
PStream: A Popularity-Aware Differentiated
Distributed Stream Processing System

Hanhua Chen ,Member, IEEE, Fan Zhang , Student Member, IEEE, and Hai Jin , Fellow, IEEE

Abstract—Real-world stream datawith skewed distributions raises unique challenges to distributed stream processing systems. Existing

streamworkload partitioning schemes usually use a “one size fits all” design, which leverages either a shuffle grouping or a key grouping

strategy for partitioning the streamworkloads amongmultiple processing units, leading to notable problems of unsatisfied system

throughput and processing latency. In this article, we show that the key grouping based schemes result in serious load imbalance and low

computation efficiency in the presence of data skewnesswhile the shuffle grouping schemes are not scalable in terms ofmemory space.We

argue that the key to efficient stream scheduling is the popularity of the stream data.We propose PStream, a popularity-aware differentiated

distributed stream processing systemwhich assigns the hot keys using shuffle grouping while assigns rare ones using key grouping.

PStream leverages a novel light-weighted probabilistic counting scheme for identifying the currently hot keys in dynamic real-time streams.

The scheme is extremely efficient in computation andmemory consumption, so that the predictor based on it can bewell integrated into

processing instances in the system.We further design an adaptive threshold configuration scheme, which can quickly adapt to the

dynamical popularity changes in highly dynamical real-time streams.We implement PStream on top of Apache Storm and conduct

comprehensive experiments using large-scale traces from real-world systems to evaluate the performance of this design. Results show that

PStream achieves a 2.3� improvement in terms of processing throughput and reduces the processing latency by 64 percent compared to

state-of-the-art designs.

Index Terms—Distributed stream processing system, skewness, load balance

Ç

1 INTRODUCTION

THE recent advances in distributed stream processing sys-
tems such as Storm [1], Heron [2], Spark Streaming [3],

S4 [4], and Samza [5], bring the community great capability
to process extremely huge volumes of unbounded and con-
tinuous data streams in real-time with clusters [6], [7]. Dif-
ferent applications based on stream processing are widely
deployed, e.g., social event detection [8], [9], on-demand
ride-hailing [10], and real-time risk detection [11].

Distributed stream processing systems achieve efficient
pipeline parallelism [12] for the stream applications. Specifi-
cally, in distributed stream processing systems, to achieve
high task parallelism and pipeline parallelism, an applica-
tion is commonly modeled as a directed acyclic graph. In
this graph, a vertex is a processing element, which repre-
sents an operator for processing a specific user-defined logic
in a stream operation. An edge is a channel that routes data
flow between operators. The data flow, in the form of a
sequence of tuples, traverses along the edges and forms a
stream. To further improve the system throughput, distrib-
uted stream processing systems achieve data parallel-
ism [13] by creating multiple instances for an operator and

making them work in parallel (see Fig. 1a). Each of these
instances executes the same processing logic. Accordingly,
all the tuples from the upstream processing element will be
partitioned into multiple sub-streams and scheduled to dif-
ferent instances.

Existing workloads partitioning strategies in a distributed
stream processing system include shuffle grouping and key
grouping [14]. With shuffle grouping, an instance of an
upstream processing element partitions the workloads of the
stream among all the downstream instances in a round robin
style. It thus generates an even distribution of the workloads.
However, such a scheme suffers the problem of scalability in
terms of memory. Fig. 1b shows an example of the word-
count application processed with shuffle grouping. The
source node assigns the stream of tuples to the downstream
instances in a round robin style, irrespective of the keys of the
words. Each downstream instance potentially needs to keep
counters for all the keys in the stream before achieving the
aggregated terms frequencies. It is clear that the consumed
memory for the application grows linearly with the parallel-
ism level, i.e., the number of instances of the downstream
processing element. GivenN unique keys andM word-count
instances in the system, the amount of required memory size
is OðMNÞ. Such a shuffle grouping partitioning scheme is
hard to scale for large-scale workloads. Moreover, as shown
in Fig. 1b, shuffle grouping needs an additional M-way
aggregation step to merge the counts of each key. The fre-
quent connections to all the M instances are also expensive
and limit the scalability of a real-time processing system.

We examine the performance of the shuffle grouping
scheme in greater detail with an experiment. In the experi-
ment, we vary the parallelism levels by creating different

� The authors are with the National Engineering Research Center for Big
Data Technology and System, Services Computing Technology and Sys-
tem Lab, Cluster and Grid Computing Lab, School of Computer Science
and Technology, Huazhong University of Science and Technology, Wuhan
430074, China. E-mail: {chen, zhangf, hjin}@hust.edu.cn.

Manuscript received 31 Dec. 2019; revised 20 July 2020; accepted 5 Aug. 2020.
Date of publication 26 Aug. 2020; date of current version 8 Sept. 2021.
(Corresponding author: Hanhua Chen.)
Recommended for acceptance by H. Jiang.
Digital Object Identifier no. 10.1109/TC.2020.3019689

1582 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 10, OCTOBER 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-0164-6853
https://orcid.org/0000-0002-0164-6853
https://orcid.org/0000-0002-0164-6853
https://orcid.org/0000-0002-0164-6853
https://orcid.org/0000-0002-0164-6853
https://orcid.org/0000-0002-3471-9254
https://orcid.org/0000-0002-3471-9254
https://orcid.org/0000-0002-3471-9254
https://orcid.org/0000-0002-3471-9254
https://orcid.org/0000-0002-3471-9254
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
mailto:chen@hust.edu.cn
mailto:zhangf@hust.edu.cn
mailto:hjin@hust.edu.cn

numbers of downstream word-count instances. With each
parallelism level, the system adjusts the source’s tuple emit-
ting speed so that it can put the examination of the system to
its performance limit. The result in Fig. 2a shows that when
the parallelism level is low (i.e., there are a small number of
instances), the system throughput increases with the paral-
lelism level. However, when the number of instances contin-
ues to increase, the system throughput stops increasing.
Then we fix the tuple emitting speed and examine the total
memory consumption of all the instances. We vary the paral-
lelism levels and record the heap memory of each instance
after different time intervals. Fig. 3 shows that the memory
consumption of shuffle grouping significantly increases with
the parallelism level.

We also examine the average processing time and the
average aggregation time of all the tuples in each parallel-
ism level during shuffle grouping. Fig. 4 shows that the
aggregation cost of shuffle grouping increases with the par-
allelism level, accounting for 30.48 to 60.46 percent of the
total processing time. It is clear the aggregation cost and the
memory consumption are the root causes of the scalability
problem of shuffle grouping.

A second partition strategy is key grouping (Fig. 1c),
which uses a hashing based scheme to partition the key
space nearly evenly among all the downstream instances. It
thus guarantees that the tuples with the same key are sched-
uled to the same downstream instance. Such a partition
scheme needs an amount of OðNÞ memory size, where N is
the number of unique keys in the data stream. Fig. 2a shows
when the parallelism level increases, the system throughput
with key grouping keeps increasing. However, such a
scheme leads to load imbalance due to the skewed distribu-
tion in various real-world datasets [15].

We collect real-world traces from different systems to
show common data skewness. First, we collect two months’

traces from Twitter (Dec. 2015 to Jan. 2016) and plot the dis-
tribution of term frequency (stop words removed) in Fig. 5.
The result shows that an extremely small fraction of
3%words accounts for more than 80 percent total term fre-
quency. Second, we collect the stock exchange stream data
fromNASDAQ [16] (during Apr. 2017). Fig. 5 shows that the
NASDAQ data also follows a highly skewed distribution, in
which 80 percent exchanges happen among a fraction of 8
percent stock symbols. Third, we collect a large-scale dataset
of Didi Chuxing [17] (in Chengdu, China, during Nov. 2016),
which is the most popular on-demand ride-hailing platform
in China. The dataset consists of two kinds of data streams.
One stream contains three billion driving track records of
taxis. The other contains seven million query orders of pas-
sengers. Fig. 5 shows that 80 percent passenger orders hap-
pen at about 20 percent locations, while 80 percent taxi
driving tracks appear at 24 percent of the locations. With
such a striking feature of skewness, a stream processing sys-
tem with key grouping strategy (Fig. 1c), assigns much
higher loads to a few downstream instances than other
instances. This results in poor computation resource utiliza-
tion and thus greatly degrades system performance.

To examine the problem, we conduct the experiment
with the word counting application on the Twitter dataset.
In the experiment, we generate 180 word-count instances
and use key grouping for data partitioning. We count the
number of tuples of each instance in every second. Fig. 6
shows the workloads of different instances are highly
skewed. To more carefully examine the performance of the
key grouping strategy in the presence of data skewness, we
conduct extended experiments for key grouping by synthet-
ically generating seven datasets following Zipf distributions
with the coefficients varying from 0.5 to 2.0. Fig. 2b shows
that the throughput decreases significantly with the increase
of the level of skewness of the stream data during key

Fig. 1. Distributed stream processing with workloads partition strategies.

Fig. 2. The system throughput with (a) different parallelism levels (zipf coefficient=1.0) and (b) different skewness (parallelism level=64).

Fig. 3. The heap memory consumption.

CHEN ETAL.: PSTREAM: A POPULARITY-AWARE DIFFERENTIATED DISTRIBUTED STREAM PROCESSING SYSTEM 1583

grouping. The system load imbalance due to data skewness
leads to a significant performance degradation. In contrast,
the performance of shuffle grouping is much more stable in
the presence of skewness.

