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Multiplicative Complexity of XOR Based Regular
Functions

Anna Bernasconi, Stelvio Cimato, Valentina Ciriani, and Maria Chiara Molteni

Abstract—XOR-AND Graphs (XAGs) are an enrichment of the classical AND-Inverter Graphs (AIGs) with XOR nodes. In particular,
XAGs are networks composed by ANDs, XORs, and inverters. Besides several emerging technologies applications, XAGs are often
exploited in cryptography-related applications based on the multiplicative complexity of a Boolean function. The multiplicative
complexity of a function is the minimum number of AND gates (i.e., multiplications) that are sufficient to represent the function over the
basis {AND, XOR, NOT}. In fact, the minimization of the number of AND gates is important for high-level cryptography protocols such
as secure multiparty computation, where processing AND gates is more expensive than processing XOR gates. Moreover, it is an
indicator of the degree of vulnerability of the circuit, as a small number of AND gates corresponds to a high vulnerability to algebraic
attacks. In this paper we study the multiplicative complexity of Boolean functions characterized by two particular regularities, called
autosymmetry and D-reducibility. Moreover, we exploit these regularities for decreasing the number of AND nodes in XAGs. The
experimental results validate the proposed approaches.

Index Terms—Logic synthesis, Multiplicative complexity, XOR-AND Graphs, Regular Boolean functions.
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1 INTRODUCTION

Nowadays, AND-Inverter Graphs (AIGs) are one of the
most studied and exploited data structure in Logic Syn-
thesis. An AIG is a directed acyclic graph of 2-input AND
nodes, with possibly inverted edges, that represents a
Boolean function. Recently, AND-Inverter Graph logic net-
works, implemented in the academic state-of-the-art logic
synthesis tool ABC [19], have evolved into the new XOR-
AND Graph (XAG) representations [26], [27], [36], [37]. An
XAG is an AIG enriched with 2-input XOR nodes.

The introduction of XOR nodes in AIGs is mainly due
to two different requirements. On one hand, several pro-
posed emerging technologies exploit XOR gates [13], [27],
[35], [38]. On the other hand, the growing relevance of
cryptography-related applications has revived the interest
in XOR gates [22], [26], [27], [33], [36], [37], [38]. For example,
in high-level cryptography protocols such as secure mul-
tiparty computation, processing XOR gates is convenient
since their evaluation is possible without any communica-
tion cost [28]. In this context, it is thus important to consider
network representations that assume XOR gates explicitly.
Thus, cryptographic applications often consider Boolean
functions represented over the basis {AND, XOR, NOT}.

In the context of logic synthesis for emerging technolo-
gies, the minimization of an XAG mainly aims at reducing
the number of AND/XOR nodes. On the contrary, in the
cryptography-related applications, we are typically inter-
ested in reducing the number of AND nodes, only. For
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example, for secure multiparty computation AND nodes
are the only nodes in an XAG with a communication cost
(observe that the NOT operation can be implemented with
a XOR). In this paper, we are interested in this second type
of XAG applications, where the minimization cost depends
only on the number of AND nodes. Therefore, our main
aim is the minimization of the number of AND gates in
an XAG [22], [36], [37], [38]. The number of AND nodes in
an XAG implementation of a function is called the multi-
plicative complexity of the XAG, while the minimum number
of ANDs that are sufficient to represent a function with an
XAG defines the multiplicative complexity of the function. This
complexity measure plays a crucial role in cryptography-
related applications: not only it is important for high-level
cryptography protocols, but it also represents an indicator
of the degree of vulnerability of the circuit, as a small
number of AND nodes corresponds to a high vulnerability
to algebraic attacks.

In this paper, we study the multiplicative complexity of
two classes of Boolean functions exhibiting regularities that
can be expressed using the XOR operation: 1) autosymmetric
functions [3], [10], [11], [30]; and 2) D-reducible functions [6].
Our motivation is based on the following two observations.
First, we are interested in functions’ regularities that allow
to fully exploit XOR gates. Second, the presence of XOR
gates often guarantees more compact representations [4],
[12], [13], [26], [27], [36], [37], [38].

Intuitively, a Boolean function f over n variables is k-
autosymmetric if it can be projected onto a smaller function
fk that depends on n − k variables only, and has a smaller
on-set. The XOR operation comes into play as the new n −
k variables are XOR combinations of some of the original
ones. The new function fk is called restriction of f and can
be identified in time polynomial in the dimension of some
standard representations of the input instance. For example,
the restriction fk can be computed in time polynomial in
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the size (i.e., the number of nodes) of the initial Reduced
Ordered Binary Decision Diagram (ROBDD) representation
of the original function f , as proved in [10]. Obviously, note
that the dimension of the ROBDD of f might be exponential
in the number n of input variables. Observe that, even if
autosymmetric functions depend in general on all their n
input variables, they can be studied in a n− k dimensional
space; i.e., they are in general non-degenerated, whereas all
degenerated functions are autosymmetric.

The interest in autosymmetric functions in this context
is motivated by the fact that an XAG representation of an
autosymmetric function f can be easily obtained composing
an XAG for the restriction fk with an additional layer of
XOR nodes (as discussed in Sections 2.3 and 3). As a result,
the multiplicative complexity of f can be estimated from
the multiplicative complexity of the restriction fk. Actually,
a stronger result holds: f and fk have exactly the same
multiplicative complexity. This result is a consequence of
the fact that f and its restriction fk embedded in an n-
dimensional Boolean space are affine-equivalent, and affine
equivalent functions have the same multiplicative complex-
ity, as discussed in [21], [24]. Since fk is a smaller function,
depending on less variables, computing an XAG represen-
tation and minimizing the number of AND nodes become
easier problems, whose solutions allow to better assess the
actual multiplicative complexity of the original function
(note that determining the exact value of the multiplicative
complexity of a function is a computationally intractable
problem [20]).

Dimension-reducible (D-reducible) functions are Boolean
functions whose minterms are all contained in an affine
space A strictly smaller than the whole Boolean space
{0, 1}n [6], [7], [8], [14]. A D-reducible function f contained
in an affine spaceA can be represented as f = χA ·fA, where
χA is the characteristic function of A and fA ⊆ {0, 1}dimA

is the projection of f onto A. We show that an XAG
representation for f can be derived combining an XAG
representation for the affine space A with an XAG repre-
sentation for the smaller function fA. The interest on this
special regularity is due to the fact that affine spaces can be
represented by an AND of XORs of literals. In this paper, we
study and formally estimate the multiplicative complexity
of a D-reducible function f starting from the multiplicative
complexities of χA and of the function fA. We validate the
proposed approach through three sets of experiments: for
autosymmetric functions, for D-reducible functions, and for
functions that are both autosymmetric and D-reducible.

First of all, we observe that autosymmetry is a prop-
erty that is frequent enough within Boolean functions to
be worth studying, indeed about 24% of the functions in
the classical ESPRESSO benchmark suite [41] have at least
one non-degenerate autosymmetric output [11]. For this set
of functions, we are able to get a better estimate of the
multiplicative complexity in about 52% of the cases, with
an average reduction of the number of ANDs of about 44%.

