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Abstract—Triangles are the basic substructure of networks and triangle counting (TC) has been a fundamental graph computing
problem in numerous fields such as social network analysis. Nevertheless, like other graph computing problems, due to the high
memory-computation ratio and random memory access pattern, TC involves a large amount of data transfers thus suffers from the
bandwidth bottleneck in the traditional Von-Neumann architecture. To overcome this challenge, in this paper, we propose to accelerate
TC with the emerging processing-in-memory (PIM) architecture through an algorithm-architecture co-optimization manner. To enable
the efficient in-memory implementations, we come up to reformulate TC with bitwise logic operations (such as AND), and develop
customized graph compression and mapping techniques for efficient data flow management. With the emerging computational
Spin-Transfer Torque Magnetic RAM (STT-MRAM) array, which is one of the most promising PIM enabling techniques, the
device-to-architecture co-simulation results demonstrate that the proposed TC in-memory accelerator outperforms the state-of-the-art
GPU and FPGA accelerations by 12.2× and 31.8×, respectively, and achieves a 34× energy efficiency improvement over the FPGA
accelerator.
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1 INTRODUCTION

T RIANGLE counting (TC) counts the number of trian-
gles in a given graph and it is an basic problem in

graph computing. TC problem is not hard but it is memory
bandwidth intensive thus time-consuming. As a result, re-
searchers from both academia and industry have proposed
many TC acceleration methods ranging from sequential to
parallel, single-machine to distributed, and exact to approx-
imate. From the computing hardware perspective, these
acceleration strategies are generally executed on CPU, GPU
or FPGA, and are based on Von-Neumann architecture [1–
3]. However, due to the fact that most graph processing
algorithms have low computation-memory ratio and high
random data access patterns, there are frequent data trans-
fers between the computational unit and memory compo-
nents which consumes a large amount of time and energy,
the existing acceleration approaches can only alleviate by
parallelism while cannot resolve the bottleneck of data
transfers.

Through performing computation where the data re-
sides, in-memory computing paradigm can save most of
the off-chip data communication energy and latency by
exploiting the large internal memory inherent bandwidth
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and inherent parallelism [4, 5]. As a result, in-memory
computing has appeared as a viable way to carry out
the computationally-expensive and memory-intensive tasks
[6, 7]. This becomes even more promising when being inte-
grated with the emerging non-volatile Spin-Transfer Torque
Magnetic RAM (STT-MRAM) memory technologies. This
integration offers fast write speed, low write energy, and
high write endurance among many other benefits [8, 9].

However, compared to the traditional Von-Neumann
computing architecture, in which the CPU has very pow-
erful and complex computing capabilities and control ca-
pabilities, the relatively dispersed in-memory processing
cores in the spin-based in-memory computing architecture
are more suitable for processing tasks that has relatively
simple types of calculations and simple control logic. Due
to such data transmission mode and computing charac-
teristics of the in-memory computing architecture, tradi-
tional graph algorithms are often not well applied to in-
memory computing. In the literature, there have been some
explorations on in-memory graph algorithm accelerations
[10–13]. As analyzed above, existing TC algorithms cannot
be efficiently implemented in memory. For example, the
intersection-based ones cannot be directly implemented in
memory, and the matrix multiplication-based ones involve
complex arithmetic computations which require non-trivial
design overheads while implemented in-memory. In addi-
tion, for large sparse graphs, efficient graph data compres-
sion and data mapping mechanisms are all critical for PIM
accelerations. The existing data compression methods for
sparse graph, such as compressed sparse column (CSC),
compressed sparse row (CSR), and coordinate list (COO)
[10], cannot be directly applied to in-memory computation
either.

In this paper, we propose and design the first triangle
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counting in-memory accelerator, called TCIM, that over-
comes the above barriers through an algorithm-architecture
co-optimization approach. We find that the number of trian-
gles in a given graph can be computed using only AND and
BitCount operations. Once the problem has been framed in
this form, it can be efficiently implemented in an in-memory
manner. The contributions of this paper can be summarized
as follows.

• A hardware-friendly triangle counting method is
proposed using bitwise logic operations. Such re-
formulation of triangle counting is amenable to in-
memory implementations.

• We propose customized data slicing for efficient
graph data compression, and graph data flow man-
agement strategies for mapping onto in-memory
computation architectures.

• To support in-memory TC accelerations, a sparsity-
aware processing-in-memory architecture is pro-
posed utilizing state-of-the-art STT-MRAM technol-
ogy. We also develop a device-to-architecture co-
simulation framework for validating the proposed
strategies.

The rest of the paper is organized as follows. Section 2
provides some preliminary knowledge of triangle counting
and in-memory computing. Section 3 introduces the pro-
posed TC method with bitwise operations, and Section 4
elaborates sparsity-aware data management strategies. Sec-
tion 5 introduces the overall PIM architecture. Section 6
demonstrates the experimental results and Section 7 con-
cludes the paper.

2 PRELIMINARY

2.1 Triangle Counting

Triangle counting problem seeks to determine the number
of triangles in a given graph. It is essential for analyzing
networks and generally considered as the first fundamental
step in calculating metrics such as clustering coefficient
and transitivity ratio, as well as other tasks such as com-
munity discovery, link prediction, and Spam filtering [1].
For example, the commonly used social analysis algorithm,
community discovery, gives the number of triangles in a
social network to analyze which circles are more stable
and have closer relationships. For a person’s social circle,
the more triangles there are, the stronger and closer his
social relationship is. For network science in biology and
neuroscience, it is also found useful to demonstrate the
self-optimization phenomenon in brain’s neuronal networks
[14] and to control biological network [15]. The sequential
algorithms for TC can be classified into two groups.

In the matrix multiplication based algorithms, a triangle
is a closed path of length three, namely a path of three
vertices begins and ends at the same vertex. If A is the
adjacency matrix of graph G, A3[i][i] represents the number
of paths of length three beginning and ending with vertex i.
Given that a triangle has three vertices and will be counted
for each vertex, and the graph is undirected (that is, a
triangle i−p− q− i will be also counted as i− q−p− i), the
number of triangles in G can be obtained as trace(A3)/6,
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Fig. 1: An overview of performing Boolean AND operation
with STT-MRAM. (a) Typical STT-MRAM bit-cells and com-
puting paradigm. (b) The reference current. (c) Truth table.

where trace is the sum of elements on the main diagonal of
a matrix.

