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Abstract—A machine learning (ML) design framework is proposed for adaptively adjusting clock frequency based on propagation

delay of individual instructions. A random forest model is trained to classify propagation delays in real time, utilizing current operation

type, current operands, and computation history as ML features. The trained model is implemented in Verilog as an additional pipeline

stage within TigerMIPS processor. The modified system is experimentally tested at the gate level in 45 nm CMOS technology,

exhibiting simultaneously a speedup of 70 percent and an energy reduction of 30 percent with coarse-grained ML classification as

compared with the baseline TigerMIPS. A speedup of 89 percent is demonstrated with finer granularities with a simultaneous

15.5 percent reduction in energy consumption.

Index Terms—Computer systems organization, microprocessors and microcomputers, hardware, pipeline, processor architectures, pipeline

processors, pipeline implementation, VLSI systems, impact of VLSI on system design, VLSI, system architectures, integration and modeling,

design methodology, cost/performance, machine learning, classifier design and evaluation
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1 INTRODUCTION

THE primary design goal in computer architecture is to
maximize the performance of a system under power,

area, temperature, and other application-specific con-
straints. Heterogeneous nature of VLSI systems and the
adverse effect of process, voltage, and temperature (PVT)
variations have raised challenges in meeting timing con-
straints in modern integrated circuits (ICs). To address these
challenges, timing guardbands have constantly been
increased, limiting the operational frequency of synchro-
nous digital circuits. On the other hand, the expanding vari-
ety of functions in modern processors increases delay
imbalance among different signal propagation paths.
Bounded by critical path delay, these systems are tradition-
ally designed with pessimistically long clock period, yield-
ing underutilized IC performance. Moreover, power
efficiency of these underutilized systems also degrades due
to the increasing power leakage. Alternatively, when
designed with relaxed timing constraints, integrated sys-
tems are prone to functional failures. To simultaneously
maintain correct functionality and increase system perfor-
mance, numerous optimization techniques as well as offline
and online models have recently been proposed, including
pipelining, multicore computing, dynamic frequency and
voltage scaling (DVFS), and ML driven models [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10].

Propagation delay in a processor is a strong function of
the type, input operands, and output of the current opera-
tion, and computation history [4]. Computation history
accounts for data overwrite and crosstalk noises. For exam-
ple, the delay overheads for keeping a bit value constant,
changing a single bit from 0 to 1, or changing the same bit
from 1 to 0 are all different. Furthermore, due to capacitive
coupling between adjacent wires, these delays can signifi-
cantly vary based on toggling schemes of the individual bits
within the multi-bit input and output buses. To illustrate
the significant difference in propagation delay between fast
and slow execution of an operation in a typical processor,
one million random instructions are executed on a conven-
tional 32-bit MIPS processor, exhibiting a broad spectrum of
propagation delays for each of the AND, ADD, ADDI, and
MULT operations, as shown in Fig. 1. The worst-case clock
period, as reported by Synopsys Design Compiler, is 4 ns.
As expected, majority of operations are completed within a
small portion of the clock period. For example, the mean
propagation delay of the 248,667 random MULT instruc-
tions (2.2 ns) is twice longer than the mean propagation
delay of the one million random instructions (1.1 ns). Thus,
executing all the instructions with the worst-case clock sig-
nal, or categorizing the execution delay based on operation
type yields a significant delay overhead in modern ICs.

While multicore approaches have been proposed to
enhance system performance, the scalability of modern mul-
ticore systems is limited by the design complexity of instruc-
tion level parallelism and thermal design power constraints
[12], [13]. Note that while multicore and out-of-order CISC
processors are often utilized in high-end applications, RISC
processors comprise 99 percent of the overall microproces-
sors shipped annually around theworld [11]. Thus, speeding
single thread, RISC architectures is an important cornerstone
for enhancing performance in modern processors [11], [14].
This is, therefore, the primary focus of the proposed
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approach. To the best of the authors’ knowledge, this paper
is the first to employ ML for adaptively adjusting the clock
frequency at the instruction-level. Note that with the pro-
posed method, clock frequency is adaptively adjusted (by
switching to a preferred physical clock signal) per instruction
in real time, yielding a fundamentally different approach as
compared with the traditional, task-based dynamic fre-
quency scaling. Also note that a design of multiple clock sig-
nals, as required with the proposed method, is a common
practice in modern ICs [15]. The main contributions of this
work are as follows:

1) A systematic flow is proposed and implemented as a
unified platform for extracting ML input features
from an instruction and classifying the instruction
execution delay in real time.

