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Abstract—Neuromorphic systems that learn and predict from streaming inputs hold significant promise in pervasive edge computing and

its applications. In this article, a neuromorphic system that processes spatio-temporal information on the edge is proposed. Algorithmically,

the system is based on hierarchical temporal memory that inherently offers online learning, resiliency, and fault tolerance. Architecturally,

it is a full custommixed-signal design with an underlying digital communication scheme and analog computational modules. Therefore,

the proposed system features reconfigurability, real-time processing, low power consumption, and low-latency processing. The proposed

architecture is benchmarked to predict on real-world streaming data. The network’smean absolute percentage error on themixed-signal

system is 1.129 X lower compared to its baseline algorithmmodel. This reduction can be attributed to device non-idealities and

probabilistic formation of synaptic connections.We demonstrate that the combined effect of Hebbian learning and network sparsity also

plays amajor role in extending the overall network lifespan.We also illustrate that the system offers 3.46X reduction in latencyand 77.02 X

reduction in power consumptionwhen compared to a customCMOSdigital design implemented at the same technology node. By

employing specific low power techniques, such as clock gating, we observe 161.37 X reduction in power consumption.

Index Terms—Neuromorphic computing, hierarchical temporal memory, synthetic synapses representation, plasticity, neocortex
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1 INTRODUCTION

OVER the course of the last decade, there has been a pro-
found shift in artificial intelligence (AI) research, where

biologically inspired computing systems are being actively
studied to address the demand for energy-efficient intelligent
devices. Biologically inspired systems, such as hierarchical
temporal memory (HTM) [1], [2], have demonstrated strong
capability in processing spatial and temporal information
with a high degree of plasticity while learning models of the
world. HTM also exhibits natural compatibility for continu-
ous online learning [3], noise and fault tolerance [4], and low
power consumption achieved through sparse neuronal activ-
ity [5], [6]. These properties make the algorithm attractive for
a wide range of applications such as visual object recognition
and classification [7], [8], prediction of data streams [9], natu-
ral language processing and anomaly detection [10]. Despite
the fact that HTM is an attractive algorithm, it demands high
computational power that cannot be fulfilled by conventional
von Neumann architectures. This is because the innate HTM
architecture, which is composed of thousands of neuronal cir-
cuits, requires a high-level parallelism in information process-
ing. One may map the HTM algorithm onto a GPU. A GPU

can provide the necessary parallelism, but it fails to provide
satisfactory performance and demands a large power bud-
get [11]. To this end, several research groups have attempted
to develop specialized custom hardware designs to run the
HTM algorithm efficiently and affordably [12]. While some of
the previous designs focused only on the spatial aspect of the
HTM [13], [14], [15], other endeavors incorporated both the
spatial and temporal models in the same design. For instance,
in 2015, Zyarah et al. implemented theHTMalgorithm includ-
ing the spatial and temporal aspects [16]. The implemented
network incorporates 100mini-columnswith 3 cells each, and
is verified for image classification and sequence prediction.
Furthermore, it supports synthetic synapses, which are real-
izedwith distributedmemory blocks, to enable synaptic path-
way dynamics. The authors also optimized their design
further in [17]. Weifu Li et al. [18], proposed a full architecture
of the HTM algorithm in 2016. The proposed architecture is
composed of 400 mini-columns (2 cells in each mini-column)
connected in point-to-point format to the HTM input space,
which eventually causes the mini-column to be in an active
mode even when there is insignificant activity (noise) in the
input space. When it comes to HTMmemristor-based analog
and mixed-signal designs, in 2016, Fan et al. implemented the
first generation of HTM, HTM-Zeta. The authors proposed
RCN (resistive-crossbar networks) pattern matchingmodules
with core processing unit named, spin-neurons [19]. The net-
work operation is verified for image classification in an offline
fashion as the proposed design does not support online learn-
ing. In 2018, Krestinskaya et al. presented the full analog
design of the HTM, but the temporal aspect of the implemen-
tation does not match that in the HTM sequencememory as it
depends on the class map concept which matches the stored
patternswith the test ones (unseen input samples) [20]. To the
best of our knowledge, there is no full custom mixed-signal
design of the HTM algorithm in literature with underlying
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digital communication scheme and analog computational
modules. Such a design should include the necessary reconfi-
gurability, low energy-delay product, and a robust communi-
cation scheme, in one platform. It is important to mention
here that such architectures have been explored in the context
of spiking neural networks (SNNs) [21], where the communi-
cation scheme is realized with address event representation
(AER), developed by Mahowald in 1992 [22]. AER takes
advantage of sparse neuronal activity and high-bandwidth
VLSI to enable time-multiplexed communication. Hence, it
reduces the number of connections between sending and
receiving neuronal arrays from n to log 2n [23]. It turns out
that AER is considered as an effective approach for point-to-
point connections, but not for complex networks with sparse
connections. The complex network connectivity is solved
through the enhanced AER proposed by Goldberg et al. [24].
The enhanced AER uses look-up tables (LUTs) to describe the
connectivity network between two sets of neuronal arrays.
The LUT contains the sender address, destination address,
and the probability of connectivity. Thus, complex networks
even sparse ones can easily be implemented. However, the
enhanced AER demands a large amount of memory and this
makes it unsuitable for power and area constrained devices.
Therefore, this paper also proposes a synthetic synapses
representation (SSA) communication scheme, which lever-
ages the linear feedback shift registers (LFSR)s to describe the
sparse connections among neurons. Using the LFSRs elimi-
nates the need for memory-based address description as the
addresses between neurons are generated rather than stored.
This results in a considerable reduction in the network area
and power consumption.

Specific key contributions of this paper are as follows:

� Developing a memristor-based mixed-signal neuro-
morphic system of the HTM network including both
the spatial pooler and temporal memory.

� Synthetic synapses representation (SSR) communica-
tion scheme is proposed to virtually formulate and
prune the physical synaptic connections in the HTM
network.

� System-level analysis of the performance, lifespan,
area, and power consumption with respect to a CMOS
only implementation is performed.

2 HIERARCHICAL TEMPORAL MEMORY

HTM is a biomimetic algorithm that aims to develop a
computational framework capturing the structure and the
algorithmic properties of the human neocortex. Structurally,
the algorithm is composed of hierarchical ascending layers of
cellular regions that enable the network to capture spatial
and temporal information, shown in Fig. 1. Each region in the
HTM is composed of building blocks, namely cells, which are
arranged in columns to model biological mini-columns. The
cell inHTM is just an abstractmodel of the excitatory pyrami-
dal neurons. As pyramidal neurons, each cell has hundreds
of synaptic connections grouped into three integration zones
(or segments): proximal, distal, and apical1 [4], [25]. The prox-
imal segment is dedicated to receive feed-forward input i.e.,
observe the cellular activities in the lower layers in the hierar-
chy, or sensory input. Typically, activities detected on proxi-
mal segments leads to generation of neuronal action
potential. The distal and apical segments, on the other hand,
are dedicated to observe the cellular activities of the neigh-
boring cells in the same region (contextual input) and higher
levels in the hierarchy (feedback input), respectively. Unlike
the proximal segment, the cellular activities detected by distal
and apical segments lead to NMDA spikes [26]. The NMDA
spikes slightly depolarize the cell without generating an
action potential, giving the cell a competitive advantage in
responding to future input representations [27].

