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Towards Thermal-Aware Workload Distribution
in Cloud Data Centers Based on Failure Models

Jie Li, Yuhui Deng, Yi Zhou, Zhen Zhang, Geyong Min, and Xiao Qin

Abstract—Increasing workload conditions lead to a significant surge in power consumption and computing node failures in data
centers. The existing workload distribution strategies focused on either thermal awareness or failure mitigation, overlooking the impact
of node failures on the energy efficiency of cloud data centers. To address this issue, a new holistic model is built to characterize the
impacts of workloads, computing and cooling costs, heat recirculation, and node failure on the energy efficiency of cloud data centers.
Leveraging such a holistic model, we propose a novel thermal-aware workload distribution strategy called HGSA that takes node failure
into accountand can improve the energy efficiency of cloud data centers. Our empirical findings confirm that (i) faulty nodes lead to a
large rise in power consumption, and (ii) failure locations play a vital role in the power consumption of data centers. Experimental
results unveil that HGSA is adroit at making near-optimal decisions in workload distribution strategies. In particular, HGSA cuts down
the minimum inlet temperature by 5.2%-15%, improves the maximum air temperature of a Computer Room Air Conditioner (CRAC)
model by 4.2%-26.5%, lowers the cooling cost by 15.4%-50% compared to the existing solutions. Furthermore, HGSA cuts back the
total power consumption by 0.65%-78%.

Index Terms—Data Centers, Power Consumption, Node Failure, Energy Efficiency, Workload Distribution, Thermal-Aware.
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1 INTRODUCTION

THERMAL-aware workload distribution schemes offer
energy-efficient solutions to data centers. Traditional

thermal-aware workload distribution policies are anchored
on a model of well-functioning nodes, failing to consider
two indispensable aspects - node failure and cooling costs.
To fill this gap, we propose a novel thermal-aware workload
distribution strategy by taking into account node failure as
well as the total power consumption costs. Our overarching
goal is to minimize peak inlet temperatures across all com-
puting nodes, thereby lowering the total power consump-
tion of data centers. At the heart of our workload distribu-
tion strategy is a holistic thermal model that integrates the
impacts of node failure. We propose the HGSA algorithm -
a heuristic and hybrid algorithm based on Genetic Algorithm
(GA) and Simulated Annealing (SA) - to optimize workload
distribution on computing nodes. Governed by our holistic
model, HGSA redistributes workloads from faulty nodes to
active nodes for processing. The following three motivations
make our failure-based thermal-aware workload distribu-
tion strategy desirable and achievable.

1) Node failures become an indispensable factor for
the development of cost-effective data centers.
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2) Existing models built upon non-failure assumptions
are inadequate for thermal-aware workload distri-
bution.

3) There is a pressing demand to conserve the energy
cost of data centers.

Reliable computing is rooted in the perspectives and
understandings of node failures. For example, characteriz-
ing failures help to evaluate the availability of clusters in
data centers with respect to resource allocation [1]. Over
the last decades, computing and storage services provided
by cloud data centers spew out. Services in critical areas
such as finance, transportation, telecom, and military must
be available for 7x24 hours with a requirement of minimal
maintenance. Node failures in data centers offering critical
services will cause a tragic loss. Many factors contribute
to node failures in modern data centers. Hardware failures
are a key form of failure in data centers. Specifically, heat
dissipation of the CPUs and disk drives of computing
nodes becomes a primary concern. The imbalance of heat
dissipation will lead to breakdowns of computing nodes.
Besides, sophisticated and ubiquitous software applications
running on computing nodes are prone to malfunctions,
where resource utilization plays a vital role in the failure
rate and power consumption of data centers [2].

An increasing number of modeling techniques were
devised to facilitate the management and planning of com-
puting nodes in data centers. With the explosive growth
of computing nodes in data centers, most of the existing
models are inadequate for modern data centers because
the models are focused on either reliability and availability
or improvements based on non-failure conditions [3] [4]
[5] [6]. Unlike the prior studies, we pay attention to con-
structing a node-failure-based model that sheds light on the
relationship between workloads and computing node fail-



2

ures. Powered by such a model, our workload distribution
strategy is able to thermal-efficiently redistribute workloads
from faulty nodes to active nodes.