2) A random forest (RF) model is trained to classify
individual instructions into delay classes based on
their type, input operands, and the computation his-
tory of the system.

3) A new pipeline stage is designed and integrated
within a pipelined MIPS processor.

4) The proposed method is synthesized and verified on
LegUp [16] benchmark suite of programs with Syn-
opsys Design Compiler in 45 nm CMOS technology
node.

The rest of the paper is organized as follows. Prior and
related work is described in Section 2. The proposed unified
platform and the design methodology are explained in
Section 3. ML algorithms for classification of instruction delay
are described in Section 4. In Section 5 the implementation
details of the system are introduced. Experimental results are
presented in Section 6. Conclusions and future work are dis-
cussed in Section 7, and the paper is summarized in Section 8.

2 PRIOR AND RELATED WORK

Multiple approaches have been proposed for efficiently tun-
ing the operating point (i.e., voltage supply and clock fre-
quency) of a system at various levels of a computing
system, including application- and task-based methods and
instruction-level speculations.

Predicting timing violations in a constraint-relaxed sys-
tem is impractical with deterministic approaches, due to the

wide dynamic range of input and output signals (typically
32 or 64 bits), variety of operations in a modern processor,
and delay dependence on the runtime and physical charac-
teristics of the system (e.g., crosstalk noise). ML based
approaches for predicting timing violations of individual
instructions have recently been proposed, which consider
the impact of input operands and computation history on
timing violations [4], [17], [19]. While significant for the
design process of next generation scalable high performance
systems, these approaches have several limitations:

1) Instruction output is considered as a ML feature and
exploited in these systems for predicting the timing
characteristics of the individual instructions. These
predictions are, however, carried out before the
instruction execution, when the instruction output is
not yet available, limiting the effectiveness of these
methods in practical systems.

2) The modules under the test are studied separately
and evaluated in an isolated test environment with-
out considering the effects of other processing
elements (e.g., arithmetic modules, buffers or multi-
plexers). The high reported accuracy is, therefore,
expected to degrade if the methods are applied to a
complex system (e.g., a practical execution unit).

3) Power and timing overheads due to additional hard-
ware are not considered in these papers.

Granularity of prediction is another primary concern. A
bit-level ML based method has been proposed in [18] for
predicting timing violations with reduced timing guard-
bands. While up to 95 percent prediction accuracy has been
reported with this method, the excessively high, per bit
granularity of the ML predictions is expected to exhibit sub-
stantial power, area, and timing overheads. These over-
heads are, however, not evaluated in [18]. Furthermore, a
procedure for recovery upon a timing error is not provided
and the recovery overheads are also not considered.

As an alternative to fine-grain high-overhead ML meth-
ods,multiple coarse-grain schemes for timing error detection
and recovery have been proposed to mitigate the adverse
effect of the pessimistic design constraints. A better-than-
worst-case design approach has been introduced in [5]. With
this approach, the clock period is set to a statistically nominal
value (rather than worst-case propagation delay) and the
history of timing erroneous program counters is kept in a
ternary content-addressable memory (TCAM). The TCAM
is exploited for predicting timing violations of the instruc-
tions based on previous observations. Note that the system
only warns against those timing violations that have been
previously recorded. Alternatively, unseen violations are
not predicted with this approach. Owning to the apparent
simplicity of this approach, only bi-state operating condi-
tions (i.e., nominal and worst-case clock frequencies) can
be efficiently utilized with this method. Alternatively, the
design complexity and system overheads are expected to sig-
nificantly increase with the increasing number of frequency
domains.

An efficient, coarse grain approach has recently been
proposed, which determines a coarse grain DVFS scheme
prior to program execution [10]. This approach relies on
diagnosis of critical paths based on activation patterns and

Fig. 1. Distribution of propagation delays of one million random ADD,
ADDI, AND, and MULT instructions, executed on a RISC processor.
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adjusts the supply voltage level according to this informa-
tion. A fine grained clock and/or voltage adjustment is,
however, impractical with this approach because the execu-
tion time strongly depends on the individual operands and
the computation history, which are not available prior to
program execution.