In the set intersection based algorithms, it iterates over
each edge and finds common elements from adjacency lists
of head and tail nodes. A lot of CPU, GPU and FPGA
based optimization techniques have been proposed [1–3].
These works show promising results of accelerating TC,
however, these strategies all suffer from the performance
and energy bottlenecks brought by the significant amount
of data transfers in TC.

2.2 In-Memory Computing with STT-MRAM
In-Memory Computing efforts can be classified into two
categories according to whether they target at application-
specific computations [16–18] or general-purpose computa-
tions [5, 9, 19–23]. ReRAM has been extensively explored
and used to implement matrix-vector multiplication for
neural network accelerations, with the multi-bit storage
property. Comparatively, STT-MRAM has higher write en-
durance, faster write speed, lower write energy, while it
only has limited resistance difference between the distinct
resistance states of MTJ [8]. In particular, prototype STT-
MRAM chip demonstrations and commercial MRAM prod-
ucts have been available by companies such as Everspin and
TSMC. As a result, STT-MRAM is widely used to implement
bit-wise boolean operations for general-purpose in-memory
computing paradigm [9, 24]. In this paper, we focus on such
general-purpose PIM, which can be widely used in various
categories of applications.

STT-MRAM stores data with magnetic-resistances in-
stead of conventional charge based store and access. Due
to this current sensing mechanism in STT-MRAM and the
fact that current can be accumulated, STT-MRAM is able
to realize logic functions conveniently. This enables MRAM
to provide inherent computing capabilities for bitwise logic
with the core bit-cell and array structure of STT-MRAM re-
main unchanged, and only needs minor changes to periph-
eral circuitry (such as sensing circuitry to generate required
sensing current) [9][25].

As Fig. 1(a) shows, a typical STT-MRAM bit-cell consists
of an access transistor and a Magnetic Tunnel Junction
(MTJ), which is controlled by bit-line (BL), word-line (WL)
and source-line (SL). The relative magnetic orientations of
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Fig. 2: Computational STT-MRAM array.

pinned ferromagnetic layer (PL) and free ferromagnetic
layer (FL) can be stable in parallel (P state) or anti-parallel
(AP state), corresponding to a low resistance (RP) or a
high resistance (RAP), respectively. The READ operation
is done by enabling WL signal, applying a voltage Vread
across BL and SL, and sensing the current (IP or IAP ) that
flows through the MTJ. By comparing the sense current
with a reference current (Iref ,), the data stored in a MTJ
cell (logic ‘0’ or logic ‘1’) could be readout. The WRITE
operation can be performed by enabling WL, then applying
an appropriate voltage (Vwrite) across BL and SL to pass a
current that is greater than the critical MTJ switching cur-
rent. To perform bitwise logic operation, by simultaneously
enabling WLi and WLj, then applying Vread across BL and
SL, the current that feeds into the sense amplifier (SA) is
a summation of Ii + Ij. With different reference sensing
current, various logic functions of the enabled word line can
be implemented. For example, as shown in Fig. 1(b), when
Iref ∈ (IAP + IP, IP + IP), the truth table is demonstrated
in Fig. 1(c), corresponds to AND logic.

Fig. 2 demonstrates the STT-MRAM arrays that support
in-memory logic computations. By simultaneously enabling
word-line WLi and WLj, then applying Vread across BLk

and SLk (k ∈ [0,n − 1]), the current that feeds into the k-th
SA is a summation of the currents flowing through MTJi,k
and MTJj,k, namely Ii,k+Ij,k. With different reference sens-
ing current, the sense amplifier will have different outputs
under given input patterns (corresponds to the high/low
resistive state of the MTJs), then different logic functions of
the enabled word line can be implemented.

3 REFORMULATION OF TRIANGLE COUNTING

In this section, we seek to perform TC with massive bitwise
operations, which is the enabling technology for in-memory
TC accelerator.

3.1 Triangle Counting with Bitwise Operations

Let A be the adjacency matrix representation of an undi-
rected graph G(V,E), where A[i][j] ∈ {0, 1} indicates
whether there is an edge between vertices i and j. If we
compute A2 = A ∗A, then the value of A2[i][j] represents
the number of distinct paths of length two between vertices
i and j.

In the case that there is an edge between vertex i and
vertex j (A[i][j] 6= 0), at the same time i can also reach

j through a path of length two (A2[i][j] 6= 0), where the
intermediate vertex is k, then vertices i, j, and k form a
triangle. As a result, the number of triangles in G is equal
to the number of non-zero elements (nnz) in A ◦ A2 (the
symbol ‘◦’ defines element-wise product), namely

TC(G) = nnz(A ◦A2). (1)

Since A[i][j] is either zero or one, we have

(A ◦A2)[i][j] =

{
0, if A[i][j] = 0;

A2[i][j], if A[i][j] = 1.
(2)

According to Equation (2),

nnz(A ◦A2) =
∑∑

A[i][j]=1
A2[i][j]. (3)

Because the element in A is either zero or one, the bitwise
Boolean AND result is equal to that of the mathematical
multiplication, thus

A2[i][j] =
n∑

k=0

A[i][k] ∗A[k][j] =
n∑

k=0

AND(A[i][k],A[k][j])

= BitCount(AND(A[i][∗],A[∗][j]T )),
(4)

in which BitCount returns the number of ‘1’s in a vector
consisting of ‘0’ and ‘1’, for example, BitCount(0110) = 2.

Combining equations (1), (3) and (4), we have

TC(G) = BitCount(AND(A[i][∗],A[∗][j]T )),
s.t. A[i][j] = 1.

(5)

Therefore, TC can be completed by only AND and
BitCount operations (massive for large graphs). For each
non-zero entry in the adjacency matrix, the corresponding
row and column are loaded into STT-MRAM computational
memory where each cell consists of one transistor and one
MTJ. Consequently, the AND computations are carried out
within the STT-MRAM memory, and the bit counter is
incremented by the number of 1s in the result of the AND
computations. The bit counter will eventually store the total
number of triangles in the graph.

3.2 An Illustrative Example
With the reformulated triangle counting method in Sec-
tion 3.1, for each non-zero element A[i][j] = 1, the i-th
row (Ri = A[i][∗]) and the j-th column (Cj = A[∗][j]T )
are executed AND operation, then the AND result is sent
to a bit counter module for accumulation. Once all the
non-zero elements are processed, the value in the accumu-
lated BitCount is the number of triangles in the graph.
Fig. 3 demonstrates an illustrative example. The graph has
four vertices and five edges, and the adjacency matrix is
given. The non-zero elements in the adjacency matrix A are
A[0][1], A[0][2], A[1][2], A[1][3], and A[2][3].