Ever-increasing energy costs become one of the pre-
dominant components of operational costs in data centers.
Modern data centers are comprised of thousands of in-
terconnected nodes devour a large amount of energy for
providing various services, which leads to a continuous
increase in global carbon dioxide emissions. Recent studies
forecast that from 2011 to 2035, the power consumption of
global data centers will increase by 66% [7]. Besides, the
power consumption of cooling systems accounts for approx-
imately 50%, becoming a huge fraction of the total power
consumption of data centers [8]. Furthermore, node failures
lead to a remarkable decrease in the supplied temperature
to node inlets, which in turn exacerbates cooling power
consumption. Therefore, it is imperative to take node failure
into account when designing a thermal-aware workload dis-
tribution strategy for reducing cooling costs in data centers.

Motivated by the aforementioned three observations, we
propose a thermal-aware workload distribution to reduce
the power consumption of data centers by virtue of a holistic
failure model. Our overarching goal is to redistribute the
workloads from faulty nodes to active computing nodes in
a thermal-efficient manner. We explore the impact of node
failures on the power consumption of data centers. The
major contributions of this work are summarized as follows.

• We propose a holistic thermal model, which takes
into account temporal–spacial distribution of node
failures. This novel model provides guidelines to
make thermal-friendly workload distribution deci-
sions.

• We develop HGSA - a hybrid algorithm based on
the GA and SA to optimize workload distribution,
aiming to cut down the total power consumption of
data centers.

• We shed light on the impact of failure location on the
inlet temperature of computing nodes. Experimental
results confirm that compared with the existing solu-
tions, our HGSA algorithm can significantly improve
the energy efficiency of data centers.

The rest of this paper is organized as follows. Section 2
summarizes the related work. Section 3 models data centers
in a holistic way with detailed discussions and derivations.
The design and implementation of the workload distribu-
tion algorithm HGSA are presented in Section 4. Section
?? presents the performance evaluation. Finally, in Section
6, we draw the conclusions along with future research
directions.

2 RELATED WORK

Essential factors such as thermal efficiency, operational
energy efficiency, and cooling costs must be considered
when making decisions in workload distribution as well
as resource management to reduce the power consumption
in data centers. Moreover, because node failure leads to
numerous energy waste, it is also indispensable to take into
account the impacts of node failure on both the comput-
ing environment and the cooling system of a data center.

Though various failure models and thermal management
techniques have been reported in the literature, most of
these schemes still deliver unsatisfied energy efficiency. In
this section, we pinpoint their design principles as well as
their performance issues.

2.1 Node Failure Analysis and Prediction
Researchers embarked on inspiring studies to improve the
energy efficiency of data centers by modeling node failures.
For example, Schroeder et al. [15] analyzed node failures
by investigating a data collection from two large high-
performance computing sites. They advocated that failure
time and recovery time are well modeled by the Weibull
distribution and the lognormal distribution, respectively.
Garraghan et al. built three online models to examine com-
binations of feature sets and techniques with the purpose
of lowering computational overhead [16]. Sharma et al. pre-
sented a failure-aware VM consolidation method to improve
the energy efficiency of data centers [17]. After exploring
the cluster models with a bisection-based partitioning algo-
rithm, Wang et al. investigated failure characteristics from
the dimensions of time, space, product line, and compo-
nents by looking into a four-year hardware failure of data
centers [18]. Alquran et al. presented an analysis of network-
partitioning failures in cloud computing systems [19]. A test
framework called NEAT was built to characterize failure
with ordering, timing, and network fault-tolerant. Chaler-
marrewong et al. developed a failure prediction method
called ARMA for data centers. ARMA relies on a fault tree
analysis to improve its prediction accuracy [5]. However,
these temperature prediction-based methods lack scalability
and suffer from low accuracy, long calculation time, and
high complexity. This is because they only consider the
failure prediction technology, and do not consider the load
balancing problem after the failure occurs.