In BandiTS [20], a reinforcement learning approach has
been proposed to estimate the timing error probability
(TEP) within a program time interval, given timing specula-
tion (TS) ratios, TSR ¼ tclk=tnom for various values of the
reduced clock period tclk, and the worst-case clock period
tnom. The TS-based TEP problem is modeled in [20] as the
classical multi-armed bandit problem [21], where the TS
ratios and TEPs correspond to, respectively, the arms and
stochastic rewards. The primary limitation of that work is
the lack of details about the hardware implementation and
overheads. In addition, the maximum achievable perfor-
mance gain of only 25 percent has been reported. Further-
more, BandiTS approach exhibits per-task clock granularity
and scales the clock frequency for a batch of instructions.
Higher performance gain is possible with fine-grain, per
instruction clock frequency adjustment, as shown in this
paper.

A thermal-aware voltage scaling has been proposed in
[22]. Voltage selection algorithm has been developed and
integrated within FPGA synthesis process to aggressively
scale the core and block RAM voltages, utilizing the avail-
able thermal headroom of the FPGA-mapped design. As a
result, 36 percent reduction in power consumption has been
demonstrated. Driven by workload and thermal power dis-
sipation, this method, however, supports only coarse-grain
voltage and frequency scaling.

Predicting program error rate in timing-speculative pro-
cessors has been proposed in [23]. A statistical model is
developed for predicting dynamic timing slack (DTS) at var-
ious pipeline stages. The predicted DTS values are exploited
to estimate the timing error rate in a program. The imple-
mentation overheads, and the potential performance or
power consumption gains are, however, not reported in
[23].

An offline model for TS processors has been introduced
in [24]. This probabilistic model is trained to optimally
select a better-than-worst-case, nominal clock frequency.
The provided hardware-based speculation, however, does
not consider the overall workload or specific finer units,
limiting the fidelity of the method. Alternatively, the
adverse effect of process variations on the propagation
delay is considered, strengthening the approach in [24].
Note that PVT variations are also considered with the pro-
posed approach of classifying instructions into delay inter-
vals in real time, as described in the following sections.

Finally, ML based methods for modeling system behav-
ior have also been proposed. For example, in [6], linear
regression has been leveraged for modeling the aging
behavior of an embedded processor based on current
instruction and its operands, as well as the computation his-
tory and overall circuit switching activity. As a result, the
timing guardband designed to compensate for aging in digi-
tal circuits can be effectively reduced, in presence of grace-
ful degradation [6]. Reallocation of delay budget has,
however, not been considered with this method.

ML ICs can exhibit a prohibitively high power consumption
and physical size. Furthermore, auxiliary ML ICs can intro-
duce additional delay and increase design complexity,
depending upon the application characteristics. To effi-
ciently exploit ML methods for managing frequency in
modern processors, delay, power, and area of ML ICs
should be considered.

3 THE PROPOSED ML-BASED FREQUENCY

ADJUSTMENT

In this paper, a design methodology is proposed for ML
driven adjustment of operational frequency in pipeline pro-
cessors. To reduce the gap between the actual propagation
delay and the clock period, individual instructions are clas-
sified into the corresponding propagation delay classes in
real time, and the clock frequency is accordingly adjusted
by switching to a preferred physical clock signal. The clas-
ses are defined by segmenting the worst-case clock period
into shorter delay fragments. Each class is characterized by
a specific supply voltage and clock frequency. The primary
design objective is to maximize system performance within
an allocated energy budget. The overall delay and energy
consumption are evaluated with the additional ML compo-
nents, and considering the overheads of incorrect predic-
tions. The proposed scalable framework allows for other
control configurations to be defined in a similar manner for
various design objectives. The real-time clock adjustment is
enabled by the recent advancement in clock management
circuits [27].

In order to evaluate this method, a pipelined 32-bit RISC
processor (TigerMIPS [25]) is utilized as the baseline proces-
sor. The ML classifier is designed as an additional pipeline
stage within the baseline MIPS processor, as shown in
Fig. 2. The inputs to the additional ML pipeline stage are
the current instruction and its operands, as well as the com-
putation history, as defined by the toggled inputs bits (i.e.,
current inputs are XORed with the previous inputs) and
output of the previous operation. The choice of these
parameters is in accordance with the results in [4] and [6].
These inputs are utilized as ML features for predicting the
delay class of the current instruction based on the trained
MLmodel. It is important to note that more complex, slower
ML models can also be trained with this methodology, as
long as the overall design complexity and hardware costs of
the system satisfy the specified constraints. To meet the

Fig. 2. The proposed pipeline with the additional ML stage. In this config-
uration, six ML features and three delay classes are illustrated.
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overall throughput constraints, the trained models can be
implemented as multiple pipeline stages, mitigating the
additional latency introduced by the ML functions. Finally,
the granularity of the output delay (e.g., three delay classes
are illustrated in Fig. 2) can be varied to meet the timing
constraints within the energy budget.

