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Abstract—Next generation workloads, such as genome sequencing, have an astounding impact in the healthcare sector. Sequence
alignment, the first step in genome sequencing, has experienced recent breakthroughs, which resulted in next generation sequencing
(NGS). As NGS applications are memory bounded with random memory access patterns, we propose the use of high bandwidth
memories like 3D stacked HBM2, instead of traditional DRAMs like DDR4, along with energy efficient compute cores to improve both
performance and energy efficiency. Three state-of-the-art NGS applications, Bowtie2, BWA-MEM and HISAT2, are used as case studies
to explore and optimize NGS computing architectures. Then, using the gem5-X architectural simulator, we obtain an overall 68%
performance improvement and 71% energy savings using HBM2 instead of DDR4. Furthermore, we propose an architecture based on
ARMVv8 cores and demonstrate that 16 ARMv8 64-bit OoO cores with HBM2 outperforms 32-cores of Intel Xeon Phi Knights Landing
(KNL) processor with 3D stacked memory. Moreover, we show that by using frequency scaling we can achieve up to 59% and 61%
energy savings for ARM in-order and OoO cores, respectively. Lastly, we show that many ARMv8 in-order cores at 1.5GHz match the

performance of fewer OoO cores at 2GHz, while attaining 4.5x energy savings.

Index Terms—genome sequencing, sequence alignment, NGS, HPC, HBM2, KNL, architecture exploration, many-core.

1 INTRODUCTION

HE fast paced digitization of the society has enabled

greater efficiency in all phases of our daily lives, but at
the price of a significant increase in computational resources.
This results in data centers consuming 1% (198TWh) of
the global energy demand in 2018 [1]. Data centers host
High Performance Computing (HPC) systems used for
a wide range of applications, from weather forecasts or
particle physics to genomics and precision medicine. In
HPC data centers, where performance is the main evaluation
metric, x86 based CPUs along with GPUs constitute the
backbone and de facto industry standard of the processing
infrastructure. Recent studies as in [2], [3] have evaluated
using energy-efficient ARM cores in HPC domain. In [4],
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[5], authors have also looked into ARM based data centers.
These works agree that ARM based systems are more energy
efficient as compared to x86 based systems, but are not
at par in performance with x86, therefore, not suitable for
HPC domain. In all these studies, the benchmarks used
for evaluation of performance are compute bounded, with
x86 outperforming ARM based systems. The works [2], [3]
also look into the memory bandwidth (BW) of ARM based
systems with traditional DDR as main memory, for memory
bounded applications and benchmarks, and conclude that
the ARM systems fall behind x86. However, the authors in [3]
suggest that ARM based systems might benefit from future
3D high bandwidth memories.

Next generation biomedical applications like genome
sequencing, are having an astounding impact in the fields
of bioinformatics, cancer research, food microbiology and
drug discovery [6], [7]. Genome sequencing is also one of
the first steps in understanding a new disease, its effects,
development of diagnostic tests and possible cure and
vaccines for it. This process should be fast and efficient
in case of a new disease outbreak, in order to curtain it, as
has been evident during the recent outbreak of the novel
coronavirus (COVID-19). SARS CoV-2, the virus that causes
COVID-19, was first completely sequenced in China by 11
January 2020 and shared with the world community [8]. The
Institut Pasteur in France sequenced the genome for COVID-
19 in three days [8], [9]. Since the availability of the genome
sequence of COVID-19, scientists and researchers around the
world are racing towards the development of vaccine and
diagnostic kits, in order to cure and overcome the outbreak.

HPC architectures are usually used for fast NGS due to
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the complexity of the sequence alignment process. These
HPC systems are extremely power hungry and perfor-
mance is usually the only evaluation metric. However,
performance alongside with energy should be considered
together for enabling scalable HPC systems. HPC systems
run both compute-bounded and memory-bounded appli-
cations. Genome sequencing [6], [10] is among the latter
due to pointer chasing [11]. It is the process of determining
the DNA sequence or the order of bases As, Cs, Gs, and
Ts making up the organism’s genome. Next-generation
sequencing (NGS) is a high-throughput genome sequencing
method. Before the advent of NGS, Maxam and Gilbert
[12] and Sanger along with his colleagues [13] came up
with techniques to sequence DNA by fragmentation and
chain termination, respectively, in the 1970s. The Sanger
sequencing was further commercialized and became the de
facto sequencing technique for 30 years. It has the honour of
being the sequencing method used for the complete human
genome in 2004 [14], through a 13-year effort under Human
Genome project with an estimated cost of $2.7 billion [15].
With the advent and rapid developments in NGS, the human
genome was again sequenced in 5-months at a cost of $1.5
million [16]. The common feature NGS platforms share is
large parallel sequencing of clonally amplified or single DNA
molecules separated spatially in a flow cell [15]. This is
a departure from Sanger sequencing, which uses separate
chain-termination for individual sequencing reactions. NGS
is a huge parallel process that generates hundreds of mega-
bases to giga-bases of nucleotide-sequence output in a single
instrument run [15]. In sequence alignment, which is one of
the first steps in NGS, a sequence read is aligned or checked
against a genomic reference for regions of similarity [10]. This
process must tolerate differences between the query read
and the reference genome, due to errors in the sequencing
process and genuine differences between organisms. In
addition, the strategies used in sequence alignment have
a pointer-chasing nature. They involve a repeated series
of irregular memory access patterns through which they
determine the memory address of the next (pointer) access,
and the previous accessed data is required. Depending on the
length of the sequence to be read, this pointer-chasing nature
affects the performance of the application. In [17], it is shown
that these NGS applications are memory bounded with 40%
stalls due to memory, and 80% of these memory stalls is
accounted for by long latency DRAM accesses. As these
applications are memory bounded, having high performance
compute nodes does not help in improving performance, but
actually adds to the energy consumption of the system, due
to underutilization of the processors. Instead, simpler ARM
based architectures along with high bandwidth memories can
help in having an energy efficient architecture for NGS with
better performance compared to existing solutions, leading
to global energy savings for HPC data centers.

NGS applications use full-text indexing strategies, such as
the FM-index, based on Burrows-Wheeler transform (BWT)
[18], [19] for fast sequence alignments. Additionally, Bowtie2
[20] is a new state-of-the-art NGS application based on FM-
index, with efficient multi-threading capabilities. BWA-MEM
[21] is a widely used sequence alignment application also
based on BWT. Then, HISAT2 [22] is a graph based sequence
alignment application and superior to both Bowtie2 and
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BWA-MEM in performance. HPC class compute resources
like the Intel Xeon Phi KNL processors [23], Intel Skylake
and Broadwell architectures, which support multiple threads,
are used to run these NGS applications and maximize their
performance [18], [24]. GPUs are also explored for genome
sequencing as in [25]. In [26], authors utilize HPC type
many-core x86 clusters for NGS. However, the underlying
behaviour in NGS applications, whether it is based on FM-
index or graph based search, behaves like pointer chasing,
with random accesses to the memory and low cache locality.
Thus, HPC nodes like KNL or GPUs are not efficient for these
sort of memory bounded applications, as they underutilize
and waste the compute resources.