Fig. 1 shows a high-level diagram of the HTM network
equipped with a data encoder and multiple classifiers. The
encoder transforms sensory information into binary repre-
sentations, while the classifiers map the HTM output to the
corresponding class labels (SDR classifier) and identify
anomalies (anomaly classifier). The mixed-signal design of
the SDR classifier has been developed in our previous
work [6]. Thus, this work will emphasize the design and
implementation of a single HTM region,2 which is equiva-
lent to realizing the primary sensory region in the supra-
granular layers of the neocortex. Given an HTM region,
there are two core operations which capture the spatial and
temporal information of a given input, namely the spatial
pooler and temporal memory, which are discussed in the
following subsections:

2.1 Spatial Pooler

The spatial pooler in the HTM is responsible for extracting
and learning the spatial patterns of the sequential data. Typi-
cally, the spatial pooler models an encoded sensory input,
generated by the encoder, using a population of active and
inactive mini-columns chosen through a combination of com-
petitive Hebbian learning rules and homeostasis [27]. Typi-
cally, the number of active mini-columns is limited to (2-4)
percent of the total mini-columns in a given HTM region,
resulting in so-called sparse distributed representation (SDR).
The SDR in HTM defines the underlying data structure and
enables the crucial features of the algorithm such as distin-
guishing the common features between inputs [28], learning

Fig. 1. High-level architecture of the HTM system with three core units:
data encoder, HTM network, and classifiers. The encoder transforms the
input data into binary representations. The HTM algorithm learns spatial
information and captures temporal transitions, while the classifiers map
the HTMoutput to the corresponding class labels and identify anomalies.

1. A cell in HTM typically has one proximal segment (shared with
other cells of the same mini-column) and multiple distal and apical
segments.

2. The hierarchical structure of the HTM network has not been thor-
oughly studied yet.
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sequences, and making simultaneous predictions [29]. How-
ever, selecting the active and inactive mini-columns is deter-
mined according to the spatial response of the individual
mini-columns to an input. Recall, each mini-column in the
HTM observes the pattern activities in the input space using a
set of proximal connections. Having a reasonable number of
active proximal synapses connected to active bits (namely
overlap score) initiates an action potential that enables a mini-
column to compete with its neighbour for input representa-
tion. By using the k-winner-take-all (k-WTA) computation
principle, the top (2-4) percent mini-columns with the highest
overlap scores are activated (become winners) and inhibit
their neighbors. The output of the spatial pooler is a binary
vector, which represents the joint activity of all mini-columns
in the HTM region in response to the current input. The spa-
tial pooler operation can be divided into three distinct phases:
initialization, overlap and inhibition, and learning, discussed
in our previouswork [6] and briefly described below.

In the initialization phase (Algorithm 1, lines 2-5), which
occurs only once, the mini-columns’ connections to the
input space, synapses’ permanences, and boosting factors,
are initialized. Let Sp be an nc � nx array holding the proxi-
mal synaptic connections between nc mini-columns and
nx�dimensional input space. Similarly, let rp be an nc � nx

array that defines the permanence of corresponding potential
synapses in Sp. Given the jth mini-column, its maximum
number of potential synapses (nsp) is defined by the non-zero
elements in ~sp (~sp is a row vector in Sp) whose indices are gen-
erated by a pseudo-random number generator, and their per-
manence values are uniformly initialized at random between
‘0’ and ‘1’. Initializing the synapses is followed by setting the
boosting factor of the individual mini-columns to ‘1’. After
the initialization, the overlap and inhibition phase (lines 8-11)
starts in which the feed-forward input is collectively repre-
sented by a set of active mini-columns (winning mini-col-
umns). Selecting the active mini-columns is done after
counting mini-columns’ active synapses that are associated
with active bits in the input space, i.e., overlap scores (a).
Mathematically, this is achieved by performing a dot product
operation between the feed-forward input vector (~xt) at time
t and the active synapses array, as in line 9, where the active
synapses array is the result of an element-wise multiplication
(denoted as�) between Sp and �rp.~b

t, here, denotes the boost-
ing factor that regulatesmini-column activities. �rp is a perma-
nence binary array to indicate the status of each potential
synapse, where ‘1’ indicates a connected synapse and ‘0’ an
unconnected synapse. Upon the completion of computing
the overlap scores, eachmini-column overlap score gets eval-
uated by comparing it to a threshold, ath (line 10). The result-
ing vector (~eat) is an indicator vector representing the
nominated mini-columns with high overlap scores. Given an
inhibition radius defined by �, based on the mini-column
overlap scores and desired level of sparsity (h), nw number of
mini-columns will be selected to represent the input, as
shown in line 11. After determining the winning mini-col-
umns in ~Lt, the learning phase (lines 13-16) starts to update
the permanence values of the winning mini-columns’ synap-
ses. The synapses’ permanences are updated according to
Hebbian rule [30]. The rule implies that the synapses con-
nected to active bits must be strengthened, increasing their
permanence by Pþp , while those connected to inactive bits

will be weakened, decreasing their permanence by P�p , as in
line 14, where Drp is the change in the permanence array for
all mini-columns given an input~xt, and � denotes the sum of
Pþp and P�p . After adjusting the synapse’s permanence, the
boosting factor of each mini-column is updated according to
the mini-column’s time-averaged activity level (�at) and its
activity level with respect to its neighbor (< �at > ) [27].

Algorithm 1.HTM-Spatial Pooling

Input: ~xt 2 Rnx
f0;1g, where ~xt � Xt andXt 2 Rnx�nn

f0;1g ;

Output: ~Lt 2 Rnc
f0;1g /* nc:Number of mini-columns */

1 // Initialization: /* nx:Input vector length */

2 Sind � rand.pseudo, where Sind 2 N
nc�nsp
f1;nxg ;

3 Sp½Sind�  1;where S and r 2 Rnc�nx ;
4 rp½Sind� � rand.uniform[0, 1];

5 ~bt 2 Rnc , where 8 bt½j� ¼ 1;
6 repeat
7 // Overlap and Inhibition:
8 �rp  Iðrp 	 PthÞ ;
9 ~at  ~bt � �ðSp � �rpÞ 
~xt

�
;

10 ~eat  Ið~at 	 athÞ ;
11 ~Lt  kmaxð~eat; h; �Þ; /* kmax:k-WTA function */

12 // Learning:
13 if Learning == ’Enable’ then

14 Drp  ~Lt:transpose� ðSp � �rpÞ � ð�~xt � P�p );
15 ~bt  e�gð�a

t�<at > Þ ;
16 end
17 until t > nn

2.2 Temporal Memory

The temporal memory in the HTM is mainly dedicated to
learn time-based sequences and to make predictions. The
temporal memory operates at the cells level, specifically, the
cells of the winning mini-columns. When a mini-column
becomes active, at least one of its cells is selected to be active
to represent the input contextually. This usually depends on
whether the cells within the winning mini-columns are pre-
dicting the incoming input. If a winning mini-column has a
predictive cell, that cell becomes active and inhibits other
cells within the samemini-columns from being active. Other-
wise, the joint activation of all cells within the mini-column
represents the input and this is known as massive neurons
firing or bursting. However, once a cell is activated, it forms
lateral connections with the cells that were active in the pre-
vious time step. Patterns recognized by lateral connections
lead to a slight depolarization of the cell soma (predictive
state), subsequently predicting the upcoming events. Typi-
cally, the lateral connections are grouped into distal seg-
ments. A cell in HTM can have more than one distal segment
and this grants the cells the capability to predict more unique
temporal patterns. The operation of the temporal memory
can be divided into three phases: mini-columns evaluation,
prediction, and learning phase, described in Algorithm 2.3

During the mini-columns evaluation phase (Algorithm 2,
Line 4-15), the active cells within the winning mini-columns
are selected to represent the input within its context. Let nm

3. Forming and pruning lateral connections are not discussed in the
algorithm to avoid complexity.
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be the number of cells in each mini-column, andAt 2 Rnm�nc
f0;1g

is a binary array that represents the region cells’ activity,
where ‘1’ indicates an active cell and ‘0’ is inactive. Similarly,
let pt be also a binary array that has the same size of A, and
the active bits in p refers to the predictive cells. An ith cell
within the jth mini-column is set to be active if ~Lt

j ¼ 1 and
the cell was in the predictive state in the previous time step
i.e., pt�1

ij ¼ 1. Otherwise, bursting (all cells within the jth
mini-column are set to be active) will take place.

