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Abstract—Ferroelectric FET (FeFET) is a highly promising emerging non-volatile memory (NVM) technology, especially for binarized

neural network (BNN) inference on the low-power edge. The reliability of such devices, however, inherently depends on temperature.

Hence, changes in temperature during run time manifest themselves as changes in bit error rates. In this work, we reveal the

temperature-dependent bit error model of FeFET memories, evaluate its effect on BNN accuracy, and propose countermeasures. We

begin on the transistor level and accurately model the impact of temperature on bit error rates of FeFET. This analysis reveals

temperature-dependent asymmetric bit error rates. Afterwards, on the application level, we evaluate the impact of the temperature-

dependent bit errors on the accuracy of BNNs. Under such bit errors, the BNN accuracy drops to unacceptable levels when no

countermeasures are employed. We propose two countermeasures: (1) Training BNNs for bit error tolerance by injecting bit flips into

the BNN data, and (2) applying a bit error rate assignment algorithm (BERA) which operates in a layer-wise manner and does not inject

bit flips during training. In experiments, the BNNs, to which the countermeasures are applied to, effectively tolerate temperature-

dependent bit errors for the entire range of operating temperature.

Index Terms—Non-volatile memory, FeFET, temperature, neural networks, bit error tolerance
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1 INTRODUCTION

NEURAL Networks (NNs) are broadly applied in numer-
ous fields. Managing the resource demand of NNs,

however, is a challenge. To achieve high accuracy, NNs rely
on deep architectures with millions of parameters requiring
a large amount of memory. For NN accelerators with on-
chip Static random-access memory (SRAM), it has been
reported that over 50 percent of the system power is used
by the memory, e.g., [1], [2].

Non-volatile memories (NVMs) for machine learning
algorithms may achieve energy-efficient and sustainable
inference. In particular, neural networks on different types
of NVMs have been developed recently, e.g., resistive RAM
(RRAM) [3], [4], spin-transfer torque RAM (STT-RAM) or
magnetoresistive RAM (MRAM) [5], [6], [7], [8], [9], multi-
level charge-trap transistors (CTT) memory [10], and

ferroelectric-based memories (FeRAM or FeFET) [11], [12],
[13], [14]. Using RRAM (in [3]) and CTT (in [10]) for NN
inference systems leads to large factors in energy saving
compared to using SRAM.

A common technique to reduce the energy consumption
of memories, including NVMs, is voltage scaling. When this
is pushed to the extreme, high bit error rates can occur, even
up to 5-10 percent. For some memory technologies, such as
STT-RAM or RRAM, the bit error rate increases exponen-
tially with respect to the reduction of the supply voltage.
Such bit errors can degrade the accuracy of NNs to unaccept-
able levels if no countermeasures are employed. In the litera-
ture, the energy-reliability trade-off has been explored by
training NNs to be bit error tolerant when applying voltage
scaling, e.g., for RRAM [4] and MRAM or STT-RAM [8], [9].
Another factor that has an impact on the bit error rates is pro-
cess variation, which has been reported with non-negligible
effects onNNs executed on RRAM [7], [15].

Among all existing memory technologies, ferroelectric
FET (FeFET) is one of the most promising fully CMOS-com-
patible NVM technology [16]. Furthermore, FeFET-based
memories achieve read and write latencies within 1 ns,
which is comparable to SRAM, while using low energy [16].
Another benefit of FeFET is the high density, since FeFET
memory cells consist of only one transistor.

In order to use FeFET forNNs, it is necessary to analyze its
error model. To the best of our knowledge, the sources of bit
errors on FeFETwere not explored yet, and hence, there is no
FeFET bit error model in the literature. The underlying
mechanism in FeFET where information is stored, is the
available dipoles within the ferroelectric layer added to the
transistor. However, the directions of those dipoles (which
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determines the stored state, i.e., either logic 0 or logic 1) are
sensitive to temperature in which fluctuations in tempera-
ture can lead to flipping the direction of dipoles. This mani-
fests itself as changes in the induced ferroelectricity and,
hence, sensing circuits will later erroneously read the stored
value, i.e., a bit flip will occur during reading. Process varia-
tion (either within the domains of the ferroelectric material
or within the underlying transistor itself), on the other hand,
manifests itself as changes in electrical characteristics of the
FeFET device such as the threshold voltage, ON current, OFF
current, etc. This leads, similar to temperature effects, to fluc-
tuation in the sensing current during read operations and
hence bit flips can occur. This raises the following key ques-
tion: (Q1)What is the bit error model of FeFET?

In this work, we cover both types of bit flip sources, i.e.,
run-time errors induced by temperature effects and design-
time induced by process variation. In addition to the above
observation of bit errors on FeFET due to temperature and
process variations, our model in Section 2 also shows that
the effect of temperature manifests itself as highly asymmet-
ric bit error rates. This means that the probability of a bit
flip from logical ‘1’ to ‘0’ is different from logical ‘0’ to ‘1’.

In the literature, the effects of asymmetric bit error rates
on NNs have not been assessed and no countermeasures
against them have been investigated yet. For these reasons
we explore the following questions: (Q2) Do the FeFET asym-
metric bit errors cause significant accuracy drop in NNs? (Q3)
How can we exploit the asymmetry of the FeFET bit error model
to achieve tolerance against FeFET bit errors?

Our Contributions. Answering these questions, we focus
on binarized neural networks (BNNs), which are highly
resilient to bit errors [17]. Specifically, we make the follow-
ing contributions:

� We answer Q1 in Section 2 revealing the critical
impact of temperature on the reliability of FeFET-
based memories by a temperature-dependent asym-
metric bit error model that we acquired from precise
simulations. Our physics-based model extracts the
error rate based on realistic FeFET devices in which
the underlying FET transistor is calibrated with Intel
14nm FinFET measurement data and the added fer-
roelectric layer is also calibrated with measurements
from fabricated ferroelectric capacitor. The effects of
process variation as well as temperature are accu-
rately modeled using commercial Technology-CAD
(TCAD) tool flows from Synopsys. For accurate
modeling, all required physics models including
quantum physics are included.

� We answer Q2 by a series of evaluations on different
BNNs. Our experimental results show that the accu-
racy degradation of BNNs can amount to 35 percent
when no bit error tolerance treatment or counter-
measures are employed. When the existing bit flip
training method is applied without taking the asym-
metry into account, the accuracy degradation can be
up to 10 percent, even when the probability of a bit
flip from logical ‘0’ to ‘1’ is 1.090 percent and that of
logical ‘1’ to ‘0’ is 2.198 percent.

� We exploit the asymmetry of the FeFET bit error rates
(Q3) by a bit error rate assignment algorithm (BERA)

which operates in a layer-wise manner. BERA takes an
accuracy drop,which is estimated per layer, as an input
and assigns the bit error rates in a layer-wise manner
such that the accuracy drop isminimized. In contrast to
the existingmethods for bit flip training, which employ
bit flip injection, BERA does not require any bit flip
injection during training.

Fig. 1 illustrates the overview of this work. In Section 2,
we present our FeFET model and the experiments with
which we extract the temperature-dependent bit error rates.
In Section 3, we introduce the system model, i.e., the BNNs
and the data stored in NVM. In Section 4, we present the
BNN execution in which less layers are susceptible to bit
errors. In Section 5 we present the methods we use to pro-
tect the BNNs from FeFET bit errors.