A systematic flow has been developed, prototyped, and
verified on TigerMIPS with LegUp benchmark suite. The
flow comprises three primary phases, as shown in Fig. 3.
The individual phases are described in the following
subsections.

3.1 Phase 1: Baseline Processor Synthesis
and Profiling

During the first phase, the high-level hardware description
language (HDL) model of the baseline processor is synthe-
sized into gate-level description model. During this phase,
timing information is generated in the IEEE standard delay
format (SDF). Based on this information, the gate-level simu-
lation (GLS) is performed and the instruction-level execution
profile is generated. A profile comprises a list of instructions,
the fetched or forwarded operands, the output of the opera-
tions, and the propagation delays. In addition to the execu-
tion profile, post place-and-route (PAR) reports, including
timing and power information, are collected in this phase.

3.2 Phase 2: ML Training

In the second phase, the gate-level profiles from Phase 1 are
parsed and utilized as ML features. Based on the extracted
features, a preferred ML model is trained in Python with
Scikit-learn ML library [26]. A HDL code (e.g., Verilog in

this paper) of the trained model is generated and integrated
within the baseline processor as a single (or multiple, as
needed) pipeline stage(s) between the decode and execute
stages (see Fig. 2).

3.3 Phase 3: Verification and Evaluation

During the last phase, the modified high-level HDLmodel of
the systemwith theMLpipeline stage is synthesized andpro-
filed, as described in Phase 1. To guarantee functional correct-
ness, the output signal is double-sampled to detect timing
violations, and timing-erroneous instructions are re-executed
with the worst-case clock frequency. Similar to the baseline
iteration, the post PAR reports are extracted for evaluating
the timing and energy characteristics of the system. Finally,
the profiling of the modified system is executed during this
phase to evaluate the overall speedup of the system.

To optimize the final solution in terms of the operational
frequency and energy consumption, the proposed flow is
executed iteratively with various ML algorithms and clock
fragments, as shown with the feedback in Fig. 3. The clock
signal of the pipeline registers is assumed to be near-
instantly switched based on the individual classification
results, as has been experimentally demonstrated in [27].

4 MACHINE LEARNING MODELS

Owing to the unique learning characteristics and hardware
tradeoffs of neural networks (NNs), support vector mac-
hines (SVMs), and random forest models, all these ML mod-
els are considered in this paper. Each model is trained based
on the instruction profiles extracted from a synthetically
generated dataset of 3,000 random instructions per class.

Fig. 3. Systematic flow for designing ML predictor within a typical pipelined processor.
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The delay boundaries of the individual classes are experi-
mentally determined with respect to the worst-case delay of
4 ns as follows: {[0.0,2.2],(2.2,4.0]} for the two-class configu-
ration, {[0.0,1.8],(1.8,2.6],(2.6,4.0]} for the three-class configu-
ration, and {[0.0,1.0],(1.0,2.0],(2.0,3.0],(3.0,4.0]} for the four-
class configuration (see Fig. 4).

The feature vector of the ith instruction comprises six ele-
ments, xi ¼ ðinstr; op1; op2; Xop1; Xop2; outputÞ. The first fea-
ture, instr, comprises four subfeatures, representing the
type of the operation in one-hot format,

instr ¼

1000; if arithmetic

0100; if arithmetic with immediate operand

0010; if logical

0001; if multiplication or division

8>>><
>>>:

:

The subsequent four elements are defined by the operands.
The features op1 and op2 are the first and second operands
of the instruction, and the features Xop1 and Xop2 are the
XORed values of the first and second operands with their
respective previous values. The last feature, output, is the
output of the preceding instruction. The last three elements
of the feature vector are exploited to capture the effect of
computation history on the instruction delay. Note that the
operands and output of the preceding instruction are 32-bit
long, as determined by the 32-bit baseline processor utilized
in this work. Thus, the distribution of these features signifi-
cantly differs from the distribution of the operation type
subfeatures. To balance the overall distribution of the indi-
vidual features, the input features are preprocessed and
scaled to follow a normal distribution using quantile trans-
former in Python scikit-learn library. An example of operand
and output features with and without the transformation is
shown in Fig. 5 for arithmetic and logical instructions. Note
that the type subfeatures remain unchanged.