Algorithm 2.HTM-Temporal Memory

Input: ~Lt 2 Rnc
f0;1g /* nc: Number of columns */

Output: At 2 Rnm�nc
f0;1g /* nm: Number of cells */

1 zeros cnt = 0;
2 repeat
3 # Phase-1: Mini-columns evaluation:
4 for j 1 to nc do
5 if ~Lt½j� ¼¼ 1 then
6 for i 1 to nm do
7 if pt�1½i; j� ¼¼ 1 then
8 At½i; j�  1;
9 else
10 zeros cnt zeros cntþ 1;
11 end
12 if zeros cnt ¼¼ nm then
13 At½i; j�  1; 8i;
14 zeros cnt = 0;
15 end
16 # Phase-2: Prediction:
17 for j 1 to nc do
18 for i 1 to nm do
19 if ~Lt½j� ¼¼ 0 and pt�1½i; j� ¼¼ 1 then
20 for d 1 to nd do
21 ifD½i; j�½d�:MatchingSegment then
22 Dr½i; j�½d�  ðAt�1 � S½i; j�½d�Þ � Pþ

10 ;
23 end
24 else if ~Lt½j� ¼¼ 0 then
25 for d 1 to nd do
26 �r½i; j�½d�  Iðr½i; j�½d� 	 PthÞ ;
27 �S½i; j�½d�  At � S½i; j�½d� ;
28 at  jj �S½i; j�½d� 
 �r½i; j�½d�jj1 ;
29 if at 	 Dth then
30 D½i; j�½d�:ActiveSegment 1;
31 pt½i; j�  1 ;
32 else if jjAt 
 Sd

ijjj1 > 0 then
33 D½i; j�½d�:MatchingSegment 1 ;
34 end
35 end
36 end
37 # Phase-3: Learning:
38 for j 1 to nc do
39 if ~Lt½j� ¼¼ 1 then
40 for i 1 to nm do
41 if At½i; j� ¼¼ 1 then
42 for d 1 to nd do
43 ifD½i; j�½d�:ActiveSegment ¼¼ 1 then
44 Dr½i; j�½d�  �ðAt�1 � S½i; j�½d�Þ � P�;
45 end
46 end
47 end
48 until t > nn

In the second phase of temporal memory, prediction (line
17-35), the status of the cells for the next time step is evalu-
ated. This is done via observing the distal segments activation
level (a). Let Dij represent a group of distal segments that
belong to the ith cell within the jthmini-column, where a seg-
ment in Dij indexed by d. If �rdij is the active distal synaptic
connection within the dth segment, and �Sd

ij holds its distal
connections that are connected to active bits inAt, the dth dis-
tal segment is set to be active segment if its jj�rdij 
 �Sd

ijjj1 is
greater than the segments activation threshold, Dth. Other-
wise, the segment is set to amatching state if it has at least one
synapse connected to an active cell in At. Once the status of
the distal segments are determined, the cells with active distal
segments are set to be in the predictive state. It is important to
mention here that occasionally cells in HTM may incorrectly
predict patterns. In such scenario, these cells need to have
their synaptic strength reduced to lower the likelihood of
incorrect prediction (as in lines 19-23). After evaluating the
cells’ segments, their synaptic connections are updated,
which occurs during the learning phase (lines 38-47).

As aforementioned, the learning in HTM follows
Hebbian’s rule and it is applied solely to active cells. Given
atij 2 At, where atij ¼ 1 and has an active segment, then all
the synaptic connections that are laterally connected to pre-
vious active cells are potentiated, while those that are con-
nected to inactive cells are depressed. This implies that the
permanences of the distal synaptic connections, rdij, are
increased by Pþ when they are connected to active cells,
otherwise, they are decreased by P�.

3 SYSTEM DESIGN AND METHODOLOGY

Fig. 2 demonstrates the high-level architecture of the devel-
oped HTM network4 including the core units of the SSR
communication scheme. Essentially, there are

ffiffiffiffiffi
nc
p � ffiffiffiffiffi

nc
p 5

mini-columns with nm cells each to constitute the HTM

Fig. 2. High-level architecture of the HTM network, including HTM region
with

ffiffiffiffiffi
nc
p � ffiffiffiffiffi

nc
p

mini-columns with nm cells each, a main control unit
(MCU), and an arbiter and selector.

4. The feasibility of the HTM network scaling (beyond 1024 mini-
columns) can be made possible by adopting the slicing approach pro-
posed in our previous work [17].

5. The number of mini-columns assumed in this work is always a
power of two, 2k, where k is an integer number.
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region. Unlike the mathematical description of the HTM
which assumed 2D representation of the region for simplic-
ity, in the hardware design, we consider a 3D architecture
of the region to cut down the resources and to simplify the
communication scheme considerably. The HTM region is
integrated to a main control unit (MCU), and an arbiter and
selector. The MCU is dedicated to control data flow, to gen-
erate the necessary control signals, and to bridge the region
to the input data encoder or other regions in the hierarchy
while the arbiter and selector are responsible for regulating
data sharing among cells within the region. Here, the inter-
action among cells is based on the SSR as the cells’ activity
is sparse in nature, approximately 4.2 percent. At a high
level, the system works as follows: when the MCU estab-
lishes a connection with the data encoder which is done
through a hand-shake protocol, it commences receiving the
encoded packets. The received packets are routed through
the H-Tree to all the region’ mini-columns. Here, we used
the H-Tree structure to reduce the parasitic capacitance and
to minimize the power consumption [31] of the developed
system. However, there are two H-Trees, one is a digital bus
(34-bit width, 1þ log 2n lines are used by the cells, where
n ¼ nc � nm) driven by the MCU and the cells to share data.
The other one (not shown in Fig. 2) is an analog line to
enable mini-columns to compete against each other for
input representation. When the winning mini-columns and
then the cells are selected, the arbiter and selector are used
to broadcast information about the current/previous active
cells and their locations in the region so that lateral connec-
tions are formed and future predictions are made. In the fol-
lowing subsections, more details about each core unit of the
HTM network are provided, while the communication
scheme is discussed in a separate section.