2.2 Thermal-Aware Workload Distribution in Data Cen-
ters

Increased temperature of computing nodes causes a large
amount of power consumption in data centers. Meantime,
hotspots give rise to a significant increase in the inlet
temperature of host nodes, which exacerbates the energy
problem and further pushes up the cooling costs of data
centers. To deal with this problem, a wide variety of
thermal-aware techniques were developed to reduce the
power consumption of data centers. For example, Moreno
et al. built a workload model to improve resource man-
agement and operational conditions of a cloud computing
environment [20]. Shashikant et al. [3] proposed a gradient
boosting-based machine learning algorithm to model the
peak temperature of computing nodes, aiming to minimize
the power consumption of computing nodes for data centers
by suppressing nodes’ peak temperature. The performance
evaluation involves inlet temperature and total energy con-
sumption. Li et al. [13] built an elaborate thermal model,
and proposed a Virtual Machine (VM) scheduling algorithm
called GRANITE to lower the total energy consumption of
data centers. GRANITE algorithm is responsible for Virtual
Machine Placement (VMP) and migration based on the
models identified off-line, consisting of a workload model, a
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TABLE 1: Comparisons between HGSA and the other existing schemes

Schemes Computing nodes
modeling Thermal awareness Node failure

modeling

Workload
distribution

modeling

Cooling cost
consideration

MPIT-TA [9] 7 3 7 3 3
TP-Model [3] 3 3 7 3 3

TAW-Placement [4] 7 3 7 3 3
ARMA [5] 3 7 7 3 7

ITA [10] 7 X 7 3 7
OLP-Model [11] 3 7 7 3 7

AF-Model [2] 7 3 3 3 7
TA-Distribution

[12] 7 3 7 3 7

GRANITE [13] 3 3 7 3 3
PPVMP [14] 3 7 7 3 7

HGSA 3 3 3 3 3

computing node model, and a cooling model. Unfortunately,
their performance evaluation does not take into account
the failures of computing nodes. Zhao et al. [14] investi-
gated the close tie between energy consumption and CPU
utilization to design a non-linear power model, and de-
veloped a power-aware and performance-guaranteed VMP
(PPVMP) algorithm to keep the balance between saving
computing node energy and guaranteeing VM performance.
The theoretical model is composed of a computing node
power consumption model and a VM performance model.
However, it does not mention the impact of heat recircula-
tion among active computing nodes, and it also does not
consider the impact of VMP on cooling cost. Furthermore,
their performance only considers the power consumption of
computing nodes and the performance of VM. Tang et al. [9]
developed a thermal-aware workload scheduling strategy,
where workloads are placed on computing nodes with
the highest cooling efficiency, thus, lowering the impact of
heat-recirculation among computing nodes and improving
the cooling efficiency. The theoretical model involved is
composed of computing power, cooling cost, total power
consumption, and inlet temperature. However, the impacts
of node failure and failure locations on energy consumption
are not considered. The performance evaluation includes
computing power, inlet temperature, and cooling costs.
Therefore, the workload scheduling strategy does not fully
reflect the impact factors on the overall energy consumption
of data centers.

Furthermore, prior studies demonstrated that workload
consolidation is an effective approach to increasing resource
utilization and lower power consumption [21] [22]. A grow-
ing number of workload consolidation-based techniques
were proposed to reduce the power consumption of data
centers. For example, Lee et al. [23] introduced a temperature
prediction method for dynamic voltage and frequency scal-
ing. Unfortunately, the above thermal management schemes
overlook node failures incurred by increased node tem-
peratures. A report by the Uptime Institute shows that
when the node temperature exceeds 21°C, facility failures
will double for every 10°C increase [16]. Unlike the afore-
mentioned thermal-aware schemes, our HGSA takes into
account both thermal awareness and failure factors to op-
timize lightweight thermal predictors.

Our HGSA is distinctly different from the aforemen-
tioned energy-saving schemes in two aspects. First, the

above schemes merely consider workload consolidation,
whereas our HGSA relying on air temperature distribution
considers not only operational power consumption but also
cooling costs and computing power consumption. Second,
unlike the above-mentioned workload distribution policies
that fail to consider the negative impact of system failure,
our HGSA integrates the failure factor when making work-
load distribution decisions.

TABLE 1 summarizes the major technological discrep-
ancies among HGSA and the existing schemes reported in
the literature. We compare HGSA against the alternative
schemes from five perspectives, including computing nodes
modeling, thermal awareness, node failure mode, workload
distribution modeling, and cooling cost consideration.

3 MODELING DATA CENTERS

In this section, we propose a holistic data center model
that seamlessly integrates both thermal awareness and node
failures. Our data center model plotted in Fig. 1 consists of
four components, namely, a workload model, a distributing
system, a computing model, and a Computer Room Air
Conditioner (CRAC) model.