The experiments for D-reducible functions show that the
XAG minimization can benefit from the D-reducible decom-
position of the function in about the 43% of the D-reducible
benchmarks, with an average reduction of the number of
ANDs of about 35%. Moreover, the computational time for
XAG synthesis is reduced in average by the 24%.

Finally, for functions that are both autosymmetric and
D-reducible, we get a better estimate of the multiplicative
complexity in about 90% of the cases, with an average
reduction of the number of ANDs of about 24%.

This paper is an extended version of the conference
paper presented in [5] and it is organized as follows. Prelim-
inaries on multiparty computation, multiplicative complex-
ity, XAG networks, autosymmetric and D-reducible func-
tions are described in Section 2. Section 3 discusses the mul-
tiplicative complexity of autosymmetric functions. Section 4
analyzes the multiplicative complexity of D-reducible func-
tions. Section 5 provides an analysis of the multiplicative
complexity of Boolean functions that are both D-reducible
and autosymmetric. Section 6 reports the experimental re-
sults. Finally, Section 7 concludes the work.

2 PRELIMINARIES

2.1 Secure Multiparty Computation
The distributed scenario, where a number of computing
devices would collaborate in the computation of a given
function, has been investigated for the last forty years,
dealing with different problems caused by non-cooperating
parties, due to faults or deliberate misbehavior. Secure Mul-
tiparty Computation (SMC) protocols have been devised to
allow untrusted parties to cooperate in a secure manner,
keeping their own inputs private and sharing only the result
of the computation. At the end of the execution, privacy and
correctness requirements are guaranteed, meaning that the
parties receive correctly their output, while they are enabled
to learn nothing more than the results from the computation.
A typical example of secure computation is the millionaires’
problem, where two millionaires want to run a computation
to establish which one of them is richer, without the help
of any trusted third party and knowing at the end nothing
more than the output of the computation.

In literature, different techniques have been used to real-
ize SMC protocols, generally deploying fully homomorphic
encryption, garbled circuits, or linear secret sharing, and a
theoretical result has been reported proving that any func-
tion can be securely computed [43]. In addition, specialized
application cases have been studied giving origin to research
fields such as private set intersection or privacy preserving
benchmarking. Recently, impressive improvements in the
performance of SMC have been reported, showing how
complex applications can be resolved under this paradigm,
with important practical consequences. In [2], for example,
the computation of the AES cipher, where the private inputs
are the symmetric key and the data to be encrypted, is
analyzed reporting execution time ranging from 50 mi-
croseconds to 20 seconds for block. In general SMC can be
now considered as a practical solution to various real-life
problems, and some deployments have been registered such
as in the case of a public auction among sugar beets produc-
ers [16] or to analyze and drive public investments [15].

The Garbled Circuit (GC) protocol, introduced by Yao in
1982 [42], is one of the possible solutions for the two-party
secure computation problem. In this approach the computed
function is represented using a Boolean circuit, and the
evaluation is performed gate per gate by the collaborating
parties.
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Fig. 1. XAG representation of the 4-input function corresponding to the
Karnaugh map in Figure 3.

More in detail, one of the parties, say Alice, acts as the
garbler, who encodes the inputs to the circuit and encrypts
the truth table of each gate. The encryption consists in
randomly selecting strings and keys, representing the input
and output values, i.e. the 0s and 1s obtained according
to the truth table of the selected gate. Using the correct
keys associated to the input values, the decryption enables
the recovering of the output result. In the protocol, Alice
provides the evaluator, say Bob, with her encrypted input
values and the garbled tables of all the gates included in the
circuit. Bob retrieves his encoded input values interacting
with Alice using an oblivious transfer protocol, without in
this way revealing anything about his input to Alice. At the
end, Bob is enabled to compute the output values for all the
gates in the circuit and to share the final result with Alice.

An enhancement of the basic protocol has been pre-
sented by Koleshnikov et al [28], where they enable the
computation of garbled XOR gates without any interaction
between Alice and Bob, saving then the communication
costs for the execution of the oblivious transfer protocol.

A direct consequence of this result, is that using logic
synthesis algorithms, it is possible to optimize the Boolean
circuit for the garbled evaluation and minimize the mul-
tiplicative complexity of the circuit. In this direction, au-
thors in [37] present a technique based on a cut rewriting
algorithm, which improves in benchmarks related to secure
multiparty computation applications.

2.2 Multiplicative Complexity and XOR-AND graphs

The multiplicative complexity of a Boolean function is a com-
plexity measure defined as the minimum number of AND
gates (i.e., multiplications) that are sufficient to represent the
function over the basis {AND, XOR, NOT}, a basis widely
used to represent Boolean functions for cryptographic ap-
plications [18], [20], [37], [36], [39]. More precisely:

Definition 1. The multiplicative complexity M(f) of a Boolean
function f is the number of AND gates, with fan-in 2,
that are necessary and sufficient to implement f with a
circuit over the basis {AND, XOR, NOT}.

Definition 2. The multiplicative complexity MC(f) of a circuit
C implementing a Boolean function f over the basis
{AND, XOR, NOT} is the actual number of AND gates
in C .

Observe that the multiplicative complexity of a circuit
for f only provides an upper bound for the multiplicative
complexity of f , i.e., M(f) ≤ MC(f). As already discussed
in Section 1, the multiplicative complexity measure plays a
crucial role in cryptography-related applications for various
reasons. First of all, the minimization of the number of AND
gates is important for high-level cryptography protocols
such as zero-knowledge protocols and secure multiparty
computation, where processing AND gates is more expen-
sive than processing XOR gates [1], as discussed in the
previous section. Moreover, the multiplicative complexity
is an indicator of the degree of vulnerability of the circuits,
as a small number of AND gates in an {AND, XOR, NOT}
circuit corresponds to a high vulnerability to algebraic at-
tacks [20], [25], [39]. Unfortunately, determining the exact
value of the multiplicative complexity of a function f is a
computationally intractable problem [20]. Thus, the mini-
mization of the number of AND gates in any circuit imple-
mentation over the basis {AND, XOR, NOT} becomes very
important to assess the actual multiplicative complexity of
the function.

In this work, we consider Boolean functions represented
in XOR-AND graphs (XAGs) form [26], [37], [36], and use
the multiplicative complexity MX(f) of an XAG implemen-
tation of a function f to provide an upper bound for its real
multiplicative complexity M(f). XAGs are logic networks
which contain only binary XOR nodes, binary AND nodes,
and inverters. In particular, we refer to the XAG model
described in [36], where regular and complemented edges
are used to connect the gates. Complemented edges indicate
the inversion of the signals and replace inverters in the
network. An example of XAG is shown in Figure 1, where
complemented edges are denoted by dashed lines.

2.3 Autosymmetric Functions
Commonly, the “regularities” of Boolean functions are ex-
ploited with the purpose to derive, in shorter synthesis
time, more compact circuits. It is not always clear whether a
function is “regular”, and which type of regularity could be
exploited for its synthesis. Some previous papers on logic
synthesis have focused on structural regularities of Boolean
functions based on the notion of affine spaces and easily
expressed using XORs. In this context, we study a particular
regularity, i.e., autosymmetry [10], [11], [30], in order to
decrease the multiplicative complexity of an XAG.