The experiment setup for bit error tolerance training of
the BNNs is detailed in Section 6. In Section 7, we first assess
the impact of the FeFET bit errors on BNN accuracy when
no countermeasures are employed, and then we evaluate
our proposed countermeasures. We provide a literature
review in Section 8 and conclude the work in Section 9.

2 FEFET-BASED NVM: FROM DEVICE

CALIBRATION TO ERROR MODELING

This work is the first to study bit error rates in FeFET-based
NVM memory. Let us start with an overview of FeFET tech-
nology in Section 2.1 and explain the FeFET devices used in
this paper in Section 2.2, before we provide a bit error model
for FeFET devices in Section 2.3.

2.1 Overview of FeFET Technology

The discovery of ferroelectricity in hafnium oxide-based
materials in 2012 has paved the way for Ferroelectric Field-
Effective Transistor (FeFET) to become compatible with the
existing CMOS fabrication process [18], [19]. Thereafter,
many prototypes from both academia and industry have
successfully demonstrated the ability of turning conven-
tional FET transistors into Non-Volatile Memory (NVM)
devices by integrating a ferroelectric layer inside the transis-
tor gate stack. This allowed to integrate, for the first time,
NVM devices along side logic transistors within the same
silicon die, unlike other existing NVM technologies that still
face challenges when it comes to CMOS compatibility.

Besides the compatibility of FeFET technology with the cur-
rent CMOS fabrication process, which is an indispensable con-
dition for any emerging technology to become reality, FeFET

Fig. 1. The general overview of our work. Errors due to temperature
effects, stemming from underlying FeFET devices, are modeled and
then injected during the BNN training. This provides robust BNNs
against run-time temperature fluctuations.
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technology provides the highest density, which is essential for
on-chip memories, because every FeFET-based memory cell
consists of only a single transistor [16].

FeFET, in principle, is similar to conventional FET tran-
sistors used in all existing CMOS technologies nowadays
with only one exception regarding to the gate-stack. In
FeFET devices, a thick (10nm) layer of a ferroelectric mate-
rial is additionally deposited on top of the oxide layer. The
presence of ferroelectricity creates a hysteresis behavior in
which the electrical property of the underlying transistor
considerably shifts based on the previously-applied gate
voltage. When a positive write voltage (þ4V) is applied to
the transistor gate, the polarization direction within the fer-
roelectric material is switched in a certain direction that
supports the transistor channel formulation. Hence, a rela-
tively high drain current (in the order of micro Ampere)
will be later provided by the transistor after the write volt-
age is ceased. The drain current in this case is typically
called low-Vth curve because it has a very low threshold
voltage (Vth). On the other hand, when a negative write volt-
age (�4V) is applied, the polarization direction within the
ferroelectric material is oppositely switched, which strongly
resists the transistor channel formulation. Hence, a very low
drain current (in the order of nano Ampere) will be later
provided by the transistor after the voltage is ceased. The
drain current in this cases is typically called high-Vth curve
because it has a very high threshold voltage (Vth).

The very large difference in the current provided by the
transistor, depending on the dipoles direction within the
ferroelectric material, allows the differentiation between
stored logic ‘1’ (when positive write voltage was previously
applied, i.e., low-Vth curve case) and stored logic ‘0’ (when
negative write voltage was negative write voltage was previ-
ously applied, i.e. high-Vth curve case).

2.2 Our Calibrated 14nm FeFinFET Device and
Measurements

We first implemented a 14nm n-type FinFET device, as shown
in Fig. 2a, using Synopsys Technology CAD (TCAD) tool
flow [21], which is the standard commercial tool to simulate

device fabrication of semiconductor technologies. Afterwards,
we calibrated the built device to reproduce datameasurements
for production-quality 14nm FinFET device from Intel [22]. As
demonstrated in Fig. 2b, the electrical characteristics of our
built FinFET match very well the 14nm Intel measurement
data. Afterwards, we deposited a 10nm ferroelectric layer
(Hf0:5Zr0:5O2) on top of the oxide layer.

Fig. 2b demonstrates how the hysteresis-loop of polariza-
tion versus voltage (which captures the nonvolatile prop-
erty in FeFET devices) matches very well the measurement
data from a fabricated ferroelectric capacitor [23].

We adopt the calibrated FeFET device presented above to
build a bit error model. We investigate the impact that tem-
perature increase has on the behavior of FeFET-based
NVM. In practice, when the temperature rises, the key char-
acteristics of the ferroelectric layer (i.e. remanent polariza-
tion Pr and coercive field Ec) degrade which considerably
reduces the available noise margin as shown in Fig. 3. At
higher temperatures the distance between the two current
curves, i.e. low-Vth and high-Vth curves, (which represents
the two logic states) becomes narrower. Hence, during read-
ing operations, the sensing circuit might not be able to

Fig. 2. Ferroelectric FET (FeFET)-based NVM device calibration [20].

Fig. 3. Temperature impact on the memory window of FeFET. A higher
temperature impact more considerably the high-Vth curve that repre-
sents logic ‘0’ than low-Vth curve that represents logic ‘1’ [20].

YAYLA ET AL.: FEFET-BASED BINARIZED NEURAL NETWORKS UNDER TEMPERATURE-DEPENDENT BIT ERRORS 1683



correctly distinguish between logic ‘0’ and ‘1’ because the
current level associated with each logic state becomes very
close to each other or even overlapping - especially when
process variation effects come into play. Note that tempera-
ture effects have been measured from fabricated devices
and then modeled inside our built TCAD-based FeFET.
Please refer to [24], [25] for further details on the device cali-
bration and measurements.

To calculate probability of error during read operations,
we perform accurate TCAD Monte-Carlo (MC) simulations.
As can be seen in Fig. 4, process variation effects degrade
the quality of ferroelectric layer. From the performed MC
simulations, the probability of error when a logic ‘1’ is erro-
neously read while logic ‘0’ was previously stored p01, and
when probability of error when a logic ‘0’ is erroneously
read while logic ‘1’ was previously stored p10 are calculated
for different temperatures. Those calculated error-rates are
then employed at the system level to investigate the ulti-
mate impact on the inference accuracy.

Details on Our TCAD-Based Modeling of FeFET. As earlier
mentioned, in our work the entire Ferroelectric FinFET
(FeFET) device is fully implemented and modeled in Technol-
ogy CAD (TCAD) framework (Synopsys Sentaurus). Con-
cisely, we model and calibrate a 14nm FinFET device using
TCAD, and then the high-k layer (1.7nm) in the gate stack is
replaced with a 10nm ferroelectric layer (Hf0:5Zr0:5O2) located
on top of the SiO2 layer. It is noteworthy that our device
modeling is not just a combination of a Ferroelectric capacitor
model and a FinFETmodel but, in fact, the complete ferroelec-
tric FinFET device is fully modeled in TCAD using a meta-fer-
roelectric-insulator-semiconductor (MFIS) stacks. For accurate
modeling, the density gradient model is used to account for
the quantum confinement effects and, additionally, the thin-
layer mobility model is used to account for the scaled fin
dimensions. The crystal orientation effects on the channel
mobility, channel strain-related mobility improvement, and
ballistic mobility to account for the quasi-ballistic carrier trans-
port in such nano-scaled dimensions have also been consid-
ered. The S/D doping, sub-fin doping, gate metal work
function, S/D series resistance, low-field mobility parameters
and high-field saturation parameters were carefully calibrated
to reproduce the measurement data of 14nm FinFET. A

Preisachmodel is applied in TCAD to describe the ferroelectric
polarization. In thismodel, the FEfilm is considered to be com-
posed of multiple independent switching domains. Each
domain charge voltage relationship can be described as a clas-
sical rectangular hysteresis loop. The coercive field of each
loop follows a certain distribution. As a result, the total ferro-
electric behavior is obtained by integrating all the domain
responses. This model has been widely applied to describe
large ferroelectric films characteristics.