ARM based scale-out processors have been evaluated for
memory bounded data center applications, and reported to
perform well as in [5], using traditional DDR4 memory. To
the best of our knowledge, no studies have analysed ARM
based architectures along with 3D stacked memories for
memory bounded genome sequence alignment applications.
In this paper, we demonstrate that random access memory
bounded NGS workload can be executed on energy efficient
ARM based platforms, with performance at par or surpassing
that of existing x86 or accelerators like KNL, given that there
is enough memory bandwidth available, such as the one
provided by HBM2. KNL was selected as the x86 based
comparison architecture instead of Intel Skylake or Broadwell.
The reason is that KNL has a 3D stacked memory, making the
comparison fair across the memory sub-system for both our
proposed ARM based system as well as x86 based system.

In this paper, we propose and utilize a design space
exploration methodology to find performance, energy and
area optimized architectures for the NGS application domain.
Using this methodology we propose an optimized architec-
ture based on 3D-stacked high bandwidth memory (HBM2)
[27] alongside energy efficient ARMv8 64-bit compute cores.
We use the gem5-X [28] architectural simulator, an open
source, validated and enhanced version of gem5 [29], with
HBM2 memory model. Three widely used state-of-the-art
NGS applications namely, Bowtie2 [20], BWA-MEM [21] and
HISAT?2 [22] with different search strategies are used as case
study applications for performance and energy optimization.
The main contributions of this work are:

e We show by optimizing the memory sub-system using
an architectural exploration methodology, HBM2 with no
last level cache (LLC) can outperform traditional memory
hierarchies with caches and DDR4 for sequence alignment
with Bowtie2, with up to 68% in performance improvement
and 71% energy savings.
Combining the memory sub-system with compute core
optimization, we explore the architectural design space
with different core types, core count, frequency and LLC
size with HBM2 as main memory for NGS. We demonstrate
that many ARMvS in-order cores surpass or match the
performance of fewer ARMv8 OoO cores saving up to 2x
energy when both are operating at same frequency and up
to 4.5x energy benefits when in-order cores are operating
at lower frequency than OoO cores.
o We explore the use of ARMvS cores along with HBM2, as
a replacement for state-of-the-art Intel Xeon Phi 7210 KNL
processor with integrated 3D-stacked MCDRAM memory,
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and demonstrate that 16 ARM OoO cores can match the
performance of 32 KNL cores. We also show that 28 ARM
in-order cores match the performance of 32 KNL cores.

o We perform a frequency sensitivity analysis for ARM-
based systems. We show that we can achieve up to 59%
and 61% energy benefit, for ARM in-order and OoO
system, respectively, when operating more cores at lower
frequency, while matching or surpassing the performance,
as compared to fewer cores at a higher frequency.

2 RELATED WORK

HPC systems, usually based on x86 cores, have traditionally
been used for fast NGS and sequence alignment process.
These x86 CPU-based architectures are also the first point of
execution and testing when a new sequencing algorithm is
being developed. The widely used BWA-MEM was tested
on Intel Xeon 5420 running at 2.5GHz system, as in [21].
Similarly, Bowtie2 has been reported to run on Intel Xeon
X5550 Nehalem running at 2.66 GHz rented from Amazon
web services (AWS) system, as in [20]. Previous works in
[24] and [30] has been done on improving the scalability
of well known and state-of-the-art-aligners like BWA-Mem,
Bowtie2 and HISAT?2 [22] on Intel based HPC architectures
like Intel KNL, Skylake and Broadwell architectures [24].

In addition to x86 CPU based system, GPUs have also
been explored for high-throughput sequence alignment task,
as in [25] and [31]. The Arioc GPU aligner in [25] achieves up
to 10x speedup in comparison to CPU-based system for the
seed and extend stage of BWA-MEM. However, the authors
have not looked into energy comparisons. Moreover, Intel
Xeon X5670 CPUs running at 2.93GHz were used along
with the GPUs, which cannot be used as a standalone
system. In addition, using GPUs for read alignments is
challenging from a software prospective, as one has to
manage single-instruction multiple-data (SIMD) threading
as well as memory management, including data layout and
data transfers between CPU and GPU [32]. Dynamic pro-
gramming dependencies along with memory intensive tasks
in sequence alignment add to the challenges of using parallel
threaded GPU implementation of NGS [33]. Therefore, GPUs
have not been widely adopted for NGS so far.

Sequence alignment accelerators both on ASICs and FP-
GAs have been developed previously. The GenAx accelerator
[34] provides around 31.7x speedup as compared to 14-core
Xeon E5 server. The authors in [35] implement a dataflow
architecture on FPGA for Smith-Waterman Matrix-fill and
Traceback stages, widely used in sequence aligners like BWA-
MEM [21] and Bowtie2 [20]. However, this only accelerates
the Smith-Waterman part of the sequence alignment ap-
plication and the other stages of the application have to
be run on the CPU. In [36], the authors implement Smith-
Waterman accelerator on FPGA, which is attached as a co-
processor to the IBM POWERS CPU, and achieves 1.6x speed-
up compared to CPU-based version. The DRAGEN platform
[37] from Illumina is another state-of-the-art FPGA-based se-
quence aligner which operates in hybrid hardware-software
configuration with a dual Intel Xeon processor. The DRAGEN
architecture is proprietary and has not been disclosed, but
it is reported to achieve 16-18x speed-up compared to BWA-
MEM on a software based system [38]. Despite the speed-up
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that the sequence alignment accelerators can achieve, it takes
a significant amount of time and effort for these accelerators
to be developed, either on FPGAs or ASICs. On one hand,
if they are on FPGAs, which are resource constrained, and
hence, the application have to be scaled out on multiple
compute nodes [6]. Additionally, application developed for
one FPGA might not be compatible across different FPGA
generations. On the other hand, in the case of ASICs, if a new
sequencing algorithm is developed, it cannot be adopted for
the same ASIC platform. Due to these factors, CPU-based
sequence alignment is still widespread and is commonly
used for research, as it is fast to deploy and the same system
can be used with follow-up versions of the application.

On the memory front, NGS applications are memory
intensive. High bandwidth memories like 3D stacked HBM2
are well suited for these applications. In [39], authors use
HBM2 with the Smith-Waterman algorithm on FPGA-based
platform and report 2x speed-up compared to DDR4 memory
system. Processing-in-memory (PIM) exploiting HBM2 has
been proposed in [40] for the seed location filter, used
just before the alignment, and achieve 1.81x-3.65x speed-
up compared to a state-of-the-art FastHASH seed location
filter. However, in both these works significant software
changes were done to use HBM2 with an accelerator on
FPGA [39] or as a PIM [40]. Therefore, to the best of our
knowledge, this is the first work where it is proposed the use
of an ARM many-core compute sub-system along with a high
bandwidth HBM2 based memory sub-system for an energy
efficient sequence alignment system across three state-of-the-
art and widely used NGS applications, namely, Bowtie2 [20],
BWA-MEM [21] and HISAT2 [22].

3 SEQUENCE ALIGNMENT APPLICATIONS

Different optimized sequence alignment NGS applications
exist, including some of the most widely used, relying upon
the FM-index data structures and search algorithms. Among
them the applications that we use as our case study. In this
section we describe them briefly along with the FM-index.

3.1 FM-index

FM-index is a data structure that allows fast substring
searches over large texts [19]. FM-index is based on several
data structures and algorithms, such as Suffix Array and
Burrows-Wheeler Transform (BWT). Given a pattern or query
Q, the FM-index allows to find all occurrences of () in the
text T'. The search process takes the following two steps, as
shown in Fig.1.a: count and locate.