Intuitively, a Boolean function f over n variables is k-
autosymmetric if it can be projected onto a smaller function fk
that depends on n−k variables. The regularity of a Boolean
function f is then measured computing its autosymmetry
degree k, with 0 ≤ k ≤ n, where k = 0 means no regularity.
For k ≥ 1 the Boolean function f is said to be autosymmetric,
and a new function fk depending on n − k variables only,
called the restriction of f , is identified in time polynomial
in the size of the initial ROBDD representation of f [10].
Moreover, an expression for f can be simply built from
fk: f(x1, x2, . . . , xn) = fk(y1, y2, . . . , yn−k), where fk is a
Boolean function on n − k variables y1 = ⊕(X1), y2 =
⊕(X2), . . . , yn−k⊕ (Xn−k) and each ⊕(Xi) is a XOR whose
input is a set of variables Xi with Xi ⊆ {x1, x2, . . . , xn}.
Note that ⊕(Xi) can be a single variable, i.e., Xi = {xj}
and ⊕(Xi) = xj . The autosymmetry test consists of finding
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Fig. 2. Karnaugh map of the second output of rd53 depending on the 5 Boolean variables x1, x2, x3, x4, x5.

the value of k, the restriction fk, and each single XOR with
its input variables Xi (reduction equations). Note that a
degenerate function, i.e., a function that does not depend
on all the variables in the Boolean space, is autosymmetric.

Since the algorithms for the autosymmetry test would
require a fairly long and detailed explanation, we refer the
reader to [3], [9], [10]. In particular, [3] and [10] describe
implicit procedures for the test, working on BDD represen-
tations of incompletely and completely specified Boolean
functions, respectively.

The restriction fk is “equivalent” to, but smaller than f ,
and has |S(f)|/2k minterms only, where S(f) denotes the
support of f , and thus |S(f)| is the number of minterms
of f . The synthesis of f can be reduced to the synthesis
of its restriction fk. As the new n − k variables are XOR
combinations of some of the original ones, the reconstruc-
tion of f from fk can be obtained with an additional logic
level of XOR gates, whose inputs are the original variables,
and the outputs are the new n − k variables and their
complementations given as inputs to a circuit for fk. The
restricted function fk can be synthesized in any framework
of logic minimization, in this paper we derive an XAG
representation of it. The overall representation of an XAG
for the function f using the XAG for fk and the XOR nodes
for the reduction equations is represented in Figure 5.

Consider, for example, the second output of the bench-
mark function rd53 of the LGSynth’89 benchmark suite [41],
i.e., the Boolean function f depicted in Figure 2. The “reg-
ularity” of the function is highlighted by the colors in the
figure. The autosymmetry degree of f is 1 (i.e., k = 1) and
the reduction equations are y1 = x1 ⊕ x2, y2 = x1 ⊕ x3,
y3 = x1 ⊕ x4, y4 = x1 ⊕ x5 (for details on the computation
see [10]). Thus, the restriction f1 depends on 4 variables
and it is depicted in Figure 3. Note that each point of the
restriction corresponds to two points of the original func-
tion, as indicated by the colors in the maps. For example,
the point 0000 in the Karnaugh map of Figure 3 corre-
sponds to the two points 00000 and 11111 in the Karnaugh
map of Figure 2. This is due to the reduction equations.
In fact, considering the point (x1, x2, x3, x4, x5) = 00000,
through the reduction equations we get (y1, y2, y3, y4) =
(x1 ⊕ x2, x1 ⊕ x3, x1 ⊕ x4, x1 ⊕ x5) = 0000. Exactly the

same holds for the point (x1, x2, x3, x4, x5) = 11111. It is
easy to verify that we can perform a similar computation
for any couple of corresponding points depicted in Figure 2,
obtaining the Karnaugh map of Figure 3. For this example
we have the XAG representation described in Figure 6.

We now recall some properties of autosymmetric func-
tions and of their restrictions, that will be useful for the
analysis of their multiplicative complexity. As shown in [10],
[11], any k-autosymmetric function f is associated to a
k-dimensional vector space Lf , defined as the set of all
minterms α s.t. f(x) = f(x ⊕ α) for all x ∈ {0, 1}n.
The k variables that are truly independent onto Lf are
called canonical variables, while the other variables are called
non-canonical. Informally, the canonical variables are the
ones that assume all the possible combinations of {0, 1}
values in the vectors of the vector space Lf , meanwhile
the non-canonical variables are the variables that, on Lf ,
have a constant value or are a linear combination of the
canonical ones. Moreover, the restriction fk corresponds to
the projection of f onto the subspace {0, 1}n−k where all
the canonical variables assume value 0 (see [10], [11] for
more details), while the reduction equations correspond
to the linear combinations that define each non-canonical
variable in terms of the canonical ones. For instance, con-
sider again the 1-autosymmetric benchmark rd53 (second
output). Its associated vector space is the 1-dimensional
space Lf = {00000, 11111}, whose canonical variable is x1
(all other variables are non-canonical and must be equal to
x1 on Lf ), and the restriction corresponds to the projection
of the function onto the space where x1 = 0, as it can be
noted from Figures 2 and 3.

Autosymmetric functions are just a subset of the total
number of Boolean functions. Indeed, while the number NB

of the Boolean functions of n variables is NB = 22
n

, the
number of autosymmetric ones is NA = (2n − 1)22

n−1

[11].
Therefore, the set of autosymmetric functions is much
smaller than the one containing all the Boolean functions.
Nevertheless, a considerable amount of standard Boolean
functions of practical interest falls in the class of autosym-
metric functions. Indeed, about 24% of the functions in the
classical ESPRESSO benchmark suite [41] have at least one
truly (i.e., non degenerate) autosymmetric output [10], [11].
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Fig. 3. Karnaugh map of the restriction of the second output of rd53
depending on the 4 Boolean variables y1, y2, y3, y4.

Thus, the interest on autosymmetric functions is motivated
by 1) their compact (in term of number of AND gates)
representation, which consists of a XOR layer that is the
input to an XAG for the restriction; 2) the frequency of
autosymmetric functions in the set of benchmark functions.

We point out that autosymmetric functions have been
independently characterized in the theoretical framework
concerning the analysis of affine equivalent Boolean func-
tions [21], [24], [32]. Two Boolean functions f and g, depend-
ing on n binary variables, are affine-equivalent if f can be
written as f(x) = g(Ax + a) + bTx + c, for all x ∈ {0, 1}n,
where A is a non-singular n × n matrix over {0, 1}; a, b
are column vectors in the Boolean vector space ({0, 1}n,⊕),
and c ∈ {0, 1}. The parameters (A, a, b, c) constitute an
affine transformation that maps g to f . Affine transformations
are used to partition Boolean functions into equivalence
classes, and it turns out that many relevant cryptographic
properties of Boolean functions, including the multiplicative
complexity, are invariant under affine transformations.