Based on the above analysis, we argue that the key for
efficient distributed stream processing is to differentiate the
popularity of keys. The key grouping scheme is memory
efficient for a large number of rare keys. However, it suffers
from the serious problem of load imbalance caused by the
hot keys. On the contrary, the shuffle grouping scheme is
able to balance the heavy workloads caused by hot keys.
However, it does not scale due to the memory cost and the
additional aggregation cost caused by the large number of
rare keys. Based on this insight, we propose a novel popu-
larity-aware differentiated stream processing system called
PStream. PStream identifies the popularity of keys in the
stream data and uses a differentiated partitioning scheme.
For hot keys, PStream chooses the shuffle grouping strategy,
while for rare keys, it selects key grouping.

However, identifying the popularity of the keys in a
distributed stream processing system is challenging. It is
difficult to meet the rigorous requirements of both compu-
tation and memory efficiency needed by a distributed
stream processing system. To address this issue, PStream
designs a novel light-weighted predictor for identifying
the currently hot keys in the real-time data streams. The
predictor is based on a proposed novel computation and
memory efficient probabilistic counting scheme. It can be
well integrated into a processing element instance. We fur-
ther design an efficient adaptive threshold configuration
scheme, which adaptively configures the threshold to opti-
mize system performance by balancing the processing
time and memory usage.

We implement PStream on top of Apache Storm [1] and
conduct comprehensive experiments using large-scale traces
from real-world systems. The results show that PStream
achieves a 2.3� improvement in terms of processing

throughput and reduces the processing latency by 64 percent
compared to existing schemes.

The main contributions of this work are threefold: 1) we
design and implement PStream, a novel popularity-aware
differentiated stream processing system; 2) we design a
light-weighted predictor which efficiently identifies the cur-
rently hot keys in the dynamic real-time data streams; 3) we
conduct comprehensive experiments using large-scale real-
world data set and demonstrate the efficiency of PStream.

The rest of the paper is structured as follows. Section 2
reviews the related work. Section 3 presents PStream
design. Section 4 analyzes the hot key predictor. Section 5
presents PStream implementation. Section 6 evaluates the
performance of PStream. Section 7 concludes the paper.

2 RELATED WORK

In this section, we first review the background of distributed
stream processing systems. Then, we introduce existing
stream workloads partition designs as well as previous pop-
ularity estimation techniques.

Distributed Stream Processing Systems. With the emergence
of Big Data applications, stream processing becomes popular,
where an unbounded sequence of data tuples generated in
real-world applications are pushed to servers for real-time
processing. Traditional centralized solutions are replaced by
distributed stream processing systems [1], [2], [3], [4], [5], [18].
In a distributed stream processing system, a processing ele-
ment receives a sequence of data tuples from its input queue,
performs specific operations on the tuples, and produces the
results to the output queue. The processing elements connect
to each other to form a directed acyclic graph and work for
the processing logic for a stream application. The data flows
are modeled as edges between processing elements. Each
processing element can have a set of instances running in par-
allel. Thus, an upstream processing element instance divides
the output tuples among multiple downstream instances to
improve the system throughput using different partitioning
strategies.

Stream Partition Strategies for Data Parallelism. Recently, the
issue of stream workloads partitioning has attracted much
research efforts in the community [14], [19]. Castro et al. [20]
propose an instance state management mechanism to keep
monitoring all the processing element instances. When an
instance becomes the performance bottleneck, i.e., its CPUuti-
lization is higher than a threshold for a period of time, the sys-
tem dynamically creates a replica instance for it. Such a
scheme raises heavy overhead formonitoring and replicating.

Fig. 6. The skewed workloads distribution.

Fig. 4. The processing and aggregation time.

Fig. 5. Skewed distribution in real-time datasets.

1584 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 10, OCTOBER 2021

Balkesen et al. [21] propose a hash based stream data partition
scheme to achieve load balance. In their scheme, the tuples
associated with a hot key are evenly split into a number of
parts, where the number of parts is proportional to the fre-
quency of the key. They leverage sampling techniques to
obtain the frequency of a hot key. However, the sampling
based scheme has unsatisfied precision for distributed proc-
essing systems. Moreover, their design cannot adapt to the
dynamical changes of the frequency of a key in real-world
streams.

Gedik [22] proposes an index-based stream workloads
partition scheme. Initially, an upstream instance uses key
grouping to partition all the keys to the downstream proc-
essing element instances. During stream processing, the sys-
tem keeps tracking the highly frequent keys and maintains
an index for optimizing the mapping of these keys to the
downstream instances. However, with the changes of the
key popularity in a real-time stream, the index needs to be
adjusted frequently. Moreover, each time when adjusting
the index, the system needs to briefly suspend the stream
processing to migrate the state associated with the keys
whose mapping has changed. Thus, it incurs extra high
processing latency for the application. Rivetti et al. [19] fur-
ther propose a mapping function for the highly frequent
keys. However, the re-computation of the mapping func-
tions is costly. At the same time, their design needs expen-
sive synchronizations for computing the mapping function
for each key among multiple upstream instances.

To address the load imbalance problem caused by hot
keys in the stream, Nasir et al. propose the partial key
grouping scheme which splits the workloads associated
with a key [14]. In their design, every upstream instance
keeps a vector to record the number of tuples it has sent to
different downstream instances. For an arriving tuple, the
upstream instance selects two downstream instances, and
then sends the tuple to the one with the lighter workload
estimated according to the local vector. Their key splitting
scheme attempts to leverage the famous principle of
“power of two choices” [23], which is initially described as
a supermarket model. Assuming the customers stream
arrives following a Poisson distribution with � < 1 at a
collection of n counter servers. Each customer indepen-
dently chooses two servers uniformly at random and waits
for service at the one with the fewer customers. The princi-
ple shows that for any fixed period of time T , the length of
the longest queue in the interval ½0; T � is log logn

log 2 þOð1Þ with
high probability. Thus, the loads are much better balanced
than the case that all the customers choose a server ran-
domly, where the length of the longest queue is OðlognÞ.
Note in the principle, two servers should be randomly and
uniformly selected as candidates for any custom. How-
ever, their design fixes the two downstream instances for
all the tuples associated with a key. Although the heavy
workloads caused by a hot key can be split into two parts,
the key splitting scheme cannot achieve satisfying load
balance due to the violation of the assumptions of the prin-
ciple. Indeed, the difference between the maximum load
and the average could be Oðk=nÞ among instances, where
k is the total number of tuples.

To address the issue, we propose a differentiated parti-
tion strategy in our previous work [24]. In this paper, we

further explore the differentiated processing system by
exploiting more stable system configurations.

Popularity Estimation in Streams. The key for efficient
stream data scheduling is to efficiently estimate the popular-
ities of the data in a stream and especially identify heavy hit-
ters. Recently, finding heavy hitters in the stream has
attracted a lot of research efforts. Existing schemes can be
classified into two types [25], the counter based schemes [26],
[27] and the sketch based schemes [28], [29].

A counter based scheme relies on counting the appearan-
ces of tuples associated with each key [25]. The straightfor-
ward counting scheme keeps a counter vector for every key.
Such a scheme needs an amount of OðNÞ memory size for
the scheduler of each upstream instance, where N is the
number of unique keys in the stream. Due to the large popu-
larity of rare keys in real-world streams, maintaining and
updating the counter vector of all the keys in a real-time
style are prohibitively costly in memory and computation
consumption. To save memory cost, an effective strategy is
to let the counter vector exclude the rare keys which have a
low possibility to become hot ones. Following this way,
Metwally et al. [27] propose a scheme called SpaceSaving,
which keeps a fixed number of K keys with the highest
accumulative count values in the counter vector. When a
tuple associated with a new key out of the K keys arrives,
the scheme replaces the key with the lowest value in the
counter vector by the new key. With such a scheme, it is
proved that a key with an accumulated count higher than W

K

will be kept in the counter vector, whereW is the total num-
ber of tuples [27]. However, such an estimation does not
necessarily reflect the recency of the popularity of a key.

To track the most recent frequent keys, Ran et al. propose
a sliding-window based scheme [30]. Specifically, they par-
tition the stream of tuples into frames. They use a SpaceSav-
ing structure to identify the most frequent keys in the
currently frame and reset all the counters once a new frame
starts. They further partition a frame into blocks, and save
the hot keys as well as the block id when the key is identi-
fied to be a popular one in each frame. Such a scheme will
discard the accumulated count of a key if it is not identified
to be a hot key. Therefore, for keys that are unpopular in the
past but currently becoming popular (e.g., newly generated
hot topics), their accumulated counts will be discarded
before they are identified. Then these keys will be never
identified or be identified with a long delay.

A sketch based scheme leverages a set of hash func-
tions to project a large number of keys to a few counters.
Cormode et al. propose count-min sketch [28], which
employs a number of d hash functions. Each hash function
can project the keys to a number of w values. The count-
min sketch uses d� w counters, while each key corre-
sponds with d of them. The estimated count of each key is
the minimal value of the corresponded d counts which may
be slightly larger than the accuracy count due to the hash
collisions. To further support the heavy hitter queries,
Cormode et al. leverage a dyadic ranges method [28]. Spe-
cifically, if there are at most N keys, it builds logN þ 1
count-min sketches counting for different ranges. The
scheme uses the grouping test method to search heavy hit-
ters with OðlogNÞ time. Such a scheme requires that the
entire key set is known in advance.

CHEN ETAL.: PSTREAM: A POPULARITY-AWARE DIFFERENTIATED DISTRIBUTED STREAM PROCESSING SYSTEM 1585

Shrivastava et al. propose Ada-CMSketch [29] to support
querying for the most recent frequencies of keys. Ada-
CMSketch is a count-min sketch that leverages a digital
Dolby noise reduction mechanism to reduce the influence of
the history information. However, such a design needs to
combine the original key and the time-stamp for hashing.
This leads an original key to be projected to much more
counters and thus the collisions will be more critical. When
dealing with the large number of incoming tuples, the accu-
racy decreases significantly.