3.1 HTM Mini-Column

The mini-columns in HTM are responsible for capturing
spatial patterns of the feedforward inputs. The HTM mini-
column circuit, developed in our previous work [6], is
depicted in Fig. 3-(left). Succinctly, the circuit comprises a
peripheral unit, a proximal unit, and WTA cell. In the
peripheral unit, the proximal connections are generated and
connected to the input space. The proximal unit and the
WTA cell hold the proximal connections’ permanences and
a contesting unit that enables each mini-column to compete
with its neighbors for the input representation, respectively.

In this work, the input to the mini-column is generated by
the HTM random scalar encoder [32], which encodes every
scalar value of the time-series data into a high-dimensional
binary vector sorted into small 31-bit packets. This is to min-
imize data movement and the required storage units.
Sequentially, each packet is fetched to the mini-columns
and stored into Addr Reg. When the input packet is stored
in the Addr Reg and the LFSR generates an address for a
location in the received packet, a matching score is stored in
the synapses’ registers which are modeled by nsp � 1 serial-
in-parallel-out shift register. Once all inputs are received,
the outputs of the synapses’ registers are presented to the
memristive crossbar word-line where the proximal synapse
permanences are stored. The input voltages to the crossbar
will be converted into current through the memristor and
the output is collected at the crossbar bit-line. The output of
the crossbar, which modulates the mini-column overlap
score to current, is then boosted. Boosting is done via the
use of a sense memristor (Ms). However, upon the comple-
tion of computing the overlap score (Vaj � aj), its value,
which is sampled by the sense memristor, is then presented
to a WTA circuit (detailed description of the WTA is pro-
vided in [6]). The WTA performs a kmax operation on
Vaj; 8j followed by a thresholding, to generate the final jth
mini-column output, (Lj), as given in (1) and (2):

Vaj ¼
Pns

i¼1 gi Vi

gs þ
Pns

i¼1 gi
(1)

Lj ¼ 1; Vxj > Vth; where Vxj ¼ fðVajÞ
0; Otherwise;

�
(2)

where Vi denotes the ith input voltage, gi refers to the con-
ductance of the ith memristor, and gs is the conductance of
the sense memristor. However, once the final output of each
mini-column is generated, the learning phase of the spatial
pooler starts. As alluded to earlier, the learning in HTM fol-
lows Hebbian rule [30], which is implemented using
Ziksa [33], as discussed in [6]. Then, themini-columns’ status
is relayed to their associated cells to start the next phase, tem-
poral memory. Although the cells are encapsulated within
the mini-columns and are considered a part of it, for the sake
of clarity and simplicity we dealt with them separately.

Fig. 3-(right) demonstrates the process of computing the
overlap score and tuning the proximal synaptic connections

Fig. 3. (left) The circuit diagram of the HTM mini-column [6]. The circuit is composed of a peripheral unit to generate the proximal synaptic connec-
tions, a proximal unit to hold the permanences of the synaptic connections, and a WTA cell to enable mini-columns to compete with each other for
input representation. (right) The impact of the synaptic permanence (denoted as Perman. for HTM-SW) modulation on the mini-column overlap score
as the proximal synapses receive feed-forward input.
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for a given mini-column while receiving feed-forward
input, shown in Fig. 3a. Since the mini-column has a large
number of proximal connections, for the purpose of demon-
stration, we randomly picked only two. The changes in
proximal connection permanence for both HTM-SW and
HTM-HW models are shown in Figs. 3b and 3c, respec-
tively. Here, it can be observed that any changes in the syn-
apse’s permanence below the permanence threshold, P th, in
the HTM-SW model has no impact on the overlap score,
unlike the HW model where there is no explicit threshold
blocking the memristors from contributing to overlap score
value. Furthermore, the change in the HTM-HWmodel syn-
aptic permanence (memristors’ conductances) tends to be
non-linear as compared to the HTM-SW counterpart. How-
ever, selecting a memristor device with high conductance
range and switching dynamics as required by the HTM the-
ory made the synapses with high conductance states domi-
nate the changes in the overlap level (see Fig. 3d). This
eventually results in almost analogous overlap score6 varia-
tion for both the SW and HWmodels.

3.2 HTM Cell

The cells in HTM enable the network to capture the temporal
patterns, modeling the input representations within their con-
text, and predicting the upcoming events. The HTM cell cir-
cuit developed in this work is composed of synaptogenesis
unit,7 distal segments unit, and current comparators, shown
in Fig. 4. The synaptogenesis unit is responsible for forming
and pruning distal synaptic pathways with the previous
active cells. The distal segments unit possesses the perma-
nence values which describe the growth level of the

individual distal synaptic pathways,while the current compa-
rators are utilized to evaluate the segments activation level
and to determine their states (active ormatching) accordingly.

Initially, the cells start with no distal synapses. Once the
HTM begins processing the incoming patterns, the distal
synapses start forming in the synaptogenesis unit. Given an
HTM region arranged into a 3D space, where the x and y
axes index the mini-columns in the region and the z axis
indexes the cells. When the region receives an input, this
causes activation of a population of cells within the region,
and in this context, it is referred to as At

3D. If atxyz 2 At
3D,

where atxyz is an active cell located at xyz, atxyz will form con-
nections with the active cells in At�1

3D . Let’s assume that the
number of active cells in At�1

3D is 4.2 percent of nc. Then, if
nc = 961, � 40 cells will be active in each time step, assuming
no bursting takes place. The active cell at time t establishes
connections with the 40 cells that were active at t� 1 by
forming a distal segment. A cell in HTM can have around 10
or more distal segments, and this enables the network to
learn the temporal transitions in sequences. Recall that form-
ing and pruning distal connections in hardware platforms
requires high interconnect dynamics which are lacking in
most of the existing platforms, especially ASIC designs,
hence the virtual description of the synapse became a com-
mon approach [22], [34]. However, describing the synapses
virtually, in most cases, demands a high memory usage to
store the sender/receiver addresses. For instance, in HTM’s
context (assuming there are 961 mini-columns in the region
with 4 cells each), if we assume that the address of each cell
is represented with 12 bits and the distal connection perma-
nence is represented with 16 bits, having 10 segments with
60 distal connections in each cell costs 16.8 kb of memory per
cell and more than 64.57 Mb for the entire network. Lets
assume that the addresses and the permanences are stored in
a DRAM implemented in 45nm process. If the energy cost
per 32 bits of off-memory access takes 640 pJ [35], having
40 active cells at each time step leads to a total energy

Fig. 4. The circuit diagram depicting the HTM cell with synaptogenesis unit, which can generate or prune distal segments; a distal dendritic segment
to hold the permanence values of the distal connections; and current comparators to evaluate the distal segment activation level and consequently
the cell status (predictive or unpredictive).

6. The overlap scores for the HTM-HW and HTM-SW models are
not reported up to scale for the purpose of comparison.

7. One may share the synaptogenesis unit between multiple cells of
the same mini-column to cut-down resources and reduce power con-
sumption, but at the expense of increasing the latency.
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consumption of 15.36mJ (first-order approximation). Running
the system at 8 MHz can result in a power consumption of
122.88 W just to access the memory, which is a prohibitive
amount of power especially for edge devices with limited
power budget.