Now let us first present the rationale behind our holistic
model. In a data center, the workloads comprised of mul-
tiple user requests are submitted to the distribution system
(see Fig. 1). Governed by a distribution strategy, the system
dispatches the workloads across different nodes. Operations
of computing nodes emit enormous heat inciting heat recir-
culation, which pushes up the temperature of computing
nodes to a high level. If the inlet temperature of a node
exceeds a certain safety threshold (i.e., redline temperature),
the reliability and lifetime of the node will be adversely
affected. To blow away heat by cool air, CRAC system is
normally employed in a data center to expel hot air and
supply cold air to outlets of computing nodes [13]. Due to
the discrepancies in factors such as data blocks to be pro-
cessed, locations of computing nodes, and network latency,
the distribution of hot air in a data center becomes uneven,
which sparks uneven heat recirculation that increases cool-
ing costs. Therefore, heat recirculation effects represented
by a cross-interference matrix are incorporated into our
model, which characterizes the peak inlet temperature of
computing nodes. As such, proper workload distribution
can be performed in a data center to alleviate the impact
of heat recirculation, thereby minimizing inlet temperatures
and reducing cooling costs [10].
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3.1 Workload Model

To reflect the impact of workloads on the power consump-
tion of data centers, we mathematically model the work-
loads in a data center. We assume that a data center consists
of N chassis; each of which houses M computing nodes;
each computing node has m processors. Assuming there are
c̃i workloads distributed on computing node i. In order to
save energy, we render certain that all nodes in the data
center can process the workloads distributed to them within
the shortest time. Let workload represent the smallest unit
of work handled by a node processor, and each processor
only processes one workload at a time; C̃total denotes the
total number of workloads in a data center; Pmi denotes
the ith processor in the M th node, where i ∈ [1,m]. Now
we have the total number of processors expressed as 2 ∗N ∗
M = {P11, P12, P1m, P21, P22, P22...Pn1, Pn2, Pnm},
where n = M ∗N is the number of overall computing nodes
of data centers. Thus, the workloads undertaken by a single
processor is expressed as Workload = C̃total/2(N ∗M). It
is worth noting that throughout this manuscript, we use the
terms a computing node to represent a server. Fig. 2 depicts
node locations in a data center.

If different amounts of workloads are allocated to the
computing nodes in a chassis, the processing time incurred
by the computing nodes with the same computing capa-
bility may be different. The processing time on computing
node i can be expressed as:

ti = [
c̃i
m

], i = 1, 2 · · · (1)

where i denotes the node number, and m is the number of
the processors in nodes i. c̃i denotes the number of work-
loads distributed on chassis i. Thus, we have a processing-
time matrix for a workload distribution as:

~ti = [t1, t2, · · · , t
max([

c̃i
m ])

], i = 1, 2 · · ·N (2)

Processing 
workload time 

Total workloads

Workload
Model

Resource
utilization

Resource 
management

Distributing 
Systems

Distributing 
algorithm (HGSA)

Computing 
Energy

Failure nodes

Computing
Model

Inlet temperature 
constraints

Computing 
nodes

Cooling energy

Coefficient of 
performance 

&Supply 
temperature

CRAC
Model

Cooling 
systemsWorkloads

Workloads 
distribution

Fig. 1: Overall models of data centers for workloads
distribution

3.2 Computing Cost Model

A data center consists of computing nodes, a power system,
a CRAC system, etc. Among these components, computing
nodes and CRAC are two dominating factors in power
consumption, consuming more than 95% of the total power
consumption [7].

To gauge the power consumption required to operate a
data center, we propose a power consumption model as a
sum of computing cost and cooling cost. We quantitatively
model the energy cost caused by the computing node. Let us
denote the power consumption of a single node in the idle
state as a; the power consumption of a node in the active

state is expressed as b; the power consumption of I/O and
basic components are denoted as c. Recall (see Section 3.1)
that each chassis hasM nodes, we derive the following three
expressions.

(a) The power consumption of a chassis with all its nodes
running in the idle state is expressed as Pidle = a ∗M + c.

(b) The power consumption of a chassis with all its nodes
running in the active state is expressed as Prun = b ∗M + c.