3.1.1

Count is a backward iterative process which performs two
rank queries as highlighted in red in Fig. 1.a and an addition
per each character in ) (starting from the end). In FM-
index, rank queries are typically performed using memory-
consuming data structures, which store previously calculated
data, making it a low computing, highly memory bound
operation. As shown in Fig. 1.a, in the highlighted yellow
part, the count step requires accessing random sections of the
memory in each iteration. The result of this step are pointers
to the first and last position in the occurrences interval of @)
in the sorted list of suffixes from 7.

Count
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Fig. 1. Phases for (a) FM-index and (b) Genome Sequencing Applications

3.1.2 Locate

Locate uses the indexes of the rows to access the suffix array,
where it finds the position of every occurrence of () in the
text T'. Locate can be performed in one memory access at the
cost of a higher memory footprint. With a reduced memory
footprint, it also shows a random memory access pattern.

FM-index data structures are used in several well-known
sequence alignment applications, such as Bowtie2, BWA and
HISAT2 which we will discuss next. All these applications
use the seed and extend techniques, depicted in Fig. 1.b. The
differences between the these alignment applications are
depicted through color coded blocks in Fig. 1.b.

3.2 Bowtie2

Bowtie2 [20] is an open-source, ultra-fast and memory-
efficient alignment application used for aligning DNA reads
to large genomes, able to support gapped alignments. It
relies upon the BWT and the FM-index algorithm to quickly
find non-exact alignments that satisfy a specified alignment
policy. Bowtie2 includes several novelties over the seed and
extend basis, as the prioritization of seed alignments in order
to reduce the computing power used, as shown Fig. 1.b.
Compared to other sequence alignment tools, Bowtie2 is
2.5-3x faster than the Burrows Wheeler Aligner (BWA) when
both applications are searching for gapped alignments.

3.3 BWA-MEM

BWA-MEM [21] is another widely used open-source sequence
alignment algorithm based on FM-index data structures. It
automatically chooses between local and end-to-end align-
ments, supports paired-end reads and performs chimeric
alignment. This algorithm follows seed-and-extend, common
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in other sequence alignment applications as Bowtie2, but
including some novelties. BWA-MEM includes an additional
step which creates groups of seeds, and filters them in order
to reduce unsuccessful seed extension at a later step. The seed
extension step also includes a variation focused on reducing
the computing time used by sub-optimal seed extension and
prioritize end-to-end alignments over local ones.

As most sequence alignment applications, BWA-MEM
processes a batch of reads at a time. This algorithm uses this
feature to obtain both single-end and paired-end mappings.
BWA-MEM also supports multi-threading.

3.4 HISAT2

HISAT? [22] is also and open-source NGS application based
on the seed-and-extend and an extension of FM-index for
graphs as opposed to the raw FM-index in previous applica-
tions, as depicted in Fig. 1.b. Named the Hierarchical Graph
FM index (HGFM), it is composed of a global GFM (graph
FM) index, representing a population of human genomes and
a large set of small GFM indexes, collectively covering the
whole genome. These small indexes (named local indexes),
combined with several alignment strategies, enable rapid
and accurate alignment of sequencing reads.

According to results reported in [22], HISAT?2 is faster
than any other state-of-the-art sequence alignment algo-
rithms like Bowtie2 and BWA-MEM. Although HISAT2
claims to be scalable and supports multi-threading, we
noticed its scalability is limited, both on real hardware as
well as in the simulator, as we will discuss in Section 6.3.1.

Overall, there are similarities as well as some difference
between the three genome sequencing case study appli-
cations, as has already been shown in Fig. 1.b. We will
explore architectures with optimal performance and energy
for these NGS domain applications, taking advantage of the
similarities of the applications, but flexible enough to cater
for the differences between them.

4 METHODOLOGY FOR ARCHITECTURE EXPLO-
RATION

NGS application domain is usually memory bounded with
random memory access pattern. As discussed in Section
3, the three case study applications exhibit a memory
bounded behaviour with random access pattern, as in a
pointer chasing and graph processing applications. The main
compute operation in these applications is the comparison
operation, performed when comparing the search sequence
to a reference index.

Figure 2 shows the architecture exploration and optimiza-
tion methodology. The methodology comprises three phases.

4.1

The first phase we propose is related to memory system
exploration and optimization. It requires optimizing the en-
tire memory sub-system comprising both the main memory
and the cache. As the application is memory bounded with
random access patterns, for the first step we analyse replacing
the traditional DDR4 with a higher bandwidth memory
like the 3D-stacked HBM2 and look into the performance
and energy benefits. If the HBM2 based system with LLC
outperforms DDR4 with LLC both in terms of energy and

Memory Exploration and Optimization
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Fig. 2. Architecture exploration and optimization methodology.

performance, it suggests that HBM2 should replace DDR4 in
further optimization steps.

During the second step of the memory exploration phase,
we look into sweeping the LLC size while optimizing
the cache sub-system. The LLC size providing the best
performance is selected as the optimal one.

For the final and third step of the memory exploration
phase we optimize the cache sub-system focusing on the LLC.
We explore a no-LLC HBM2 system and compare it to LLC
with DDR4 both for energy efficiency and performance. If
no-LLC HBM2 system outperforms LLC with DDR4 in terms
of energy efficiency and performance, we consider it to be a
potential candidate for an optimized architecture and use it
during subsequent phases of the methodology, otherwise we
discard it. If we look into step-1 and step-3, we are effectively
comparing three configurations, HBM2 (LLC) vs. DDR4
(LLC) vs. HBM2 (no-LLC). We do not compare to DDR4
(no-LLC), as it has a lower BW compared to HBM2, and
without any caching effects of LLC, it has lower performance
compared to DDR4 (LLC) and HBM2 (LLC) configurations.

During this first phase in the methodology, we use
percentage performance/energy benefits instead of absolute
values, as we are looking for architectural choices which are
better performing and discard the others.

4.2 Compute Core Exploration and Optimization

After the identification of the best memory sub-systems in the
first phase, we optimize the compute cores.We use two types
of cores: energy efficient in-order cores and high performance
000 cores. In the first stage of this phase, we explore the
performance and energy scaling of the region-of-interest
(ROI) with the number of compute cores. We look into the
optimized core-count and core type based on performance
and energy metrics.

5
Core Count
ARMVS 64-bit ARMVS 64-bit
In-order/000 |/t 4 In-order/000
111-Cache | L1D-Cache | | {| LlI-Cache | L1D-Cache
‘ 32kB 2 | g ‘ 32kB 32k |
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11i-Cache | L1D-Cache > [11-Cache | L1D-Cache
‘ 32kB ke | F ‘ 32kB ke |k
A 4
LLC
(size in MB)

!

Cross-bar Coherent Interconnect

¥
SR

DDR4/HBM2
Fig. 3. Architectural block diagram of experimental setup in gem>5-X [28].

Exploration
Parameters

For second stage of phase 2, we investigate scaling with
the core frequency. We look into the core count and core types
comparing their performance and energy. We also analyse
the area constraints when comparing different core types.

Absolute performance/energy values are used during
this phase of the methodology, to have an insight into the
best performing system.

4.3 Final Architecture

Finally, we compare the optimized architecture with state-
of-the-art systems currently being used for the application
under study. If our proposed architecture outperforms the
state-of-the-art solutions, we select it as our final optimized
architecture.