Temperature Effects Modeling. We first extracted the main
characteristics of ferroelectric capacitor, i.e., remnant polari-
zation (Pr), saturation polarisation (Ps), and coercive field
(Ec), under different operating temperatures. Then, we
model the temperature dependency of Pr, Ps, and Ec inside
our calibrated TCAD-based FeFET. Note that existing mod-
els in Synopsys TCAD only account for temperature effect in
the underlying transistor (FET) and do not account for tem-
perature degradation in ferroelectric layer. Therefore, we
had to build the model of temperature dependency based on
ourmeasurement data inside the TCAD framework.

To Model the Effect of Process Variation. We consider varia-
tion in both underlying transistor as well as the added ferro-
electric layer. In the underlying transistor, we have
considered each of the work function variation, random
dopant fluctuation RDF, interface trap, variations in the
thickness of the ferroelectric layer and interfacial layer
(SiO2). In the ferroelectric layer, we have considered the var-
iation in all ferroelectric parameters (Ps, Pr, and Ec). Note
that, similar to temperature, existing models in Synopsys
TCAD only account for variation effects in the underlying
transistor (FinFET) and do not account for any variation in
the ferroelectric layer. Therefore, we have run Monte-Carlo
simulations for our ferroelectric capacitor, calibrated against
fabrication, in order to capture and extract how variation in
the ferroelectric parameters (Pr, Ps, and Ec) impact the fer-
roelectric capacitor.

Probability of Error Extraction. After integrating the tem-
perature and variation effects inside our calibrated TCAD
models, we perform Monte-Carlo simulations for the entire
FeFET device. This provides us with the complete ID-VG

hysteresis loops. Then, for a certain read voltage, we
extract the probability of error in which a high Vth curve is
wrongly classified as a low Vth curve and vice versa. In
other words, we calculate the probability that a stored logic
‘0’ is read as logic ‘1’ (i.e., Perrorð0 ! 1Þ) and a stored logic
‘1’ is wrongly read as logic ‘0’ (i.e., Perrorð1 ! 0Þ). Note
that for different read voltage values the noise margin, i.e.,
the available separation between the two states, high Vth

and low Vth curves, is different. Therefore, the probability
of errors (Perrorð1 ! 0Þ and Perrorð0 ! 1Þ varies with read
voltage as reported

Discussion on the Impact of Defects. The impact of interface
traps are not considered in this work. Such traps and other
types of generated defects are critical and can degrade the
memory window during the projected lifetime. Recent stud-
ies such as [26], [27] aimed at investigating and modeling
the impact of interface and oxide traps on the memory win-
dow at both device and system levels, respectively. In addi-
tion, charge trapping and detrapping at Si-SiO2 interface
plays an important role in degrading the memory window
and it has shown that controlling the charge trapping and

Fig. 4. Impact of intrinsic variations in the ferroelectric layer on the
induced hysteresis loop. Process variation together with temperature
effects cause errors due to read operations of FeFET-based NVM.
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the resulting imprinting is necessary in order to ensure the
reliability of the FeFET [28]. Recently, it has been shown
in [29] that the non-perfect screening of the polarization
charges may lead to a residual electric field. This counter-
acts the ferroelectric polarization and results in depolariza-
tion field that may degrade the memory window of FeFET
devices.

2.3 Our FeFET Bit Error Model

As shown in Fig. 3 temperature impacts on the memory
window of FeFET. The memory window is defined as the
distance between the low-Vth and curves high-Vth curves
(i.e. ID-VG curves) which represents logic ‘1’ and logic ‘0’,
respectively. Importantly, temperature increase has a more
considerable impact on the high-Vth curve than the low-Vth

curve. As can be noticed in Fig. 3, at a higher temperature
high-Vth moves towards the left side, whereas, low-Vth curve
remains almost unaffected. Hence, the memory window
becomes smaller and the resiliency of FeFET-based NVM
becomes smaller. Hence, the likelihood of errors during
read operations becomes larger. However, because temper-
ature impacts asymmetrically the low-Vth curve and high-Vth

curves, errors in logic ‘1’ and ‘0’ will occur asymmetrically. In
practice, the bit error rate of p10 is smaller than the bit error
rate p01 because temperature impacts logic ‘0’ higher than
logic ‘1’. As explained, the read operation in FeFET is per-
formed by applied a gate voltage to the transistor and then
sensing the provided drain current (ID). Based on the
applied gate voltage (VG), the probability of error will be dif-
ferent. As can be noticed in Fig. 3, based on the selected VG,
the temperature-induced shift in the high-Vth curve is differ-
ent and hence reading at different VG can result in different
probability of errors.

As shown in Fig. 4, intrinsic variations within the ferro-
electric layer strongly impact the induced hysteresis loop.
This, in turn, seriously reduces the resiliency of FeFET-
based NVM devices to noise and increases the probability
of error, as well. Both temperature effects and process varia-
tion effects together degrade the reliability of FeFET-based
NVM devices during run-time and hence errors during
read operations occur. Those errors will asymmetrically
impact the FeFET-based NVM devices and the probability
of flipping logic ‘0’ and logic ‘1’ is different.

Since the probability of bit error depends on the applied
read voltage (i.e. gate voltage VG). Therefore, we estimate
the flip probabilities ðp01; p10Þ at different read voltages 0.1V
and 0.25V. The bit error rates of the FeFET bit error model
at 85℃ are ðp01; p10Þ ¼ ð2:198%; 1:090%Þ for the case of using
read voltage 0.1V and ðp01; p10Þ ¼ ð2:098%; 0:190%Þ for using
read voltage 0.25V.

In Fig. 5, we summarize the relation between tempera-
ture and Pr (remnant polarization), Ps (saturation polarisa-
tion), and Ec (coercive field), which capture the key
properties of the ferroelectric material. The three parameters
degrade linearly with temperature increase. Therefore, we
use the value Tstep 2 f0; 1; . . .; 16g for describing the magni-
tude of temperature.

Based on the above model, the bit error rate (BER) at tem-
perature T for any 0�C � T � Tpeak ¼ 85�C is BERðT Þ ¼
T

Tpeak
� ðp01; p10Þ, where p01 and p10 are defined at 85℃ above.

It is noteworthy that Fig. 5 has two different Y axes (right
and left). The curve of coercive field (EC) belongs to the
right Y -axis. Therefore, the coercive field degrades by tem-
perature by merely 0.08MV/cm (from around 1.14MV/cm
to 1.06MV/cm), which is not very significant. The range of
temperature-induced degradation is aligned with presented
measurement data in literature such as [30], [31]. In this
work, we have relied on our previous work where we stud-
ied the impact of temperature on FeFET devices [20]. The
impact of temperature increase on the Pr (remnant polariza-
tion), Ps (saturation polarisation), and Ec (coercive field)
have been extracted from measured QFE-VFE hysteresis
loop at different temperatures [30].

3 SYSTEM MODEL AND PROBLEM DEFINITION

In this section, we provide the system model and the prob-
lem definition studied in this paper based on the bit error
model presented in Section 2.

3.1 Binarized Neural Networks

Binarized Neural Networks (BNNs) are a relatively novel
type of BNNs that were first proposed in 2016 in [32]. Since
then, BNNs have gained large popularity in application
cases where memory and inference latency are key issues
and a small trade-off in accuracy is acceptable. In the follow-
ing, we summarize the benefits of BNNs in four points.