(c) The power consumption for a computing node to
transition from the idle state to the running/active state is
defined as Pu sin g = b − a, which represents the startup
power consumption of an idle computing node. When c̃i
workloads are allocated to the computing nodes i, its power
consumption is Pnode = a+ c̃i(b− a). Thus, the total power
consumption of all computing node in a data center can be
obtained as:

PIT =
N∑
i=1

P inode (3)

C l o u m n 1
C l o u m n 2

C l o u m n 3
C l o u m n 4

C l o u m n 5 R o w 1
- -

- -
R o w 2
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B

A

E
D
C

B
A

E

C

chassis

chassis

chassis

chassis

chassis

rack

rack

rack rack

rack

Fig. 2: A two-row data center, marked from bottom to top
as A, B, C, D and E

3.3 CRAC Model and Total Power Cost of Data Centers
To characterize the cooling cost, we present the second part
of our power consumption model. The increase of heat
recirculation gives birth to the rising inlet temperature of
computing nodes. To keep the inlet temperatures of com-
puting nodes below a threshold (a.k.a, redline temperature),
a CRAC is used for generating cool air to blow away heat.
Unfortunately, the power consumption caused by CRAC
can be as much as half of the total power consumption of a
data center [8]. Therefore, we judiciously integrate CRAC
impacts into our holistic model. The supply temperature
Tsup of CRAC has a significant impact on cooling system ef-
ficiency. Typically, cold air generated by the cooling system
flows into each rack through the inlet of each rack. Next, it
blows away the generated heat and transforms from cold
air to hot air. Then, the hot air is exhausted through ceiling
return vents. The efficiency of heat recirculation is quantified
by a Coefficient of Performance (CoP). CoP - a ratio of useful
heating or cooling provided to work required - is defined as
[4]:

CoP (Tsup) = 0.0068T 2
sup + 0.0008Tsup + 0.4580 (4)

The heat recirculation and power consumption of com-
puting nodes lead to an increase in its inlet temperature.
Hence, we adjust the raised inlet temperature by using
the temperature supplied by the CRACs, and the inlet
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temperature cannot exceed the maximum allowed opera-
tional temperature (a.k.a, redline temperature) specified by
the device manufacturer. Supply temperature Tsup affects
the efficiency of the CRACs. The efficiency of CRACs is
quantified by the CoP. Eq.(4) exhibits how the CoP increases
with higher supply temperatures for the CRACs at the HP
Labs Utility Data Center. The CoP is used to calculate the
power consumption of the CRACs by using the following
equation:

PAC =
PIT

CoP (Tsup)
(5)

As shown in Eq. (5), the higher the supply temperature,
the less power the CRACs consume. However, the CRACs
must supply more cold air to remove the heat generated by
the computing nodes. Therefore, we can minimize PAC by
maximizing the supplied temperature Tsup while satisfying
the constraints of the redline temperature. Therefore, we
can derive the power consumption cost PTotal from this
section and Section 3.2 as the sum of computing cost PIT
and cooling cost PAC :

PTotal = PIT + PAC =
(
1 + 1

CoP

)
PIT (6)

3.4 Inlet Temperature Model

Since the inlet temperature of a node is affected by the com-
bination of cool air supplied by CRAC and heat recirculation
effect from other computing nodes [9], we model the inlet
temperature of a node as:

Tin = Tsup + [(K −ATK)−1 −K−1] ∗ PIT (7)

where K denotes thermodynamic constants, expressing as a
diagonal matrix Kn×n = diag(K1,K2, · · ·Kn). As a matter
of convenience, we let D = [(K −ATK)−1 − K−1]. Thus,
Eq. (7) is then re-formulated as:

Tin = Tsup +DPIT = Tsup +DPidle +DPu sin gC (8)

For the above Eqs. (7) and (8), according to the law of
energy conservation, the amount of heat by an airflow per
unit time is Q = ρfcpT , where ρ is the air density; f is the
airflow rate; cρ is the specific heat of air; T is the air temper-
ature. Considering that the power drawn by a computing
node is dissipated as heat, the steady-state relationship
between power consumption of a node and the inlet/outlet
temperature can be abstracted as P iIT = ρficp(T

i
out − T iin),

where T iout = T iin + KiPi, and Ki = ρficp. Normally,
a cross-interference coefficient matrix An×n = [αij ]N×M
denotes how much of its outlet heat each computing node
contributes to the inlet of every other node. Thus, the vector
of inlet temperatures Tin can be expressed as Eqs. (7) and
(8).