One possible solution to overcome the above challenge is
to reduce the memory usage in each cell. This can be done
through modeling the synaptic permanence using analog
memristors and leveraging the randomness in forming the
distal synaptic connections to generate the addresses rather
than storing them. A possible approach to do so is generat-
ing the distal segment addresses through the use of LFSRs.
To demonstrate this, let’s assume that the cell c242 is cur-
rently active and trying to establish a connection with
another cell, c333, which was active in the previous time
step. The cell c242 will receive a packet that holds c333 loca-
tion into 3D space, in this example 333. Upon receiving the
address, the cell, c242, begins the matching process in which
the cell identifies whether there is a possibility to establish a
distal connection with the cell c333. The matching process
starts by enabling the X-LFSR to generate 16 addresses
within one clock cycle.8 The same is applied for the Y-LFSR.
While the LFSRs generate their random values, the cell
translates any matches between the generated random
numbers and received the Cartesian locations into flags
stored into 4-bit registers, which are later decoded by X-
DMUX and Y-DMUX. Here, a match means there is a distal
connection established between the two cells. It is important
to mention here that following such an approach makes the
process of forming distal connection probabilistic, while in
HTM network it is deterministic. However, in HTM, the
cells that are currently active form connections with a subset
(typically 50 percent) of the cells that were active in the pre-
vious time step, and in our design this is achieved naturally
through our adopted probabilistic approach. Now, in order
to estimate the likelihood of matching between distal seg-
ment addresses (randomly generated) and the addresses of
the active cells, (3) can be used, where nsd is the maximum
number of synapses in a distal segment. Let the distal seg-
ment size for a given cell be 256. Given 961 mini-columns
with 40 actives at each time step, there is a 0.847 likelihood
that at least 20 percent of the generated random address
matches those of the previous active cells. This likelihood

can be significantly increased beyond 0.95 when the seg-
ment size9 is increased, as shown in Fig. 5.

Pmatch ¼
Pnw

i¼10
nw
i

� �� nc�nw
nsd�i
� 	

nc
nsd

� 	 : (3)

After finishing the matching process and activating the X-
DMUX and Y-DMUX, all the possible combinations of 16 X-
addresses and 16 Y-addresses are achieved through the
ANDgate array. The output of logic ‘1’ for anAND gate, let’s
say gate number 5, may indicate an active cell in the location
(x = 1 and y = 5). The output of the AND gate enables the cor-
responding ‘green’ 2-bit register to load the Z-address, and
this represents the cell distal synapse that is currently con-
nected to an active cell at time t� 1, whereas the previously
formed distal synapses are stored in the ‘blue’ 2-bit register.
However, once the registers are loaded, they are compared
and the results are relayed to the distal segment memristors
(only when evaluating the cellular activities detected by dis-
tal segment). For the distal segment unit, this cell architec-
ture leverages the union propriety of the SDR representation
to considerably reduce the cell architecture complexity. The
main concept behind the union property is storing several
patterns using one representation. This can be translated
into having one universal distal segment for each cell rather
than multiple of them. The universal segment grows as the
cell learns more temporal information. It is important to
mention here that merging the segments can increase the
possibility of false triggering of cell segments and incorrect
predictions. However, this is less likely to happen if we limit
the number of patterns (M) a segment can learn, while set-
ting the number of mini-columns and cells to be large
enough. For instance, in this work, we used 961 mini-col-
umns with 4 cells each. If we stored 30 patterns in a segment
and set the matching threshold for any two given patterns to
5, according to [36], the probability of a false match is
6:408� 10�14 as calculated using (4).

Pfp ¼ 1� 1� nw

nc


 �M
" #nw

: (4)

The output current that is collected at the distal segment
bitline is received by the current comparator unit. Then, the
current gets mirrored10 to be compared with two reference
currents: active threshold and learning threshold. If the seg-
ment current is more than the active threshold, the segment
is set to be in an active state and consequently the cell state
changes to predictive for the next time step. On the contrary,
current less than the active threshold and more than the
learning threshold, marks the cell as a matching cell. A
matching cell has a high probability to be selected to repre-
sent the input when bursting takes place. It is important to

Fig. 5. The matching probability between a distal segment’s addresses
generated by LFSRs and the addresses of the active cells in the previ-
ous time step for various segment sizes.

8. The cells’ LFSRs are clocked with 128 MHz, while the system
clock is 8 MHz.

9. Increasing the distal segment size cost more cycles to generate
more random addresses and additional memristor devices for each
new added synapse.

10. The bursting mini-columns’ cells generate additional current
that should add up to the segment current during the evaluation step.
However, the bursting mini-columns are evaluated globally, at the
region level, and their contribution to the segment activation is done
through Iburst.
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mention here that the prior discussed operations are carried
out within the cells, but running the temporal memory suc-
cessfully also requires the cells within the mini-columns to
interact with each other to identifywhether bursting is neces-
sary. If bursting takes place in a mini-column, all the cells
within the mini-column are set to be active and one cell is
selected to learn the current input pattern. Typically, this is
done either by selecting the best matching cell or least used
cell. The former occurs only when a cell has a sufficient num-
ber of potential synapses that are connected to active cells in
the previous time step i.e., a cell has a matching segment.
Choosing the best matching segment involves selecting the
cell with the highest matching level (distal current). This
implies mirroring all cells’ output current to another unit,
namely the competitive circuit (a modified current based
winner-take-all circuit originally proposed in [37]), so that
the cell with the highest output current is chosen (see Fig. 6-
(left)). In the case when there are no matching segments, the
least used cell is chosen as a winning cell. Selecting the least
used cells is done via selecting the cells with the least number
of distal segments. Since this implementation deals with one
universal merged segment, a counter in the cell is used to
monitor the flags of added segments and consequently the
number of merged segments in each universal one. Fig. 6-
(right) demonstrates the operation of the cells competitive
circuit. Here, three cells are competing to select the best
matching cells. Two scenarios are considered. The first of
which (interval 0-10 ms), all cells have high overlapping cur-
rent (all MFlags = ‘0’) so that they are in competition. Since
cell1 has the highest overlapping current, it is selected as a
winner. In the second scenario (interval 10-40 ms), cell1 has
less current than the ‘Active Threshold’, for this reason it is
excluded from the competition. This is accomplished via
switching T11 to an ON state, and this eventually blocks cell1
current which is mirrored to theWTA circuit.

4 SYNTHETIC SYNAPSES REPRESENTATION

The cells in the HTM network interact with each other dur-
ing the temporal memory phase. This interaction is essential

to enable the network to predict the upcoming events. As
alluded to earlier, the cells’ interaction is enabled through
the distal segments which are established and evolved
while learning temporal information. In hardware, this
translates into thousands of interconnects that are continu-
ously changing in their conductivity level and locations.
Due to the fact that interconnects in VLSI systems are rigid
in nature and do not support this level of reconfigurability,
memory units can be used to virtually formulate these con-
nections and to describe their strength as in [24], [34].
Although such an approach is effective as it endows the net-
work with the necessary dynamic to learn spatial and tem-
poral information, it does not suit edge devices which have
stringent area and energy constraints. Thus, we are present-
ing the SSR communication scheme that heavily relies on
random generators and memristor devices rather than con-
ventional memory units to form synaptic connections and
to define their growth levels. This results in significant sav-
ings in terms of resources and energy consumption.