(1) The key reason behind selecting BNN as a case study
in our work, is the ability to perform trainingwith errors and
achieve error-tolerance neural network in BNN unlike in tra-
ditional deep neural networks (DNNs). Traditional neural
networks use floating-point (e.g., 32 bits) or integer values
(e.g., 8 bits) to represent the NN parameters (i.e., weights,
activations, inputs, etc.). In such a case, the position of the
occurred error (i.e., the bit flip in the value) does matter a lot.
Specifically, in floating-point NNs, one bit error in one
weight can cause the prediction of the NN to become useless
(detailed in [33]). This typically occurs when a bit flip in the
exponent of the floating point representation occurs leading
to an error with an unacceptable magnitude. On the other
hand, in BNNs, a flip of one bit in a binary weight or binary
input causes a change of the computation result by merely 1
(with binarization to f0; 1g). Additionally, the output of

Fig. 5. Relation between Pr (remnant polarization), Ps (saturation polar-
isation), and Ec (coercive field) over temperature. These three parame-
ters capture the key properties of the ferroelectric material.
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every neuron in the hidden layers is binarized, which has a
saturating effect. (2) BNNs are very resource-efficient and
hardware friendly. In BNNs, thememory needed to store the
parameters and also the communication overhead is signifi-
cantly reduced, because the floating-point or integer values
are replaced with binary values. (3) With binary weights, the
costly MAC operations are performed with simple XNOR
and bitcount (often called popcount) circuits. Due to the sim-
pler hardware operations, the inference latency is signifi-
cantly reduced as a result. (4) BNNs synergize outstandingly
with NVM. Traditional SRAM memory is typically used as
on-chip memory, which suffers from high leakage power
and large area footprint (6 transistors to store a single bit,
comapred to merely 1 transistor in FeFET). Therefore, using
a non-volatile memory such as ones based on FeFET for
BNNs will considerably reduces the overall inference
energy. Concisely, inefficient SRAM memories are replaced
with efficient non-volatile FeFETmemories.

Inference. To describe the inference of BNNs, we first start
with regular NNs, In the general case, each layer in a convolu-
tional neural network (NN) computes a convolution between
the weights (parameters) and the input. Subseqently, the
result of the convolution is passed through an activation func-
tion. The output of the activation function is then passed as
the new input to the next layer. All layers are executed until
the NN returns the final outputs. We refer to the entire com-
putation as forward pass.We denote the convolution between
weights and inputs, and the subsequent activation function
on the result by sðPi W

l
iX

l�1Þ, where s is the activation func-
tion, Wl

i the weights of the ith filter in layer l, and Xl�1 the
input. In regular NNs, the weights, and activations are float-
ing point values. In binarized neural networks (BNNs), the
weights and activations are in f�1;þ1g, which reduces the
resource demand in memory [17]. Furthermore, the convolu-
tion and activation can be computed by

2 � POPCOUNTðXNORðWl
i ;X

l�1ÞÞ �#bits > T;

where POPCOUNT accumulates the number of bits set,
#bits is the number of bits in the XNOR operands, and T is
a learnable threshold parameter, the comparison against
which produces an activation value in f�1;þ1g [17], [34].
Bit error tolerance in BNNs can be achieved by injecting bit
flips during training [4]. Since BNNs can be trained for bit
error tolerance, it is possible to use memories with bit errors
like FeFET. Because of the resource efficiency and bit error
tolerance of BNNs, the combination with FeFET is a highly
promising design choice for low-power inference on future
edge devices.

Training. For regular floating point NNs, stochastic gradi-
ent descent (SGD) is employed with mini-batches. The train-
ing data is described with D ¼ fðx1; y1Þ; . . .; ðxI; yIÞg with
xi 2 X as the inputs, yi 2 Y as the labels, and ‘ : Y � Y ! R

as the loss function. We write the weight tensors of a layer
as W ¼ ðW 1; . . .;WLÞ and fW ðxÞ as the output of the NN
with weights W . The objective is to find a solution for the
optimization problem

argmin
W

1

I

X

ðx;yÞ2D
‘ðfW ðxÞ; yÞ;

using a mini-batch SGD, by computing the gradient rW‘
using backpropagation. In the training process of BNNs, the
floating point weights are stored as well, so that the gradient
updates can be applied to the weights. Only in the forward
pass the weight and activations are binarized deterministi-
cally. This method of training BNNs was proposed by
Hubara et al. [17]. If achieving high bit error tolerance is
another objective besides accuracy, then bit flips need to be
injected in the BNN data during the forward pass [4].

BNN Building Blocks. We focus here on binarized convo-
lutional NNs (CNNs) which perform object recognition and
use the following layers: convolutional, maxpool, batch nor-
malization, and fully connected. In the convolutional (C)
layer, a 2D convolution of the input and the filters is com-
puted, where the weights are binarized. We use a filter size
of 3� 3 for every neuron in a C layer. If we use for example
64 neurons in a layer, we write C64. In the maxpool (MP)
layer, in this study a window size 2� 2 is used. The MP
layer always choses the largest value in this window, and
by this downsamples the input. The batch normalization
(BN) layer in BNNs is used to stabilize the training process
[34]. For forward propagation the BN layer in BNNs can be
calculated by thresholding the input. The thresholds of the
BN layer can be quantized to signed integers. In the fully
connected layer (FC) every neuron in layer l is connected
with every neuron in layer lþ 1. When for example 2048
neurons are used, we denote FC2048.

3.2 System Model

In this work, we focus on studying the impact of FeFET-
induced bit errors (due to reliability reductions caused by
temperature effects as described in Section 2.1) on the accu-
racy of BNNs and then investigating the existing tradeoffs
between read energy and reliability of FeFET devices.
Because read operations occur much more frequently than
write operations in NNs, reducing the read voltage pro-
vides a considerable energy saving. In practice, we assume
that FeFET memory devices are being reliably written (i.e.,
receiving a sufficiently large voltage to flip all ferroelectric
domains during writing) and later during read operations
the bit errors due to temperature occur. The intensity of the
bit error depends on the applied read voltage. The lower
the read voltage, the larger the bit error.

For these reasons, we assume that bit errors only occur
during the read processes of the parameters and inputs (i.e.,
input images and activations, which are the inputs to the
convolutional layers) in BNN inference. To clarify that, we
present the considered system model with in Fig. 6. The
assumed system consists of reliable traditional off-chip
memory (e.g., DRAM) and unreliable emerging on-chip
FeFET memory. To perform computations of one layer, the
CPU initiates the retrieval of the weights from the off-chip
DRAM to the on-chip FeFET memory. Then, the values are
sent to the processing elements (PEs), for executing the
operations of BNNs in parallel (i.e., XNOR, popcount, accu-
mulation, and thresholding, etc.). The results of the compu-
tations, which are the activations, are then written back to
the on-chip FeFET memory in order to be later used in the
computations for the subsequent layer.
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Data and instructions for other operations, which are
related to the control of the inference (e.g., from the operat-
ing system to provide a run-time environment to initiate the
inference) are not stored in the FeFET memory, but are
stored in a reliable memory (e.g., off-chip DRAM).

Please note that our methods of training the BNN in the
presence of bit-errors to obtain a more resilient BNN that
exhibit less accuracy loss during inference are not limited to
only having unreliable on-chip memory. Our methods are
general and can be analogously applied despite the actual
origin of the underlying bit error (e.g., having unreliable
off-chip memory for storing BNN parameters of weights
and inputs instead of the unreliable on-chip memory).