1) For A[0][1], row R0=’0110’ and column C1=‘1000’
are executed with AND operation, then the AND result
‘0000’ is sent to the bit counter and gets a result of
zero;

2) For A[0][2], row R0=‘0110’ and column C2=‘1100’
are executed with AND operation and the result is
‘0100’, then the BitCount result of ‘0100’ is one;
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Fig. 3: Demonstrations of triangle counting with AND and BitCount bitwise operations.

3) For A[1][2], row R1=‘0011’ and column C2=‘1100’
are executed with AND operation, then the AND result
‘0000’ is sent to the bit counter, thus the result
remains to be one;

4) For A[1][3], row R1=‘0011’ and column C3=‘0110’
are executed with AND operation, then the AND result
‘0010’ is executed with BitCount, the bit counter is
incremented by one, thus gets a result of two;

5) For A[2][3], row R2=‘0001’ and column C3=‘0110’
are executed with AND operation, then the AND result
‘0000’ is sent to the bit counter, thus the result
remains to be two.

After the process of the last non-zero element A[2][3]
is finished, the accumulated BitCount result is two, as a
result, the graph has two triangles (corresponds to triangles
”0− 1− 2− 0” and ”1− 2− 3− 1” in the graph).

3.3 Discussions on the Reformulated TC
We show that the number of triangles in a given graph can
be computed using only AND operations and bit counters on
the adjacency matrix of the graph. Once the problem has
been framed in this form, the method proposed for triangle
counting looks at every non-zero entry in the adjacency
matrix and, for each such entry, the corresponding row and
column are loaded into STT-MRAM memory where each
cell consists of one transistor and one MTJ. AND computa-
tions are then carried out within memory and a bit counter
is incremented by one if the result of the computations is
1. The bit counter will eventually store the total number of
triangles in the graph.

The proposed TC method has the following characteris-
tics: First, it avoids the traditional time-consuming matrix
multiplications. Through making the operation data be ei-
ther zero or one, we can simply implement the original
multiplication with Boolean AND logic. Second, the proposed
method does not need to store the intermediate results that
are larger than one (such as the elements in A2), which
enables high storage efficiency and in-memory computation
regularity. Third, it does not need complex control logic.
It only needs to iterate the non-zero elements and conduct
corresponding AND and BitCount operations.

Given the above three characteristics, and the fact that in-
memory computation is suitable for data-intensive applica-

tions with relative simple computation and control logic, the
proposed reformulated TC method is amenable to highly
efficient in-memory computing structure.

4 SPARSITY-AWARE GRAPH DATA MANAGEMENT
FOR IN-MEMORY ACCELERATIONS

Given that the size of the computational memory array is
limited, and that most graph are highly sparse, efficient data
flow management is critical for TC accelerations in order to
reduce the unnecessary memory and computation require-
ments. In this part, we will discuss about the data flow man-
agement techniques, including the data reuse/replacement
and data compression methods, to minimize the needed
memory space and computations when being mapped onto
the computational memory array.

4.1 Graph Data Reuse and Replacement
The proposed TC method in Section 3 iterates over each
non-zero element A[i][j] in the adjacency matrix A, and
loads its corresponding row Ri and column Cj into com-
putational memory for AND operation. As a result, all the
non-zero elements in row Ri can reuse this row for compu-
tations, and similarly, the non-zero elements in column Cj

can reuse this column. We propose data reuse strategy based
on this observation.

Without loss of generality, we assume that the non-zero
elements are iterated by rows. For each processed row, it
needs to be first loaded into the computational memory,
then the corresponding columns of the non-zero elements
in this row are sequentially loaded for AND computation.
In this case, once the computations for all the non-zero
elements in a row have been finished, this row will no
longer be used in future computations, thus this row can
be overwritten by the next to-be-processed row. On the
contrary, the corresponding columns might be used again
while processing the non-zero elements in other rows. As
a result, before loading a certain column into memory for
computation, we will first check whether this column has
been loaded in previous computations. If it has existed in
the computational memory, then it can be reused and save
a memory WRITE operation, and if not, the column will
be loaded to a spare computational memory space. Over-
lapping the rows and reusing the columns can effectively
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reduce unnecessary space utilization and memory WRITE
operations.

Here remains two questions to be answered:

• First, how to decide the row sequence of processing?
• Second, in case that the computational memory is

full, by what data replacement policy to swap data?

On selecting the next to-be-processed row, in a greedy
way, the local optimal strategy is to choose the next row
that has maximum overlaps with the current row on the
columns of 1’s, and in the ideal case, all the columns should
be data hit. However, in case that the size of the matrix
is huge then the columns of 1’s may not be able to fit
in the computational memory. Also, finding the row that
overlaps most with the current row will increase non-trivial
computational effort. Alternatively, one may do in the zig-
zag way: the first row goes from left to right to load the
columns with 1, the second row goes from right to left to
reuse the columns that are already in. This zig-zag way will
work well in case of dense graphs. As for the highly sparse
graphs, we will simply process each row sequentially in the
order in which the graph data is stored.

Take the case in Fig. 3 as an example, in step 1 and step
2, the two non-zero elements A[0][1] and A[0][2] are pro-
cessed respectively, and corresponding rowR0 and columns
C1 and C2 are loaded to memory. Next, while processing
A[1][2] and A[1][3], R1 will overlap R0 and reuse existing
C2 in step 3, and load C3 in step 4. In step 5, to process
A[2][3], R1 will be overlapped by R2, and C3 is reused.

For the data replacement policy, when the computational
memory is full and a new column needs to be loaded
into the memory for computation, we need to select one
candidate column to be swapped out. We know that a good
data replacement algorithm should have a low replacement
frequency, as a result, data that will not be accessed in the
future or will not be accessed for a long time in the future
should be swapped out first.

According to our proposed TC method, we need to
iterate the non-zero elements in the adjacency matrix by
rows. On iterating one certain non-zero element, we need
to load the corresponding column for AND and BitCount
computations. At the same time, we will also record which
columns have been loaded into the computational memory.
Therefore, we are able to know about the future compu-
tations and the storage status in the computational memory
array. Given the above information, when the computational
memory is full and a data replacement happens, we are able
to locate the column in the computational memory with the
longest time between the next visit and swap it out.