5 ARCHITECTURAL EXPLORATION AND SIMULA-
TION FRAMEWORK

Architectural exploration is necessary to find the best archi-
tecture for an application, for a given optimization metric.
In this paper we consider energy efficiency together with
performance as the primary optimization metrics.

5.1

Our simulation framework enables us to perform fast ar-
chitectural exploration for performance/energy optimized
architecture for any given application. For HPC applications,
we need a simulation framework capable of running multi-
threaded applications on a many-core simulated system.

Architectural Simulation Framework

5.1.1 Experimental Setup

We use gemS-X1 [28], an open source, validated and extended
version of cycle-accurate gem5 [29] architectural simulator,
which exhibits a validation error of up to 4% when simulating
the ARMVS 64-bit cores of the JUNO platform [41]. ARM
full-system (FS) simulation mode is used with an Ubuntu
16.04 OS, as all our case study applications require various
OS multi-threading support. As shown in Fig. 3, multiple

1. https:/ / github.com/esl-epfl/ gem5-X.git



TRANSACTIONS ON COMPUTERS, VOL. 14, NO. 8, FEB 2020

2-Channels per die
128-bit each

1024 bits

ARATA FE LS ARATA FE LS
S ERET S ERET
I S Eachre [T D-Cache I S Eachre [T D-Cache
it i e i

Fig. 4. System level architectural diagram with 3D-stacked HBM2.

ARMVS 64-bit in-order and OoO cores are used for the
architectural exploration with L1 instruction (L1-I) and L1
data (L1-D) cache fixed at 32KB using the validated ARM
JUNO platform [41] as starting point. All the cores are
connected to the LLC, which then connects to the main
memory of 4GB via a coherent cross-bar interconnect. Gem5-
X statistics for the ROI are used for the performance analysis.

5.1.2 Power Models

For energy evaluation, we use the power model for 28nm
CMOS bulk technology node for ARM OoO and in-order
cores proposed in [5] and [28]. The power model includes the
core active, wait-for-memory (WFM) and static core energy,
LLC read/write and static cache energy. For the memory
power models, we use the DRAM power values as reported
in [42]. Furthermore, counters in gem5-X statistics like active
CPU cycles, WEM cycles, cache read and writes hits and
main memory accesses are used for power modeling.

5.1.3 High Bandwidth Memories

High bandwidth memories like HBM2 [27] help in alleviating
the memory bottleneck of memory bounded applications.
We propose to use the 3D-stacked HBM2 memory for such
workloads, attaining a bandwidth of 307.2 GB/s. The 3D
stacking has been made possible by through-silicon-vias
(TSVs), enabling the memory and the logic cores to be
placed in the same die resulting in high bandwidth memory
accesses.

Gemb5-X implements the HBM2 memory model by ex-
tending the DRAM controller model in gem5 according to
the architectural details of HBM2, as in Table 1. Figure 4
shows the full system architecture with HBM2 in a multi-
core system in gem5-X. Four 3D-stacked DRAM dies are
connected with TSVs and each die with 2-channels giving
a total of 8-channels for HBM2. As each channel is 128-
bit wide, it connects to a 1024-bit wide coherent system

TABLE 2
Parameters for architectural exploration and optimization
Parameter Values
Core Type ARMVS in-order, ARMv8 OoO

Core Count

8 to 64 cores

Core Frequency

1GHz, 1.5 GHz, 2 GHz

LLC size No LLC, 1IMB, 1IMB/8-cores, 2MB/8
cores as in Table 3
Memory Type DDR4, HBM2

bus. The system bus connects to the cache hierarchy which
subsequently connects to the compute cores.

For the power model of HBM2, the energy values of [43]
are used.

5.2 Architectural Exploration Parameters

Following the optimization methodology discussed in Sec-
tion 4, Table 2 summarizes the architectural parameters we
sweep to get an optimized architecture, since they have the
most impact on system performance and energy.

In our experiments, we pin one software thread to each
physical core. For systems with no-LLC, we do not go beyond
28 physical cores, because the simulation turn around time
increases drastically with the number of cores and the scaling
trend can already be captured with up to 28-core simulations.
Similarly, for OoO cores we go to a maximum of 32-cores
systems with LLC. Lastly, for in-order cores we additionally
simulate 64-core systems, which we will discuss in Section 6.

To explore the effects of varying LLC size (L2 in our case),
in addition to no-LLC and a fixed LLC of 1MB, we also
change the LLC size proportionally to the number of cores,
so to have the same LLC size-to-core count ratio, as in Table 3.
We use two ratios, 1IMB/8-cores and 2MB/8-cores. The ratio
is restricted to 2MB/8-cores (at max.), as the LLC size will
increase unrealistically large with the number of cores if we
increased this ratio further. The ratio scales well with 8, 16
and 32 cores, but for 24 and 28 cores, according to the ratio of
1MB/8-core LLC size should be 3MB and 3.5MB, respectively.
Since these sizes are not a power of 2, we scale up the LLC
to 4MB for 24 and 28 cores. Similarly, for 2MB/8-cores, we
use a size of 8MB for both 24 and 28 cores.

6 ARCHITECTURE EXPLORATION RESULTS

In this section we will explore and optimize architectures
for performance, energy and area for the three genome
sequencing applications discussed in Section 3, using the
optimization methodology in Fig. 2 presented in Section 4.
ROI is the search and alignment phase of each application.
Hence, the performance numbers are given in terms of
execution time for ROI The energy consumption corresponds
to the energy in the ROI for the complete system including
CPU cores, caches and memory.

TABLE 1

HBM2 architecture parameters
Parameter Value Parameter Value
Clock period (tCK) 0.833ns | #Channels 8
Channel width 128 bits | #I/0s 1024 pins
Ranks per channel 1 Bandwidth 2.4Gbps/pin
Banks per rank 16 Burst length | 4
Bank groups per rank | 4

TABLE 3
LLC Sizes and scaling with number of cores.

Core Fixed Size | LLC 1MB/8- | LLC 2MB/8-
Count LLC cores cores

8 cores LLC = 1IMB LLC = 1IMB LLC = 2MB
16 cores | LLC = IMB LLC =2MB LLC =4MB
24 cores | LLC = 1IMB LLC =4MB LLC = 8MB
28 cores | LLC = 1IMB LLC = 4MB LLC = 8MB
32 cores | LLC = 1MB LLC =4MB LLC = 8MB
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As input data, we used a set of single-end queries
generated by the Mason simulation tool [44]. These queries,
with 200 symbols in average, have been searched in the
Parus major (Great Tit) genome reference Parus_major1.0.3
[45] which is composed of around 1 gigabases.

We first perform an in-depth exploration of Bowtie2,
and using the insights we gain during its architectural
optimization, we perform a similar exploration for BWA-
MEM and HISAT?2.

6.1

For all the performance and energy results, we launched
Bowtie2 in gem5-X, and performed 200K read alignments,
which is a representative workload for sequence alignment
and stresses the system resources. According to phase-1
of the methodology, in this section we first explore the
performance and energy benefits of using HBM2, with and
without LLC, as compared to DDR4 as in Section 6.1.1 and
6.1.2, respectively. Then, in accordance with phase-2 of the
methodology, we discuss how performance-energy scales
with core count and frequency, as in Section 6.1.3 and 6.1.4,
respectively, in quest for an optimized architecture in phase-3

6.1.1 HBMZ2 vs DDR4

We first look into the performance and energy benefit of using
HBM2 instead of DDR4 for Bowtie2 with different core types,
core count and LLC size. Figure 5.a shows the performance
benefit of using HBM2 instead of DDR4, along with absolute
performance in terms of sequencing time. Hence, the baseline
architecture for each bar in Fig. 5 is different and is composed
of multi-core ARM in-order or OoO cores varying from 8-
cores to 28-cores, which operate at 2GHz with DDR4 memory.
The LLC for the baselines also varies as fixed 1MB, 1MB/8-
core or 2MB/8-cores.