To evaluate the efficiency and efficacy of the proposed
method, propagation delay classification is investigated with
three commonML algorithms:NN, SVM, andRF. The config-
uration, including the hyperparameters, performance, and
hardware costs of RF models (which exhibit superior perfor-
mance in systems explored in this work) are described in the
following subsection. The configurations of NN and SVM
(which might be of interest in other systems) are described in
appendices A.1 and A.2, respectively, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TC.2021.3057764. All the
algorithms are five-fold cross-validated based on three thou-
sand randomly generated instructions per class. While find-
ing an effective metric for stability of the evaluation is still an

open question, k-fold cross-validation with 5 � K � 20 is
typically used, as these K values have been demonstrated to
simultaneously minimize the bias and variance across many
studied test sets [28], [29], [30], [31]. Thus, K ¼ 5 is used in
this work. ML accuracy is reported as the F1-score of delay
classification and the resultant speedup for each benchmark
program has been considered in determining the perfor-
mance of each ML algorithm. Hardware cost is evaluated as
the number of additional transistors required for implement-
ing the individual ML algorithms and has also been consid-
ered in determining the performance of the ML algorithms.
Among the evaluatedML algorithms, the RF classifier is pre-
ferred in this work due to the favorable tradeoff between the
performance gain and hardware costs, as well as the relative
simplicity of the RF algorithm, as explained in the following
subsections.

4.1 Random Forest

RF classifier is an ensemble of decision tree classifiers. The
input samples are split into multiple sample subsets and
each decision tree is trained on a training subset. The final
classification decision for each sample is made based on the
result of averaging the individual tree decisions (i.e., ensem-
bling). RF models benefit from the accuracy, training speed,
and interpretability of the decision tree model, while the
ensembling mitigates overfitting, otherwise common to
decision tree classifiers. Thus, RF is often preferred in

Fig. 4. Delay boundaries with respect to the worst-case delay of 4 ns for
the two-, three-, and four-class configurations.

Fig. 5. A typical feature vector with and without the ML preprocessing,
(a) for arithmetic operation with immediate operand, and (b) for logical
operation. Note that the values without preprocessing are shown on a
logarithmic scale, while the values with preprocessing are shown on a
linear scale.
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scientific and practical applications [4], [32]. The computa-
tional and hardware complexity of RF is a strong function
of the number and depth of the decision trees. The depth of
the individual trees is dependent on the number of features
and their correlation. In this work, a RF grid search is per-
formed over the following ranges of hyperparameters:

1) Number of trees in the forest, n estims 2 f1; 10; 50;
100; 200g,

2) Maximum number of levels in each tree,max depth 2
f10; 20; 30; 40; 50g.

The results of the top estimators (within 1 percent of the
highest F1-score) are listed in Table 1. The hardware cost of
an RF classifier is evaluated based on the number of required
comparators, Oðn estims� log 2ðmax depthÞÞ, and reported
in terms of the total number of RF transistors. Transistor
count for a single comparator is determined based on [33].

4.2 ML Algorithm Tradeoffs

The tradeoffs between the speedup and F1-score are sum-
marized in Fig. 6 for all the classifiers. An interesting obser-
vation from the analysis in Fig. 6 is that no significant
difference is exhibited among the speedups of the NN,
SVM, and RF classifiers in two- and four-class configura-
tions albeit the differences in F1-scores. Alternatively, with
three-class configuration, RF considerably outperforms the
other two methods, implying a complex relation between
the number of classes, classifier type, and the resultant
speedup. In particular, the type of misclassification signifi-
cantly impacts the overall speedup. For example, classifying
a slow instruction into a faster class results in an incorrect
execution output, incurring a four-clock-cycle penalty for
re-executing IF, ID, ML, and EX stages. Alternatively, mis-
classifying a fast instruction results in correct output albeit
the lower or no performance gain. In addition, if a fast
instruction is classified into an intermediate-delay class (for
example, in the case with three delay classes), the overall
performance of the system is still increased (but not maxi-
mized) as compared to the execution with the worst-case
clock period. To understand the significance of speedup
and overhead due to each of the ML classifiers, a speedup-
per-hardware (SPH) metric is considered. The SPH results
are shown in Fig. 7 for RF, NN, and SVM classifiers in two-,
three-, and four-class configurations. Based on these results,

TABLE 1
Top (within 1 percent of the highest F1-score) RF Configurations
and Their Respective Performance Metrics (i.e., speedup, hard-
ware cost (in million transistors), and speedup per hardware

metric (SPH))

Fig. 6. Speedup versus F1-score for two-, three-, and four-class configu-
rations. The results are extracted from RF raw data (listed in Table 1)
and NN and SVM raw data (listed in Tables 4 and 5 in the Appendix sec-
tions), available in the online supplemental material.
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RF exhibits the best tradeoff between the hardware cost
and speedup, as well as the lowest design complexity and
hardware overheads. RF classifier is, therefore, preferred
in this work as a demonstration vehicle of the proposed
framework.