Two aspects associated with the SSR are addressed in
this work: forming synaptic connections using LFSRs (dis-
cussed earlier in Section 3.2) and controlling the data trans-
fer among cells through regulating the access to the H-Tree
bus. Considering the same HTM system with At�1 active
cells in the previous time step and At active cells in the cur-
rent time step, during the temporal memory phase, every
cell in the network with enough strong connection to At�1

cells can be depolarized for the next time step and become
predictive. The challenge here is how to transfer the At�1

cells’ addresses to all other cells in the network efficiently.
Let all the mini-columns with active cells at time t� 1 place
a request at the input of the outgoing tri-state gates
(see Fig. 2). Then, each set of tri-states belonging to the same
row are activated simultaneously through the selector.
When a row is selected all its tri-state buffers associated
with the mini-columns are activated, allowing the mini-col-
umns to send requests to the arbiter and to receive acknowl-
edgements. The arbiter circuit is shown in Fig. 7-(left). It
comprises of buffers, a series of nMOS pass transistors, and
a feedback circuit. The buffers are used to store the simulta-
neous requests from the selected mini-columns. The series
of pass transistors are used to monitor the status of the

Fig. 6. (left) Competitive circuit that enables the cells within one mini-
column to interact with each other when a massive firing activity takes
place in the mini-column. (right) Waveform diagram illustrating the
competitive circuit for the cell to select the best matching cell.

Fig. 7. (left) A synthetic synaptic arbiter (SSR) circuit consisting of buffers
to store the simultaneous requests from the winning mini-columns, a
series of nMOS pass transistors to monitor the status of the individual
mini-column’s requests, and a feedback circuit to clear mini-column
requests once served. (right) Waveform diagram demonstrating a part of
the SSR operation while processing several concurrent requests sent
from several mini-columns located within the same rowof the HTM region.
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individual mini-column requests, whereas the feedback cir-
cuit is used to acknowledge the mini-columns after their
requests are served. In Fig. 7-(right), a waveform diagram
illustrates the operation of the arbiter, selector, and other
units in the developed system while processing information
sent from a row with 5 mini-columns. Initially, all the win-
ning mini-columns’ (in this example: 2, 3, and 5) requests
are directed toward the arbiter and stored in the buffers
(DFF). When the DFF-3, for instance, receives Req3, it waits
in a queue until Req2 is served. Once Req2 is served, the
voltage drop at T2 drain will be high. This will trigger the
feedback circuit to send ack3 signal to mini-column 3, which
in turn clears its request and broadcasts the address of its
active cell(s). Serving the requests of all the active cells in
the HTM region leads to a latency given by:

tcc ¼
Xffiffiffiffincp

i¼1

Xffiffiffiffincp

j¼1
L½i�½j� þ 1

 !
: (5)

Recall that the SSR conveys the same concepts of the AER
and the enhanced AER, but it is designed to serve intra-chip
communication while offering the following advantages:

� In AER, the neuron potential duration must be �500
times more than the event duration for transmission
to time-multiplex the transmission channel [22].
There is no need for such a constraint in the SSR.

� The enhanced AER demands memory units on both
sides, sender and receiver, to hold neuron addresses
that are virtually connected (connecting 32 x 32 cells
requires 11 Mb RAM [24]). For a sparse network like
the HTM, this is very overwhelming in terms of
memory usage. However, in the SSR, the addresses
are generated rather than stored. This serves two
advantages: smaller storage units are used and ran-
dom selection is achieved.

� The SSR is synchronous and its capacity, the maxi-
mum rate of sample transmission (considering the
worst case scenario and the adopted network archi-
tecture), is 4 MSamples/sec. In the AER case, its
capacity for SNN with approximately the same net-
work size is 2.5 MSamples/sec [38].

� The SSR uses priority arbiter, which applies a queu-
ing mechanism to access the H-Tree (or channel)
bus, whereas AER utilizes an arbitration mechanism
to access the channel. The latter is known to lengthen
the communication cycle period and reduce channel
capacity [38].

� The AER is deemed an effective approach for inter-
chip communication, where neuronal information is
communicated by means of encoded events. At the
targeted destination, the encoded events are typi-
cally decoded and routed to the proper accessible
neurons. The encoder size here is highly dependent
on the number of neurons, whereas in the SSR, the
decoding process complexity is defined by the num-
ber of synapses associated with the targeted neurons.
This property is extremely beneficial for sparse net-
works like HTM.

� The enhanced AER offers better flexibility in updating
the synaptic connections individually. The opposite is

true for the SSR, in which changing the seeds of
LFSRs enables the cell to form a new set of synap-
tic connections.

5 EXPERIMENTAL METHODOLOGY

In order to assess the performance of the proposed mixed-
signal HTM system, two models are created. The first is a
goldenmodel (HTM-SW) that runs the HTM systemwithout
any constraints. This model is used to find the optimal net-
work performance for a given task. The second model
(HTM-HW) is an emulation of the hardware design under
predefined circuit constraints. Here, the circuit constraints11

are achieved after the individual components of the design
are simulated and verifiedwithin Cadence Virtuoso environ-
ment. Prior to that, all the digital units are verified for func-
tionality in Cadence SimVision. During simulation, the
supply voltage is set to 1.2 v and the system clock is at
8 MHz. The system also has 128 MHz high-speed clock to
drive the LFSRs of the cells. When it comes to emulating
HTM synaptic connections’ strength, a representative non-
linear Verilog-A memristor model [39] with a modified Z-
window function [6] is utilized.12 The device conductance
changes as a function of the state variable, w, is described
in (6) and (7),13 whereD is the device thickness, andGon and
Goff define the memristor conductance limits. Emulating the
synaptic behavior of HTM using memristors turns out to be
challenging. This is because the synapses in HTM are binary
in nature, i.e., they exhibit the same properties if they are
above the permanence threshold regardless of the synapse’s
growth level and vice versa. In 2017, Jiang et al. proposed a
memristor device to implement the k-nearest neighbour
algorithm and that exhibits properties required for
HTM [40]. Fig. 8 illustrates the experimental behavior of the
physical device as a function of the applied pulses, fitted to
the memristor model. Here, it can be observed that the mem-
ristor has minor changes in conductance level on either side
of the permanence threshold (highlighted in green), while
the changes are extreme in the middle. To some extent, this
captures the binary nature of the ideal synapse in HTM. It is
important to mention here that in order to optimize the HTM
system performance and maintain low power consumption,

Fig. 8. Fitting the memristor model to the physical device behavior while
modulating the device conductance with a train of pulses.

11. Memristor device non-idealities considered during the simula-
tion are: 10 percent cycle-to-cycle variability (memristor resistance) and
device-to-device variability (write variation).

12. t, d, k, and p are constants to control the window function shape.
The nominal values used in this work are: t=200, d=0.5, k =1, and p=4.

13. koff , kon, aon, and aoff are constant, and voff and von are the
memristor threshold voltage.
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the following assumptions were made: 1) the memristor
device exhibits semi-symmetrical behavior when switching
from low/high conductance to high/low; 2) the memristor
device offers fast switching speed and high conductance
range. Table 1 shows all the device parameters used for prox-
imal and distal synaptic connections.

Gmem ¼ w

D
�Gon þ 1� w

D

� 	
�Goff (6)

Dw

Dt
¼

koff :
�

vðtÞ
voff
� 1
	aoff

:fzðwÞ; 0 < voff < v

0; von < v < voff

kon:
�

vðtÞ
von
� 1
	aon

:fzðwÞ; v < von < 0

8>><
>>: (7)

fzðwÞ ¼
k½1� 2ðwD� dÞ�p

etð
w
D�dÞp

(8)

6 RESULTS AND DISCUSSION

6.1 Time-Series Prediction

The prediction accuracy of the proposed HTM system is
evaluated using real-world streaming data. Given an input
dataset of length nn, where each data point presented to the
HTM system at time t is represented by yt, while the corre-
sponding predicted value is given by ŷt, the mean absolute
percentage error (MAPE) can be computed as in (9).