3.5 Failure Model of Computing Nodes

Existing data center thermal managements fall short in
taking into account computing node failures. To bridge this
gap, we propose a novel node failure model facilitating
thermal-aware workload distribution.

We model heat recirculation with a cross-interference
matrix. Fig. 3 depicts the cross interference of the heat re-
circulation effects among several neighboring nodes. The

inlet temperature of nodei is affected by CRAC temperature
Tsup as well as its outlet temperature and heat re-circulation
effects from other nodes. For this reason, we use matrix
A = [aij ]N×M to represent the cross-interference of all the
nodes in a data center [9]. Element aij in matrixA represents
the fraction contribution of heat from node nodei’s outlet to
nodej ’s inlet temperature. The outlet temperature of nodei
impacts the inlet temperatures of itself (aii) as well as its
neighboring node nodej (aij). Thus, we have

Node1

Node 2 Node 3

Node n

ToutTsup
Tin

21a

11a

31a
1Na

Fig. 3: data centers thermal-aware model

K(Tout − Tsup) = A′K(Tout − Tsup) + PIT (9)

where A′ is the transpose of matrix A; Tout represents
the output temperature vector of all nodes and Tout =
[T 1
out, T

2
out, · · ·Tnout]; Tsup is the temperature of the cold air

supplied by the CRAC; PIT denotes computing cost (see
Section 3.2). Besides, K in Eq. (9) is a diagonal matrix, and
Ki = ρfiCp. To obtain matrix A, we set an initial reference
for Eq. (9) and derive [3]:

K(T refout − Tsup) = A′K(Tout − Tsup) + P refIT (10)

where P refIT denotes the initial reference of computing cost;
T refout is the initial reference of the outlet temperature of all
nodes. Based on Eqs. (9) and (10), we can now calculate the
transpose of matrix A as:

A′ = 1− (PIT − P refIT )(Tout − T refout )−1K−1 (11)

where PIT is computing cost represented by a vec-
tor of power consumption of nodes and PIT =
[P 1
node, P

2
node, · · ·Pnnode], k = 1, 2, · · · , n; Tout is the

vector of outlet temperatures of nodes and Tout =
[T 1
out, T

2
out, · · ·Tnout].

Now we integrate failures into our thermal model [2].
Suppose node j fails, then we have P jnode = 0 and T jout = 0
according to Eq. (9). In other words, faulty node j con-
tributes no thermal recirculation, and it does not process
any workloads. According to the above analysis, the change
of the cross-interence coefficient matrix A′ is expressed as
αij = 0, i = 1, · · · , n and αji = 0, i = 1, · · · , n. For
example, we assume that a data center contains four com-
puting nodes, which are node1, node2, node3, node4 failure.
Therefore, the cross-interference coefficient can be expressed
by A as

A =


α11 α12 α13 α14

α21 α22 α23 α24

α31 α32 α33 α34

α41 α42 α43 α44

 .
If node2 is a failure node, node2 will not participate in

workload distribution and generate heat. Therefore, node2
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will not be affected by heat recirculation with other com-
puting nodes by the time node2 fails, we have αi2 = 0, i =
1, · · · , 4 and α2i = 0, i = 1, · · · , 4. The cross-interference
coefficient matrix Anode2fails can be represented as

Anode2fails =


α11 0 α13 α14

0 0 0 0
α31 0 α33 α34

α41 0 α43 α44

.

In addition, the above analysis can be used to determine
the cross-interference coefficient matrix with multiple fail-
ure nodes. For example, we assume node2, node3, the re-
lated cross-interference coefficient matrix Anode2,3fails will
be

Anode2,3fails =


α11 0 0 α14

0 0 0 0
0 0 0 0
α41 0 0 α44

.

To model faulty nodes, we define matrix X for faulty
nodes as X = MZ , where M denotes an unit diagonal
matrix, M = diag(x1, · · ·xn), xi = 1, i ⊂ {1, · · · , n}; Z =
[z1, z2, · · · , zn] is a 1xn vector indicating faulty nodes’ IDs;
for node k, if k fails, zk = 0; otherwise, if node k is active, zk
= 1.