5 IMPLEMENTATION

The proposed framework is implemented with RF model
within TigerMIPS and evaluated based on LegUp bench-
marks. The details of the implementation are described in
this section.

5.1 Unified Platform

A holistic platform is developed based on the proposed sys-
tem design methodology, as illustrated in Fig. 3. The

framework is unified within a shell programming platform
supported with several peripheral programs developed in
C++ and Python. The synthesis steps, as described in Fig. 3,
are sequentially executed from Start to Finish.

During the first phase, Synopsys Design Compiler is
called with the high-level HDL model of the baseline pro-
cessor. The profiler triggers are added to the system and
GLS is performed in Modelsim.

The second phase is triggered upon the completion of the
instruction profiling. An external parser program is called
to transform the instruction profiles into the ML feature
data structure and eliminate outliers. The model is trained
to classify propagation delays into user-defined number of
classes based on a user-specified learning algorithm and
delay boundaries. The ML accuracy and estimated speedup
are evaluated upon the training completion. If the design
requirements are met, the ML software model is trans-
formed into the high-level HDL code. Otherwise, ML model
is retrained with new parameters.

Upon training completion, theHDL code of theMLmodel
is instantiated within the original HDLmodel of the baseline
processor. Finally, the procedure in Phase 1 is repeated in
Phase 3 with the modified processor model, and the overall
system performance and overheads are evaluated.

5.2 Baseline Processor

The proposed framework is demonstrated on TigerMIPS. In
addition to the basic MIPS units, such as Instruction Fetch
(IF), Instruction Decode (ID), Execute (Exe), Memory access
(Mem), and Write-back (WB), TigerMIPS comprises advan-
ced units, such as, forwarding unit, branch handling unit,
stall logic, and instruction and data caches, which are com-
mon in modern pipeline processors.

5.3 Synthesis and Profiling

The baseline model is synthesized in 45 nm NanGate CMOS
technology node [34] with Synopsys Design Compiler and
evaluated throughout this paper with power supply of
1 volt. Upon completion of the synthesis, triggers are imple-
mented in Verilog HDL, enabling data and timestamp sam-
pling at the input and output of the execution unit within
the MIPS pipeline. The profiling is performed based on GLS
with Modelsim simulator.

5.4 Integration, Verification, and Evaluation

The trained ML model is first validated in Python. The HDL
code of the validated ML model is integrated into the base-
line processor. The modified processor is synthesized and
its functionality is verified through GLS. The post PAR
reports are utilized to evaluate the modified system with
respect to specified design constraints.

6 EXPERIMENTAL RESULTS

To demonstrate the framework, LegUp high-level synthesis
benchmark suite coupled with LLVM compiler toolchain
[35] is utilized for profiling and verification during GLS. The
clock frequency of the baseline processor is set to 250 MHz,
as determined based on the worst-case propagation delay
reported by Synopsis Design Compiler. The trained RF
model is tested with nine standard benchmark programs

Fig. 7. Speedup per hardware cost (SPH) for two-, three, and four-class
configurations. The hardware cost is evaluated based on the number of
transistors needed to realize each classifier. The SPH performance is
highest with RF classifier as compared with the SVM and NN based
classifiers for each of the classifier configurations. The results are
extracted from RF raw data (listed in Table 1) and NN and SVM raw
data (listed in Tables 4 and 5 in the Appendix sections), available in the
online supplemental material.
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available within the LegUp benchmark suite and an addi-
tional synthetically generated benchmark with one million
random instructions. The F1-score is shown in Fig. 8 for two,
three, and four ML delay classes, yielding above 95 percent
F1-score for majority of the programswith two delay classes.
Resultant speedup for the individual benchmarks is shown
in Fig. 9, including the practical speedup (with the misclassi-
fication penalty), no-penalty speedup (without themisclassi-
fication penalty), and ideal speedup (with 100 percent
classification accuracy). The energy overhead due to the
additional ML hardware and classification errors is listed in
Table 2. To account for delay overheads due to the misclassi-
fication of a slow instruction into a higher performance class,