Compared to the traditional data replacement strategies
such as the LRU (Least Recently Used) policy, which pre-
dicts a good choice on choosing to-be-swapped candidate
column according to the past computations, our proposed
method is able to make the optimal decision with the
knowledge of future executions. This can cause the least
data replacement frequency, and we name it as Priority data
replacement policy.

4.2 Graph Data Compression
To utilize the sparsity of the graph to reduce the memory
requirement and unnecessary computation, we propose a

0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

0 0 1 0

0 0 0 1

0 1 0 0

1 1 0 0

0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1

Row i

Column j

CjS0 CjS1 CjS2 CjS3 CjS4 CjS5

STT-MRAM Array
1 0 0 1 0 1

0 0 1 1 0 1

RiS0 RiS1 RiS2 RiS3 RiS4 RiS5

RiS3

CjS3

RiS5

CjS5

Fig. 4: Sparsity-aware data slicing and mapping.

data slicing strategy for graph data compression.
Assume Ri is the i-th row, and Cj is the j-th column

of the adjacency matrix A of graph G(V,E). Let the slice
length be |S| (namely each slice contains |S| bits), then each
row and column has d |V ||S| e slices. Accordingly, the k-th slice
in row Ri, which is represented as RiSk, can be formulated
as

RiSk = {A[i][k ∗ |S|], · · · ,A[i][(k + 1) ∗ |S| − 1]}.

We define slice RiSk is valid if and only if it has at least
one non-zero element, namely

∃A[i][t] ∈ RiSk,A[i][t] = 1, t ∈ [k ∗ |S|, (k + 1) ∗ |S| − 1].

Similar for the the k-th slice of column Cj :

CjSk = {A[k ∗ |S|][j], · · · ,A[(k + 1) ∗ |S| − 1][j]}.

Slice CjSk is valid if and only if

∃A[t][j] ∈ CjSk,A[t][j] = 1, t ∈ [k ∗ |S|, (k + 1) ∗ |S| − 1].

Recall that for each non-zero element A[i][j] = 1 in
the adjacency matrix, we need to compute the AND of its
corresponding row Ri and column Cj . With the proposed
row and column slicing methods, we will perform the AND
operation in the unit of slices, and we only need to process
the valid slice pairs. Namely only when both of the row
slice RiSk and column slice CjSk are valid, we will load
the valid slice pair (RiSk, CjSk) into the computational
memory array for AND operation.

Fig. 4 demonstrates an example, after row and col-
umn slicing, only the valid slice pairs (RiS3, CjS3) and
(RiS5, CjS5) will be enabled for AND computation. This
gives a glance of the fact that this filter process can reduce
the needed computation significantly, especially in the large
sparse graphs.

Compression rate analysis. Assume that the graph has
|V | nodes, |E| edges, the slice length is |S|, the sparsity of
G is defined as

α = 1− |E|
|V |2

.

Therefore, α intuitively demonstrates the probability for
an element in the adjacency matrix to be zero. Accordingly,
the probability for a slice with length of |S| to be invalid (all
elements in the slice should be zero) is α|S|. Correspond-
ingly, the probability for a slice to be valid (at least one
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element in the slice should be non-zero) is 1 − α|S|. The
number of valid slices NV S can be formulated as:

NV S = (1− α|S|) · |V |
2

|S|
.

For data compression, we need to store the index of
valid slices and the detailed data information of these slices.
Assume that we need |D| bits to store the index of slice
(|D| ≥ log2 |V ||S| ), then the overall needed space (in Bytes) for
compressed graph G is

Compressed Graph Size = NV S × (
|D|+ |S|

8
)

= (1− α|S|) · |V |
2

|S|
· ( |D|+ |S|

8
).

Without data slicing and compression, the needed stor-
age space (in Bytes) is

Ordinary Graph Size =
|V |2

8
.

Consequently, the compression rate of the graph data
can be expressed as:

Compression Rate CR =
Compressed Graph Size

Ordinary Graph Size

= (1 +
|D|
|S|

) · (1− α|S|)

Therefore, the graph compression rate is determined by
the sparsity of the graph, the slice length and the graph size.
Fig. 6(a) demonstrates the compression rate with different
graph sparsity and slice length when we use an integer
(|D| = 32) to store each valid slice index, and Fig. 6(b)
zooms in the figure when the sparsity α ∈ (0.9, 1). We
can see that the graph compression rate is dominated by
the graph sparsity, when the sparsity is larger than 0.99, the
compression method is expected to have a high compression
efficiency. Given that most graphs are highly sparse, the
needed space to store the graph can be trivial and the
experimental section will demonstrate some results.

More importantly, the proposed format of compressed
graph data is friendly for directly mapping onto the
computational memory arrays to perform in-memory logic
computation. This is because the proposed compression
method does not compress the valid slice data, thus does
not need complex decompression process.

5 OVERALL ARCHITECTURE AND IMPLEMENTA-
TION

5.1 Overall Architecture Design
Fig. 5 demonstrates the overall architecture of the proposed
TC accelerator. First, the graph data will be sliced and
compressed, and represented by the valid slice index and
corresponding slice data. Consequently, according to the
valid slice indexes in the data buffer, the corresponding
valid slice pairs are loaded into computational STT-MRAM
array for bitwise computation. The storage status of STT-
MRAM array (such as which slices have been loaded) is
also recorded in the data buffer and utilized for data reuse
and replacement.

As for the computational memory array organization,
each chip consists of multiple Banks and works as computa-
tional array. Each Bank is comprised of multiple compu-
tational sub-arrays, which are connected to a global row
decoder and a shared global row buffer. Read circuit and
write driver of the memory array are modified for pro-
cessing bitwise logic functions. Specifically, the operation
data are stored in different rows in memory arrays. The
rows associated with operation data will be activated si-
multaneously for computing. Sense amplifiers are enhanced
with AND reference circuits to realize either READ or AND
operations.

Note that in traditional Von-Neumann computing archi-
tecture, CPU is the central unit for control and computa-
tions, which can efficiently deal with complex computing
and control task. In contrast, for in-memory processing,
the decentralized processing cores can provide ultra-high
parallelism, while they are more suitable for relatively single
types of calculations with less control logic, such as the neu-
ral network computations. Data-intensive applications (such
as the triangle counting graph algorithm demonstrated in
this paper) which can be reformulated as simple logic com-
putations are amenable to the proposed architecture.