We aim to construct a model guiding us to thermal-
efficiently redistribute workloads by taking into consider-
ation node failures. For this reason, we define a thermal-
aware failure-based objective function for workload redistri-
bution. Given N chassis and n = N ×M nodes, we express
the objective function for k failures as

Minimize(max{T iin})
st : C̃total −

n∑
j=1

c̃j = 0 (12)

Tin = Tsup +XkDXkPu sin g +XkDXkCPidle, k = (1, · · · , n)

M ≥ c̃j ≥ 0, j = (1, · · · , n− k), u ≤ (1− k/n) ∗ 100%

(k + 1)M ≥ c̃j ≥ 0, j = (1, · · · , n− k), u ≤ (1− k/n) ∗ 100%

where u denotes the utilization of a data center before
nodes fail; T iin represents the inlet temperature of node i;
Ctotal is the total workloads of all nodes, whereas c̃j is the

distributed workload on chassis j, and C̃total =
l∑

j=1
c̃j(l <

n). Since the workload distribution problem is a NP-hard
problem, it is judicious to make use of a heuristic algo-
rithm to minimize (max{T iin}), in other words, minimizing
Tin = Tsup + XkDXkPu sin g + XkDXkC̃totalPidle, where
Tsup, XkDXk,Pu sin g , and Pidle are given constants.

4 THE WORKLOAD DISTRIBUTING ALGORITHM

Recognizing that the workload distribution problem is an
NP-hard problem, we leverage a heuristic optimization al-
gorithm to find an approximate optimal solution. To this
end, we propose HGSA - a hybrid algorithm based on GA
and SA - to allocate workloads to computing nodes in a
thermal-friendly manner. HGSA strives to reduce the total
power consumption of data centers by minimizing the inlet
temperatures of computing nodes. Designing such a hybrid
algorithm is rational because GA exhibits stunning search

capability in solving NP-hard problems while suffering
from the weaknesses of local search [24]. On the other
hand, simulated annealing algorithms (SA) featuring superb
global search ability is an ideal choice to overcome the
weakness of local search in GA [25].

4.1 HGSA Design

Guided by our failure-based thermal model, we design
HGSA to optimize workload distribution in a way to con-
serve the total power consumption of data centers. The
rationale behind the HGSA design is two-fold. First, HGSA
adopts the strength of GA to quickly converge to an ap-
proximate optimal solution. Second, HGSA deploys SA to
offset GA’s weakness - being prone to get stuck in local
optima. GA is commonly used to obtain approximate opti-
mal solutions in solving workload distribution problems [9].
Through successive iterations, GA converges, terminates,
and outputs an approximate optimal solution (i.e., an ap-
proximate optimal workload allocation vector). In each it-
eration, GA generates a workload distribution vector or
chromosome as an input for its next iteration. A chromosome
is comprised of multiple genes, each of which resembles a
workload condition on a node. To speed up convergence,
chromosome crossovers are performed by GA to obtain im-
proved chromosomes in its iterations. A crossover operation
is to cross the genes of two chromosomes at random posi-
tions with a certain probability. Unfortunately, random gene
positions caused by chromosomes will give birth to a change
in the total number of genes on crossover chromosomes.
In other words, the total number of workloads distributed
on all computing nodes will be changed, resulting in an
excessive amount of computational overhead. To address
this issue, HGSA replaces crossover operations with reversal
operations. The principle of reversal operations is to only
change the positions of the genes in a chromosome without
changing the total number of genes in the chromosome.

Another inborn problem of the original GA is that
amid searching for an approximate optimal workload-
distribution vector, GA tends to get stuck in local optima.
To improve the global searching ability of the original GA
by jumping out of local optima, we combine the design prin-
ciples of SA into our HGSA to alleviate GA’s local optima
issue. Simulated annealing (SA) algorithms were first intro-
duced by Metropolis et al. [26]. The idea of SA is to simulate
an annealing process in which temperature changes from
high to low, and the energy gradually stabilizes to the lowest
state; finally, a system reaches an equilibrium state. SA is
adroit at approximate global optimization catering to large
search space. By mixing the large-space-searching merit of
SA with our HGSA, we make up for the shortcoming of GA.

In short, to boost the searching ability while speeding
up convergence, our hybrid HGSA removes crossover oper-
ations, expands the searching scope, and avoids falling into
local optima.