a re-execution penalty of four clock cycles (compensating for
IF, ID, ML, and EX stages) is considered within the perfor-
mance results, as reported in Fig. 9. The no-penalty speedup
is also presented in Fig. 9, visualizing the penalty due to the
misclassification of a fast instruction into a slow class. Note
that the overall speedup with four-class configuration is
higher than the speedup with two-class configuration, albeit
the higher classification accuracy with two delay classes.
Alternatively, higher misclassification rate with four delay
classes yields higher re-execution energy consumption, as
listed in Table 2. Also, note that a negative energy overhead
indicates a reduction in the overall energy consumption (i.e.,
power-delay product).

Fig. 8. Inference RF classification based on the LegUp benchmark suite with two, three, and four classes.

Fig. 9. Experimental speedup with the proposed ML framework with two, three, and four delay classes. Practical, no-penalty, and ideal speedups are
presented for each benchmark and class. The practical speedup considers the experimental classification accuracy and delay overheads due to mis-
classification of a slow instruction into a fast class. The no-penalty speedup considers the experimental accuracy, but disregards the idle time due to
misclassification of a fast instruction into a slow class. Finally, the ideal speedup is the theoretical maximum with 100 percent classification accuracy.
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Performance comparison between the proposed method
and state-of-the-art (ML and non-ML) DVFS approaches is
listed in Table 3. For example, both the proposed framework
and the approach in [5] consider binary classification with
two execution delay classes. The proposed method exhibits
on average a 50 percent higher performance gain (i.e.,
speedup) as compared with [5] and yields 33 percent energy
savings whereas a 3 percent energy overhead has been
reported in [5]. As compared with the adaptive approach in
[27], the proposed method exhibits up to 70 percent higher
performance gain when executed with finest granularity
(i.e., 4 classes). The particularly high, 70 percent perfor-
mance gain in this case results in lower energy savings (i.e.,
15.5 percent with the four-class configuration as compared
with 30.4 percent in [27]). Alternatively, energy savings sim-
ilar to [27] are possible with the proposed two-delay class
configuration, yielding a 50.8 percent higher performance
gain than [27].

Power overhead per instruction for two-, three-, and
four-delay class configurations are also determined for the
programs in the LegUp benchmark suite. The average
power overhead (due to the additional ML stage and re-
execution of misclassified instructions) is shown in Fig. 10.
The average power is linearly reduced with the increasing

TABLE 2
Experimental Power and Energy Overhead of the

Proposed ML Method

TABLE 3
Comparison Between the Proposed Method and

Existing State-of-the-Art Methods

Algorithm Performance
gain

Energy
overhead

ML
based

SLoT [4] 23% N/A Yes
Early Prediction [5] 20% 3% No
Clim [17] 24% N/A Yes
SLBM [18] 15% N/A Yes
Adaptive Clock
Management [27]1

18.2% -30.4% No

This
work

2 classes 70% -30% Yes
3 classes 83% -28.6%
4 classes 89% -15.5%

1The fabricated chip, as reported in [27], is 5 percent faster than the simulated
system. Thus, the results from the fabricated chip are used for fairer
comparison.

Fig. 10. Power overhead per instruction for two-, three-, and four-delay
class configurations based on the benchmarks in Table 2.

AJIRLOU AND PARTIN-VAISBAND: MACHINE LEARNING PIPELINE STAGE FOR ADAPTIVE FREQUENCY ADJUSTMENT 595



number of program instructions, exhibiting an overhead of
less than 0.02 microwatts in practical applications with
more than one million instructions. Furthermore, the addi-
tional average power consumption rapidly converges for
various number of classes, as shown in Fig. 10. Thus, when
optimizing the number of delay classes in processors with
large workload, power overhead is a secondary factor.
Finally, the steeper decrease in the power overhead with
the four-class configuration supports the previous assertion
regarding the gain-overhead tradeoff with finer granularity
of delay classes: as the number of instructions increases, the
higher accuracy with four-class configuration mitigates the
adverse effects of misclassifications on the overall system
frequency.

7 CONCLUSION AND FUTURE WORK

The proposed unified framework facilitates efficient utiliza-
tion of the time and hardware resources in the system. In
addition, this approach enables the design of ML pipeline
stages, while satisfying design constraints, as shown in
Fig. 3. Finally, classification of instructions into delay inter-
vals in real time alleviates the path propagation variances
imposed by PVT variations and system aging. To enhance
the performance gain, the proposed approach should be
preferred with those applications and systems characterized
by considerable variations in the propagation delay of the
individual instructions. For example, RISC processors often
exhibit instruction delay disbalance due to variety of inde-
pendent functionalities typically implemented in RISC
based devices.