Some nice work on graph computing accelerations has
been proposed, such as GraphR [10] and GraphSAR [12].
They point out that large-scale graph calculation problems
can be simulated in memristor array in the form of matrix
vector operations. However, for graph computing, the im-
plementation of vector matrix multiplication through analog
operations faces the problem of accuracy and the additional
overhead caused by digital-to-analog/analog-to-digital con-
version. The proposed approach in this article reformulates
the graph computing problem into basic Boolean logic func-
tions, which can be implemented efficiently in-memory.

5.2 Pseudo-codes for In-Memory TC Acceleration

Algorithm 1 demonstrates the pseudo-code for TC acceler-
ations with the proposed architecture. It iterates over each
edge of the graph (corresponds to each non-zero element
in the adjacency matrix) and partitions the corresponding
rows and columns into slides, then loads the valid slice
pairs onto computational memory for AND and BitCount
computation. In case that there is no enough memory space,
it will select one slice with the longest time between the
next visit to be swapped out by the new slice. Then repeat
the above process until all the non-zero elements in the adja-
cency matrix is processed, and the accumulated BitCount
result will be the number of triangles in the graph.

6 EXPERIMENTAL RESULTS

6.1 Experimental Setup

To validate the effectiveness of the proposed methods, com-
prehensive device-to-architecture evaluations along with
two in-house simulators are developed.

At the device level, we jointly use the Brinkman model
and Landau-Lifshitz-Gilbert (LLG) equation to character-
ize MTJ [26]. The key parameters for MTJ simulation are
demonstrated in TABLE 1. For the circuit-level simulation,
we design a Verilog-A model for 1T1R STT-MRAM device,
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Fig. 6: Compression rate with different sparsity and
slice/index length.

and characterize the circuit with 45nm FreePDK CMOS
library. We design a bit counter module based on Verilog
HDL to obtain the number of non-zero elements in a
vector. Specifically, we split the vector and feed each 8-
bit sub-vector into an 8-256 look-up-table to get its non-
zero element number, then sum up the non-zero numbers
in all sub-vectors. We synthesis the module with Synopsis
Tool and conduct post-synthesis simulation based on 45nm
FreePDK. The modified sense amplifier part (to support
logic computations) is also simulated in Cadence tool on
45nm FreePDK. After getting the circuit-level simulation
results, we integrate the parameters into the open-source
NVSim simulator [27] and obtain the memory array per-
formance with wordwidth of 64 bits, 8-way cache config-
uration. In addition, we develop a simulator in Java for
the processing-in-memory architecture, which simulates the
proposed function mapping, data slicing and data mapping
strategies. Finally, a behavioral-level simulator is developed
in Java, taking architectural-level results and memory array
performance to calculate the latency and energy that is spent
on TC in-memory accelerator.

To provide a solid comparison with other accelerators,
we select from the real-life graphs from SNAP dataset [28]
(see TABLE 2), and run comparative baseline intersect-
based algorithm on Inspur blade system with the Spark
GraphX framework on Intel E5430 single-core CPU. For fair
comparisons, our TC in-memory acceleration algorithm also
runs on single-core CPU.

Algorithm 1: Triangle Counting with processing-in-
memory Architecture.

Input: Graph G(V,E).
Output: The number of triangles in G.

1 TC G = 0;
2 Represent G with adjacent matrix A;
3 Iterate the non-zero elements in A by rows;
4 for each non-zero element A[i][j] = 1 do
5 Partition Ri into slices;
6 Partition Cj into slices;
7 for each valid slice pair (RiSk,CjSk) do
8 TC G += COMPUTE (RiSk,CjSk);

9 return TC G as the number of triangles in G.
10 —————————————-
11 COMPUTE (RowSlice, ColumnSlice)
12 Load RowSlice into memory;
13 if ColumnSlice does not exist in the computational

memory then
14 if there is no enough space then
15 one slice with the longest time between the

next visit to be swapped out;

16 Load ColumnSlice into memory;

17 return BitCount(AND(RowSlice, ColumnSlice)).

6.2 Evaluations of Data Slicing and Compression
For the convenience and efficiency of computing, we can
set the slice length to be the multiple of the computer word
length. We assume the computer word length to be 64 bits

TABLE 1: Key parameters for MTJ simulations.

Parameter Value
MTJ Surface Length 40 nm
MTJ Surface Width 40 nm
Spin Hall Angle 0.3
Resistance-Area Product of MTJ 10−12 Ω ·m2

Oxide Barrier Thickness 0.82 nm
TMR 100%
Saturation Field 106 A/m
Gilbert Damping Constant 0.03
Perpendicular Magnetic Anisotropy 4.5 × 105 A/m
Temperature 300 K
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TABLE 2: SNAP graph dataset.

Graph # Vertices # Edges # Triangles Description
ego-facebook 4039 88234 1612010 Social circles from Facebook (anonymized)
email-enron 36692 183831 727044 Email communication network from Enron
com-Amazon 334863 925872 667129 Amazon product network
com-DBLP 317080 1049866 2224385 DBLP collaboration network
com-Youtube 1134890 2987624 3056386 Youtube online social network
roadNet-PA 1088092 1541898 67150 Road network of Pennsylvania
roadNet-TX 1379917 1921660 82869 Road network of Texas
roadNet-CA 1965206 2766607 120676 Road network of California
com-LiveJournal 3997962 34681189 177820130 LiveJournal online social network
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Fig. 7: The number of valid slices with the slice length being
64, 128 and 256, respectively.

TABLE 3: The sparsity of the graph dataset and the com-
pression metrics by data slicing with slice length |S| = 64
and index length |D| = 32.

Graph α∗ CR∗∗ V SR†

ego-facebook 99.45914% 11.154% 7.017%
email-enron 99.98635% 0.584% 1.483%
com-Amazon 99.99917% 0.078% 0.014%
com-DBLP 99.99896% 0.080% 0.036%
com-Youtube 99.99977% 0.014% 0.013%
roadNet-PA 99.99987% 0.009% 0.013%
roadNet-TX 99.99990% 0.007% 0.010%
roadNet-CA 99.99993% 0.005% 0.007%
com-LiveJournal 99.99978% 0.013% 0.006%
∗ Sparsity of the graph
∗∗ Compression rate
† Valid slice pair ratio

in this paper. Fig. 7 demonstrates the normalized valid
slice number when the slice length are 64, 128, and 256,
respectively. We can see that the number of valid slices only
demonstrate a trivial reduction (on average less than 10%)
when the slice length increase from 64 bits to 128/256 bits
(each slice has 2×/4×more bits). Therefore, we set |S| = 64
in the following experiments.