Please also note that NVM using ferroelectric transistors
is an emerging memory, and commercial processors that
employ such technology are not yet publicly available.
Hence, we do not use real FeFET memory for running the
experiments. The way we model the usage of FeFET is by
applying the corresponding bit error model during training
and inference on conventional servers with GPUs. In this
work, our focus is on the effect of FeFET bit errors on BNN
accuracy, when on-chip FeFET memory would be used for
storing the weights, inputs, and activations. For evaluating
the bit error tolerance of our built BNNs with respect to the
FeFET-induced errors, the application of the bit error model
is sufficient and the real FeFET memory does not need to be
used.

3.3 Problem Definition

In this work we use FeFET memory as the NVM for execut-
ing BNNs. Specifically two bit error tolerance (BET) problems
are studied in this paper:

� BET Training Problem: Given the FeFET temperature
bit error model described in Section 2 and a set of
labelled input data, the objective is to train a BNN
for high accuracy. The inference of the derived BNN
does not have to be executed with any bit error counter-
measures at run time.

� BET during Inference Problem: Given the FeFET tem-
perature bit error model described in Section 2 and a
BNN, the objective is to execute the given BNN with
bit error countermeasures to reduce the accuracy
degradation of the BNN during runtime. The given
BNN does not have to be trained with bit flip injection.

We note that solutions to the above two problems can be
combined to yield better bit error tolerance.

4 BNN EXECUTION WITH LESS BUFFER WRITES

Before we address the two problems in Section 3.3, we first
present the less-buffer-writes (LBW) BNN execution, in
which the BNNs are executed in a way such that less layers
are prone to bit errors compared to regular BNNs.

The FeFET bit errors can only have an effect on BNN
accuracy when values are read from FeFET memory. For
this reason, the buffering of data (which implies writes fol-
lowed by reads) in FeFET memory should be avoided when-
ever possible. In the regular BNN execution, however,
values are buffered multiple times, as shown in Table 1,
which leads to many (avoidable) reads from FeFET mem-
ory. The values that are buffered to memory during execu-
tion are the intermediate results, i.e., the outputs of the
convolution (C), maxpool (MP), and batch norm (BN) layer.

In order to minimize the buffering to FeFET memory, we
use a less-buffer-writes (LBW) BNN execution. The LBW
execution aims to reduce the reads from FeFET memory so
that less values are affected by bit errors. When using the
LBW execution, only the BNN parameters, inputs, and out-
puts of the BN layer (activations) suffer from bit errors.

In the LBW execution, we compute the C and MP in such
a way that they are applied without buffer writes to mem-
ory. The LBW execution begins with the C layer. In the first
iteration of the the LBW execution, the C layer computes the
convolution results of the first four values ð0; 0Þ; ð0; 1Þ;
ð1; 0Þ; ð1; 1Þ in the input. By MP, the maximum of the four
values is then computed and thresholded with the BN layer
to produce a binary output. After the threshold has been
applied, the result has to be buffered in memory, so that the
next C layer of the BNN can compute with it. In the next
iteration of the LBW execution, the next four values in line
(ð0; 2Þ; ð0; 3Þ; ð1; 2Þ; ð1; 3Þ) are processed the same way as in
the first iteration. These iterations are repeated until the
input to the C layer is fully processed. Due to the processing
sequence of the LBW execution, only a buffer of two values
is needed between the C ! MP ! BN computation. One
value is needed for holding the current maximum and the
second for the current MP result. For the case of C ! BN
layer compositions, the output of the convolutions do not
need to be buffered because the thresholding can directly be
applied to the output of the convolution.

If the regular execution is used instead of LBW, one
would have to consider bit flips in the results of the C and
MP as well, which also are signed integer values. For exam-
ple, bit errors with any of the FeFET bit error rates in the
outputs of the C layers (16 bit unsigned integers) before a

Fig. 6. System model with unreliable on-chip FeFET memory and reli-
able off-chip DRAM.

TABLE 1
The Regular BNN Execution With Many Buffer Writes to Mem-

ory and the Less-Buffer-Writes (LBW) Execution

Regular execution In! C! buffer writes
! buffer reads!MP! buffer writes
! buffer reads! BN! buffer writes

LBW execution In! 4C!MP! BN! buffer writes

Another layer configuration that we use is C ! BN, in which case the thresh-
olding of the BN is applied directly to the C result.

YAYLA ET AL.: FEFET-BASED BINARIZED NEURAL NETWORKS UNDER TEMPERATURE-DEPENDENT BIT ERRORS 1687



MP layer cannot be tolerated. The predictions of the BNNs
become useless in this case. Bit flips in signed integers can
naturally change the value in a much larger extent com-
pared to binary values.

The number of executed operations in the LBW execution
is equal to the number of executed operations in the regular
way of execution. The operations of the LBW are simply
executed in a different sequence and thus data from the
memory is retrieved in a different sequence as well. The
implications of the LBW execution on inference efficiency
have to be investigated case-by-case for different inference
systems during system design.

In this work, we do not assume any specific inference
system. FeFET could e.g., be used as on-chip memory for
BNN data while processing elements in an acceleratorr exe-
cute the BNN operations. In these cases, the operations of
LBW BNNs are executed in ALUs and the values for accu-
mulation and maxpool operations are stored in registers.
We assume that once the values are in these components,
they are not affected by bit errors anymore.

Since the correctness of the BNN outputs and the batch
normalization thresholds (see [34]) are indispensable for
BNN accuracy, we assume that this small fraction of values
is protected by software or hardware measures such as
Error-correcting code (ECC) or correcting implausible val-
ues with memory controller support (see [33]).

5 METHODS FOR ACHIEVING BIT ERROR

TOLERANCE AGAINST FEFET BIT ERRORS

In this section we present two different methods against the
FeFET bit errors. We first describe how we take the asym-
metry into account in bit flip training in Section 5.1, target-
ing the BET training problem posed in Section 3.3. Then, in
Section 5.2, we present the novel bit error rate assignment
algorithm (BERA) which exploits the asymmetry of the
FeFET bit error model in a layer-wise manner with the goal
of minimizing accuracy drop. This targets the BET during
inference problem.

5.1 Bit Flip Injection During Training

In order to achieve high accuracy, we train the BNNs by
minimizing the cross entropy loss, as described in Section 3.
To also train BNNs for bit error tolerance against the FeFET
bit errors, we use bit flip injection during training, as pro-
posed in [4].

However, simply training for bit error tolerance without
taking the asymmetry into account can lead to unacceptable
accuracy drop of up to 10 percent, even when the well-
known bit flip training method is used. Additional steps to
the existing methods need to be taken. Specifically, the
asymmetry needs to be taken into account evaluating all bit
error rate settings ðp01; p10Þ 2 fð2:198; 1:090Þ; ð1:090; 2:198Þ;
ð2:098; 0:190Þ; ð0:190; 2:098Þg by injecting bit flips with
ðp01; p10Þ into all the BNN data that is prone to bit errors. By
doing this we can find out which setting leads to the least
accuracy drop under temperature dependent bit errors.

5.2 Bit Error Rate Assignment Algorithm (BERA)

Instead of only evaluating the configurations in which all
layers of the BNN are configured with the same bit error

rates, we also aim for a more fine-grained method. In this
work, we present the novel bit error rate assignment algo-
rithm (BERA), which exploits the asymmetry of the FeFET
temperature bit error model in a layer-wisemanner. The goal
of BERA is to reduce the effect of the bit errors by finding
the layer-wise bit error rate configurations which maximize
accuracy, without bit flip training.