3 DIFFERENTIATED STREAM PROCESSING

In this section, we first describe the overview of the PStream
design. Then, we present the main idea of how PStream pre-
dicts the hot keys in the dynamic data streams.

3.1 Design Overview

Fig. 7 shows the architecture of PStream. The main idea of
the system is to design and deploy a light-weighted hot key
predictor to support the scheduling strategy selection.
PStream consists of two components: 1) an independent
predicting component for identifying real-time hot keys,
and 2) a scheduling component in each processing element
instance. The predicting component is a standalone compo-
nent, which collects the information of all the tuples globally
and uses this information to identify the real-time hot keys.
The scheduling component is embedded in each processing
element instance, which stores the identified hot keys and
supports fast hot key querying and efficiently scheduling.

Specifically, in the predicting component, we propose a
novel probabilistic counting scheme to precisely identify
real-time hot keys. The probabilistic counter is computation-
ally efficient because only a very slight cost for generating
digits “0” or “1” is incurred by every tuple. With the simple
operation, the predictor achieves probabilistic counting of
the tuples associated with a key. The probabilistic counting
operation can be performed with multiple instances in par-
allel. All the probabilistic counting instances work indepen-
dently with the instances of the user logic. Therefore, the
predicting component will not affect the original stream
processing procedure. Only a tiny fraction of keys that are
detected to be potential hot ones will be sent and recorded
in a synopsis structure.

Usually, the popularity of a key in the stream changes
over time. Thus, we also design a popularity decline scheme
in the synopsis structure. As time flies, the synopsis proba-
bilistically decreases the estimated frequency of a key, until

it is evicted from the synopsis. When a key is evicted from
the synopsis, it will be regarded as an out-dated hot key.

The scheduling component consists of a memory efficient
hot key filter and a differentiated scheduler. The hot key fil-
ter is made of a Counting Bloom filter (CBF) [31]. When a key
in the synopsis of potential hot keys is determined to be a
currently hot key, it will be inserted into the CBFs of all the
involved processing elements. When a tuple is determined
to be an out-dated hot key, it will be deleted from the CBFs.
With the hot key filter, the differentiated scheduler can
quickly check whether the key of an arriving tuple is popu-
lar or not. If the key is contained in the CBF, the scheduler
assigns the tuple with a shuffle strategy; otherwise, the
scheduler assigns the tuple with a hash strategy. Such an
operation incurs nearly no extra latency.

To ensure the correctness of the processing results, the
partial processing results of each shuffled tuple are aggre-
gated (the aggregator can also have multiple instances) after
processing. Specifically, a shuffled tuple will be attached
with a Boolean “shuffle” mark. According to the mark, each
downstream processing element instance determines to for-
ward the processing result to either an aggregator or a next
downstream processing element. When the differentiated
scheduler in the upstream instance switches the scheduling
strategy for a certain key from hashing to shuffling, it will
inform the corresponding processing element instance to
forward the processing result as a partial result to the aggre-
gator. On the contrary, when the strategy switches from
shuffling to hashing, the aggregator forwards the aggre-
gated result as a new tuple to the corresponding instance by
hashing. This incurs a slight overhead for each switching,
where only one more connection is added and one extra
tuple is processed for a certain instance.

With the above design, PStream is computation and
memory efficient. By integrating the differentiated sched-
uler in a processing element instance, PStream can greatly
improve the system throughput. The differentiated sched-
uler assigns the tuples with hot keys using shuffle grouping,
while it assigns the tuples with rare keys using key group-
ing. On one hand, for hot keys, the heavy workloads
incurred by them can be evenly shared by all the down-
stream instances. Such a scheme effectively avoids possible
straggles caused by hot keys, which is the root cause of sys-
tem throughput degradation as shown in Fig. 2b. On the
other hand, for the rare keys, the hash based scheme parti-
tions the key space among multiple downstream instances.
Each instance only needs little memory to store the states of
the fraction of the rare keys assigned to it. Hence, we can
upgrade the level of data parallelism by generating more
processing instances to improve system throughput.

3.2 Hot Keys Predictor

Due to the rigorous requirements in system efficiency for a
distributed streaming processing system, identifying the
currently hot keys in a highly dynamic real-time stream has
three major difficulties. First, the representation of the set of
hot keys needs to be space efficient so that each processing
element instance can load the set in memory to support strat-
egy selection for tuple scheduling. Second, the predictor
should support quickly checking the key of the current tuple
in real-time stream against the set of hot keys to guarantee

Fig. 7. Architecture of PStream.

1586 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 10, OCTOBER 2021

the processing efficiency. Third, the predictor needs to be
aware of the dynamic changes of the popularities of the keys
over time, which is common in real applications [32].

To meet the above requirements, the predictor of
PStream uses a two-level architecture (Fig. 8). The first level
identifies a set of potential hot keys by leveraging a novel
probabilistic counting scheme. The probabilistic counting
values of the potential hot keys are stored in a synopsis. The
second level of the predictor stores the identified hot keys
in a space efficient CBF. By using such a succinct set repre-
sentation structure, the hot keys filter can be efficiently
loaded in the memory of a processing element instance.

An important component of the hot key predictor is the
probabilistic counter. It performs the coin flipping experi-
ments for each arriving tuple. Specifically, for a key ki, the
predictor keeps flipping a coin until it sees the first tail. It
counts the times it sees heads before the first tail appears,
and saves this count in a value ti. Intuitively, the key ki fre-
quently appears in a stream will do more coin flipping
experiments than a rare key. Thus, its expected experimen-
tal value ti will be larger than the expected value of a rare
key. Moreover, the frequency with ki is roughly equal to 2ti .
Following this intuition, the predictor can achieve an esti-
mated count of tuples associated with ki. A large value of ti
indicates that ki is likely to be a hot key. Note that for each
tuple the coin flipping experiment is conducted indepen-
dently. Therefore, a rare key also has a probability to obtain
a large experiment value. To alleviate the false positive,
only when ki obtains large experiment values more than
once, the predictor determines that ki is a currently hot key.
This is because a rare key seldom performs the experiment,
and it is hard to meet the low probability event more than
once. Thus, we can achieve a much more precise prediction
of hot keys. We will give the formal proof of the lower
bound of the precision in Section 4.1.

The synopsis shown in Fig. 8 consists of a set of bit vectors.
Each bit vector represents a probabilistic counter of a poten-
tial hot key. When the data flow arrives, the predictor per-
forms a probabilistic counting operation for ki. If the
experiment value ti is above a given threshold r, the predic-
tor checks whether the key ki is in the synopsis. If ki is not in
the synopsis, the predictor generates a new bit vector with
length of l, bitvec ki, with all the l bits initially set to “0”. It
then sets the ðti � r� 1Þth bit of bitvec ki to “1” and inserts
the key-value pair (ki, bitvec ki) into the synopsis. If ki is
already in the synopsis, the predictor simply sets the ðti �
r� 1Þth bit of bitvec ki to “1”. In the design, the predictor
only flips the coin up to (l+r) times, i.e, the maximal value of
ti is limited to (l+r). Algorithm 1 shows the details of the
procedure. In Algorithm 1, “submit” means forwarding the

tuple to the downstream processing elements according to
the streamprocessing topology.

Algorithm 1.Hot Key Predictor

1: constant int r;
2: ProbabilisticCounting (Tuple <Key k, Value v >)
3: counter t 0;
4: coin x 0;
5: while (x ¼¼ 0 && t++ < r + 1)
6: x randðÞ%2;
7: if (t > r)
8: submit tuple < k, t-r-1> ;
9:
10: SynopsisHashMap<Key, BitVector> map;
11: Synopsis (Tuple <Key k, Value v >)
12: if (bitvec k map.get(k) == null)
13: bitvec k an l-length bit vector;
14: set the vth bit of bitvec k to 1;
15: map.put(k, bitvec k);
16: if (the number of “1”s in bitvec k � 2)
17: submit tuple < k, “append”> ;
18: choose a fixed number of <Key, BitVector> pairs from

map randomly;
19: for each chosen < ki; bi >
20: bi bi > > 1;
21: if (the number of “1”s in bi == 1)
22: submit tuple < ki, “delete”> ;

We store the experiment values of the possible hot keys
in the synopsis of potential hot keys. Each bit vector in the
synopsis has at least one bit set to “1”. To achieve precise
prediction, the predictor only inserts an identified hot key
ki, i.e., the associated bitvec ki with more than one “1” bits,
into the CBFs. The space efficient hot keys filter is loaded in
the memory of the processing element instances. At the
same time, due to the computation efficiency of a CBF, the
hot key filter supports fast set membership testing within
constant time, i.e., the predictor can quickly decide whether
the key of the current tuple is hot or not. In Section 4.1, we
theoretically analyze the precision of the predictor.

4 THEORETICAL ANALYSIS

In this section, we first theoretically analyze the precision,
reliability, and stableness of the proposed hot keys predic-
tor. Then, we present how to cope with the dynamic
changes of the popularities of the keys in real-time streams.

4.1 Precision of the Hot Key Prediction

With the hot key predictor, a key is identified as a hot key if
and only if it appears more frequently than a given threshold
in the stream. It is clear that in the PStream predictor design,
the probability for a coin flipping experiment to obtain a
result value t > r (r is a given threshold) is as low as ð12Þr.
However, if we repeat the experimentN0 times, the expected
probability is 1� ð1� ð12ÞrÞN0 , monotonically increasing with
N0. As aforementioned, obtaining a large experiment value
does not necessarily mean finding a hot key because the coin
flipping experiments of tuples are conducted independently.
Thus, in our exponential counting scheme, the predictor
detects a key to be a hot key if and only if the key obtains a

Fig. 8. Hot keys predictor.