TABLE 3 demonstrates the sparsity of the each bench-
mark in the SNAP graph dataset and the corresponding
compression rate when the slice length is 64 and index
length is 32. As shown in the second and third columns
of TABLE 3, the real-world graph are highly sparse, which
leads to an extreme low compression rate, which validates
the theoretical analysis in Section 4.2. As shown in the fourth
column of TABLE 3, the valid slice pairs occupy a very small
percentage among the whole slices, and this also leads to a

high computation efficiency. The average sparsity of the five
largest graphs is 99.999%, with the average compression
rate and average percentage of valid slices be 0.01%, This
means the proposed data slicing and compression strategy
could significantly reduce the needed memory space and
computations by 99.99%.

6.3 Evaluations of Data Reuse and Replacement
We know that the first time a data slice is loaded, it is always
a miss, and a data hit implies that the slice data has already
been loaded and a data reuse has happened. And when
the required computational memory is larger than the STT-
MRAM computational memory size, at the same time a data
miss occurs, then data replacement will happen.

With 8 MB STT-MRAM computational memory array, in
Fig. 8, we have listed the ratios of data hit and data miss
ratios under LRU and Priority data replacement policies.
For the Priority data replacement policy, the data hit and
data miss ratios are 60.5% and 39.5%, respectively. The data
hit rate implies that the proposed data reuse strategy saves
on average 60.5% memory WRITE operations.

The five largest graphs, including com-Youtube, roadNet-
PA, roadNet-TX, roadNet-CA, and com-LiveJournal, will have
to do data replacement. And the experimental result in
Fig. 9 demonstrate that with our proposed Priority data
replacement policy, compared with the least recently used
(LRU) replacement policy, the number of data replacement
is reduced by up to 30.1%.

6.4 Performance and Energy Results
TABLE 4 compares the performance of our proposed in-
memory TC accelerator against a CPU baseline implemen-
tation, and the existing GPU and FPGA accelerators.
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Fig. 8: Data hit and data miss ratios with LRU and Priority
data replacement strategies.
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TABLE 4: Runtime (in seconds) comparison among our proposed methods, CPU, GPU and FPGA implementations.

Dataset CPU GPU [3] FPGA [3] Proposed Method
w/o PIM TCIM Priority TCIM

ego-facebook 5.399 0.15 0.093 0.169 0.005 0.005
email-enron 9.545 0.146 0.22 0.8 0.021 0.011
com-Amazon 20.344 N/A N/A 0.295 0.011 0.011
com-DBLP 20.803 N/A N/A 0.413 0.027 0.027
com-Youtube 61.309 N/A N/A 2.442 0.098 0.100
roadNet-PA 77.320 0.169 1.291 0.704 0.043 0.025
roadNet-TX 94.379 0.173 1.586 0.789 0.053 0.030
roadNet-CA 146.858 0.18 2.342 3.561 0.081 0.047
com-LiveJournal 820.616 N/A N/A 33.034 2.006 1.940
Average 1.0 1.36
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Fig. 9: Data replacement ratio with LRU and Priority data
replacement strategies.

One can see a dramatic reduction of the execution time
in the last columns from the previous three columns. In-
deed, without PIM, we achieved an average 53.7× speedup
against the baseline CPU implementation because of data
slicing, reuse, and replacement. With PIM, another 25.5×
acceleration is obtained. Compared with the GPU and FPGA
accelerators, the improvement is 9× and 23.4×, respectively.
It is important to mention that we achieve this with a single-
core CPU and 16 MB STT-MRAM computational array. With
the optimized Priority data replacement policy (named as
Priority TCIM), we can get another 1.36× speedups.

As for the energy savings, as shown in Fig. 10, our
approach has 34× less energy consumption compared to the
energy-efficient FPGA implementation [3], which benefits
from the non-volatile property of STT-MRAM and the in-
situ computation capability.
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Fig. 10: Normalized results of energy consumption for Pri-
ority TCIM with respect to FPGA.

7 CONCLUSION

In this paper, we propose a new triangle counting (TC)
method, which uses massive bitwise logic computation,
making it amenable for in-memory implementations. We
further propose a sparsity-aware processing-in-memory
architecture for efficient in-memory TC accelerations. A
straightforward data reuse strategy is proposed to save
write operations as well as a data slicing technique to
exploit sparsity in the benefit of saving even more write
operations. By data slicing, the computation could be re-
duced by 99.99%, meanwhile the compressed graph data
can be directly mapped onto STT-MRAM computational
memory array for bitwise operations, and the proposed
data reuse and replacement strategy reduces 60.5% of the
memory WRITE operations. Device-level simulations were
carried out to obtain MTJ parameters then used in NVSim
to estimate memory array performance. This, in turn, is
then used by a behavioral-level simulator developed to com-
pute energy and latency metrics. The device-to-architecture
co-simulations demonstrate that our in-memory acceler-
ator achieves improvement in terms of speed and en-
ergy efficiency by an order of magnitude over traditional
GPU/FPGA accelerators.

ACKNOWLEDGEMENT

Xueyan Wang’s work is supported by the National Natural
Science Foundation of China (No. 62004011) and State Key
Laboratory of Computer Architecture (No. CARCH201917).
Jianlei Yang’s work is supported by National Natural Sci-
ence Foundation of China (No. 62072019). Xiaotao Jia’s work
is supported by the Joint Funds of the National Natural
Science Foundation of China (Grant No. U20A20204). Rong
Yin’s work is supported by the Special Research Assistant
project of CAS (No.E0YY221-2020000702) and the National
Natural Science Foundation of China (No.62106259).

REFERENCES
[1] M. A. Hasan and V. S. Dave, “Triangle counting in large networks:

a review,” Wiley Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery, vol. 8, no. 2, p. e1226, 2018.

[2] V. S. Mailthody, K. Date, Z. Qureshi, C. Pearson, R. Nagi, J. Xiong,
and W. Hwu, “Collaborative (CPU+GPU) algorithms for triangle
counting and truss decomposition,” in Proc. IEEE HPEC, 2018, pp.
1–7.