MAPE ¼
Pnn

t¼1 jyt � ŷtjPnn
t¼1 jytj

: (9)

Fig. 9 illustrates a snapshot of the Hot-Gym dataset [41],
the power consumption in a gym, over a small period. The
power consumption is recorded at every hour for 4 months
(total samples count = 4390). Here, the HTM system is used
to predict the power consumption for the next 2 and 5
hours. Initially, the golden software model, HTM-SW, is
used in the prediction. Then, the same prediction is made
using the HTM-HW model.14 Fig. 10a shows the accumu-
lated MAPE recorded at every 250 samples. It can be seen
that the initial value of the MAPE is really high, but over
time it decreases as the network learns patterns and uses
the acquired knowledge to make valid predictions in the
future. However, the overall MAPE of the software model,

assuming the first 500 samples presented to the network are
dedicated to learning, is calculated to be 0.154  0.0014
(0.171  0.002 for 5-step prediction), while the hardware
equivalent is 0.174  0.002 (0.205 0.0046 for 5-step predic-
tion). This degradation may be attributed to the unsymmet-
rical characteristics of the memristor devices leading to
disparity in the network learning and forgetting rate.
Applying the union property to the distal segment and
forming its distal synapses using LFSRs might have nega-
tive consequences as well, especially when making higher
order predictions.

6.2 Latency

The latency is measured as the time required for the HTM
network to process an SDR input generated by the
encoder. In this context, HTM processes SDR inputs of the
Hot-Gym dataset, where each input is encoded with 512-
bit binary vector. The spatial pooler and temporal memory
phases here are performed simultaneously15 and in a pipe-
lined fashion to minimize the latency, which is estimated
to be 11.64 ms. Fig. 10b shows the latency of the CMOS dig-
ital HTM (system clk = 100 MHz) and the proposed mixed-
signal HTM (system clk = 8 MHz) as a function of the net-
work size, given by the number of mini-columns. One can
notice that the latency in the digital HTM is always higher
than the mixed-signal counterpart. This can be attributed
to several reasons. The first is the need for the initialization
phase in the digital HTM design to set the synaptic con-
nections’ permanences, particularly the proximal synap-
ses, prior to receiving any input. The initialization of the
synaptic connections’ permanence is achieved for free in
the mixed-signal design as the memristors after the forma-
tion process have random conductance with Gaussian dis-
tribution [43]. Second, tuning the synaptic connections,
proximal or distal, is performed simultaneously at the cell
and mini-column levels, but within them it is sequential
because the permanence values are stored in distributed
SRAMs, where the read/write operations take several
clock cycles. In the mixed-signal design, on the contrary,
the tuning process is performed concurrently even within
the mini-columns or cells and usually it takes two clock
cycles. Finally, in the digital HTM, the winning mini-col-
umns that represent the input are decided in a sequential
fashion to cut down the resource cost and power con-
sumption. This in turn translates to longer latency that
is proportional to the number of mini-columns. In the

TABLE 1
The Memristor Device Parameters Used in the

Mini-Column and Cell Designs

Parameter Value [mini-column] Value [cell]

Proximal memristor range 150 kV - 10 MV 150 kV - 10 MV
Memristor threshold 0.95 v 0.95 v
No. of switching pulsesa 51 51
Training voltage 1.1 v 1.1 v
Sense memristor range 20 kV-80 kV -

aThe number of pulses required to transition fromGon=Goff to Goff=Gon

Fig. 9. A snapshot of the power consumption of the Hot-Gym dataset [41]
recorded every hour over approximately 4 days.

14. HTM-HW model is also benchmarked using other datasets such
as NYC-Taxi [42]. The achieved MAPE for the 2nd and 5th order pre-
dictions are 0.0996  0.0014 and 0.156  0.0084, respectively.

15. Spatial pooler and temporal memory operate simultaneously
when the H-Tree bus is exploited by either of them.
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mixed-signal design, a WTA circuit [6] is used, which pro-
cesses all the inputs concurrently.

6.3 Network Reliability and Lifespan

The memristor device write endurance, which is the num-
ber of times a memory cell can be overwritten successfully,
turns out to be a crucial factor in determining network sus-
tainability for learning. The memristor devices, particularly
oxide-based devices, have a typical endurance range
between 106 � 1012 [44]. This low endurance reduces the
network reliability for online learning and continuous adap-
tation especially when the network is densely connected
and all neurons need to be updated continuously. For the
HTM network, this is not the case as cell/mini-column
activities are sparse in nature and the learning is confined
only to the active ones. This feature endows the network
longer elasticity (lifespan) in comparison to other networks.
In order to estimate the elasticity of mini-columns in the
HTM network, we need to estimate their successful training
rounds (Lr) and likelihood of activation, as given by (10),
where Ed is the memristor device endurance.

Lr ¼ Ed � nc

nw
: (10)

In the ideal scenario, mini-columns in the HTM network
are activatedwith equal likelihood by patterns detected at the
proximal segments. Thus, the number of successful learning
rounds that can be made, given Ed = 109, nc = 961, and nw =
40, is 240� 108. This is equivalent to �8 years of successful
continuous learning performed at a rate of 10ms. Compara-
tively, this is �24 times more than a conventional network

with no sparse activities, and X16 timesmore than the SNNs.17

In spite of the fact that SNNs are asynchronous and sparse in
nature, usually their neurons fire and their synaptic connec-
tions are tunedmultiple timeswhile processing a single input.
This is because each input is stochastically encoded as a
stream of spikes. However, the previous comparison
hypothesizes that theHTMmini-columns’ activations are per-
fectly regularized by incorporating the homeostasis plasticity
mechanism (or boosting). In real-world scenarios, this is not
the case, because the mini-columns’ activations are highly
affected by input space statistics. Fig. 10c is an example dem-
onstrating an estimation of the developed system elasticity
(lifespan) for the Hot-Gym dataset. Here, we see that after
year 4, a gradual loss in mini-columns’ elasticity starts to
occur. Even after 8 years of work,�309 mini-columns are still
elastic and have the capability to acquire new information.
However, the overall network performance at that time
would be limited.

6.4 Device Failure and Network Robustness

There are various types of memristor defects that may affect
network performance, and usually they occur due to pro-
cess variation [45], [46]. Examples of device defects are age-
ing faults, endurance degradation faults, switching delay
faults, and stuck-at faults [47], [48]. Here, we will emphasize
the stuck-at fault as it is ubiquitous and has high impact on

Fig. 10. (a) MAPE for predicting the power consumption in a gym for the next 2 and 5 hours using HTM software (HTM-SW) and HTM hardware
(HTM-HW) models. (b) Latency of the digital and mixed-signal HTM as a function of the network size, given by the number of mini-columns. (c) Elas-
ticity (lifespan) of the overall HTM mini-columns in the ideal and real-world scenarios.

Fig. 11. (a) The MAPE of the HTM-HW predicting two steps ahead in time for the Hot-Gym dataset while experiencing various types of stuck-at faults.
(b) The total power consumption of the developed HTM system as it processes and predicts time-series data from Hot-Gym dataset. (c) Contour of
energy-delay-product for the developed HTM system as a function of network size.