In this context, autosymmetric functions depending on
n variables represent a subset of functions with linearity
dimension [32] strictly less than n. We recall here that the
linearity dimension is defined as the dimension dl(f) of the
vector space of the linear structures of f , i.e., of all minterms
α ∈ {0, 1}n such that f(x⊕α)⊕f(x) is a constant function,
i.e., f(x ⊕ α) ⊕ f(x) = c, with c ∈ {0, 1}. Thus, we can
observe that the autosymmetry degree k of a function f is
upper bounded by its linearity dimension dl(f). Indeed, any
vector α ∈ Lf is a linear structure, but not viceversa, as the
definition of autosymmetry requires that f(x) and f(x⊕α)
are always equal, for all x ∈ {0, 1}n, i.e., f(x)⊕f(x⊕α) = 0.

The theory discussed in [21], [32], together with the
properties of autosymmetric functions, can be exploited to
prove that f and its restriction fk, embedded into an n-
dimensional Boolean space, are affine equivalent, and there-
fore have the same multiplicative complexity. First of all,
observe that for any x ∈ {0, 1}n, f can be written in terms of
its restriction fk as f(x) = fk(Lx), where L is the (n−k)×n
matrix that defines the reduction equations. This matrix has
rank n− k, as each of the (n− k) columns corresponding to
the non-canonical variables contains only one entries equal
to 1, while all other entries are equal to 0 [10], [11]. Now, we
recall from [24] the definition of embedding of a function.

Definition 3. Let g : {0, 1}` → {0, 1}. The embedding of g

in the n-dimensional space {0, 1}n, n ≥ `, is defined
as the n-variables Boolean function g(n) that satisfies
g(n)(x1, . . . , x`, x`+1, . . . , xn) = g(x1, . . . , x`).

Observe that, whenever ` < n, g(n) is a degenerate function,
depending only on the first ` variables. We now show
that f and the embedding f

(n)
k of its restriction are affine

equivalent.
Proposition 1. Let f be a k-autosymmetric function depend-

ing on n binary variables, and let f (n)k be the embedding
of its restriction fk in {0, 1}n. Then f and f (n)k are affine
equivalent.

Proof. We show that there exists a non-singular n × n

matrix A such that, for any x ∈ {0, 1}n, f(x) = f
(n)
k (Ax).

Consider the matrix L representing the reduction equations.
As already observed, L has rank n−k. The idea is to simply
add k new rows to L, linearly independent from the others,
in order to obtain a non-singular matrix of maximum rank
n. This can be accomplished by choosing as new rows the n-
dimensional vectors containing only one entry equal to one,
corresponding to one of the canonical variables of f (recall
that a k-autosymmetric function has exactly k canonical
variables). The resulting matrix A is non-singular as it is
a permutation of a triangular one, with all entries equal to 1
on the main diagonal, thanks to the initial structure of L.

Now, for all x ∈ {0, 1}n, let y = Ax. We have
f
(n)
k (Ax) = f

(n)
k (y) = f

(n)
k (y1, . . . , yn−k, yn−k+1, . . . , yn) =

fk(y1, . . . , yn−k) = fk(Lx) = f(x), and the thesis follows.

Finally, we can conclude that autosymmetry is a special
and restricted case of affinity equivalence. We study this par-
ticular case since this regularity can be efficiently tested and
autosymmetric functions can be better minimized in XAG
forms, as shown by the experiments shown in Section 6.

2.4 D-Reducible Functions
In this section we summarize the definition and the major
properties of Dimension Reducible Boolean functions (i.e.,
DRed functions). For this purpose, we recall that the Boolean
space {0, 1}n is a vector space with respect to the exclusive
sum ⊕ and the multiplication with the scalars 0 and 1.
Moreover, an affine space is a vector space or a translation of
a vector space, as described in the following definition [6].
Definition 4. Let V be vector subspace of the Boolean vector

space ({0, 1}n,⊕) and α be point in {0, 1}n, then the set
A = α ⊕ V = {α ⊕ v | v ∈ V } is an affine space over V
with translation point α.

D-reducible functions are Boolean functions whose
minterms are all contained in an affine space A strictly
smaller than the whole Boolean space {0, 1}n.
Definition 5. A Boolean function f : {0, 1}n → {0, 1} is D-

reducible if f ⊆ A, where A ⊂ {0, 1}n is an affine space
of dimension strictly smaller than n.

Observe that the notion of dimension exploited in the
definition of D-reducibility refers to the dimension of the
smallest vector, or affine space, that contains the whole on-
set of a function f , and it is defined as the number of on-
set minterms, considered as vectors of the Boolean space
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Fig. 4. Karnaugh maps of a D-reducible function f and its corre-
sponding projection fA.

({0, 1}n,⊕), that are linearly independent. Thus, this notion
is different from the notion of dimension of a Boolean function
f (dim(f)) defined as the minimum number of essential
variables (i.e., variables on which a function truly depends)
of all functions that are affine equivalent to f [21], [24].
For instance, the dimension of the smallest affine space
that contains the on-set of the AND of n binary variables
is d = 1, while dim(AND) = n. In general, the same
affine space A may contain functions with very different
dimensions. The minimal affine space A containing a D-
reducible function f is unique and it is called the associated
affine space of f . The function f can be represented in the
following way: f = χA · fA, where fA ⊆ {0, 1}dimA is the
projection of f onto A and χA is the characteristic function
of A. Moreover, as shown in [23], an affine space can be
represented by a simple expression, called pseudoproduct,
consisting in an AND of XORs or literals. In particular, an
affine space of dimension dimA can be represented by a
pseudoproduct containing (n− dimA) XOR factors.

Consider, for instance, the function f : {0, 1}4 → {0, 1}
with on-set {0001, 0110, 1101} represented in the Karnaugh
map on the left side of Figure 4. The smallest affine space
containing the on-set of f , depicted with dotted circles on
the map, is A = {0001, 0110, 1010, 1101}. This affine space
has dimension dimA = 2 and can be represented by the
pseudoproduct (x1 ⊕ x2 ⊕ x3)(x1 ⊕ x2 ⊕ x4) that contains
exactly n − dimA = 2 XOR factors (see Section 4 for more
details on how to derive such representation). If we project
f onto the smaller space A, we obtain the function fA =
{00, 01, 11}, represented in the Karnaugh map on the right
side of the figure.

The D-reducibility of a function f can be exploited in
the minimization process. The projection fA is minimized
instead of f . This approach requires two steps: (i) deriving
the affine space A and the projection fA; (ii) minimizing fA
in any logic framework.

The D-reduciblity test, which establishes whether a func-
tion f is D-reducible, and the computation of A can be
performed efficiently. In particular, the D-reduciblity test
described in [6] is based on the Gauss-Jordan elimination
procedure [29], which is used to find the on-set minterms

of f that are linearly independent. The number ` of linearly
independent minterms defines the dimension of the smallest
affine or vector space A covering the on-set of f , and if
` < n, then the function f is D-reducibile. The Gauss-
Jordan elimination procedure can also be used to derive
an algebraic expression for the characteristic function of A.
Most importantly, as described in [6], this procedure can be
applied starting from any SOP representation of f without
generating all its minterms, i.e., in time polynomial in the
initial representation of f . Finally, the projection fA of f
onto A can be simply derived from f by deleting n− dimA
variables from the SOP representation of f .

