speculation blocks
only the marked conditional branch, and other conditional
branches that are not marked are still allowed to execute
normally. In summary, SMoTherSpectre can be defended
by our extended Conditional Speculation effectively.

10.2 Extend Conditional Speculation Beyond
Spectre

Naturally, there exists security dependence between the
instruction which triggers the transient execution and the
instruction which may leak secrets by any side channel. In
addition to the two scenarios mentioned, security depen-
dence covers both Meltdown-type and MDS-type attacks, as
listed in Table 7. In Meltdown [2] and L1TF [34] attacks, a
memory instruction (instruction i) that does not resolve the
permission check speculatively access sensitive data, after
which a memory instruction (instruction j) may disclose
sensitive information through side channels. Furthermore,

Fig. 9. Performance evaluation on RISC-V FPGA platform.

974 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 7, JULY 2021



aggressive forward from stale data is a kind of speculation
as well in MDS attacks, such as ZombieLoad [35], RIDL [36]
and Fallout [37]. In this scenario, the instruction which gets
the forwarded data acts as the instruction i, and the subse-
quent instruction acts as the instruction j.

Conditional Speculation is a defense strategy established
on security dependence. Therefore, this defense mechanism
can extend to these scenarios. Take ZombieLoad as an exam-
ple, it exploits the aggressive forwarding mechanism from
the line fill buffer in Intel processors, where the processor for-
ward data to subsequent loads even when the located page
has been released. As a result, stale data may be forwarded to
the subsequent loads. Security dependence can be estab-
lished between the load which accepts forwarded data and
subsequent memory accesses. A Security Hazard Detection can
be deployed in line fill buffer to mark the forwarded loads as
suspect instructions. Because this forwarded data may con-
vey secrets, TPBuf Filter can be applied to detect S-Pattern
between this operation and the first subsequent loads.

11 RELATED WORK

Many works are proposed to defend against Spectre attacks
and they can be classified into software-based and hard-
ware-based mitigation.

Software-Based Mitigations. Serializing instructions, such
as LFENCE, can be inserted into critical sensitive gadgets by
manually or compiler to mitigate V1 [40], [41]. In terms of
V2, Intel has provided many microcode updates, such as
IBRS and IBPB to avoidmalicious branch training across pro-
tection domains [9]. As for V4, SSBD stalls speculative loads
before calculating the addresses of older stores. Retpoline,
proposed by Google, transfers indirect branches and jumps
to secure instruction sequences to stall aggressive memory
accesses [13]. Some researchers propose that a software
developer indicates the branches capable of leaking informa-
tion and the processor avoids predicting them for protec-
tion [42]. It is noted that software-based mitigation need
code modification and recompilation. Furthermore, they are
possible to be bypassed. For example, LFENCE defense can
be bypassed by Spectre V1.1 and V1.2 [3], [20].

Hardware-Based Mitigations. Existing defense mechanisms
can be grouped into the four categories:

�1 Prevent malicious training. BRB [43] allocates separate
branch predictor tables for different process to defend against
training across process. SPECCFI [44] embeds Control Flow
Integrity (CFI) principles into the branch prediction decisions
to constrain dangerous speculation. These works are primar-
ily targeted at specific Spectre variants. In comparison, Condi-
tional Speculation is amore general defense framework.

�2 Prevent speculative execution from leaving traces in caches.
Typical examples are InvisiSpec [17] and SafeSpec [45].
They employ dedicated buffers to hold speculatively refilled
data temporarily and update architectural caches when
they are predicted correctly. Instead of buffering, Cleanup-
Spec [46] allows caches to refill speculative accesses and
then undo the changes of cache-states if they were on an
incorrect execution path. Besides, DAWG [47] provides a
strict cache partition for different security domains to pre-
vent leaving traces of speculative execution on caches across
security domains. These works primarily aim at addressing
Spectre attacks based on cache side channels.

�3 Restrict the speculative execution of memory access instruc-
tions. Second category conservatively considers all specula-
tive accesses as suspicious, but actually only speculative
instructions which access secrets-dependent data and
change the cache states are malicious. Instead of pessimistic
blocking, SpectreGuard [48] identifies confidential instruc-
tions by software (OS/library API) and Context-Sensitive
Fencing [49] exploits taint tracking to identify potentially
unsafe execution patterns. As a hardware solution with soft-
ware-transparent, Conditional Speculation uses Hazard Filter
to identify safe accesses. And inspired by InvisiSpec, the
remaining few unsafe accesses that previously should have
been blocked are allowed to execute speculatively. Similar to
the Cache-hit Filter, Selective Delay [50] also considers specu-
lative accesses that hit in L1 DCache as safe. The difference is
that it employs a value prediction mechanism to reduce the
performance overhead caused by blocking unsafe accesses.

�4 Block the propagation of secrets. Theworks of the category
two and three primarily mitigate Spectre attacks based on
cache side channels. researchers pointed out that transient
execution attacks require transferring secrets from the specu-
lative domain into the architectural states of the processor no
matter what kind of side channel is used to disclose sensitive
information. Thus NDA [51], SpecShield [52], and STT [53]
are proposed to break this requirement. These mechanisms
assume that secrets need to be propagated speculatively at
least once before information is leaked to a side channel. They
prevent the use of potential secrets from suspicious accesses
by downstream instructions and can mitigate information
leakage through different side channels. Though current Con-
ditional Speculation are designed to defeat cache-based Spectre
attacks, new filters can be deployed to defend against other
side channels. And Conditional Speculation can also introduce
a secret data dependence matrix to track the propagation of
secrets, further filtering out safe instructions that are indepen-
dent on secrets and allowing them to execute normally.

12 CONCLUSION

An effective and software transparent hardware-assisted
framework, named as Conditional Speculation, is proposed to
mitigate Spectre variants based on cache side channel. This
framework consists of three components: Security Hazard
Detection, Security Hazard Filter and Security Hazard Response.
As for the Security Hazard Detection, a bit-matrix is intro-
duced in the Issue Queue to identify suspected memory
instructions with security dependence. Then, Security Haz-
ard Filters are deployed to pick out safe instructions which
do not leave observable traces on cache side channels and

TABLE 7
Security Dependence in Meltdown-Type and MDS-Type

Variants (Instr: instruction, mem: memory access,
and reg: register)
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allows them to execute normally. In this paper, we investi-
gate two Security Hazard Filters: Cache-hit Filter aims at the
safe instructions which hit the cache because they will not
change cache (content). TPBuf Filter identifies safe instruc-
tions from a common feature of variants based on shared
memory, named as S-Pattern. Cache-hit Filter succeeds to
defense against all Spectre variants based on cache side chan-
nel. With a compromise of security, TPBuf Filter aims at the
dangerous and widely-used attacks based on shared pages
and gets a better performance. Security Hazard Response is
employed to handle unsafe instructions determined by the
first two components. Blocking unsafe execution is an easy-
to-implement method, but sacrifices the performance. SPBuf
mechanism supports retrieving data to the pipeline without
changing cache contents, and eliminates the pipeline stalls of
subsequent execution. Specifically, we find that it is unneces-
sary to deploy SPBuf in private caches with Hazard Filter
identifyingmost of safe instructions, and deploying SPBuf in
last level cache is efficient and less complex.
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