[3] S. Huang, M. El-Hadedy, C. Hao, Q. Li, V. S. Mailthody, K. Date,
J. Xiong, D. Chen, R. Nagi, and W. Hwu, “Triangle counting and
truss decomposition using fpga,” in Proc. IEEE HPEC, 2018, pp.
1–7.



10

[4] V. Seshadri and O. Mutlu, “In-dram bulk bitwise execution en-
gine,” CoRR, vol. abs/1905.09822, 2019.

[5] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: a
processing-in-memory architecture for bulk bitwise operations in
emerging non-volatile memories,” in Proc. ACM/IEEE DAC, 2016,
pp. 173:1–173:6.

[6] B. Li, B. Yan, and H. Li, “An overview of in-memory processing
with emerging non-volatile memory for data-intensive applica-
tions,” in Proc. ACM GLSVLSI, 2019, pp. 381–386.

[7] S. Angizi, J. Sun, W. Zhang, and D. Fan, “Aligns: A processing-
in-memory accelerator for dna short read alignment leveraging
sot-mram,” in Proc. ACM/IEEE DAC, 2019, pp. 1–6.

[8] M. Wang, W. Cai, K. Cao, J. Zhou, J. Wrona, S. Peng, H. Yang,
J. Wei, W. Kang, Y. Zhang, and W. Zhao, “Current-induced mag-
netization switching in atom-thick tungsten engineered perpen-
dicular magnetic tunnel junctions with large tunnel magnetoresis-
tance,” Nature communications, vol. 9, no. 1, p. 671, 2018.

[9] S. Jain, A. Ranjan, K. Roy, and A. Raghunathan, “Computing in
memory with spin-transfer torque magnetic RAM,” IEEE Transac-
tions on Very Large Scale Integration Systems (VLSI), vol. 26, no. 3,
pp. 470–483, 2018.

[10] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “GraphR: Accelerat-
ing graph processing using reram,” in Proc. IEEE HPCA, 2018, pp.
531–543.

[11] S. Angizi, J. Sun, W. Zhang, and D. Fan, “Graphs: A graph
processing accelerator leveraging sot-mram,” in Proc. DATE, 2019,
pp. 378–383.

[12] G. Dai, T. Huang, Y. Wang, H. Yang, and J. Wawrzynek, “Graphsar:
A sparsity-aware processing-in-memory architecture for large-
scale graph processing on rerams,” in Proc. ASPDAC, 2019, pp.
120–126.

[13] Y. Zhuo, C. Wang, M. Zhang, R. Wang, D. Niu, Y. Wang, and
X. Qian, “GraphQ: Scalable pim-based graph processing,” in Proc.
IEEE MICRO, 2019, pp. 712–725.

[14] C. Yin, X. Xiao, V. Balaban, M. E. Kandel, Y. J. Lee, G. Popescu,
and P. Bogdan, “Network science characteristics of brain-derived
neuronal cultures deciphered from quantitative phase imaging
data,” Scientific reports, vol. 10, no. 1, pp. 1–13, 2020.

[15] R. Yang and P. Bogdan, “Controlling the multifractal generating
measures of complex networks,” Scientific reports, vol. 10, no. 1,
pp. 1–13, 2020.

[16] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “Pim-enabled instructions:
a low-overhead, locality-aware processing-in-memory architec-
ture,” in Proceedings of the International Symposium on Computer
Architecture (ISCA), 2015, pp. 336–348.

[17] X. Liu, M. Mao, B. Liu, H. Li, Y. Chen, B. Li, Y. Wang, H. Jiang,
M. Barnell, Q. Wu et al., “Reno: A high-efficient reconfigurable
neuromorphic computing accelerator design,” in Proceedings of
Design Automation Conference (DAC), 2015, pp. 1–6.

[18] S. G. Ramasubramanian, R. Venkatesan, M. Sharad, K. Roy, and
A. Raghunathan, “Spindle: Spintronic deep learning engine for
large-scale neuromorphic computing,” in Proceedings of Interna-
tional Symposium on Low power Electronics and Design (ISLPED),
2014, pp. 15–20.

[19] Z. I. Chowdhury, J. D. Harms, S. K. Khatamifard, M. Zabihi, Y. Lv,
A. Lyle, S. S. Sapatnekar, U. R. Karpuzcu, and J. Wang, “Efficient
in-memory processing using spintronics,” Computer Architecture
Letters, vol. 17, no. 1, pp. 42–46, 2018.

[20] W. Kang, H. Wang, Z. Wang, Y. Zhang, and W. Zhao, “In-memory
processing paradigm for bitwise logic operations in stt–mram,”
IEEE Transactions on Magnetics, vol. 53, no. 11, pp. 1–4, 2017.

[21] F. Parveen, Z. He, S. Angizi, and D. Fan, “Hielm: Highly flexible
in-memory computing using stt mram,” in Proceedings of Asia and
South Pacific Design Automation Conference (ASP-DAC), 2018, pp.
361–366.

[22] L. Chang, X. Ma, Z. Wang, Y. Zhang, Y. Ding, W. Zhao, and Y. Xie,
“Dasm: Data-streaming-based computing in nonvolatile memory
architecture for embedded system,” IEEE Transactions on Very Large
Scale Integration Systems (TVLSI), 2019.

[23] Y. Zhao, P. Ouyang, W. Kang, S. Yin, Y. Zhang, S. Wei, and W. Zhao,
“An stt-mram based in memory architecture for low power inte-
gral computing,” IEEE Transactions on Computers, vol. 68, no. 4, pp.
617–623, 2019.

[24] Z. Guo, J. Yin, Y. Bai, D. Zhu, K. Shi, G. Wang, K. Cao, and W. Zhao,
“Spintronics for energy- efficient computing: An overview and
outlook,” Proceedings of the IEEE, vol. 109, no. 8, pp. 1398–1417,
2021.

[25] J. Yang, X. Wang, Q. Zhou, Z. Wang, H. Li, Y. Chen, and W. Zhao,
“Exploiting spin-orbit torque devices as reconfigurable logic for
circuit obfuscation,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), vol. 38, no. 1, pp. 57–69,
2018.

[26] J. Yang, P. Wang, Y. Zhang, Y. Cheng, W. Zhao, Y. Chen, and H. H.
Li, “Radiation-induced soft error analysis of stt-mram: A device
to circuit approach,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), vol. 35, no. 3, pp. 380–393,
2015.