3 MULTIPLICATIVE COMPLEXITY OF AUTOSYM-
METRIC FUNCTIONS

In this section we analyze the relationships between the
multiplicative complexity of an autosymmetric function and
the multiplicative complexity of its restriction. As already
mentioned in Section 2.3, any autosymmetric function f
is affine-equivalent to the function obtained embedding
the restriction fk in an n-dimensional Boolean space, and
this implies that f and fk have the same multiplicative
complexity [21]. In order to provide a comprehensive pre-
sentation and discussion of the multiplicative complexity of
autosymmetric functions, we present here an alternative and
constructive proof of this result, that requires only the prop-
erties of autosymmetric functions recalled in Section 2.3.

First of all, observe that an XAG representation of a k-
autosymmetric function f can be easily obtained composing
an XAG for the restriction fk with an additional layer of
XOR gates implementing the reduction equations. The in-
puts to the new layer are the original variables x1, x2, . . . , xn
and the outputs are the new variables y1, y2, . . . , yn−k, that
become the inputs to the XAG for fk, as shown in Figure 5.
Since the new layer contains only XOR gates, we immedi-
ately conclude that M(f) ≤ M(fk), as formally stated in
the following proposition.
Proposition 2. The multiplicative complexity of an autosym-

metric function f is less or equal to the multiplicative
complexity of its restriction fk.

Proof. First recall that the multiplicative complexity of an
XAG implementation for a function f provides an upper
bound for the multiplicative complexity of the function
itself, i.e., M(f) ≤ MXAG(f). Thus, the thesis follows
since we can construct an XAG for f with exactly M(fk)
AND nodes. This can be done adding to an XAG for fk,
containing a minimum number M(fk) of AND nodes, a
layer consisting only of XOR nodes, as shown in Figure 5.

We can now exploit the characterization for the restric-
tion of an autosymmetric function recalled in Section 2.3 to
prove the following result.
Theorem 1. Let f be a k-autosymmetric function, and let fk

be its restriction. Then, M(f) =M(fk).

Proof. We already argued that M(f) ≤ M(fk). Thus, it
is enough to show that M(f) ≥ M(fk). By contradiction
suppose that the multiplicative complexity of the whole
function f is strictly less than the multiplicative complexity
of its restriction fk, i.e., M(f) < M(fk). This assumption
means that any XAG for fk requires strictly more thanM(f)
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XAG for fk

EXOR layer implementing the 
reduction equations 

f

y1 y2 yn-k

x1 x2 xn

. . . . . . . .

. . . . . . . . . . . . . . .

XAG for f

Fig. 5. An XAG for an autosymmetric function f obtained adding a XOR
level implementing the reduction equations to an XAG for the restriction
fk.

AND nodes, i.e., MX(fk) > M(f), where MX(fk) denotes
the multiplicative complexity of an XAG for fk. Since the
restriction fk corresponds to the projection of f onto the
subspace {0, 1}n−k where all the canonical variables of f
have value 0, we can derive an XAG representation for fk
starting from an XAG for f and substituting all canonical
input variables with the constant value 0. Note that the
constant value 0 can be obtained computing the XOR of any
non-canonical variable with itself. Such a transformation can
only decrease the number of ANDs in the original XAG, as
all AND nodes that receive in input the constant value 0 can
be removed from the circuit, and substituted with the value
0. Therefore, if we start from an XAG implementation of f
with the minimum number MX(f) =M(f) of AND nodes,
we can derive an XAG for fk with MX(fk) ≤M(f) ANDs,
in contradiction with the initial assumptionM(f) < M(fk).

Since fk is a smaller function, depending on less vari-
ables, computing an XAG representation and minimizing
the number of ANDs become easier problems, whose solu-
tions allow to better assess the actual multiplicative com-
plexity of the original function f . For instance, for our
running example concerning the benchmark rd53 already
discussed in Section 2.3, we can derive the XAG represen-
tation shown in Figure 6 simply adding four XOR nodes to
the XAG for fk of Figure 1, that contains 4 XORs and only
2 ANDs. Notice that the direct XAG minimization of rd53
(second output), performed using the software from [36],
would produce a bigger circuit, with 5 ANDs.

4 MULTIPLICATIVE COMPLEXITY OF D-
REDUCIBLE FUNCTIONS

We now focus on the class of D-reducible functions with
the aim of verifying if the decomposition that characterizes
these functions can be exploited to estimate their multi-
plicative complexity, in analogy to what we have seen for
autosymmetric functions.

Recall, from Section 2.4, that a D-reducible function f ,
with associated affine space A, can be decomposed in the
form f = χA · fA, where χA is the characteristic function of
A and fA ⊆ {0, 1}dimA is the projection of f onto A. Thus,
an XAG representation for f can be derived combining, via
an AND gate, an XAG representation for the affine space A
with an XAG representation for fA (as shown in Figure 7).

⊕ ⊕

⋀⊕

⋀

⊕

⊕ ⊕ ⊕ ⊕

x1 x3x2 x4 x5

f

Reduction 

equations

y1 y2 y3 y4

XAG for fk

Fig. 6. XAG representation for the benchmark rd53 (second output),
derived exploiting the autosymmetry of the function.

This decomposition immediately allows to upper bound
the multiplicative complexity of f with the sum of the
multiplicative complexity of χA and of fA. More precisely
we have:

M(f) ≤M(χA) +M(fA) + 1 , (1)

where we also account for the AND gate on top of the
overall XAG for f . The advantages of this approach should
derive from the fact that fA is a function that depends on
fewer variables, so we can reasonably expect its XAG repre-
sentation to be more compact, and also easier to derive from
a computational point of view. Moreover, χA is not just any
function, but the characteristic function of an affine space,
thus we can take advantage of its structural properties to
derive an XAG possibly optimal in number of AND gates.
While the first aspect can only be verified and evaluated
experimentally, the XAG representation of affine spaces can
be fully investigated from a theoretical point of view. To
this aim, we first mention a result concerning the relation
between the multiplicative complexity of a function and its
algebraic degree. Recall that any function f depending on n
binary variables can be represented as a multilinear polyno-
mial over GF (2), i.e., a XOR of conjunctions of literals.

This representation, which is unique, can be obtained
taking the modulo 2 sum of all the minterms in the on-set
of the function, each represented as a conjunction of literals
(see [40] for more details). Literals corresponding to negated
variables are replaced with the modulo-2 sum of the variable
and the constant 1, e.g., xi = (1⊕ xi).

Definition 6. The algebraic degree deg(f) of a Boolean func-
tion f is the degree of the unique multilinear polynomial
that represents f over GF (2).

Observe that deg(f) corresponds to the number of variables
in the longest products of this polynomial.

Consider for instance the function f : {0, 1}4 → {0, 1}
with on-set {0001, 0110, 1101} represented in the Karnaugh
map on the left side of Figure 4. The polynomial repre-
sentation of f over GF (2) is given by the expression f =
x4⊕x1x4⊕x2x3⊕x2x4⊕x3x4⊕x1x2x3⊕x1x3x4⊕x1x2x3x4.
Thus, f has algebraic degree deg(f) = 4.