This method is practical with pipelined, MIPS-like pro-
cessors, in which the overall delay is dominated by the
delay of the execution stage. Although, the proposed
method is explored in this work with a single core RISC pro-
cessor, further increases in energy efficiency and overall
system performance are expected if the approach is adjus-
ted for modern architecture processors with out-of-order
(OOO) execution and multicore processors with multiple
frequency domains. Note that some of the state-of-the-art
OOO microprocessors still borrow from the RISC architec-
ture. For example, in high-end OOO CISC ISA processors,
the CISC instructions are broken by the ISA interpreter into
multiple RISC-like microinstructions [37], increasing the
confidence of successfully scaling the proposed approach to
these OOO microprocessors. Nevertheless, the challenges of
implementing ML-based frequency adjustment in modern
high-end OOO processors remain unresolved until carefully
studied.

To exploit the positive impact of out-of-order execution
and multicore systems on performance and energy effi-
ciency in commercial class processors, the following meth-
odologies are proposed for future investigation.

7.1 Single-Core, Single-Clock Delay-Based
Out-of-Order Execution

To support out-of-order execution, instructions within a
delay class should be bundled into a delay-class specific res-
ervation station (RS). Instructions stored in an RS are indi-
vidually executed at a constant frequency until the RS is
emptied or a dependency is determined, preventing further

execution of instructions in the RS. Such bundling of
instructions reduces the number of clock signal transitions
among various frequencies, increasing the performance and
power efficiency of the system.

7.2 Single-Core, Multi-Clock Delay-Based
Out-of-Order Execution

As previously, to support out-of-order execution, instruc-
tions should be bundled based on the delay classes and
stored within the matching RS’s. To support multi-clock
execution, the ALUs and FPUs within the execution unit
should be operated at different clock frequencies, as deter-
mined by the granularity of the delay classes. Intuitively,
the parallelization of execution from different delay classes
with this approach decreases the number of clock adjust-
ments, increasing the system performance and energy
efficiency.

7.3 Multi-Core, Multi-Clock Delay-Based
Out-of-Order Execution

To leverage the advantages of processingwithmultiple clock
domains in multicore systems, bundled instructions within
the individual clock domains (as defined in Section 7.1)
should be shared among all the system clock domains, miti-
gating the additional cost of multiple clocking (as described
in Section 7.2). To enable the sharing of bundles, efficient
bundle scheduling and low overhead communication chan-
nels are required. While the number of clock adjustments is
expected to further reduce with this approach, additional
overheads due to intelligent communication of bundles
among the cores should be considered. Alternatively, by
complementing the traditional DFS, DVFS, and thread sche-
duling mechanisms with the ML-based frequency adjusting,
additional savings are expectedwith the proposed approach.
Finally, the proposed method can be adjusted in a similar
manner to classify instruction propagation delay of various
pipeline stages.

Existing approaches are focused on offline speculations,
statistical models, per-task (workload-based) frequency
scaling, and prediction of timing errors at an operating
point of a system. Alternatively, the proposed method dem-
onstrates the benefits of fine-grain, instruction-level fre-
quency adjustment, simultaneously utilizing most of the
clock period slack and mitigating the adverse effects of PVT
variations and aging.

8 SUMMARY

In this work, an additional ML pipeline stage is proposed
for increasing the overall system performance by enhancing
the temporal resource utilization. This additional stage is
designed to classify instructions into propagation delay
classes. The system clock frequency is adaptively adjusted
based on the individual delay class predictions. Pipelining
is exploited to mitigate the effect of the ML stage latency on
the overall system performance. Practical ML features are
extracted based on current instruction and computation his-
tory. ML hardware and misclassification power and delay
overheads are considered within the reported results. Tiger-
MIPS is utilized as the baseline processor. The processor is
enhanced with the ML predictor and simulated with the
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LegUp benchmark suite. Based on the experimental results,
up to simultaneously 89 percent performance gain and
15.5 percent energy savings are achieved with four delay
classes. Alternatively, the reduction of 30 percent in energy
consumption with 70 percent performance gain is demon-
strated with two delay classes. A unified shell programing
platform with peripheral programs is designed to provide a
systematic design flow for ML driven pipelined processors.
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