BERA operates in two steps. In the first step (Algorithm
1), the accuracy drop of the entire NN is estimated by mea-
suring the accuracy after injecting bit errors into one layer
of the network (with the training set). Because this operation
is non-deterministic we repeat it a couple of times and take
the average in the end. In the second step, the setting with
the lowest accuracy drop is chosen and assigned to the
layer.

In Algorithm 1, we first set bers, the bit error rates, in
Line 1. We then initialize an array for all layers that suffer
from bit errors in Line 2, with a subarray for every bit error
rate configuration, since we estimate the accuracy drop of
every configuration. The value reps is the number of repeti-
tions through the entire training data set for each bit error
rate setting. With this parameter, the precision of the accu-
racy drop estimation can be tuned. We measure the accu-
racy without errors on the training set in Line 4. The
accuracy drop is estimated for every bit error rate setting in
every layer individually in the loop. Finally, the results of
the estimation are stored in an array called adpl which is
normalized with the number of repetitions after Line 12.
Then, from the adpl array, the setting with the lowest accu-
racy drop per layer is chosen and assigned to the layer at
hand. We call this assignment the Greedy-A assignment.

Algorithm 1. Accuracy Drop Per Layer Estimation

Input:model; ðXtrain; ytrainÞ
Output: adpl
//Initialize bit error rates

1: bers ¼ fc1; . . . ; cSg
// Accuracy drop per layer (adpl)

2: adpl ¼ ffad1;1; . . .; ad1;Sg; . . .; fadL;1; . . .; adL;Sgg
// Number of repetitions for a bit error rate

setting and layer

3: reps ¼ R
// Measure accuracy of model

4: accv ¼ accuracyðmodelðXtrainÞ; ytrainÞ
5: for each layer l 2 f0; . . .; Lg do
6: for each ci in bers do
7: set bit error rate tuple ci only for layer l
8: for each r in r 2 f0; . . .; repsg do
9: accl;ci;r ¼ accuracyðmodelðXtrainÞ; ytrainÞ
10: adpl½l�½ci� ¼ adpl½l�½ci� þ accl;ci;r
11: reset bit error rates in l
12: for each layer l 2 f0; . . .; Lg do
13: for each ci in bers do
14: adpl½l�½ci� ¼ accv � adpl½l�½ci�

R

6 BNN EVALUATION SETUP

In this section, we first present the framework, the BNN
architectures, and the datasets for evaluating the BNNs’ tol-
erance against FeFET bit errors. Then, we discuss the
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methods used for bit flip injection. Afterwards, we present
the datasets and the models in the evaluations of this work.
At the end of this section, we discuss the bit error tolerant
BNN execution used in the evaluations.

6.1 Bit Error Tolerance Evaluation Setup

In order to train the BNNs to tolerate the FeFET temperature
errors, we use a BNN training environment that is set up
with PyTorch , which provides efficient tensor operations
for NN model optimization on GPUs. PyTorch also allows
Cpp-access to the tensors with custom CUDA kernels,
which we developed and use for bit flip injection into the
various data types that BNNs use.

For the evaluation of accuracy over bit error rate, we
inject bit flips with the bit error rates presented in Section 2,
with the combinations ðp01; p10Þ 2 fð2:198; 1:090Þ; ð1:090;
2:198Þ; ð2:098; 0:190Þ; ð0:190; 2:098Þg. With the temperature
steps Tstep 2 f0; 1; . . .; 16g, we evaluate the full bit error
range. This corresponds to the entire range of operating
temperature considered in our FeFET analysis. We incorpo-
rate these temperature steps in the evaluation by defining
T 	
step ¼ 1

16Tstep in BERðT 	
stepÞ ¼ T 	

step � ðp01; p10Þ. In the accu-
racy over bit error rates plots of following sections, we
annotate the x-axis with T 	

step.

6.2 Bit Flip Injection

For bit flip injection into the BNN data, we call CUDA ker-
nels to operate efficiently on the tensors of BNN weights,
intermediate results, and inputs during each forward pass.
To inject bit flips into the binarized values and intermediate
results (in f�1;þ1g), the CUDA thread changes the sign of
a single entry if a randomly sampled floating point value v
between 0 and 1 (using the NVIDIA cuRAND library) is
below the bit error rate p in decimal. We inject bit flips anew
in every forward pass for the BNN parameters and interme-
diate results. To inject bit flips into the 8 bit input values, we
use the BFITT tool [35]. The functions in BFITT access the
bit level representation and inject bit flips with CUDA ker-
nels that execute the same comparison as above but iterate
through the entire length of the bit representation. We inject
bit flips into the entire input data batch every time a new
batch is sampled.

6.3 Datasets, BNN Models, and LBW Execution

Datasets. In the evaluations, we use three standard object
recognition, which are detailed in Table 2. FashionMNIST
contains grayscale images of clothes in 10 classes sold on
Zalando. CIFAR10 includes coloured images of 10 common
objects and animals. SVHN contains images of house num-
bers in 10 classes from Google Street View.

BNN Architectures. For every dataset, we use a different
BNN architecture. The description of the BNN architectures
used in this work are collected in Table 3. To achieve reason-
able accuracy, we use larger models for CIFAR10 and
SVHN. For Fashion, a smaller BNN architecture is suffi-
cient. The BNN architectures have similar basic building
blocks (described in Section 3.1)) as commonly used NN
models, such as VGG-16 and MobileNet, but without spe-
cial layers such as foe example 1� 1 convolutions.

LBW Execution of BNNs. In the experiments we use LBW
BNNs, which we proposed in Section 4. Here, we conduct
evaluations for the sake of demonstrating that our assump-
tion of using the LBW (Less Buffer Writes) execution of
BNNs is reasonable and, additionally, to quantify the
impact of such an assumption on system performance. The
LBW execution of BNNs buffers less intermediate results to
the memory during execution than the usual way of execu-
tion. Our goal is to demonstrate that the LBW execution of
BNNs does not lead to significantly higher execution times
compared to the regular way of execution. We use this
assumption (LBW execution of BNNs) in the error tolerance
evaluations, to justify bit flip injection in the weights, input
images, and activations (instead of injecting bit flips in all
intermediate results, which are the outputs of every layer).
Here, we evaluate the execution time of LBW BNNs and
compare it to regular ones using commonly available CPUs
for the BNN operations. As experiment platforms for the
execution time measurements of machine learning models
we use the same setup as the work in [36]. Furthermore, we
generate C++ code from PyTorch models with the same
framework as the study in [37]. For Intel we used a Intel i7-
8550U CPU with 1.80 GHz and 16 GB RAM. For ARM we
used an ARM Cortex-A53 with 1.4 GHz and 1 GB RAM
(RaspberryPi 3B+). For PPC we used a QorIQ T4240
PowerPC CPU with 1.67 GHz and 6 GB RAM. To summa-
rize the results in Table 4, the execution times for FASHION
and CIFAR only differ by a large factor for PPC, and for the
other settings the execution times do not differ by a large
margin.