CHEN ETAL.: PSTREAM: A POPULARITY-AWARE DIFFERENTIATED DISTRIBUTED STREAM PROCESSING SYSTEM 1587

large experiment valuemore than once. With this design, the
coin flipping results are dependent on the keys. If a key has
obtained large experiment values more than once, it has a
very high probability to be a hot key. In the following, we for-
mally present the lower bound of the recall rate and the
upper bound of the false positive rate of the exponential
counting scheme in the PStream predictor design.

Theorem 1. If a key appearsN0 times, the probability that at most
one of the obtained experiment values is larger than a given

threshold r is upper bounded by ð1þ N0�1
2r Þ � e�

N0�1
2r .

Proof. For a hot key appearing N0 times, the coin flipping
experiment is performed N0 times. The probability that
all its obtained experiment values are no larger than r is
ð1� 1

2rÞN0 . The probability that only one obtained experi-
ment value is larger than r is C1

N0
� ð1� 1

2rÞ � 1
2r . Thus,

the probability that this key is identified as a rare key can
be computed by the following equation.

P ðN0Þ ¼
�
1� 1

2r

�N0

þ C1
N0
�
�
1� 1

2r

�
� 1

2r

¼
�
1þN0 � 1

2r

�
�
�
1� 1

2r

�N0�1
<

�
1þN0 � 1

2r

�
� e�

N0�1
2r :

(1)

Theorem 1 is proved. tu
From Theorem 1, we can see that the upper bound value

monotonically decreases with the value of N0�1
2r . Therefore,

the probability that an actually hot key is identified as a rare
key is very low. Table 1 shows the lower bound of the recall
rate with different values of N0�1

2r . For example, for the key
appearing more than 2rþ3 times, the lower bound of the
recall rate is higher than 99.7 percent.

Theorem 2. If there are a number of M keys with each of them
appearing at most N1 times, the probability that at least one
key obtain two or more experiment values which are larger than
a given threshold r is upper bounded by 1� ð1� ðN1

2r Þ2ÞM .

Proof. From Eq. (1), for a rare key appearing N1 times, the
probability that at most one of the obtained experiment
value is larger than r is P ðN1Þ. For all theM rare keys, the
probability that all of them obtain one or no large experi-
ment value is P ðN1ÞM . Thus, the probability that at least
one rare key is identified as hot can be computed by

P ðM;N1Þ ¼1� P ðN1ÞM

¼1�
��

1þN1 � 1

2r

�
�
�
1� 1

2r

�N1�1�M

< 1�
��

1þN1 � 1

2r

�
�
�
1�N1 � 1

2r

��M

¼1�
�
1�

�
N1 � 1

2r

�2�M

< 1�
�
1�

�
N1

2r

�2�M

:

(2)

Theorem 2 is proved. tu
From Theorem 2, we can obtain that the upper bound

value monotonically decreases with the value of N1
2r . There-

fore, with our exponential counting technique, the probabil-
ity that a rare key is identified as a hot key is also very low.
For the key appearing less than 2r�3 times, the upper bound
of the false positive rate is lower than P ð1; 2r�3Þ < 1:56%.

Considering the case that there are a total number of 2r

tuples with rare keys performing the coin flipping experi-
ments, we obtain M �N1 ¼ 2r. Thus, the upper bound of
P ðM;N1Þ in Eq. (2) can be computed by,

P ðM;N1Þ < 1�
�
1�

�
N1

2r

�2�M

¼ 1�
�
1�

�
N1

2r

�2� 2r

N1

:

(3)

Table 2 shows the upper bound of the false positive rate
with different 2r

N1
. For instance, if there are more than 27 rare

keys and each rare key appears less than 2r�7 times, the upper
bound of the false positive rate is less than 0.78 percent.

4.2 Adaption to Dynamic Popularity Changes

In a real-time stream, the popularities of the keys in the
stream dynamically change over time [32]. For efficiently
processing the dynamic streams, PStream examines the cur-
rent arriving rate of a key rather than an accumulated count
of a key as the previous design [14]. Considering a given
key in the stream, if it rarely appears in a current period of
time, it will not incur a heavy workload, no matter how
popular it used to be. The basic idea of our popularity adap-
tion strategy is to probabilistically decrease the counters in
the synopsis each time when the synopsis is updated. Thus,
with time flying, even a hot key’s value in the bit vector will
keep decreasing unless it continues to appear frequently in
the arriving stream. Specifically, to adapt to the dynamic
popularities changing of keys in the stream, we design a
decline mechanism on top of the synopsis over time.

Given a specified declining rate for all the keys in the
synopsis, if a certain key’s arriving rate is less than the
decline rate, its value stored in the bit vector will keep
decreasing until all the bits are set to “0”. As aforemen-
tioned in Section 4.1, the synopsis uses the total number of
“1” bits to identify the hot keys. PStream decreases the
value of the bit vector without increasing the total number
of “1” bits each time. Specifically, PStream performs the bit-
wise right shift operation on each bit vector in the synopsis
at a certain rate. It is clear that after the bit-wise right shift
operation, the number of “1” bits in the bit vector is mono-
tonically non-increasing. If no new bits are set to “1” in a
key’s bit vector, after at most l bit-wise right shifts (where l
is the length of the bit vector), this associated key will be
evicted from the synopsis. To control the declining rate, we
set a probability p (0 < p < 1) for performing the right shift
operation on each bit vector, whenever the bit vector of any

TABLE 1
Lower Bound of the Recall Rate

Value of N0�1
2r 4 5 6 7 8

Lower bound of recall rate 90.85% 95.96% 98.26% 99.27% 99.70%

TABLE 2
Upper Bound of the False Positive (FP) Rate

Value of 2r

N1
23 24 25 26 27

Upper bound of FP rate 11.84% 6.07% 3.08% 1.55% 0.78%

1588 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 10, OCTOBER 2021

key is generated or updated. Specifically, each time the synop-
sis selects P bit vectors independently and uniformly at ran-
dom from all the m bit vectors and thus the declining rate is
p ¼ P

m . To adapt to the frequent change of popularity, we also
design an adaptable decline rate adjusting scheme to adjust
the value of p during the processing procedure. We will dis-
cuss more details in Section 4.4. In the following, we prove
that the decline strategy is sensitive to the arriving rate.

Theorem 3. For a key, if its arriving rate f is larger than 2p (p is
the declining rate), it will not be evicted from the synopsis with

high probability, or it will be evicted within ð1pÞlog2ð
f
pÞþOð1Þ syn-

opsis updates with high probability.

Proof. Each key in the synopsis has a probability p to per-
form the bit-wise right shift operation each time when the
synopsis is updated with new experiment values larger
than the threshold r. Thus, for each key the expected
interval between a right shift operation is 1

p synopsis
updates or ð1pÞ � 2r coin flipping experiments. In each
interval, the expected times of the appearances of a key
with arriving rate f is Nf ¼ ð1pÞ � 2r � f . For this key, the

expected largest experimental value is,

V ðfÞ ¼P1
i¼0 iðð1� 1

2iþ1Þ
Nf � ð1� 1

2i
ÞNf Þ

¼ limi!1 ðið1� 1
2iþ1Þ

Nf Þ �P1
i¼0 ð1� 1

2i
ÞNf

¼ log 2Nf þOð1Þ ¼ log 2

�
f

p
þ r

�
þOð1Þ:

(4)

Thus, in each interval, the ðlog 2ðfpÞ þOð1ÞÞth bit of the
bit vector has high probability to be set to “1”. If f > 2p,
we have log 2ðfpÞ > 1. That is to say, before one right shift
operation, there will be a bit set to “1” at a position other
than the 0th bit with high probability. Thus the key will
not be evicted from the synopsis. On the contrary, for a
key with arriving rate f � 2p, during each interval, the
probability for it to set a bit to “1” at a position other than
the 0th bit is very low. Thus, the “1” bit at the highest
position keeps right shifting until it is evicted from the

synopsis. This needs ð1pÞlog 2ðfpÞþOð1Þ synopsis updates. The-
orem 3 is proved. tu

4.3 The Stableness of the Synopsis

As the synopsis plays an important role in the hot key pre-
dictor, it is vital to achieve a stable state of the synopsis.
Intuitively, if the declining rate is too low, new potential hot
keys will be inserted into the synopsis before the previously
hot but currently rare keys are evicted. With a fixed memory
size, future hot keys may fail to be inserted. On the contrary,
if the declining rate is too high, keys will be evicted out of
the synopsis quickly. The synopsis will become empty rap-
idly and the currently hot keys may be evicted, resulting in
poor performance of the predictor. In the following, we
prove that for any given declining rate p, the number of
keys in the synopsis is stable with explicit upper and lower
bounds. The synopsis will never become empty or full.

Theorem 4. The number of keys in the synopsis will be stable in
ðH; 1pÞ with high probability, where H is the number of keys
whose arriving rates are higher than 2p in the stream.

Proof. From Theorem 3, with high probability the synopsis
will contain the keys with arriving rates higher than 2p in
the stream. We only consider the keys with arriving rates
less than 2p. In each synopsis update, the probability that
the newly arriving key is a rare key is not greater than
ð1�H � ð2pÞÞ, while the probability that the 0th bit is set
to “1” is 1

2 . After a number of 1
p synopsis updates, every

bit vector has a high probability to right shift. Thus, at
most 1

2ð1�H�ð2pÞÞ � 1
p new rare keys remain in the synopsis.