The algebraic degree turns out to be related to several
complexity measures, and in particular to the multiplicative
complexity [17], [34].
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Lemma 1. ([34]) Any circuit computing a Boolean function
f over the basis {AND, XOR, NOT} contains at least
deg(f)− 1 AND gates with fan-in 2.

Corollary 1. ([34]) If a function f has algebraic degree
def(f), then its multiplicative complexity is at least
deg(f)− 1.

Let us now focus on the multiplicative complexity of
affine spaces. Consider an affine subspace A of {0, 1}n. As
discussed in [6], [23], we can partition the set of binary
variables {x1, x2, . . . , xn} into two subsets: the subset of
the canonical variables and the subset of the non-canonical
variables. The canonical variables are the truly independent
variables in the space A, in the sense that they can assume
all possible combinations of 0-1 values, and their number
is exactly dimA. On the contrary, the remaining n − dimA
non-canonical variables are not independent of A because
they can be defined as linear combinations (i.e., XORs) of
the canonical ones. This fact is clearly expressed by the
characteristic function χA of the affine space A, which can
always be represented by a special pseudoproduct contain-
ing exactly (n− dimA) XOR factors such that: 1) each non-
canonical variable appears in exactly one XOR factor; 2) each
XOR factor is composed by one non-canonical variable and
possibly some canonical ones. This pseudoproduct repre-
sentation is called the canonical (CEX) expression of A.

Consider, for example, the function f represented in
Figure 4, and its affine space A = {0001, 0110, 1010, 1101}.
We can observe that the first two variables, x1 and x2
assume on A all possible combinations of values, i.e., 00,
01, 10, and 11. On the contrary, x3 and x4 can be defined
on A in terms of x1 and x2 such that x3 = x1 ⊕ x2 and
x4 = x1 ⊕ x2. Thus, the two canonical variables of A
are x1 and x2, while the non-canonical ones are x3 and
x4. The CEX expression of this affine space is given by
the pseudoproduct (x1 ⊕ x2 ⊕ x3)(x1 ⊕ x2 ⊕ x4), which
encodes the two linear combinations defining x3 and x4
on A. Indeed, this pseudoproduct states that on A the two
factors (x1 ⊕ x2 ⊕ x3) and (x1 ⊕ x2 ⊕ x4) must be equal
to 1, i.e., x1 ⊕ x2 ⊕ x3 = 1 and x1 ⊕ x2 ⊕ x4 = 1, from
which we can derive the two equalities (1) and (2). Note
that each non-canonical variable occurs in one and only one
XOR factor. We now show how the CEX expression allows to
characterize the multiplicative complexity of an affine space.

Theorem 2. The multiplicative complexity of the character-
istic function χA of an affine subspace A ⊆ {0, 1}n is
exactly M(χA) = n− dimA− 1.

Proof. We first prove that M(χA) ≥ n − dimA − 1. To
this aim, let us consider a CEX representation for A. This
expression is composed by an AND of n − dimA XOR
factor. Each XOR factor contains a different non-canonical
variable. Thus, the polynomial representation of χA, that
can be immediately derived from the CEX expression, has
degree deg(χA) = n − dimA since it certainly contains
the term corresponding to the product of all the non-
canonical variables. Thus, Corollary 1 immediately implies
that M(χA) ≥ n − dimA − 1. Now, observe that we can
immediately derive an XAG representation from the CEX
expression: we use XOR gates for each XOR factor, and then
exactly n−dimA− 1 AND gates to compute the product of

XAG for A

f

x
1

x
2

x
n

. . . . . . . . . . . . 

. . .

XAG for f

A
N

D

XAG for fA

Fig. 7. An XAG representation for a D-reducible function f obtained
combining an XAG for the affine space A with an XAG for the projection
fA. Notice that only dimA of the n input variables are inputs for fA.

all factors. Thus, we have M(χA) ≤ n− dimA− 1, and the
thesis immediately follows.

Thus, in the overall XAG representation for D-reducible
functions proposed in Figure 7, we can always represent
the affine space A with the XAG derived from its CEX
expression, which is optimal in the number of AND gates.
We therefore derive the following upper bound for the
multiplicative complexity of any D-reducible function:
Corollary 2. Let f : {0, 1}n → {0, 1} be a D-reducible

function with affine space A, and let fA be its projection
onto A. Then M(f) ≤ n− dimA+M(fA).

Proof. Follows immediately from Equation (1) since, by
Theorem 2, we have M(χA) = n− dimA− 1.

Given a D-reducible function f and an XAG represen-
tation for its projection fA, with MX(fA) AND gates, we
can then exploit the decomposition of Figure 7 to derive the
estimate

Mdec(f) =M(χA) +MX(fA) + 1 = n− dimA+MX(fA) (2)

for the multiplicative complexity of f .

5 MULTIPLICATIVE COMPLEXITY OF D-REDUCIBLE
AUTOSYMMETRIC FUNCTIONS

In this section we provide an analysis of the multiplicative
complexity of Boolean functions that are both D-reducible
and autosymmetric. First of all, we prove that if a function
f is autosymmetric and D-reducible with associated affine
space A, then its projection onto A is also autosymmetric.
Theorem 3. Let f be a k-autosymmetric Boolean function

depending on n binary variables. If f is D-reducible with
associate affine space A, then the projection fA of f onto
A is k-autosymmetric.

Proof. Recall that any k-autosymmetric function f is associ-
ated to a k-dimensional vector space Lf , defined as the set
of all minterms α s.t. f(x) = f(x ⊕ α) for all x ∈ {0, 1}n.
We prove that fA is k-autosymmetric by showing that for
any α ∈ Lf it holds that fA(y ⊕ αA) = fA(y) for all
y ∈ {0, 1}dimA, where αA denote the projections of α onto
A, i.e., the minterm obtained from α by keeping only the
literals corresponding to the canonical variables of A.

First of all, we observe that the set Lf is a subspace of the
linear vector space V associated to A. Indeed, let α ∈ Lf ,



9

and let x be any on-set minterm of f . Then, f(x ⊕ α) =
f(x) = 1, and therefore both x and x⊕α ∈ A. This in turns
implies that α ∈ (x ⊕ A), i.e., α ∈ V , since x ⊕ A = V for
any x ∈ A (we refer the reader to [23] for more details on
affine spaces and their properties).

Since Lf ⊆ V , we have that for all x ∈ {0, 1}n and for
all α ∈ Lf , x ∈ A if and only if x⊕ α ∈ A. Indeed,

x ∈ A ⇔ x = a⊕ v , for some a ∈ A and some v ∈ V
⇔ x⊕ α = a⊕ v ⊕ α
⇔ x⊕ α ∈ A

since v ⊕ α ∈ V . Now, let α be any vector in Lf . Then,
for all x ∈ {0, 1}n, we have f(x ⊕ α) = f(x), i.e., χA(x ⊕
α)fA(xA ⊕ αA) = χA(x)fA(xA), where xA and αA denote
the projections of x and α onto A. If we consider only the
vectors x ∈ A, the fact that x⊕α is also inA implies χA(x) =
χA(x⊕α) = 1. Thus, we have fA(xA⊕αA) = fA(xA), which
in turns implies that αA ∈ LfA .