7 EXPERIMENTS FOR FEFET TEMPERATURE BIT

ERROR TOLERANCE

In Section 7.1 we first assess the impact of FeFET bit errors
on BNN accuracy without any countermeasures. In the next
step, to protect the BNNs, we apply the well-known bit flip

TABLE 2
Datasets Used for Experiments

Name # Train # Test # Dim # classes

FashionMNIST 60,000 10,000 (1,28,28) 10
CIFAR10 50,000 10,000 (3,32,32) 10
SVHN 73,257 26,032 (3,32,32) 10

TABLE 3
BNN Architectures and Bit Error Rates and Used in This Work

Parameter Range

Fashion CNN In! C64!MP2! BN! C64!MP2! BN
! FC2048! BN! FC10

CIFAR10 CNN In! C128! BN! C128!MP2! BN
! C256! BN! C256!MP2! BN
! C512! BN! C512!MP2! BN
! FC1024! BN! FC10

SVHN CNN In! C128! BN! C128!MP2! BN
! C256! BN! C256!MP2! BN
! C512!MP2! BN! C512!MP2! BN
! FC1024! BN! FC10

YAYLA ET AL.: FEFET-BASED BINARIZED NEURAL NETWORKS UNDER TEMPERATURE-DEPENDENT BIT ERRORS 1689



training while taking the asymmetry of the FeFET bit error
model into account (addressing the BET Training Problem).
In Section 5.2 we evaluate the novel bit error rate assign-
ment algorithm that exploits the asymmetry by operating in
a layer-wise manner to minimize the impact of the FeFET
bit errors (addressing the BET during inference problem).

7.1 The Impact of FeFET Bit Errors on BNN
Accuracy

We use the configurations shown in Table 3 for the three
datasets FASHION, CIFAR, and SVHN. We run the Adam
optimizer for 50 epochs for FASHION and SVHN and for
200 epochs for CIFAR. We use a batch size of 256 and an ini-
tial learning rate of 10�3 for all cases. To stabilize training
we decrease the learning rate every epoch for FASHION,
after every 50 epoch for CIFAR, and after every 25th epoch
for SVHN, by 50 percent in all cases. All training and testing
experiments are repeated 10 times. We inject bit flips with
the bit error rates configuration ðp01; p10Þ 2 fð2:198; 1:090Þ;
ð1:090; 2:198Þ; ð2:098; 0:190Þ; ð0:190; 2:098Þg in the forward
pass. We plot the accuracy over bit error rate for all BNNs
we tested in Fig. 7.

Impact on BNNs With no Countermeasures. For BNNs
trained without errors (left column) the impact of the tem-
perature bit errors can be substantial if no bit error training
is used and when no attention is paid to the asymmetry of
the bit error rates. We find accuracy degradation of over 25
percent for FASHION, over 30 percent for CIFAR, and over
7 percent for SVHN at the highest operating temperature
T 	
step ¼ 1.
Bit Flip Injection During Training. When training with bit

flip injection (right column of Fig. 7), we achieve bit error
tolerance for the entire range of operating temperature. The
asymmetry of the bit error model, however, plays a key role
in these experiments. The differences among the highest
and the lowest FASHION curves is below 0.2 percent for
T 	
step ¼ 1. For T 	

step ¼ 1 this difference is 0.85 percent. For
CIFAR, these gap are larger. First, for T 	

step ¼ 0, the differ-
ence between the plot with the highest and the lowest accu-
racy is 1.75 percent. For T 	

step ¼ 1, this difference is 9.6
percent. Furthermore, when comparing the CIFAR plots
without bit flip training (left column) with the bit flip
trained plots at T 	

step ¼ 0, the highest plots differ by 1.1 per-
cent. In this case, the bit flip training drops the accuracy by
more than one percent. For the other datasets, this accuracy
trade-off amounts to merely around 0.2 percent. For SVHN,
the difference among the plots at T 	

step ¼ 0 is below 0.2

percent and for T 	
step ¼ 1 it is 1.4 percent when comparing

the highest accuracy plot with the lowest. In all three data-
sets, the setting ð2:098; 0:190Þ dominates among the four bit
error rate settings.

In summary, our experiments show that bit flip training
is necessary for avoiding accuracy drop to unacceptable lev-
els. The asymmetry of the bit error model also cannot be
ignored. The accuracy drop at the highest operating temper-
ature can still amount to around 10 percent in some cases.

7.2 Bit Error Rate Assignment Algorithm (BERA)

We present the output of Algorithm 1 with reps ¼ 10 in
Fig. 8 and plot the accuracy drop for the layers affected by
bit errors. In general, we observe that bit errors in the first
few layers have the largest impact on BNN accuracy. In the
input image and the parameters of the first layer, the bit
errors have the most significant accuracy drop. To give an
intuition for the impact of the bit errors, consider that the
probability for no errors in one value is ð1� p

100Þ8, where p is
the bit error rate in percentage points and the exponent is 8
because the input values have 8 bits. In the symmetric case
p ¼ 2%, for one or more bit flips in one value the probability
is approximately 15 percent. One bit flip in an unsigned 8
bit value can have a large impact (depending on the position
of the flip) and the flip can have a large impact on the accu-
racy. On the other hand, the weights of the first layer also
have a large accuracy drop since the number of weights in
this layer is the smallest. In the first convolutional layer, our
NNs that use coloured images have 3� 3� 3 parameters. In
the second convolutional layer, the number of parameters is
3� 3� 128, which may be more robust.

We present the result for BERA in the accuracy over bit
error rate plots in Fig. 7 as Greedy-A (orange plots). In the
left column, we show the plots for only using BERA to pro-
tect the BNNs and without bit flips during training. The
Greedy-A plot is able to protect the BNN from bit errors to
a similar extent as using bit flip training. The difference at
T 	
step ¼ 1 is 0.66 percent when compared to BNNs retrained

with Greedy-A. For the other two datasets, the Greedy-A
assignment can only reach the same accuracy as
ð2:098; 0:190Þ, since that setting dominates for every layer.

We also evaluate the combination of BERA and bit flip
training. In the right column we show the plots (in orange)
for retraining with the Greedy-A setting after training with-
out bit flips. We retrained FASHION BNNs for 10 epochs,
CIFAR for 200, and SVHN for 50. For FASHION, the
Greedy-A assignment improves accuracy by 0.3 percent
compared to the other settings. This eliminates the trade-off
in accuracy when injecting bit flips during training.

In conclusion, for asymmetric bit error rate models, in
some cases BERA can be used without bit flip training for
protecting BNNs from accuracy drop. It however can only
exploit the asymmetry if one bit error rate configuration
does not dominate in all layers.

7.3 Discussion of Experiment Results

Our methods in general are fully applicable to other data-
sets like CIFAR 100 and ImageNet. However, examining
such more complex datasets inevitably necessitates employ-
ing extremely powerful servers during training and long

TABLE 4
Average Execution Times Evaluation for the Regular and LBW

BNNs on Different Platforms and Datasets

Platform BNN-type FASHION (ms/el.) CIFAR10 (ms/el.)

Intel Regular 1.09 26.47
LBW 1.05 32.15

ARM Regular 12.28 305.09
LBW 11.03 312.79

PPC Regular 4.55 210.03
LBW 12.45 306.30

The values are in ms per one BNN evaluation. Each BNN was evaluated 104

times as compiled C++ code.
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experiment runtimes. In the following, we discuss the oper-
ations that lead to a high resource demand: (1) Training
BNNs needs more memory than training traditional float-
ing-point NNs. This is because during BNN training, we
need, on the one hand, to store the floating point weights
(because they are used for gradient updates in the backward
pass) and, on the other hand, to store the binarized weights
in inference for the forward pass. Hence, training BNNs
comes with a larger memory requirement than training
floating-point NNs. (2) For training BNNs, we need to exe-
cute a larger number of operations. Before a convolution is
executed, the weights needs to be binarized, which adds
additional overhead every time the weights are accessed in

the forward pass. (3) For achieving bit-error tolerance, we
apply the bit error model during training. This causes addi-
tional overheads, because every time we access the weights,
we need to inject the bit flips, which is performed by ran-
dom number samplings, comparisons, and flipping bits.