Bowtie2 Architectural Exploration

e Architectures with HBM2 always outperform those with
DDR4 in terms of performance. The performance benefit
is higher for OoO cores compared to in-order cores, as
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Fig. 5. Bowtie2 performance and energy benefit of HBM2 vs DDR4 at
2GHz. The bars represent percentage benefits and the points with lines
show absolute value. (a) Percentage performance benefits along with
sequencing time. (b) Corresponding percentage energy benefits along
with absolute energy values.
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the OoO cores can further exploit the memory BW and,
therefore, take more advantage of HBM2. Our results show
that OoO cores utilize 2x more memory BW in comparison
to in-order cores, due to the speculative multiple issue of
instructions in OoQO cores.

¢ The performance benefit of using HBM2 increases with
higher core count for in-order cores as the increase in
the core count results in a larger stress on memory BW,
which HBM2 provides in comparison to DDR4. The BW
utilization for HBM2 increases from 7GB/s to 22GB/s
when varying the core count from 8 to 28 cores, in
comparison to 6GB/s-12GB/s for DDR4.
For OoO cores, the performance benefit of using HBM2
instead of DDR4 is constant for 16, 24 and 28 cores with
fixed LLC size of IMB and LLC of 1MB/8-core, but it scales
with the core count for larger LLC size of 2MB/8-core. The
reason being that LLC is a memory BW bottleneck for both
HBM2 and DDR4 systems. As OoO cores are stressing the
memory to a larger extent, the performance benefits are
almost constant for smaller LLC size. However, larger LLC
accommodates more search data and helps in alleviating
the BW bottleneck problem, as our results show 2x increase
in LLC read hits when increasing the LLC size from 1MB
to 2MB/8-core. This is also the reason behind the decrease
in percentage performance benefit as we increase the LLC
size for a given core count. However, lower percentage
benefit does not imply lower performance, as we can see
in Fig. 5.a that the absolute performance is always better
with larger LLC size for a given core count.

o The performance benefit translates linearly into energy
benefit, which scales in an identical (but scaled) way as that
of performance, with core type, core count and LLC size.
Thus, by replacing DDR4 with HBM2 as main memory, we
get a performance benefit of up to 50%, as shown in Fig.
5.a, and energy benefit of up to 53% as depicted in 5.b.

e We also ran experiments at 1GHz and 1.5GHz and ob-
served the same scaling trend for both performance and
energy that at 2GHz. So, using HBM2 instead of DDR4
bears performance and energy benefits.

6.1.2 HBM2 (no-LLC) vs DDR4

We explore using HBM2 near to CPU core with no-LLC and
compare it to a DDR4 system with LLC for Bowtie2. Figure
6 shows the percentage performance and energy benefit
of HBM2 in a system with no-LLC as compared to DDR4
with LLC in the system at 2GHz core frequency. Hence, the
baseline system has the same compute cores (in-order or
000 ARM cores) at 2GHz with DDR4 memory and LLC
varies from 1MB, 1MB/8-cores to 2MB/8-cores.

e 000 cores with HBM2 and no-LLC are always better than
that of DDR4 with LLC both in terms of performance
(by up to 68%) and energy (by up to 71.5%), except
when the number of cores are 8 and LLC is 2MB. In this
configuration, the number of cores is not large enough to
fully exploit the memory BW and also the large size of LLC
helps in hiding away the latency to the memory, hence,
LLC-DDR4 systems performs better. The same trend is true
for the energy benefit of OoO cores.

« For in-order cores, the performance and energy benefits
increase with the number of cores, except when LLC
is larger (i.e. 2MB/8-cores), leading to slightly negative
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Fig. 6. Bowtie2 performance and energy benefits of near memory
compute HBM2 with no-LLC systems in comparison to DDR4 with
LLC systems at 2GHz core frequency. (a) Percentage performance
benefits along with sequencing time. (b) Corresponding percentage
energy benefits along with absolute energy values.

performance benefit. In this case, as in-order cannot stress
the memory BW, LLC helps in hiding away the latency to
the memory for DDR4 system. However, energy benefits

still remain, even if the performance benefits are negative.

e We also ran experiments at 1GHz and 1.5GHz and the
scaling trend is the same as that at 2GHz.

As no-LLC HBM2 outperforms DDR4 with LLC, we will
further evaluate this memory configuration as well as HBM2
with LLC as it also outperforms DDR4 with LLC, when
following further steps of the optimization methodology.

The methodology does not suggest exploring the DDR4
(no-LLC) configuration, as discussed in Section 4.1, since it
is the worst performing memory configuration. In any case,
as sanity check, we run the experiments for DDR4 (no-LLC)
for both 28 ARM in-order and OoO cores at 2GHz. The
results show that DDR4 (no-LLC) configuration performs at
least 2x slower, as compared to HBM2 (no-LLC) for both in-
order and OoO cores. Hence, as suggested by our proposed
methodology, we will not be looking into this memory
configuration.

6.1.3 Performance-Energy Scaling with Core Count

We explore the scaling of performance and energy with the
number of cores, for different core types and cache sizes
with HBM2 as main memory. We will not be looking into
the scaling results with DDR4 as we already showed in
Section 6.1.1 and 6.1.2 that using HBM2 has performance
and energy benefits over DDR4. Figure 7 and Fig. 8 show
the performance and energy scaling with number of cores at
2GHz, for different configurations.

o There are a number of configurations in Fig. 7 that either
match or outperform the performance of state-of-the-art 32
KNL cores operating in turbo boost at 1.5GHz (maximum
KNL frequency) with 3D stacked memory, with 1 thread
per core. E.g., we can observe that 16 ARM OoO cores
at 2GHz surpass the performance of 32 KNL cores at
1.5GHz. We can also observe that 32 ARM in-order cores at
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Fig. 8. Bowtie2 energy scaling with number of cores at 2GHz using HBM2
as main memory

2GHz match the performance of 32 KNL cores at 1.5GHz.
As we will show in Section 6.1.4, different ARM cores
at 1.5GHz also match and outperform 32 KNL cores
(operating at 1.5GHz). We choose a comparison point of
32 KNL cores, as opposed to maximum 72 KNL cores,
since we are able to capture the performance and energy
scaling trends in comparison to 32 ARM OoO cores and 64
ARM in-order cores. In fact, this analysis already shows
that this configuration surpasses or matches at least the
performance of 32 KNL cores.

Performance improves when increasing the number of
cores, except for OoO cores with LLC. This is because
larger core count implies more memory requests through
LLC, which gets bottle-necked, leading to performance
stagnation. However, we see that systems with HBM2 and
no-LLC do not have this bottleneck and therefore, the
performance improves with increasing core count. Systems
with in-order cores do not exhibit this effect as in-order
cores do not generate a lot of memory requests, thus, LLC
does not get bottle-necked either.