This result is interesting from a practical point of view, it
implies that we can run the autosymmetry test onto fA in-
stead of f , with a reduced computational effort guaranteed
by the fact that fA depends on less variables than f .

As for the estimation of the multiplicative complexity
of f , we can observe that, since f is autosymmetric and D-
reducible, we can upper bound its multiplicative complexity
by first projecting f onto A, and then by estimating the
multiplicative complexity of the restriction fA,k of fA. In-
deed, we have that M(f) =M(fk) ≤ (n−dimA)+M(fA)
and, since M(fA) = M(fA,k), we finally obtain M(f) ≤
(n − dimA) + M(fA,k). Thus, we can estimate the mul-
tiplicative complexity of f by computing and minimizing
the restriction fA,k of fA in XAG form. Since fA,k contains
|S(f)|/2k minterms only (recall that |S(f)| is the number of
minterms of f ), and depends on dimA−k < n−k variables
only, its XAG minimization should be easier and might
provide a final circuit with a reduced number of AND gates.
This expectation has been confirmed by our experiments.

6 EXPERIMENTAL RESULTS

In this section we report and discuss the experimental
results of the evaluation of the multiplicative complexity of
the classes of autosymmetric and D-reducible functions1.

6.1 Autosymmetric functions

The approach presented in Section 3 has been applied to
the ESPRESSO and LGSynth’89 benchmark suite [41] and to
some functions from cryptography benchmarks in the con-
text of multi-party computation (MPC) and fully homomor-
phic encryption (FHE) [36], [37]. Notice that autosymmetry
is a property of single outputs, i.e., different outputs of the
same benchmark can have different autosymmetry degrees.
Thus, we perform the autosymmetry test on each single
output of the considered benchmark suites. The experiments
have been run on a Pentium INTEL(R) CORE(TM) i5-5200U
2.20 GHz processor with 4.00 GB RAM, on a virtual machine
running OS Ubuntu 64-bit.

1. A GitHub repository with the experimental data can be found at
https://github.com/MariaChiaraMC/IEEETC-experiments

TABLE 1
Experimental comparison of autosymmetric benchmarks, considering
an XAG after the autosymmerty test and the standard XAG computed

without the autosymmetry test.

standard XAG XAG with autosym. test
Benchmark in k MX(f) time (s) MX(fk) time (s) gain
add6(5) 12 1 8 0.97 5 1.77 38%
addm4(5) 9 2 32 3.98 32 3.93 0%
amd(0) 14 2 53 10.19 53 10.03 0%
apla(5) 10 1 11 0.96 8 0.68 27%
b2(15) 16 1 118 22.00 118 22.32 0%
ex5(21) 8 1 7 0.59 6 0.43 14%
exep(46) 30 9 20 0.92 20 0.87 0%
exps(19) 8 1 10 2.30 6 0.45 40%
in0(3) 15 1 14 3.03 14 2.77 0%
mainpla(20) 27 5 119 21.37 119 21.80 0%
max46(1) 10 2 36 6.74 10 1.80 72%
max46(5) 10 1 305 50.10 156 26.22 49%
opa(26) 17 9 16 2.51 16 2.44 0%
opa(48) 17 3 22 4.21 22 5.74 0%
p1(6) 8 1 6 1.03 8 0.79 -33%
pdc(10) 16 3 12 2.05 14 1.66 -17%
rd53(1) 5 1 5 0.38 2 0.11 60%
spla(39) 16 3 16 1.27 12 0.80 25%
tial(2) 14 2 174 29.69 174 29.83 0%
xparc(6) 41 16 83 10.90 21 1.80 75%
z5xp1(6) 7 3 2 0.00 0 0.00 100%
ctrl(13) 7 3 3 0.02 3 0.02 0%
dec(39) 8 1 6 0.53 6 0.42 0%
voting N 2 M 2(1) 8 1 81 9.88 22 3.04 73%
voting N 2 M 3(1) 16 1 9261 739.29 5208 468.86 44%
int2float(6) 11 2 8 0.59 8 0.55 0%

The experiments consider the subset of single outputs
that are autosymmetric. The main aim of the experiments is
to compare the synthesized XAG computed starting from
an autosymmetric function f and the synthesized XAG
computed starting from the corresponding restriction fk,
after the autosymmetry test. Recall that the autosymmetry
test computes the autosymmetry degree k of a Boolean
function and outputs: 1) the reduction equations, which
form the XOR layer, and 2) the corresponding restriction
fk. We performed the autosymmetry test described in [10],
[11] considering the on-set of the benchmarks. The func-
tions f and fk are first minimized in SOP form (using
Espresso [31]), and then synthesized in XAG form using the
heuristic approach proposed in [36] and briefly described at
the end of Section 2.2. We then compare the number of AND
nodes of the XAGs for f and fk in order to understand how
the autosymmetry test can enable the XAG minimization of
autosymmetric functions.

For the sake of briefness, we report in Table 1 only a
significant subset of the results. The first column reports the
name of the function considered (benchmark function and
output number). The following one provides its input size.
Next column refers to the autosymmetry degree (i.e., k) of
the function. The following two pairs of columns report the
multiplicative complexity of the XAG (MX ) after applying
the heuristic in [36] and the time in seconds required to
obtain it, for the entire function f (first couple) and for
the corresponding restriction fk (second couple). Finally, the
last column reports the gain in applying the autosymmetry
test before XAG synthesis. Note that there are also some
(rare) cases in which the application of the autosymmetry
test before the XAG synthesis does not imply a gain; in
Table 1, two representative functions are reported, i.e., p1(6)
and pdc(10). This unexpected result is due to the heuristic
nature of the XAG minimizer.

Table 2 shows a summary of the overall results, i.e.,
the results obtained for all the circuits that have been
processed in our experimental evaluation. We first consider
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TABLE 2
Summary of the experimental evaluation, considering the number of ANDs in the XAGs for autosymmetric functions and non-degenerate

autosymmetric functions.