16. X is not specified here because it is highly affected by the input
and the encoding approach.

17. SNNs are usually trained with spike-time-dependent-plasticity
(STDP) rules. STDP requires neurons to be tuned based on the time dif-
ference between the pre and post synaptic neurons’ spikes.
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network performance [48]. Two types of stuck-at faults are
studied. The first investigates the impact of stuck-on (high-
conductance state) on HTM system performance while
making two step ahead prediction for the Hot-Gym dataset.
The second focuses on the stuck-off (low-conductance state)
effect. Fig. 11a illustrates the averaged MAPE over 5 runs
for the HTM-HW prediction as a function of the faulty18

device percentage for the aforementioned cases. It can be
seen that the stuck-off fault has a positive marginal impact
on the network performance as it leads to an increase in the
network sparsity level. In contrast, the stuck-on increases
the MAPE by 1.7 percent and it can go up to 4.9 percent
when the fault percentage is 30 percent. This degradation in
performance arises from the fact that the SDR classifier is
implemented using a softmax classifier with weighted syn-
apses realized using a memristive crossbar. Having 10 per-
cent of stuck-on fault in crossbar means on average, every
row and column in the crossbar has 55 and 344 defective
devices, respectively. This eventually makes the softmax
classifier output nodes unable to distinguish various pattern
activities and fire excessively.

During the fault analysis, it is also found that applying
the fault solely to the spatial pooler results in a marginal
change in the system performance. This is because each
input sample presented to the HTM is spatially represented
by a small population of active mini-columns, and having a
slight change in the representation pattern, which may
result from the fault, has very low impact. Furthermore,
using k-winner mechanism mitigates the changes that may
occur in spatial patterns.

6.5 Power Consumption and Distribution

The average total power consumption of the developed
HTM systemwhile predicting time-series data from the Hot-
Gym dataset is estimated to be 28.94 mW and 29.38 mW19

when the online learning is enabled. The high power con-
sumption during the training is due to the use of high voltage
(memristor training voltage �1.1v) and extra clock cycles to
modulate the memristor devices. Fig. 11b demonstrates the
estimated total power consumption over time. Initially, 17.18
mW is consumed while transferring the input SDRs through
the H-Tree20 to the mini-columns and establishing the proxi-
mal synaptic connections, which take place in simultaneous
fashion. The power then abruptly increases due to the activa-
tion of the proximal segments to compute the mini-column
overlap scores. Once the winningmini-columns are selected,
the spatial pooler learning phase starts, in which thememris-
tors associated with proximal synapses are modulated.
Meanwhile, the prior active cells’ addresses are routed to
each cell in the winning mini-columns to compute their dis-
tal segments’ overlap scores. Computing distal segments’
overlap scores give rise to another abrupt increase in the
power consumption (at time � 10:6ms). However,
this increase is much smaller than the one occurred while

computing the overlap scores of the mini-columns. This is
because computing the cells’ overlap scores is confined only
to the cells within the winningmini-columnwhile other cells
are disabled through clock-gating. After computing the cells’
overlap scores, the cells of the winning mini-columns locally
compete to represent the input contextually. The selected
active cells form the lateral connections with the neighboring
cells and tune their distal connections accordingly. One may
observe from the previous discussion that tuning and com-
puting the overlap scores here turn out to be the most
power-hungry operations as there are more than 45.15 k syn-
apses involved in the network computations. One possible
way to minimize the power is to modify network size or seg-
regate the above operations into multiple stages at the mini-
column or cell levels, but this will be at the expense of
increasing the overall network latency. Fig. 11c illustrates the
contour of energy-delay-product measured in pJ.s which can
be used to pick the optimal network architecture for a given
power consumption and latency requirement.

Fig. 12 shows the distribution of the power consumption
among the different entities of the proposed HTM system
during the training and testing modes. It implies that in the
HTM-Test, most of the power consumption is devoted to
the HTM cells as they are more complicated and have a
large number of synaptic connections. During the training
mode, HTM-Train, the cells and mini-columns pull further
power to modulate their synaptic connections. On the con-
trary, the MCU and other units (arbiter and selector, exclud-
ing the H-Tree) consume a small fraction of the total power
as they are less complex and have limited memory usage.

In an endeavour to compare our work with previous HTM
implementations in literature (see Table 2), we found that
performing relative comparisons is a challenging process
due to the lack of similarity in network architectures, technol-
ogy nodes, operating frequency, etc. Thus, we attempt to
bring all networks to the same size in terms of the mini-col-
umns and cell count. Also, we hypothesize that the size of
the networks can be scaled linearly and the same is applied
to their power consumption. Starting with Krestinskaya
et. al. [20],21 here we scaled only the number of mini-columns
and the single pixel processing elements (total = 961x1) as
detailed information about the distal segments and their sizes
are not reported, and this results in 17.45 X improvement. In
the case of fully CMOS digital design, 77.02 X is achieved
when compared to our previous work in [17], and 31.75 X
and 22.29 X when compared to the work done by Li Weifu
et al. [11], [18]. In contrast to other previous works, the power

Fig. 12. The distribution of the power consumption for the building blocks
of the proposed HTM system during training and testing modes.

18. The fault is applied to the mini-columns’ proximal connections
and SDR classifier weights.

19. The approach used to estimate the power consumption is
described in our previous work [6].

20. The H-Tree structure might be buffered with full-swing and
reduced swing buffers, proposed in [31], to minimize the power con-
sumption further.

21. The authors in this paper also consider linear scaling for the net-
work size and the power consumption.

1110 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 8, AUGUST 2020



consumption reported in [18] does not consider the register
files, which are usually the most power-hungry components
in the design. In the case of [11], it is unclear if the register
files power consumption is included. It is important to men-
tion here that, in most cases, the overall networks’ synaptic
connections have not been included in the aforementioned
scaling process as there is no clear approach to estimate the
power consumption for the individual synaptic primitives.
However, since our design uses more synaptic connections,
equating our design with previous works in terms of the syn-
aptic connections count may result in further improvement
in power consumption.

7 CONCLUSION

This paper proposes a memristor-based mixed-signal
architecture of the HTM network including the spatial and
temporal aspects of the algorithm. The proposed architec-
ture incorporates several plasticity mechanisms such as
synaptogenesis, neurogenesis, etc. that endow the network
a high-degree of plasticity with lifelong learning and mini-
mal energy dissipation. The high-level behavioral model
of the architecture is verified for time-series data predic-
tion. It is found that the MAPE of the hardware model is
more than that in the software counterpart by 1.129X. This
degradation is mainly attributed to the memristor devices’
non-idealities and the use of synthetic synapses represen-
tation. The proposed architecture is also evaluated for
latency and lifespan. We found that the mixed-signal
implementation is �3.46X faster than the pure CMOS
implementation and it is less affected by network scale,
while the network elasticity (lifespan) can be up to 8 years,
assuming that learning occurs every 10 ms. When it comes
to network robustness, it is observed that the HTM net-
work is robust to device failure, but this is not the case for
its SDR classifier, which is impacted by stuck-on faults.
Furthermore, it is observed that the power consumption in
the proposed architecture is dominated by the cells, partic-
ularly the proximal and distal segments. Thus, in our
design, we strive to limit their use to a minimum number
of cycles and thereby reduce the average total power con-
sumption of the network to 29.38 mW.
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