Many-core in-order system can match or outperform fewer
000 cores performance, with much lower energy. To
illustrate this, we additionally run a simulation of 64 in-
order ARM cores, as shown in Fig. 7 and Fig. 8. We can
see that 64 ARM in-order cores with LLC of 2MB/8-cores,
outperform 28 ARM Oo0O cores at 2GHz by 16.38%and 32
KNL cores (at 1.5GHz) by 37.5%. This leads to an energy
benefit of 47.25% over 28 ARM OoO cores.

o If we consider area, the area of a single OoO core for 28nm

CMOS bulk (2.05mm?) is almost 3 times that of a single
in-order core (0.7mm?) as reported in [28]. So, 64 ARM
in-order cores take 23.8% less area when compared to 28
ARM 000 cores. Consequently, 64 ARM in-order cores
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Fig. 9. Bowtie2 performance scaling with frequency for different core
types and LLC size

with LLC of 2MB/8-cores is the most efficient architecture
in terms of performance, energy and core area.

e In all in-order cores systems (with or without LLC) or OoO
systems without LLC, as the performance scales with core
count, the increase in the energy consumption is not with
the same slope, but with a lower slope, as shown Fig. 8.
This implies, we have higher performance gain, with slight
increase or almost constant energy.

Many ARMv8 in-order core system with LLC and HBM2
not only outperforms KNL but also fewer ARM OoO core
system, in terms of performance, energy and area.

6.1.4 Performance-Energy Scaling with Frequency

We explore the performance and energy scaling with com-
pute core frequencies varying from 1GHz to 2GHz, for
different core types and LLC size. For the sizes of LLC,
we will consider the extremes, i.e., no-LLC and LLC size of
of 2MB/8-cores. The trends for both fixed LLC size of IMB
and LLC of 1MB/8-cores are encapsulated between these
two extremes, as at 2GHz in Section 6.1.3, hence, they will
not be considered in this section for frequency scaling. Figure
9 shows the performance scaling of different architectures
with HBM2, with different frequencies and number of cores.
The results are discussed next.

e Outperforming KNL: We compare the performance of
all the architectures against 32-KNL cores (@ 1.5GHz),
and demonstrate that there are many-core ARM 64-bit
architectures with HBM2 (for different core types, core
count, frequency and LLC size), that can either match or
surpass the performance line of 32-KNL cores, as shown
in Fig. 9. We compare the performance and energy of

all the ARM architectures outperforming KNL in Fig. 10.

Firstly, we see that our proposed architectures can match
the performance of 32-KNL cores at 1.5GHz with as little as
24 000 cores at 1.5GHz or 16 O0O cores at 2GHz with LLC
of 2MB/8-cores. We also see that 64 in-order ARM cores at
2GHz with LLC of 2MB/8-cores is the best configuration
in terms of performance. However, in terms of energy
efficiency, 64 in-order ARM cores at 1.5GHz with LLC
of 2MB/8-cores is the best with 2.38x less energy when
compared to operating at 2GHz.
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o Fewer O0O vs. many in-order cores: We observe that
many in-order cores operating at lower frequency can
match the performance of fewer OoO cores at higher
frequency. E.g., in Fig. 9 28 OoO cores with LLC of 2MB/8-
cores 2GHz is outperformed by 16.5% in performance by
64 in-order cores at 2GHz, with energy savings of 1.9x as
shown in Fig. 10. Furthermore, if we reduce the operating
frequency of 64 in-order cores to 1.5Ghz, it matches the
performance of 28 OoO cores at 2GHz, but with energy
savings of 4.5x as in Fig. 10. This also results in an area
benefit of 23.8%.

o Performance Stagnation vs No LLC System: If we look

at the zoomed-in section of Fig. 9, we see that systems

with OoO cores and LLC have performance stagnated, due

LLC not being able to provide enough BW as required

by high number of OoO cores, even if HBM2 is the main

memory. However, if we remove LLC, and look at the
corresponding no-LLC system, the performance always
scales with the increase in core count, and no performance
stagnation. Therefore, a no-LLC system, is beneficial from
scaling perspective for OoO cores as this translates into
area savings. But Fig. 10 shows that no-LLC has slightly
higher energy demand than corresponding LLC systems.

So even though stagnation exist for OoO cores, a system

with LLC still performs better in terms of performance and

energy when compared to no-LLC system. This stagnation
effect is not evident in 64-core in-order system with LLC.

Thus, a many-core in-order system with LLC is best in

terms of performance, energy, area and scaling.

Frequency Scaling based Energy Savings: Figure 9 and

Fig. 10 show that 64 ARM in-order cores at 1.5GHz with

LLC can surpass the performance of 32 in-order cores at

2GHz, resulting in an energy saving of 2.1x. Similarly, 24

000 cores at 1.5 GHz match the performance of 16 OoO

cores at 2GHz with energy savings of 2.2x.

Many-core (64-cores) ARMvS in-order system with LLC
and HBM2 is the best performing when compared to KNL
and fewer ARMv8 Qo0 cores. It is also more energy efficient
and takes less area in comparison to fewer OoO cores.
When targeting energy efficiency it operates best at 1.5GHz.
However, if we are targeting performance, the same systems
performs best at 2GHz.

6.2 BWA-MEM Architectural Exploration

Following the exploration methodology in Fig. 2 for Bowtie2,
we achieved a performance/energy optimized architecture.
Similarly, following the methodology, BWA-MEM is the
second genome sequencing application that we will use
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to explore optimal NGS architectures in this section. We
launch BWA-MEM in gem5-X FS mode and performed 100K
read alignments. We reduced the read alignments in BWA-
MEM as it is almost twice as slow as Bowtie2, so 200K read
for BWA-MEM was unfeasible in terms of simulation turn
around time. Similar to Bowtie2, using the exploration and
optimization methodology, we first explore the performance
and energy benefits of using HBM2, with and without LLC,
as compared to DDR4. Then, we discuss how performance-
energy scale with core count and frequency so to have an
optimized architecture.

6.2.1 HBMZ2 vs DDR4

We investigate the performance-energy benefits of using
HBM?2 instead of DDR4 for BWA-MEM with different core
types, core count and frequency as shown in Fig. 11. Hence,
the only difference between the baseline and the explored
architecture is the use of HBM2 instead of DDR4. The LLC
size is fixed at 2MB/8-cores, as we discussed for Bowtie2,
that this LLC size has the best performance. As BWA-MEM
also uses a similar FM-Index strategy as Bowtie2 with some
variation, we use the same LLC size.

o We see that systems with HBM2 achieve up to 6.5% and
10.5% performance benefit for in-order and OoO cores,
respectively, when compared to DDR4. The performance
benefit scales and increases with the number of cores, as
well as with the core frequency.

o The performance benefit translates into energy savings
of up to 16% and 18% for in-order and OoO cores,
respectively, when using HBM2 instead of DDR4.

Thus, using HBM2 instead of DDR4 is beneficial both in
terms of performance and energy for BWA-MEM.

6.2.2 HBM2 (no-LLC) vs DDR4

We explore using HBM2 with no-LLC and compare the
energy and performance to a DDR4 system with LLC for
BWA-MEM, in accordance with second step of phase-1 in
the methodology in Section 4. For BWA-MEM, a no-LLC
HBM?2 system, as compared to DDR4 with LLC, is inferior
in performance and energy efficiency for both in-order and
000 cores, in contrast to Bowtie2.

Therefore, we discard no-LLC HBM2 memory configura-
tion for further phases of the methodology.