MX(fk) < MX(f) MX(fk) =MX(f) MX(fk) > MX(f)
autosymmeric functions 6.06% 92.31% 1.63%
non-degenerate autosymmeric functions 52.09% 40.10% 7.81%

TABLE 3
Experimental comparison of D-reducible benchmarks, considering
XAGs computed exploting the d-reducibility property with standard

XAGs.

standard XAG XAG with D-red. test
Benchmark in MX(f) time (s) MX(fA) M(χA) Mdec(f) time (s) gain
alu2(6) 10 6 2.69 5 0 6 2.29 0%
amd(15) 14 6 2.51 0 5 6 2.33 0%
amd(16) 14 7 2.47 0 6 7 2.28 0%
apla(8) 10 17 3.97 4 2 7 2.31 59%
b10(2) 15 17 3.78 13 4 18 3.19 -6%
dk48(16) 15 16 3.58 1 10 12 2.20 25%
in2(6) 19 66 9.19 48 1 50 6.27 24%
in5(8) 24 46 8.09 47 0 48 7.66 -4%
m181(6) 15 8 2.89 6 1 8 2.56 0%
newcond(1) 11 2 2.28 0 1 2 2.22 0%
spla(2) 16 14 2.90 0 13 14 2.24 0%
spla(16) 16 10 2.95 1 8 10 2.26 0%
spla(29) 16 19 3.47 5 9 15 2.33 21%
spla(42) 16 10 2.88 0 6 7 2.19 30%
t1(1) 21 10 3.89 9 0 10 3.08 0%
t2(0) 17 14 3.44 12 1 14 3.14 0%
t2(4) 17 5 2.65 3 1 5 2.44 0%
t3(2) 12 16 3.72 9 1 11 3.10 31%
t4(0) 12 17 3.87 5 0 6 2.42 65%
vg2(2) 25 30 4.26 14 5 20 3.34 33%

the set of all autosymmetric functions (degenerate and non-
degenerate), we then study the truly autosymmetric (i.e., the
non-degenerate) ones. Recall that degenerate functions are,
by definition, autosymmetric. In Table 2, we denote with
MX(fk) < (=, >, resp.)MX(f) the number of benchmarks
where the number of ANDs of the XAG for fk is less than
(equal to, greater than, resp.) the number of ANDs of the
XAG for f .

We notice that the XAG minimization algorithm pro-
posed in [36] is sensible to degenerate functions as shown
in the first row of Table 2, where the number of benchmarks
where fk and f have the same number of ANDs is the ma-
jority (i.e., about 92.31%) and only 6.06% of them is such that
MX(fk) is less thanMX(f). However, when we concentrate
on non-degenerate autosymmetric functions (i.e., second
row of the table), we notice that the number of benchmarks
where MX(fk) < MX(f) considerably increases, reaching
about the 52.09%, and the number of benchmarks where fk
and f have the same number of ANDs remains high (about
40.1%). Moreover, in this set the average gain is about 44%.
Interestingly enough, the two compared approaches have
similar synthesis times. From these experiments, we can
conclude that, when a function is truly autosymmetric (i.e.,
non-degenerate), we can obtain better results computing the
XAG on the restriction fk instead of computing the XAG
directly on the function f .

6.2 D-reducible functions

We now analyze the experimental results conducted in order
to evaluate the multiplicative complexity of D-reducible
functions exploiting the XAG decomposition discussed in
Section 4. The experiments have been run on a CPU Intel i7
2.60GHz processor, with a virtual machine running Ubuntu
18.04, and benchmarks are taken from the ESPRESSO and

LGSynth’89 benchmark suite [41]. We considered each out-
put as a separate Boolean function, and analyzed a total
of 406 D-reducible functions. As before, the functions and
their projections have been synthesized in XAG form using
the heuristic approach proposed in [36].

We report in Table 3 a significant subset of functions
as representative indicators of our experiments. The first
two columns report the name and the number of the con-
sidered output of each benchmark, and the number of its
input variables. The following pair of columns reports the
multiplicative complexity of the XAG for the entire function
f (MX(f)), obtained running the heuristic in [36], and the
time in seconds required to obtain it. The next group of
four columns reports (i) the multiplicative complexity of the
XAG for the projection fA (MX(fA)); (ii) the multiplicative
complexity of the affine space χA computed applying Theo-
rem 2 (M(χA)); (iii) the overall estimate of the multiplicative
complexity of f (Mdec(f)) derived using Equation (2); and
(iv) the time in seconds required to obtain this overall
estimate. Finally, the last column reports the gain (or loss)
in applying the proposed decomposition method.

In Table 4, we report a summary of the overall ex-
perimental results conducted on all the 406 D-reducibile
benchmarks’ outputs. We denote with Mdec(f) < MX(f),
Mdec(f) = MX(f), and Mdec(f) > MX(f) the number of
benchmarks’ outputs where the number of ANDs obtained
applying the decomposition based on the D-reducibility
property is less than, equal to, and greater than the number
of ANDs of the XAG for f . The number of functions where
the XAG minimization can benefit from the D-reducible de-
composition is about the 43% of the whole set of functions,
with an average reduction of the number of ANDs of about
35%; the number of functions where the estimates of the
multiplicative complexity are the same is about 49%, while
for the remaining 8% of the functions the method provides
a worst estimate. We finally observe how the proposed de-
composition method guarantees a reduction of the average
computational time for XAG synthesis of about 24%.

6.3 Autosymmetric and D-reducible functions

We conclude this experiments section analysing the re-
sults reached applying both the autosymmetry test and
the D-reducible decomposition to Boolean functions in the
benchmarks from ESPRESSO and LGSynth’89 benchmark
suite [41]. These last experiments have been run on a
Pentium INTEL(R) CORE(TM) i5-5200U 2.20 GHz proces-
sor with 4.00 GB RAM, on a virtual machine running OS
Ubuntu 64-bit.

Table 5 shows a summary of the results for functions
that are both autosymmetric and D-reducible (about 9%
on the total). We applied the autosymmetry test to the D-
reducible functions discussed in Section 6.2. We note that
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TABLE 4
Summary of the experimental evaluation, considering the number of ANDs in the XAGs for D-reducible functions.

Mdec(f) < MX(f) Mdec(f) =MX(f) Mdec(f) > MX(f)
D-reducible functions 42.61% 49.02% 8.37%

TABLE 5
Summary of the experimental evaluation, considering the number of ANDs in the XAGs for autosymmetric and D-reducible functions.

MX(fk) < MX(f) MX(fk) =MX(f) MX(fk) > MX(f)
autosymmeric and D-reducible functions 89.54% 3.27% 7.19%

we did not find D-reducible benchmarks that are also non-
degenerate and autosymmetric. From Table 5, we note that
the functions where the XAG minimization can benefit from
autosymmetry and D-reducibility are about 90%, with an
average reduction of the number of ANDs of about 24%; the
number of functions where the estimates of the multiplica-
tive complexity are the same is about 3%, while for the 7%
of the functions the method provides a worst result.

7 CONCLUSION

In this paper we have considered the classes of autosym-
metric and D-reducible functions and we have shown how
these regularities can be exploited to better estimate their
multiplicative complexity. Moreover, the experimental re-
sults show that these tests of regularity can enable the XAG
minimization of Boolean functions.

In this work, we have considered XOR-based regularities
that are frequent in classical benchmark functions. Never-
theless, it would be interesting to study the multiplicative
complexity of other regular functions such as, for example,
symmetric Boolean functions or self-dual functions, in or-
der to better understand the multiplicative complexity and
further improve the XAG minimization. Moreover, we plan
to extend the autosymmetry algorithms in order to detect
all linear structures of a function, thus generalizing our ap-
proach to all the functions with linearity dimension strictly
less than n. This could further enable the XAG minimization
of the corresponding circuits. Finally, all proposed methods
could be extended to multi-output functions, potentially
sharing the XOR layer among multiple outputs.
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Studi di Trento (Italy) in 2016. She is currently
a Ph.D student with the Computer Science De-
partment of the Università degli Studi di Milano
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