In summary, we have demonstrated our methods for rela-
tively small datasets (e.g., CIFAR 10 and FASHION). The
analysis of such relatively-small datasets is, for instance,
around 3 weeks (500 hours on a machine with Intel Core i7-
8700 K 3.70 Ghz, 32 GB RAM, 2x GeForce GTX 1080 8 GB).
This demonstrates the indispensable need to have more
powerful server machines when larger datesets (e.g., Image-
Net and CIFAR 100) are targeted.

Fig. 7. Accuracy over temperature-dependent error rates. Left column: No bit flips during training, and in the orange plot (Greedy-A) the result for
applying BERA after training. Right column: Bit flip training with all bit error rate configurations and in orange (Greedy-A) the retraining with BERA.
T 	
step ¼ 1

16Tstep and Tstep 2 f0; 1; . . .; 16g. BER ¼ T 	
step � ðp01; p10Þ yields the temperature dependent bit error rate setting. Greedy-A is the accuracy opti-

mal assignment acquired after executing BERA. In the other four settings, every layer of the BNN is configured with the same bit error rate. E.g.,
when we write ð2:198; 1:090Þ, then every layer of the BNN is configured with these bit error rates.
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For evaluating the overhead of binarization, bit flip injec-
tion, and the bit error rate assignment algorithm (BERA),
we measured our experiment run times on the machine we
used for this work (see above). The results are presented in
Table 5. We observe that the binarization-aware training
takes significantly more time than training floating point
NNs. Injecting bit flips into the BNNs also increases the run
times, but not as much as binarization. Bit error tolerance
evaluation takes only a few minutes. The run time of BERA
can take a few hours, depending on the size of the BNNs.

8 RELATED WORK

In this section we review studies that mainly exploit the
reduced requirements of NNs on (A) non-volatile memory
technologies, i.e., RRAM, STT-RAM or MRAM, FeFET and
CCT, and (B) the volatile memory technologies SRAM and
DRAM.

In our work, we focus on the modeling of temperature
effects in FeFET memory and evaluating the impact of the
errors on BNN accuracy. We are the first to evaluate impact
of temperature in FeFET memory. The related studies do
not deal with temperature issues, but with errors (in gen-
eral) stemming from other effects, such as voltage scaling or

tuning of timing parameters. We present these related stud-
ies in the following.

8.1 NN Inference Systems With NVM Technologies

RRAM. The closest works are about error tolerant BNNs
that operate with reduced requirements on the memory in
order to benefit in terms of power, performance, area, life-
time, etc. Hirtzlin et al. [4] propose to compute BNN opera-
tions with RRAM that features in-memory processing
capabilities. They set the write energy of RRAM low and
show that BNNs can tolerate the resulting errors by error
tolerance training. This low energy setting also increases the
RRAM cell lifetime since the low energy writes stress the
cells less. The work by Yu et al. [15] also uses RRAM to
implement on-chip BNNs. They show that under limited bit
yield, BNNs can still operate with satisfying accuracy.

MRAM or STT-RAM. Another branch in the literature is
about NNs on STT-RAM or MRAM. Hirtzlin et al. [8] pro-
pose deploying BNNs on MRAM with a low energy pro-
gramming setting that causes relatively low error rates, no
significant accuracy drop, but decreases write energy by a
factor of two. Tzoufras et al. [9] also propose operating
BNNs on MRAM with reduced voltage with similar results.
They test a wide range of error rates and discuss the impli-
cations of BNN bit error tolerance on lifetime, performance,
and density of MRAM.

FeFET. Work on FeFET by Chen et al. [11], Long et al. [12]
and Zhang et al. [13] explore the in-memory processing
capabilities of FeFET and compare it to other CMOS-based
circuits. Yoon et al. [14] investigate the effect of FeFET
device limitations on NN accuracy. However, these works
do not investigate the temperature effects of the designs
and do not exploit the error tolerance of NNs.

8.2 NN Inference Systems With Volatile Memories

SRAM. For NN inference systems using on-chip SRAM, the
works in the literature mainly employ scaling of various

Fig. 8. Accuracy drop (AD) per layer. All BNN layers that suffer from bit errors are shown, i.e., In: Input, C: Convolution, A: Activation, FC: Fully Con-
nected. To measure AD per layer, bit flips are injected only into the layer under analysis and then the accuracy is evaluated. The bar plots show the
impact of bit flips on the layers individually.

TABLE 5
Experiment Run Times in Our Framework

BFI: Bit flip injection. In all entries are for BNNs except the ones specified with
”floating point NN”. Epochs were runs 50 times then averaged, bit error toler-
ance evaluations were run ten times and BERA once. Experiments were run
on a machine with Intel Core i7-8700K 3.70 Ghz, 32 GB RAM, 2x GeForce
GTX 1080 8 GB.
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device parameters. To reduce energy consumption, the
SRAM voltage is scaled in [38], [39]. Yang et al. [40] seper-
ately tune weight and activation values of BNNs to achieve
fine-grained control over energy comsumption.

DRAM. For DRAM, the study by Koppula et al. [33] pro-
vide an overview over studies related to NNs that use dif-
ferent DRAM technologies and proposes a framework to
evaluate NN accuracy for using approximate DRAM in var-
ious different settings and inference systems. Specifically,
they show that DRAM parameters can be tuned such that
energy and performance are optimized to achieve signifi-
cant improvements, whereas the NN accuracy drop stays
negligible due to the NNs’ adaptations in retraining.

9 CONCLUSION

In this work, we first analyzed the effects of variable tem-
perature on FeFET memory and proposed an asymmetric
bit error model that exhibits the relation between tempera-
ture and bit error rates - high temperature leads to high bit
error rates. We then evaluated the impact of FeFET asym-
metric temperature bit errors on BNN accuracy if no coun-
termeasures are applied and showed that the accuracy can
drop to unacceptable levels. To deploy BNNs with high
accuracy using FeFET memory despite the temperature
effects, we proposed two countermeasures to the bit errors:
(1) Bit flip training while the asymmetry into account and
(2) a bit error rate assignment algorithm (BERA) which esti-
mates accuracy drops per layer and assigns layer-wise the
bit error rate configuration with the lowest accuracy drop.
With these methods, the BNNs achieve bit error tolerance
for the entire range of operating temperature. These results
indicate that FeFET memory can be used on the low-power
edge for BNNs despite the temperature-dependent bit
errors.

The bit error tolerance methods proposed in our study
can also be applied to other types of DNNs, such as quan-
tized or floating point DNNs. However, we did not run bit
error tolerance analyses on these DNNs yet. These exten-
sions are not trivial, since dedicated tools need to be devel-
oped, while parameter tuning and model training is
necessary, which takes considerable amounts of additional
time. We leave these extensions as future work.

Another interesting subject is the study of the effects that
error tolerance training has in the BNNs. For example,
in [41], the effects of bit error tolerance training on the
BNNs on the neuron and inter-neuron level is explored. In
that study, the goal is to explain the achieved bit error toler-
ance with metrics, to gain understanding of the changes
that bit error tolerance training causes in NNs. Advance-
ments in this area, incorporating the findings of this work,
are left as future work as well.
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