We run the experiments for DDR4 (no-LLC) for both 28
ARM in-order and OoO cores at 2GHz, as a sanity check. The
results show that DDR4 (no-LLC) configuration performs
28% and 38% slower, as compared to HBM2 (no-LLC) for
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Fig. 11. BWA-MEM performance and energy benefits of HBM2 in
comparison to DDR4 with LLC of 2MB/8-cores
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in-order and OoO cores, respectively. Thus, in accordance
with the methodology, DDR4 (no-LLC) configuration will
not be explored.

6.2.3 Performance-Energy Scaling with Core-Count and
Frequency

We look into the performance and energy scaling of BWA-
MEM with the number of cores as well as with the core
frequency for both in-order and OoO cores in accordance
with phase-2 of the methodology. We will not explore the
architectures of HBM2 with no-LLC, as we discussed in
Section 6.2.2, that these systems are inferior in performance
to DDR4 system with LLC. We will also not be looking into
DDR4 system with LLC, as we also concluded in Section 6.2.1,
that HBM2 system with LLC outperforms DDR4 system with
LLC, both in terms of performance and energy. Figure 12 and
Fig. 13 show the performance and energy scaling of BWA-
MEM, respectively, for different core-types, core frequency
and core count with HBM2, as a main memory with LLC of
2MB/8-cores.

e As shown in Fig. 12, the performance of BWA-MEM scales
with number of cores as well as with core frequency. We
can also see that ARM OoO cores outperform in-order
cores for a particular core count. However, many-core in-
order system can match or outperform fewer OoO cores
system. E.g, 64 in-order cores match the performance of
32 000 cores, with both operating at the same frequency
(1.5GHz/2 GHz). This leads to energy savings, which we
will discuss next.

o The energy scaling of BWA-MEM with both frequency
and core-count is shown in Fig. 13. As the performance
scales with core count, the energy curves are almost
flat, indicating a very small increase in energy with the
core count. So, 64 in-order cores, outperform 32 OoO
cores at 2GHz with energy savings of 48%. For the same
comparison at 1.5GHz, the energy saving is 33%. For 28nm
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technology node, 64 in-order cores occupy 32% less area
when compared to 32 OoO cores.

o Figure 12 also shows that 16 OoO ARM cores at 1.5 GHz
match the performance of 32 Intel KNL also at 1.5GHz.
If we compare with ARM in-order cores, which are three
times smaller in area than ARM Oo00, 28 in-order cores
match the performance of 32 KNL cores for BWA-MEM.

o Figure 12 shows that 32 OoO cores at 1.5GHz match the
performance of 32 OoO cores at 2GHz, giving an energy
benefit of 61% as shown in Fig. 13. Also, we see that 64
in-order cores at 1.5GHz surpass the performance of 32
in-order cores at 2GHz resulting in energy savings of 59%.

Overall, for BWA-MEM, 64 in-order ARM cores with
HBM2 and LLC is the best architecture in terms of perfor-
mance, energy efficiency and area, consequently, achieving
the same optimized architecture than for Bowtie2.

6.3 HISAT2 Architectural Exploration

Graph based genome sequencing application HISAT?2, as
discussed in Section 3.4, is the third and final application we
studied in the context of energy and performance efficient
architecture for genome sequencing applications. HISAT2
was ported to compile for ARMv8 cores. We performed
500K read alignments for HISAT2, in-contrast to 100K for
BWA-MEM and 200K for Bowtie2, as HISAT?2 is faster than
both Bowtie2 and BWA-MEM, giving us around the same
simulation turn-around time as for Bowtie2 and BWA-MEM.

6.3.1 HISAT2 Scaling Problem

When HISAT? is launched either on a simulation platform,
like gem5-X, or natively on a server, it scales in multi-
threading mode on a multi-core system (1-thread/core),
up to a certain thread count, i.e., around 8 ARM cores in
gemb5-X and around 16 cores on an Intel Xeon server. After
that, performance saturates and does not scale with number
of cores. This is due to the lack of further parallelization
support in HISAT2. To overcome it, we launched multiple
instance of HISAT?2, each instance using 4 threads (on 4
cores). Therefore, to stress 16 cores, we would launch 4
instances of HISAT?2, each using 4 cores, with the number of
read alignments equally distributed among them. This does
not affect the memory footprint for HISAT?2, as it supports
using memory-mapped 1/O for reference index which many
HISAT? instances can share.

6.3.2 Clustered Architecture

As discussed in the previous section, as HISAT2 scales to a
limited number of threads, multiple instances of HISAT2 are
launched, each using 4-cores. Hence, we propose a clustered
architecture with 4-core clusters, each with its own LLC to
prevent cache thrashing. This clustered architecture is shown
in Fig. 14. Each cluster connects to a coherent system bus,
which ultimately connects to the main memory, which is
HBM?2 in the figure, but can be DDR4 as well.

The LLC is set to 512KB for each cluster. This gives us
1MB/8-cores, in contrast to 2MB/8-cores for Bowtie2 and
BWA-MEM. The reason being that the dataset in HISAT2 is
smaller and can fit in a smaller cache. We ran experiments
in gem5-X with both 2MB/8-cores and 1MB/8-cores, and
observed no difference in performance. Thus, the choice for
a smaller cache leads to higher energy and area savings. If
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Fig. 14. Clustered architecture with 4-cores per cluster for HISAT2.

we further reduce the cache size, the performance starts to
deteriorate.

We will now describe the optimization methodology for
HISAT?2, as we did earlier for Bowtie2 and BWA-MEM.

6.3.3 HBMZ2 vs DDR4

With the clustered architecture for HISAT2, we look into
the performance and energy benefits of using HBM2 in
comparison to DDR4 (both with LLC) for different core
types, core count and frequency as shown in Fig. 15. The
LLC size is fixed at 512KB/4-cores (1IMB/8-cores). Therefore,
the baseline multi-core architecture differs from the proposed
architectures only at the memory level with DDR4 being used
for the baseline.

o For in-order cores, a HBM2 based systems performs up to
12% better when compared to DDR4 based system, and
up to 14% better for OoO cores. The performance benefit
increases with the number of cores as well as with the core
frequency, as shown by the bars in Fig. 15.

o The energy benefit of using HBM2 instead of DDR4 for
both in-order and OoO cores is up to 26%.

Therefore, using HBM2 instead of DDR4 is beneficial both
in terms of performance and energy for HISAT2, in a system
with LLC.

6.3.4 HBM2 (no-LLC) vs DDR4

For HISAT2, HBM2 with no-LLC does not perform better
than a DDR4 system with LLC in terms of performance
as well as energy efficiency for both in-order and OoO
cores, as was the case with BWA-MEM. Thus, no-LLC HBM2
configuration for HISAT2 will be not be further investigated
in the optimization methodology.