On the other hand, assume there are a number of Xt

keys in the synopsis at a given time t. With Theorem 3,
we have Xt > H with high probability, while ðXt �HÞ
keys are rare keys. After 1

p synopsis updates, at least
1

2ðXt�HÞ old rare keys will be evicted. Thus, we can obtain,

Xtþ1p < Xt � 1

2
ðXt �HÞ þ 1

2
ð1� pHÞ � 1

p
¼ 1

2
Xt þ 1

2p
:

(5)

Since the synopsis is initially empty, it is clear that for
any time t,Xt < 1

p holds. Theorem 4 is proved. tu

4.4 Adaptive Threshold Configuration

In this section, we analyze how the frequency threshold for
differentiating hot keys and rare keys affects the system per-
formance, and how to adaptively configure the threshold to
minimize the system processing cost.

According to Theorems 1, 2, 3, and 4, for a certain dataset
with a frequency threshold f , we can set r ¼ log 2

1
p to ensure

the precision of the hot key prediction, and p ¼ 1
2 f to ensure

the stableness of the synopsis. However, in practice, it is diffi-
cult for a system administrator to configure the threshold for
differentiating hot keys and rare keys. Indeed, the key distri-
bution of different data streams are always different, and the
distribution may change over time. For example, in a stream
S1 with thousands of keys, the average frequency of a key is
around 0.1 percent; while in a stream S2 with billions of keys,
the peak frequency of a key can be lower than 0.1 percent. If
the threshold of the hot key frequency is set too low (e.g., far
lower than 0.1 percent in S1), a large fraction of the keys will
be identified as popular ones, and the differentiated schedul-
ing is almost the same as shuffle grouping scheme, which
leads to a large fraction of unnecessary memory cost. If the
threshold of the hot key frequency is set too high (e.g., higher
than 0.1 percent in S2), nearly no keys will be regarded as hot
keys, and the differentiated scheduling is almost the same as
key grouping. This will lead to a high load imbalance and
low system throughput. To adapt to various stream data dis-
tribution, we further design an adaptable threshold adjust-
ing scheme in PStream. Here, we first discuss how to define
the optimal frequency threshold in PStream and then pro-
pose a method to compute the optimal frequency threshold
using lightweight statistics and quickly adjust the parame-
ters to approach an optimal frequency threshold.

In a certain stream with N unique keys, for a frequency
threshold f , we assume there are HðfÞ unique hot keys,
each having an appearance frequency higher than f . There
are also LðfÞ unique rare keys with appearance frequency
less than f . We further assume the accumulative frequency
of all hot keys is FHðfÞ and that of all rare keys is FLðfÞ. To
take full advantages of the differentiated scheduling design

CHEN ETAL.: PSTREAM: A POPULARITY-AWARE DIFFERENTIATED DISTRIBUTED STREAM PROCESSING SYSTEM 1589

and optimize system performance, the optimal frequency
threshold should satisfy the following conditions: 1) there
are only a small fraction of keys which can be identified as
hot keys (i.e., the value ofHðfÞ should be low), so that using
shuffle grouping will not incur heavy memory cost; 2) the
accumulative frequency of all the identified rare keys (i.e.,
FLðfÞ) should be low, so that using key grouping will not
incur significant load imbalance.

With the proposed differentiated scheduling scheme, the
identified hot keys will be shuffled to all the M downstream
instances. Thus, each instance will store all the HðfÞ keys.
Each instance will evenly get FH ðfÞ

M � T tuples with hot keys
for processing in a unit time T . The rare keys are hashed to all
the instances. Thus, each instance approximately stores LðfÞ

M

unique rare keys. The number of rare keys in each instance for
processing is upbounded by FLðfÞ � T . Therefore, the
upbounded processing time for an instance is proportional
to (FH ðfÞM þ FLðfÞ). The memory usage is proportional to

(HðfÞ þ LðfÞ
M).

To optimize both time and space efficiency, we use the
following equation to compute the system processing cost
of a frequency threshold f ,

CðfÞ ¼ wT � FH ðfÞ
M þ FLðfÞ

� �
þ wS � HðfÞ þ LðfÞ

M

� �
:

(6)

In the above equation, wT and wS are two normalized
weights of the processing time and the memory usage
which can be specified by users. The system administrator
can adjust them according to the differences of computing
and storage resources of the system. Unlike the threshold f ,
these two parameters are only related to the system resour-
ces and they are not related to the distribution of datasets.
The system administrator can try to adjust these two param-
eters by running a sample application several times, and
obtain satisfied fixed values by using some greedy or heu-
ristic strategies as we will discuss later.

From the definition of the processing cost, we have
FHðfÞ þ FLðfÞ ¼ 1 andHðfÞ þ LðfÞ ¼ N . Thus, we obtain,

CðfÞ ¼ wTþwS�N
M þ M�1

M � ðwT � FLðfÞ þ wS �HðfÞÞ:
(7)

That is to say, the optimal frequency threshold is the
value of f which minimizes (wT � FLðfÞ þ wS �HðfÞ). Our
target is to adjust our frequency threshold to approach the
optimal value periodically. However, there are two chal-
lenges here. First, usually, we do not know the data distri-
bution in advance. Hence, we can hardly compute FLðfÞ
and HðfÞ for any possible f . Second, the data distribution
may change over time. Hence, we should adjust the fre-
quency threshold to an optimal value as quickly as possible.

To solve the problems, we propose a method to estimate
the values of FLðfÞ and HðfÞ for the current frequency
threshold f . We periodically track the newly arriving
records in the synopsis structure. In a time interval, in addi-
tion to the aforementioned synopsis updating process, the
synopsis also performs the following steps. Each time when
a new record (a potential hot key with its experiment value)
arrives, the synopsis checks whether it is an actually hot

key. Then the synopsis counts for the total number of newly
arriving records (v1), and figures out how many records
contain actually hot keys (v2). If a newly arriving record
contains an actually hot key, the synopsis gives the corre-
sponding bit vector a mark. At the end of the time interval,
the synopsis computes v2

v1
and the number of marked bit vec-

tors (v3). Then it initials the two counters to zero and
removes all the marks. The total number of tuples can be
estimated by v1 � 2r, while the total number of hot keys can
be estimated by v2 � 2r. Thus, FLðfÞ can be estimated by
v1�2r�v2�2r

v1�2r ¼ 1� v2
v1
. The number of the identified hot keys in

this interval is v3 . Thus,HðfÞ ¼ v3.
To reduce the processing cost CðfÞ, we need to minimize

both the values of wT � FLðfÞ and wS �HðfÞ. It is not diffi-
cult to see that, the value of FLðfÞ monotonically increases
with f , while HðfÞ monotonically decreases with f . Thus,
our proposal is to find a moderate value for f where wT �
FLðfÞ and wS �HðfÞ are close to each other.

To show the efficiency of our scheme, we generate three
datasets with different distributions. Each dataset has 1,000
unique keys, and the frequencies of all the keys follows Zipf
distribution, normal distribution, and random distribution,
respectively. We configure 1,000 different frequent thresh-
old values f . For each frequent threshold, we compute the
exact value of FLðfÞ and HðfÞ. We set the value of wT and
wS to normalize the value of wT � FLðfÞ and wS �HðfÞ
between the interval [0, 1]. Then we plot the values in
Figs. 9, 10 and 11. Although the functions of FLðfÞ andHðfÞ
are quite different with each other in the three datasets, the
value of CðfÞ changes in a similar way. The optimal value
of f which minimizes CðfÞ appears near the point where
wT � FLðfÞ ¼ wS �HðfÞ.

To approach the optimal value of f , in each time interval,
when we estimate the value of FLðfÞ andHðfÞ, we can com-
pare the value of wT � FLðfÞ with that of wS �HðfÞ. If the
former is larger, we try to increase the value of f ; otherwise,
we try to decrease the value of f . We use an adaptive scheme
to quick compute a better value of f , which can get closer to
the optimal value. Fig. 12 shows how we adjust the thresh-
old. For the current frequency threshold f 0, we estimate the
value of FLðf 0Þ and Hðf 0Þ. We draw two lines as follows. If
FLðf 0Þ > Hðf 0Þ, one line connects the point (0,wT � FLð0Þ)
(i.e., (0, 0)) and the point (f 0, wT � FLðf 0Þ). The other one con-
nects (0,wS �Hð0Þ) (i.e., (0,wS)) and (f 0,wS �Hðf 0Þ). We can
compute the intersection of these two lines. We use f� to
denote the x-coordinate value of the achieved intersection. It
is obvious that f� is closer to the point where wT � FLðfÞ ¼
wS �HðfÞ rather than f 0. If FLðf 0Þ < Hðf 0Þ, one line will
connect (1,wT � FLð1Þ) (i.e., (1,wT)) and (f 0, wT � FLðf 0Þ),

Fig. 9. Normalized value in Zipf distribution (a = 1.2).

1590 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 10, OCTOBER 2021

while the other one connects (1, wS �Hð1Þ) (i.e., (1, 0)) and
(f 0,wS �Hðf 0Þ), accordingly.

After the synopsis computes the value of f�, it accord-
ingly computes the values of r and p to make the frequency
threshold close to f�. Then it notifies all the coin flipping
instances to adjust the threshold r. After that, a new interval
starts, and the synopsis estimates the value of FLðf�Þ and
Hðf�Þ again. The above process repeats periodically. If the
distribution is stable, the value of f� will converge to the
optimal value. When the distribution changes, this scheme
can also quickly and adaptively change the thresholds.