[27] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level
performance, energy, and area model for emerging nonvolatile
memory,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 31, no. 7, pp. 994–1007, 2012.

[28] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

Xueyan Wang received the B.S. degree in com-
puter science and technology from Shandong
University, Jinan, China,in 2013, and the Ph.D.
degree in computer science and technology from
Tsinghua University, Beijing, China, in 2018.
From 2015 to 2016, she was a visiting scholar
in University of Maryland, College Park, MD,
USA. She is currently an Assistant Professor
with the School of Integrated Circuit Science
and Engineering in Beihang University, Beijing,
China. Her current research interests include

processing-in-memory architectures, AI chip, and hardware security.

Jianlei Yang (S’11-M’14-SM’20) received the
B.S. degree in microelectronics from Xidian Uni-
versity, Xi’an, China, in 2009, and the Ph.D. de-
gree in computer science and technology from
Tsinghua University, Beijing, China, in 2014.
He is currently an Associate Professor in Bei-
hang University, Beijing, China, with the School
of Computer Science and Engineering. From
2014 to 2016, he was a post-doctoral researcher
with the Department of ECE, University of Pitts-
burgh, Pennsylvania, United States. His current

research interests include computer architectures and neuromorphic
computing systems. Dr. Yang was the recipient of the First/Second place
on ACM TAU Power Grid Simulation Contest in 2011/2012. He was a
recipient of IEEE ICCD Best Paper Award in 2013, ACM GLSVLSI Best
Paper Nomination in 2015, IEEE ICESS Best Paper Award in 2017, ACM
SIGKDD Best Student Paper Award in 2020.

Yinglin Zhao received the M.S. degree in soft-
ware engineering from Xidian University, Xi’an,
China, in 2017, and now is pursuing the Ph.D.
degree in electrical engineering at School of
Electronic and Information Engineering, Beihang
University, Beijing, China. His research interests
include the computer systems architecture and
the design of non-volatile memory.



11

Xiaotao Jia received the B.S. degree in math-
ematics from Beijing Jiao Tong University, Bei-
jing, China, in 2011, and the Ph.D. degree in
computer science and technology from Tsinghua
University, Beijing, China, in 2016. He is cur-
rently an Associate Professor with the School of
Microelectronics in Beihang University, Beijing,
China. From 2016 to 2019, he was a post-doctor
researcher with the Microelectronics in Beihang
University, Beijing, China. His current research
interests include spintronic circuits, stochastic

computing and Bayesian deep learning.

Rong Yin received the Ph.D. degree from the
Institute of Information Engineering, Chinese
Academy of Sciences, Beijing, China, and the
School of Cyber Security, University of Chinese
Academy of Sciences, Beijing, China, in 2020.
She is currently an Associate Professor with
the Institute of Information Engineering, Chinese
Academy of Sciences, Beijing, China. Her cur-
rent research interests include machine learn-
ing, data mining, statistical theory, optimization
algorithm, and large-scale kernel methods.

Xuhang Chen received the B.S. degree in com-
puter science and technology from Dalian Uni-
versity of Technology, Dalian, China, in 2020,
and now is pursuing the M.S. degree at School
of Integrated Circuit Science and Engineering,
Beihang University, Beijing, China. His research
interests include the graph computing accelera-
tions with emerging in-memory computing archi-
tectures.

Gang Qu (Fellow, IEEE) received the B.S. and
M.S. degrees in mathematics from the University
of Science and Technology of China, in 1992
and 1994, respectively, and the Ph.D. degree
in computer science from the University of Cal-
ifornia, Los Angeles, in 2000. Upon graduation,
he joined the University of Maryland at College
Park, where he is currently a professor in the De-
partment of Electrical and Computer Engineer-
ing and Institute for Systems Research. Dr. Qu
is the director of Maryland Embedded Systems

and Hardware Security Lab and the Wireless Sensors Laboratory. His
primary research interests are in the area of embedded systems and
VLSI CAD with focus on low power system design and hardware related
security and trust. He is an associate editor for the IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on Emerging Topics in Computing, ACM Transactions on
Design Automation of Electronic Systems, Journal of Hardware and
System Security, Journal of Computer Science and Technology, and
Integration, the VLSI Journal. He has served 18 times as the general
or program chair/co-chair for conferences, symposiums and workshops.
He is the co-founder of IEEE Asian Hardware Oriented Security and
Trust Symposium, Hot Picks in Hardware and System Security Work-
shop, and the IEEE CEDA Hardware Security and Trust Technical Com-
mittee.

Weisheng Zhao (Fellow, IEEE) received the
Ph.D. degree in physics from University of Paris
Sud, Paris, France, in 2007. He is currently the
Professor with the School of Integrated Circuit
Science and Engineering in Beihang University,
Beijing, China. In 2009, he joined the French
National Research Center (CNRS), as a Tenured
Research Scientist. Since 2014, he has been a
Distinguished Professor with Beihang University,
Beijing, China. He has published more than 200
scientifc articles in leading journals and confer-

ences, such as Nature Electronics, Nature Communications, Advanced
Materials, IEEE Transactions, ISCA and DAC. His current research in-
terests include the hybrid integration of nano-devices with CMOS circuit
and new nonvolatile memory (40-nm technology node and below) like
MRAM circuit and architecture design. He is currently the Editor-In-Chief
for the IEEE Transactions on Circuits and Systems I: Regular Paper.


	1 Introduction
	2 Preliminary
	2.1 Triangle Counting
	2.2 In-Memory Computing with STT-MRAM

	3 Reformulation of Triangle Counting
	3.1 Triangle Counting with Bitwise Operations
	3.2 An Illustrative Example
	3.3 Discussions on the Reformulated TC

	4 Sparsity-aware Graph Data Management for In-Memory Accelerations
	4.1 Graph Data Reuse and Replacement
	4.2 Graph Data Compression

	5 Overall Architecture and Implementation
	5.1 Overall Architecture Design
	5.2 Pseudo-codes for In-Memory TC Acceleration

	6 Experimental Results
	6.1 Experimental Setup
	6.2 Evaluations of Data Slicing and Compression
	6.3 Evaluations of Data Reuse and Replacement
	6.4 Performance and Energy Results

	7 Conclusion
	Biographies
	Xueyan Wang
	Jianlei Yang
	Yinglin Zhao
	Xiaotao Jia
	Rong Yin
	Xuhang Chen
	Gang Qu
	Weisheng Zhao