As a sanity check of the methodology regarding the DDR4
(no-LLC) configuration, we run the experiments for DDR4
(no-LLC) for both 28 ARM in-order and OoO cores at 2GHz.
The results show that DDR4 (no-LLC) configuration performs
35% and 38% slower, as compared to HBM2 (no-LLC) for in-
order and Oo0O cores, respectively. Therefore, in accordance
with the methodology, DDR4 (no-LLC) configuration will
not be explored.
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6.3.5 Performance-Energy Scaling with Core-Count and
Frequency

Figure 16 and Fig. 17 show the performance and energy
scaling, respectively, for different core-types, core frequency
and core count with HBM2 as a main memory with LLC
of 512KB/4-cores. We will not explore the architectures of
HBM2 with no-LLC, as we discussed in Section 6.3.4, that
these systems are inferior in performance to DDR4 system
with LLC. We will also not be looking into DDR4 system
with LLC, as we also concluded in Section 6.3.3, that HBM2
system with LLC outperforms DDR4 system with LLC, both
in terms of performance and energy.

o Figure 16 shows the performance scaling of HISAT2 with
number of cores and core frequency. We can also see that
for a given core-count, ARM OoO cores outperform in-
order cores. However, many-core in-order system can
match the performance of fewer OoO cores system. E.g,
64 in-order cores match the performance of 32 OoO cores,
with both operating at the same frequency.

 Figure 17 shows the energy scaling of HISAT2 with both
frequency and core-count. As the performance scales with
core count, the energy curves are almost flat, indicating
a very small increase in energy with the core count. As
discussed above, 64 in-order cores match the performance
of 32 000 cores at 2GHz and giving energy savings of 2x.
Similarly at 1.5GHz, 64 in-order cores consume 39% less
energy than 32 OoO cores, and at the same time matching
performance. For 28nm technology node, 64 in-order cores
occupy 32% less area when compared to 32 OoO cores.

o Furthermore, we compare the performance of ARM based
architectures with Intel KNL. Figure 16 shows that 16 OoO
ARM cores at 1.5GHz match the performance of 32 Intel
KNL also at 1.5GHz. If we compare with ARM in-order
cores, which are three times smaller in area than ARM
000, 28 in-order cores at 1.5 GHz match the performance
of 32 KNL cores for HISAT2.

o Finally, we compare the performance of the same system
configurations at different frequencies. Figure 16 shows
that 64 in-order cores at 1.5GHz match the performance of
32 in-order cores at 2GHz resulting in energy savings of
51%, as shown in Fig. 17. We also see that 32 OoO cores at
1.5GHz surpass the performance of 16 OoO at 2GHz cores
giving us an energy benefit of 61%.

Overall, in the case of HISAT2, a system with 64 in-order

ARM cores with HBM2 and LLC is the best architecture in

terms of performance, energy efficiency and area.

6.4 Discussion

After following the optimization methodology for three case
study applications representing the NGS genome sequencing
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applications, we can draw the following conclusions;

1) In all the three applications, systems with HBM2 as main
memory outperformed their counterparts with DDR4,
both in terms of performance and energy efficiency. This
leads to a performance benefit of 50%, 10.5% and 14%
for Bowtie2, BWA-MEM and HISAT?2, respectively, with
corresponding energy savings of up to 53%, 18% and 26%,
respectively. This is due to the fact that the three NGS
applications are memory bounded and, therefore, benefit
from high memory BW of up to 307.2 GB/s [27], which is
provided by HBM2. We also observe that the performance
and energy benefits of using HBM2 are more for OoO
cores compared to in-order, as OoO cores can exploit more
BW and therefore, take more advantage of HBM2.

2) For no-LLC HBM2 systems compared to LLC with HBM2
or DDR4, both BWA-MEM and HISAT2 showed that
LLC with HBM2 or DDR4 performed better than no-
LLC HBM2 in terms of performance and energy. As
discussed previously, HBM2 with LLC was better than
DDR4 with LLC. Hence, HBM2 with LLC was selected
as the optimized memory sub-system for both BWA-
MEM and HISAT2. In case of Bowtie2, no-LLC HBM2
showed performance and energy benefits of up to 68%
and 71.5%, respectively, as compared to DDR4 with LLC.
Moreover, no-LLC HBM2 outperformed LLC with HBM2,
when the LLC is small (IMB/8-core). However, if the
LLC is large (2MB/8-cores), LLC with HBM2 was the
best performing architecture in terms of performance and
energy for Bowtie2.

3) Both ARM Oo0O and in-order cores outperformed HPC
class Intel KNL with similar 3D-stacked memory as HBM2
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(used in proposed ARM systems), with fewer or similar
core counts at the same core frequency of 1.5 GHz, for all
the three applications. This is due to the fact that as the
applications are memory bounded, high performing Intel
KNL cores do not help in improving the performance.
Hence, energy efficient ARM cores coupled with HBM2
surpass the performance of Intel KNL.

4) For a given system, based on either ARM in-order or OoO
cores, using frequency and core count scaling, we showed
that a system operating at a lower operating frequency
can either match or surpass the performance of that at
higher frequencies with energy savings of up to 55% (2.2x)
for Bowtie2 and 61% for both BWA-MEM and HISAT2,
when using OoO cores. Similarly, for in-order cores, we
got an energy benefit of up to 52% (2.1x), 59% and 51%
for Bowtie2, BWA-MEM and HISAT?2, respectively.

5) Many energy-efficient ARM in-order cores either matched
or outperformed fewer (almost half) high performance
ARM 000 cores at the same operating frequency with
energy savings of up to 47.5%(1.9x), 48% and 50% for
Bowtie2, BWA-MEM and HISAT?2, respectively. This is due
to the memory bounded nature of the applications, which
do not benefit from high performance cores. As discussed,
since in-order are almost 3x smaller in area than Oo00O, it
also gave us core-area savings of 23.8% for Bowtie and 32%
for both BWA-MEM and HISAT2. Furthermore, in case of
Bowtie2, not only in-order cores surpass the performance
of O00 cores, but that also at a lower operating frequency,
resulting in 4.5x energy savings.

6) HISAT?2 application showed performance scaling up to 8
cores in the system. To alleviate this problem, we proposed
a clustered system with an instance of HISAT2 on each
cluster (4-core cluster with 512KB LLC), and the read
alignments distributed among all clusters.

Therefore, many-core (64 cores in our case) ARM in-order
system with HBM2 and LLC was the overall best performing
system for all three applications in terms of performance,
energy efficiency and area.

7 CONCLUSION

In this paper, we have proposed an architectural exploration
and optimization methodology to optimize heterogeneous
computing architectures targeting genome sequencing align-
ment. Using the gem5-X architectural simulator and the
proposed optimization methodology, we explored archi-
tectures to optimize the performance and energy of the
system for three genome sequence alignment applications
i.e., Bowtie2, BWA-MEM, and HISAT?2. All these applications
are memory bounded with random memory access. Our
analysis in this work has shown such memory bounded
workloads do not require power hungry HPC compute nodes
like Intel Xeon Phi KNL, but instead require improvements
in memory BW to enhance the overall performance and
energy. Furthermore, we have proven that by using high BW
memories like HBM2 coupled with energy efficient compute
cores, NGS applications achieve up to 68% performance and
71% energy benefit compared to a traditional system with
DDR4. We also demonstrated that a variety of architectures
based on ARMvS in-order and OoO cores with LLC and
HBM2 outperform 32-core Intel KNL processor. Moreover,
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we have shown that by using frequency scaling we can
achieve up to 59% energy savings for ARM in-order cores
and up to 61% for OoO cores. Lastly, we have highlighted that
up to 4.5x energy savings can be achieved using many simple
in-order cores, instead of fewer complex OoO cores. Thus,
we do not require power hungry HPC class resources like
KNL for efficiently executing NGS applications, but rather
simple many-core ARM in-order architectures with HBM2.
These newly proposed ARM-based many-core architectures
perform much better in terms of both performance and
energy efficiency.
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