With such an adaptive thresholds configuration scheme,
we can further optimize the setting of wS and wT . Specifi-
cally, we can set a random initial value of wT and keep wT þ
wS ¼ 1. In the first step, we run a sample application and
obtain the system throughput TP ðwT Þ. In the second step,
we choose a random value d from interval [-minfwT , wSg,
minfwT , wSg]. We set w0T ¼ wT þ d and run the same appli-
cation again to obtain the system throughput TP ðw0T Þ. In the
third step, we compare the value of TP ðwT Þ and TP ðw0T Þ. If
the later is higher, we set wT ¼ w0T , otherwise, we keep the
value of wT and make d ¼ 1

2 d. Then we repeat the three steps
in iterations until the difference of TP ðwT Þ and TP ðw0T Þ in
the third step is low enough (e.g., less than 1 percent). To
prevent the above greedy algorithm from trapping into a
local optimal, we can use some heuristics such as simulated
annealing [33]. Specifically, in the third step, if TP ðwT Þ is
higher, we still set wT ¼ w0T with a low probability of

eðTP ðw
0
T
Þ�TP ðwT ÞÞ=i, where i is the number of iterations. Such a

design may need more iterations to converge, but it usually
achieves better solution quality.

5 IMPLEMENTATION

We implement PStream on top of Apache Storm [1] and
make the source code publicly available.1

In the PStream implementation, we build a standalone
component that is independent of the original user logic
topology to execute the tasks of the hot key predictor. The
component consists of a coin bolt and a global synopsis bolt
(a bolt is the basic processing element of Storm). The coin
bolt receives tuples from the bolts which need to use the dif-
ferentiated scheduler. The coin bolt performs the coin flip-
ping experiment, identifies the potential hot keys, forwards
the identified potential hot keys to the global synopsis bolt,
and discards all the other keys. The synopsis bolt maintains
a HashMap in memory. The HashMap consists of a set bit

vectors with a length of l. Each bit vector corresponds to an
identified potential hot key.

During the stream processing procedure, each time when
an instance of the user logic bolt forwards a tuple to the
downstream bolt, the instance generates a signal tuple asso-
ciated with the same key to the coin bolt. To prevent the
coin bolt from becoming the bottleneck of the whole system,
PStream creates a large number of coin bolt instances, which
is no less than the number of instances of the user logic bolt.

Following the processing framework described in
Section 4, each time when the synopsis bolt receives an
identified potential hot key from the coin bolt, it updates
the corresponding bit vector and checks whether the key is
a real hot key (i.e., there are more than one “1” bits in the bit
vector). After each updating, the synopsis bolt executes a
decline phase (i.e., it performs the right shift operation on
each bit vector with the probability of p), and then kicks the
keys with an empty bit vector out of the HashMap. When
the synopsis bolt detects a new real hot key or kicks out a
rare key, it generates a signal tuple whose value represents
“append” or “delete” for this key. The synopsis bolt broad-
casts the signal tuple to all the instances which need to use
the differentiated scheduler. Although the synopsis bolt is a
centralized component, it will not become the bottleneck of
the distributed system. On one hand, with the help of the
coin bolt, the vast majority of arriving tuples are previously
filtered. On the other hand, the frequency of identifying a
new currently hot key or an out-dated hot key in the synop-
sis is much less than that of processing arriving tuples in
the user logic bolt. Thus, the broadcasting will not raise
heavy workloads for the processing system. Moreover,
there are usually multiple instances of the user logic bolt
processed in the same worker. To avoid redundant data
transmissions from the synopsis to the multiple instances
hosted on the same worker, we develop a batch-and-dis-
patch mechanism which packages the signal tuple for each
worker in a single packet, and send the tuple only once. The
receiving worker then dispatches the tuple to hosted

Fig. 10. Normalized value in normal distribution (d = 1). Fig. 11. Normalized value in random distribution.

Fig. 12. Adaptively threshold adjusting.1. Sourcecode available: https://github.com/CGCL-codes/PStream

CHEN ETAL.: PSTREAM: A POPULARITY-AWARE DIFFERENTIATED DISTRIBUTED STREAM PROCESSING SYSTEM 1591

instances locally. Such a design can effectively reduce the
communication overhead.

Apart from the standalone predict component, each
instance of the user logic bolt maintains a succinct CBF as
the hot key filter. When receiving the “append” or “delete”
signal from the synopsis bolt, the instance updates the CBF.
When the instance is going to send out a tuple to the down-
load processing element, it checks whether the tuple is hot
or not against the CBF. Based on the results, the scheduler
chooses a suitable scheduling scheme from key grouping or
shuffle grouping for this tuple.

6 PERFORMANCE EVALUATION

We evaluate the performance of PStream using comprehen-
sive experiments with large-scale real-world datasets.

6.1 Experiment Setups

We deploy PStream on a cluster of 33 machines, each
equipped with an Intel Xeon E5-2670 CPU (octa-core
2.4 GHz), 64.0 GB RAM, and a 1,000 Mbps Ethernet interface
card. Onemachine serves as themaster node to host the Storm
Nimbus. The othermachines run Storm Supervisors.

Datasets. In the experiment, we use four large-scale traces
collected from real-world systems. The first is a set of tweets
crawled from Twitter, which contains 658 million words
associated with 5.7 million unique keys. The second is the
stock exchange dataset collected from NASDAQ [16] during
April 2017. The dataset contains 274 million exchange
records associated with 6,649 stock symbols. The third is
the hashtag dataset collected from Twitter during Nov.
2012 [34]. The dataset includes 43 million hashtags. The
fourth is the on-demand ride-hailing dataset collected
from [17], in Chengdu during Nov. 2016. The dataset con-
tains three billion driving track records of taxis, each associ-
ated with a taxi id, the GPS location, and a timestamp. To
evaluate the performance of PStream with different degrees
of skewness, we also conduct extended experiments with
synthetic datasets. Each dataset has one billion tuples and 10
million keys, which follow Zipf distributions with coeffi-
cients varying from 0.5 to 2.0. A higher coefficient indicates a
more skewed distribution. Table 3 summarizes the dataset
statistics.We leverage Kafka [35] for the stream input.

Applications. We evaluate PStream with four applica-
tions including word-count, Volume Weighted Average Prize
(VWAP), Hashtag statistics, and road condition detection.

The word-count and the hashtag applications count the
number of each word or hashtag in the tweets stream. First,
the Kafka Spout feeds tweet messages to the split bolt which
splits a tweet into simple words or extracts the hashtags.
Second, a count bolt counts for each distinct word or hash-
tag in a given time interval. Third, an aggregation bolt
aggregates and outputs the results.

The VWAP application computes the ratio of the total
value of a stock symbol to its total trading volume. Each
exchange record is represented as a tuple with the stock
symbol as the key. The exchange amount and the price asso-
ciated with this key are represented as values. The statistic
bolt multiples the exchange amount by the price as the
intermediate result. An aggregation bolt collects the results
and computes the final average price for each symbol.

The road condition detection application counts the dis-
tinct taxi ids in the same location area in a short time period
to approximately indicate the crowding degree. In this
application, a tuple contains a taxi track record with its GPS
location mapped to grids on the map as the key. The count
distinct bolt records each taxi id in a HashMap and counts
the size of the HashMap at the ends of each time period. If
the count surpasses a certain threshold, the detection bolt
outputs the results.

Baseline Schemes and Metrics. In the experiment, we first
compare the performance of PStreamwith those of the state-
of-the-art designs including the Partial Key Grouping [14]
(PKG) and Distribution-aware Key Grouping [21] (DKG)
schemes. We mainly examine system throughput, process-
ing latency, and degree of load imbalance. High throughput
and low latency are always desirable in a distributed stream
processing system [14]. We define the throughput as the rate
of the successfully processed tuples. We define the process-
ing latency as the average processing time for each tuple.

Specifically, we compute the number of tuples in every
ten seconds to compute the system throughput. We record
the total processing latency for every 10,000 tuples which
are emitted consecutively and report the average processing
latency. To monitor the processing procedure of each tuple,
we leverage the acknowledge mechanism in Storm. A tuple
is regarded successfully processed if and only if the spout
receives the ACK message for this tuple from the last bolt.
To achieve high system efficiency, a distributed stream
processing system also desires resource efficiency with alle-
viated load imbalance among processing instances. We
measure the number of received tuples in each instance and
use the standard deviation of the workloads among all the
instances to examine the degree of load imbalance.

We further examine the efficiency of our adaptive thresh-
old configuration scheme. We compare the throughput and
the standard deviation of the workloads of PStream with
that of fixed threshold configuration. We run the experiment
ten times with the word-count and Hashtag statistic applica-
tions. We also obtain an experimental optimal threshold
manually using large-scale experiments.

Finally, we examine the performance of the proposed hot
key predictor compared to existing schemes including
count-min sketch [28] and Ada-CMSketch [29]. We fix the
memory size of all the structures and examine the precision
and the computation cost for hot key identification.

6.2 Results

Overall Performance of PStream. In the experiment, we exam-
ine the efficiency of the computation and memory resources
of PStream using both synthetic and real-world datasets.
We compare the performance of PStream with those of

TABLE 3
Datasets Statistics

Dataset Symbol] of tuples] of keys

Tweets TW 658M 5.7M
NASDAQ records ST 274M 6.7K
Tiwtter Hashtags HA 43M 3.4M
DiDi Taxi records TX 3B 8K
Synthetic Zipf ZF 1B 10M

1592 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 10, OCTOBER 2021

existing schemes including key grouping, shuffle grouping,
DKG, and PKG.

Fig. 13 shows the throughput in different parallelism lev-
els. We compare PStream with shuffle grouping, DKG, and
PKG. In the experiment, we fix the popularity distribution
with Zipf coefficient = 1.0 and increases the number of proc-
essing instances. Specifically, we create 8	128 instances of
the word count bolt and examine the maximum throughput
of the system. At each parallelism level, we adjust the speed
for tuple emitting to achieve the maximum throughput. The
result shows that when the parallelism level reaches 80, the
system throughput with shuffle grouping stops increasing,
while those of all the other three schemes keep increasing.
When the parallelism level reaches 128, the throughput of
PStream is 32 and 21 percent higher than those of DKG and
PKG, respectively.

Fig. 14 shows the CDF of the processing latency. In the
experiment, we fix the popularity distribution with Zipf
coefficient = 1.0. The result shows that 72 percent tuples in
PStream have processing latency less than 200 ms, while
only 19 percent tuples with shuffle grouping and 61 percent
tuples with key grouping have such low processing latency.
The long processing latency of shuffle grouping is mainly
caused by the additional aggregation operation, which
needs around 300ms for each tuple on average. In PStream,

only a small fraction of keys need aggregation and the
aggregation latency is around 70 ms on average.

Fig. 15 plots the system throughput under different
degrees of data skewness. We fix the parallelism level at 64
and compare PStream with key grouping and the other two
baseline schemes. The result shows that the system through-
put of all the existing schemes decreases sharply when the
coefficient increases. In contrast, PStream remains a much
more stable throughput.

Fig. 16 compares the throughput of PStream with those
of PKG and DKG in the word-count application with the
TW dataset. We fix the parallelism level at 128 and record
the throughput every ten seconds. The result shows
PStream achieves 2.3� and 3.6� improvements in the sys-
tem throughput compared to PKG and DKG, respectively.

Fig. 17 plots the CDF of the average tuple processing
latency for the word-count application. The result shows
the latency of PStream is 114 ms, while those of PKG and
DKG are 322 ms and 336 ms, respectively. PStream greatly
reduces the latency of PKG by 64 percent and that of DKG
by 66 percent. The result shows that 90 percent tuples using
PStream can be processed in 330ms, while only 63 and 45
percent tuples of PKG and DKG can have such a short proc-
essing latency.

Fig. 18 shows the distribution of each tuple’s processing
time every five minutes. The result shows that PStream has

Fig. 13. Throughput in different parallelism levels.

Fig. 14. Processing latency distribution with ZF dataset.

Fig. 15. Throughput in different levels of skewness.

Fig. 16. Throughput in the word-count application.

Fig. 17. Processing latency in the word-count application.

Fig. 18. Processing time variation in the word-count application.

CHEN ETAL.: PSTREAM: A POPULARITY-AWARE DIFFERENTIATED DISTRIBUTED STREAM PROCESSING SYSTEM 1593

the lowest latency at every percentile. It also achieves a
more stable latency compared to the baseline schemes.
Between the fifth minute and the 20th minute, both the dis-
tributions of PKG and DKG change greatly due to the
change of frequency of hot keys.

Fig. 19 compares the system throughput of the VWAP
application. The result shows that PStream achieves 2.0�
and 2.4� improvements of the system throughput com-
pared to PKG and DKG, respectively.

Fig. 20 plots the CDF of the average latency of the VWAP
application. The result shows that 82 percent tuples in
PStream have the processing latency less than 180 ms, while
only 8 percent tuples in DKG and 38 percent tuples in PKG
have such low latency. PStream reduces the average tuple
latency of DKG and PKG by 50 and 31 percent, respectively.

Fig. 21 shows the distribution of the processing time of
each tuple in the VWAP application. With the dynamic
stock records, the distributions of both DKG and PKG
schemes vary significantly. In contrast, PStream has a much
more stable performance. This reflects that our hot key pre-
dictor more precisely predicts the hot keys in the presence
of dynamic changes of keys’ popularities over time.

Fig. 22 compares the throughput of PStream with those
of PKG and DKG in the Hashtag statistic application with
the HA datasets. The result shows that PStream achieves

1.9� and 2.3� improvements of the average throughput
compared to PKG and DKG, respectively.

Figs. 23 and 24 plot the CDF of the average latency and the
distribution of the processing time in the Hashtag statistic
application, respectively. The result shows that 70 percent
tuples in PStream have processing latency less than 130 ms,
while only 13 percent tuples in DKG and 54 percent tuples in
PKG have such low latency. The average tuple processing
latency of PStream is 148 ms, while those of PKG and DKG
are 210 ms and 280 ms, respectively. PStream greatly reduces
the latencies of DKG and PKGby 48 and 30 percent.

Fig. 25 compares the throughput of PStream with those
of PKG and DKG in the road condition detection applica-
tion with the TX datasets. The result shows that PStream
achieves 2.0� and 2.8� improvements of the average sys-
tem throughput compared to PKG and DKG.

Fig. 26 and 27 plot the CDF of the average latency and
the distribution of the processing time in the road condi-
tion detection application, respectively. The result shows
that 63 percent tuples in PStream have processing latency
less than 300 ms, while only 17 percent tuples in DKG and
21 percent tuples in PKG have such low latency. The average
tuple processing latency of PStream is 267ms, which reduces
the latencies of DKG and PKG by 39 and 27 percent,
respectively.

We further examine the workloads (i.e., the received
tuples) of each instance in an interval of ten seconds in the
VWAP and the Hashtag statistic applications. We compute
the standard deviations of the workloads in the instances to
show the degree of load imbalance. Fig. 28 shows that
PStream reduces the average standard deviation of DKG by
16 percent in VWAP and by 25 percent in Hashtag statistic.
PStream reduces the average standard deviation of PKG by
49 percent in VWAP and by 40 percent in Hashtag statistic.

We also examine the scalability of PStream. In the experi-
ment, we increase the parallelism level, and achieve the
maximum throughput for each parallelism level to put the

Fig. 19. Throughput in the VWAP application.

Fig. 20. Processing latency in the VWAP application.

Fig. 21. Processing time variation in the VWAP application.

Fig. 22. Throughput in the Hashtag statistic application.

Fig. 23. Processing latency in the Hashtag statistic application.

1594 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 10, OCTOBER 2021

examination to the system performance limit. Specifically,
for each parallelism level, the Kafka Spout increases the
emitting speed until the throughput does not increase any-
more. Fig. 33 shows that when the parallelism level reaches
128, the throughput of PStream for the VWAP and the
Hashtag statistic application is 35 and 33 percent higher
than those of PKG. PStream achieves 40 and 49 percent
higher throughput than those of DKG in the VWAP and the
Hashtag statistic application, respectively.

Performance of Adaptive Threshold Configuration. Fig. 29
shows the throughput of PStream with the word-count
application. We compare the throughput with adaptive
threshold configuration and that with randomly set fixed
thresholds and manually optimized fixed threshold. We run
the experiment with random fixed thresholds ten times and

report themedian. The result shows that the adaptive thresh-
old configuration scheme of PStream quickly converges to a
stable threshold, and the system obtains higher system
throughput than that using a manually optimized fixed
threshold. PStream with the adaptive threshold configura-
tion scheme achieves 17 to 42 percent higher throughput
compared to thosewith random thresholds.

Fig. 30 shows the standard deviation of workloads
among different instances in the word-count application of
PStream with adaptive threshold configuration, and that of
the scheme with fixed thresholds. The result shows that
with the adaptive threshold configuration scheme, loads of
PStream instances can become more balanced when the
threshold is stable. The adaptive threshold configuration
scheme can reduce the average standard deviation of the
workloads among all the instances of the optimal fixed
threshold setting by 9.1 percent, and that of the random
fixed threshold setting by 24 to 32 percent.

Fig. 31 shows the processing time of the Hashtag statistic
application. We compare the performance of PStream with
the adaptive threshold configuration and that with optimal
fixed thresholds. The adaptive threshold configuration
scheme improves the system throughput of an optimal fixed
threshold by 19.5% percent when the threshold becomes

Fig. 24. Processing time variation in the Hashtag statistic application.

Fig. 25. Throughput in the road condition detection application.

Fig. 26. Processing latency in the road condition detection application.

Fig. 27. Processing time variation in the road condition detection
application.

Fig. 28. Standard deviation of workloads among different instances.

Fig. 29. Throughput in the word-count application with adaptive decline
scheme.

Fig. 30. Standard deviation of workloads among instances in the word-
count application.

CHEN ETAL.: PSTREAM: A POPULARITY-AWARE DIFFERENTIATED DISTRIBUTED STREAM PROCESSING SYSTEM 1595

stable. Compared to the ten randomly set thresholds, PStream
with the adaptive threshold configuration scheme achieves 27
to 46 percent higher throughput.

Fig. 32 shows the standard deviation of workloads in the
Hashtag statistic application, where we compare PStream
with the adaptive threshold configuration and that with
fixed thresholds. The adaptive threshold configuration
scheme improves the load balance by 14.5 and 35 percent,
compared to the designs with manually optimized fixed
threshold and random fixed threshold.

Performance of the Hot Key Predictor. Fig. 34 shows the
prediction precision, which is defined as the ratio of the
number of identified actually hot keys to the total num-
ber of keys identified. The result shows PStream achieves
a precision of 96 percent, outperforming all existing
schemes. Our hot key predictor significantly improves
the precision of the previous count-min sketch scheme
by 23 percent.

We record the time from the time the predictor receives
the tuple to the time the tuple is identified to be a hot key.
Fig. 35 plots the time of 100 continuous hot keys identified.
PStream uses 1.4 ms in average, reducing those of count-
min sketch and Ada-CMSketch by 80 and 84 percent.

We also compare the throughput of our hot key predic-
tor. Fig. 36 shows that the throughput of our hot key

predictor is much higher than those of the other two
schemes. When Zipf coefficient = 1.0, our scheme improves
the throughput of the count-min sketch by 36.7 percent and
that of the Ada-CMSketch by 47.5 percent.

7 CONCLUSION

In this paper, we argue that the key of efficient distributed
stream processing is to differentiate the popularities of the
keys.We design PStream, a novel differentiated stream proc-
essing system. The efficiency of PStream is based on a pro-
posed new hot key predictor, which can accurately identify
the currently hot keys in highly dynamic real-time streams at
very low computation and memory costs. We implement
PStream on top of Apache Storm. Experimental results show
that PStream greatly outperforms existing designs in terms
of throughput and processing latency.

ACKNOWLEDGMENTS

This research was supported in part by the National Key
Research and Development Program of China under Grant
2016QY02D0302, NSFC under Grant 61972446, and Grant
61422202.

Fig. 32. Standard deviation of workloads among instances in the Hash-
tag statistic application.

Fig. 34. Precision of hot keys predictor.Fig. 31. Throughput in the Hashtag statistic application with adaptive
decline scheme.

Fig. 33. The optimal throughput of TW and HA.

Fig. 35. Identification latency of hot keys predictor.

Fig. 36. Throughput of hot keys predictor.

1596 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 10, OCTOBER 2021

REFERENCES

[1] A. Toshniwal et al., “Storm@twitter,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2014, pp. 147–156.

[2] S. Kulkarni et al., “Twitter heron: Stream processing at scale,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2015, pp. 239–
250.

[3] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized streams: Fault-tolerant streaming computation at
scale,” in Proc. 24th ACM Symp. Operating Syst. Princ., 2013,
pp. 423–438.

[4] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed
stream computing platform,” in Proc. IEEE Int. Conf. Data Mining
Workshops, 2010, pp. 170–177.

[5] S. A. Noghabi et al., “Samza: Stateful scalable stream processing at
linkedin,” Proc. VLDB Endowment, vol. 10, no. 12, pp. 1634–1645,
2017.

[6] L. Gu, D. Zeng, S. Guo, Y. Xiang, and J. Hu, “A general communi-
cation cost optimization framework for big data stream processing
in geo-distributed data centers,” IEEE Trans. Comput., vol. 65, no. 1,
pp. 19–29, Jan. 2016.

[7] K.Hildrum, F.Douglis, J. L.Wolf, P. S. Yu, L. Fleischer, andA.Katta,
“Storage optimization for large-scale distributed stream-processing
systems,”ACMTrans. Storage, vol. 3, no. 4, pp. 5:1–5:28, 2008.

[8] G. Jacques-Silva et al., “Providing streaming joins as a service at
Facebook,” Proc. VLDB Endowment, vol. 11, no. 12, pp. 1809–1821,
2018.

[9] H. Wei, H. Zhou, J. Sankaranarayanan, S. Sengupta, and H. Samet,
“Detecting latest local events from geotagged tweet streams,” in
Proc. 26th ACM SIGSPATIAL Int. Conf. Advances Geographic Inf.
Syst., 2018, pp. 520–523.

[10] L. Zhang et al., “A taxi order dispatch model based on combinato-
rial optimization,” in Proc. 23rd ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining, 2017, pp. 2151–2159.

[11] T. Zheng, G. Chen, X. Wang, C. Chen, X. Wang, and S. Luo, “Real-
time intelligent big data processing: Technology, platform, and
applications,” Sci. China Inf. Sci., vol. 62, no. 8, pp. 82101:1–82101:12,
2019.

[12] M. I. Gordon, W. Thies, and S. P. Amarasinghe, “Exploiting
coarse-grained task, data, and pipeline parallelism in stream pro-
grams,” in Proc. 12th Int. Conf. Architectural Support Program. Lang.
Operating Syst., 2006, pp. 151–162.

[13] S. Schneider, M. Hirzel, B. Gedik, and K. Wu, “Safe data parallel-
ism for general streaming,” IEEE Trans. Comput., vol. 64, no. 2,
pp. 504–517, Feb. 2015.

[14] M. A. U. Nasir, G. D. F. Morales, D. Garc�ıa-Soriano, N. Kourtellis,
and M. Serafini, “The power of both choices: Practical load balanc-
ing for distributed stream processing engines,” in Proc. IEEE 31st
Int. Conf. Data Eng., 2015, pp. 137–148.

[15] A. Clauset, C. R. Shalizi, and M. E. J. Newman,“Power-law distri-
butions in empirical data,” SIAM Rev., vol. 51, no. 4, pp. 661–703,
2009.

[16] NASDAQ website, 2019. [Online]. Available: http://www.
nasdaq.com/

[17] Didi Chuxing GAIA Initiative, 2019. [Online]. Available: https://
gaia.didichuxing.com

[18] W. Lin et al., “STREAMSCOPE: Continuous reliable distributed
processing of big data streams,” in Proc. 13th Usenix Symp. Netw.
Syst. Des. Implementation, 2016, pp. 439–453.

[19] N. Rivetti, L. Querzoni, E. Anceaume, Y. Busnel, and B. Sericola,
“Efficient key grouping for near-optimal load balancing in stream
processing systems,” in Proc. 9th ACM Int. Conf. Distrib. Event-
Based Syst., 2015, pp. 80–91.

[20] R. C. Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch,
“Integrating scale out and fault tolerance in stream processing
using operator state management,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2013, pp. 725–736.

[21] C. Balkesen, N. Tatbul, and M. T. €Ozsu, “Adaptive input admis-
sion and management for parallel stream processing,” in Proc. 7th
ACM Int. Conf. Distrib. Event-Based Syst., 2013, pp. 15–26.

[22] B. Gedik, “Partitioning functions for stateful data parallelism in
stream processing,” VLDB J., vol. 23, no. 4, pp. 517–539, 2014.

[23] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 10,
pp. 1094–1104, Oct. 2001.

[24] H. Chen, F. Zhang, and H. Jin, “Popularity-aware differentiated
distributed stream processing on skewed streams,” in Proc. IEEE
25th Int. Conf. Netw. Protocols, 2017, pp. 1–10.

[25] G.Cormode andM.Hadjieleftheriou, “Methods for finding frequent
items in data streams,”VLDB J., vol. 19, no. 1, pp. 3–20, 2010.

[26] G. S. Manku and R. Motwani, “Approximate frequency counts
over data streams,” Proc. VLDB Endowment, vol. 5, no. 12, 2012,
Art. no. 1699.

[27] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computa-
tion of frequent and top-k elements in data streams,” in Proc. 10th
Int. Conf. Database Theory, 2005, pp. 398–412.

[28] G. Cormode and S. Muthukrishnan,“An improved data stream
summary: The count-min sketch and its applications,” J. Algo-
rithms, vol. 55, no. 1, pp. 58–75, 2005.

[29] A. Shrivastava, A. C. K€onig, and M. Bilenko, “Time adaptive
sketches (ada-sketches) for summarizing data streams,” in Proc.
ACM Int. Conf. Manage. Data, 2016, pp. 1417–1432.

[30] R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner, “Heavy
hitters in streams and sliding windows,” in Proc. 35th Annu. IEEE
Int. Conf. Comput. Commun., 2016, pp. 1–9.

[31] L. Fan, P. Cao, J. M. Almeida, and A. Z. Broder, “Summary cache:
A scalable wide-area web cache sharing protocol,” IEEE/ACM
Trans. Netw., vol. 8, no. 3, pp. 281–293, Jun. 2000.

[32] L. Mai et al., “Chi: A scalable and programmable control plane for
distributed stream processing systems,” Proc. VLDB Endowment,
vol. 11, no. 10, pp. 1303–1316, 2018.

[33] A. Drexl, “A simulated annealing approach to the multiconstraint
zero-one knapsack problem,”Computing, vol. 40, no. 1, pp. 1–8, 1988.

[34] K. McKelvey and F. Menczer, “Design and prototyping of a social
media observatory,” in Proc. 22nd Int. Conf. World Wide Web, 2013,
pp. 1351–1358.

[35] ApacheKafka, 2019. [Online]. Available: http://kafka.apache.org/

Hanhua Chen (Member, IEEE) received the PhD
degree in computer science and engineering from
the Huazhong University of Science and Technol-
ogy (HUST), China, in 2010. He is currently a pro-
fessor with the School of Computer Science and
Technology, Huazhong University of Science and
Technology, China. His research interests include
big data processing systems and distributed com-
puting systems. He received the National Excellent
Doctoral Dissertation Award of China, in 2012.

Fan Zhang (Student Member, IEEE) is currently
working toward the PhD degree with the School of
Computer Science and Technology, Huazhong
University of Science and Technology, China. His
research interest includes big data processing
systems.

Hai Jin (Fellow, IEEE) received the PhD degree in
computer engineering from the Huazhong Univer-
sity of Science and Technology, China, in 1994. He
worked with the University of Hong Kong, Hong
Kong from 1998 to 2000, and as a visiting scholar
with the University of Southern California, Los
Angeles, California from 1999 to 2000. He is a
Cheung Kung Scholars chair professor of com-
puter science and engineering with the Huazhong
University of Science and Technology, China and
the chief scientist of ChinaGrid, the Largest Grid

Computing Project in China and the National 973 Basic Research Pro-
gram Project of Virtualization Technology of Computing System, and
Cloud Security. He has coauthored 22 books and publishedmore than 800
research papers. His research interests include computer architecture, vir-
tualization technology, cluster computing and cloud computing, peer-to-
peer computing, network storage, and network security. He received the
Excellent Youth Award from the National Science Foundation of China, in
2001. He received German Academic Exchange Service Fellowship to
visit the Technical University of Chemnitz, Germany, in 1996. He is a fellow
of CCFand amember of ACM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

CHEN ETAL.: PSTREAM: A POPULARITY-AWARE DIFFERENTIATED DISTRIBUTED STREAM PROCESSING SYSTEM 1597

http://www.nasdaq.com/
http://www.nasdaq.com/
https://gaia.didichuxing.com
https://gaia.didichuxing.com
http://kafka.apache.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