4.2 Workload Distribution Anchored on the Failure
Model

If a computing node j fails, the distribution scheme ~cperf
is then used to obtain the number of workloads ~cjperf
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assigned to the failed node j. A rollback-recovery tech-
nique is exploited to periodically save the process state
of the workloads to the storage of the computing node j
(for example, the breakpoint when failures happen), thus
avoiding restarting the current workload from the begin-
ning on the failed computing node j. The storage system
is assumed to be failure-free [17]. The proposed HGSA
will select some candidate running computing nodes, and
migrate the workloads~cjperf from the failed computing node
j to the selected nodes. Additionally, the process state of the
workloads is also moved to the selected computing nodes.
When the migration of workloads and process state is done,
the migrated workload will restart from the breakpoint in
terms of the process state.

Now we present HGSA’s process of redistributing work-
loads on faulty nodes through the following three steps.

Step 1: Given z number of faulty nodes out of a total
of n nodes, we denote the faulty nodes as {k1, k2, · · · , kz}.
Since we leverage HGSA to output an optimal load distri-
bution scheme ~cperf , we identify the corresponding node
numbers of the failure nodes (i.e., {k1, k2, · · · , kz}) and
obtain distributed workloads on each of the faulty node (i.e.,
{~ck1perf ,~c

k2
perf , · · · ,~c

kz
perf}). Thus, the total load distributed on

all the faulty nodes is defined as ~ctotalperf = ~ck1perf+~ck2perf+· · ·+
~ckzperf .

Step 2: Because the faulty nodes no longer handle the
assigned workloads, the total workloads allocated ( ~ctotalperf )
on all faulty nodes must be redistributed to the remaining
active nodes. To do so, we must first acquire a n × n heat
distribution matrix Wz based on Eq. (7) and its derivations.
Thus, we have

Wz = Xz[(K −ATzK)−1 −K−1]Xz (13)

Since there are z faulty nodes ({k1, k2, · · · , kz}), the
faulty nodes’ corresponding elements in matrixWz are set to
0 and will be removed. Thereby, we obtain a (n−z)×(n−z)
heat distribution matrix Wz

′ for the remaining active nodes.
Step 3: Receiving the heat distribution matrix Wz

′ for
the remaining active nodes, the total workloads ~ctotalperf from
all the faulty nodes will be redistributed to the remaining
active nodes through our HGSA algorithm. Consequently,
an optimal workload distribution decision for ~ctotalperf is gener-
ated by HGSA. Lastly, maximum execution time (see Section
3.1) determines whether the workloads redistribution plan
meets the energy-saving requirements.

To sum up,the workload distribution plans are opti-
mized under the guidance of our failure-based thermal
model. In the same breath, our objective function Eq. (12)
achieves the minimum inlet temperature of computing
nodes, thereby reducing the power consumption of data
centers.

4.3 Implementation Details

We articulate the details of HGSA aiming to minimize peak
inlet temperature across all computing nodes to cut back
total power consumption in data centers. In addition to the
pseudo-code of HGSA outlined in Algorithms 1 and 2, TA-
BLE 2 shows the symbols and the corresponding meanings
used in HGSA.

Algorithm 1 HGSA

Input: T0, Tend, T, L, q,NIND,Pc, Pm, n,Head, T
UB ,

Ctotal, e, f.
Output: workloads distribution scheme; Temperature of

supplied air Tsup; Cooling cost of data centers.
Initial population;//generate random initial solutions;
function(Solution, head, Ctotal)
While T > Tend do
for k ← 1 to L do
NewSolution(); // evolutionary reversal operation and
Mutation
function(Solution, head, Ctotal);//make the solutions
meet the constraints of equation (13)
Metropolis principle (); //evaluate solutions
end for
T ← q × T ; // Cooling process
end While
return path

The HGSA algorithm (Algorithm 1) outlined above car-
ries out the following four steps to minimize peak inlet
temperature across all the computing nodes.

Step 1 Initial population: With the initialized parame-
ters (see Table 2), HGSA yields a series of initial solutions
(i.e., chromosomes, see Line 1). An initial solution (chromo-
some) contains n genes, where n denotes the total number
of all computing nodes. Each gene is a random number
from 0 to m, representing the amount of load allocated to
a certain computing node (n nodes in total). Please note that
function() is employed to ensure that a random solution
complies with the constraints stated in Eq. (12) (see Lines 2
and 6 in Algorithm 1).

The HGSA algorithm is a hybrid algorithm based on
GA and SA. It can start from any solution and find an
approximate optimal solution through continuous iterative
optimization. Therefore, we use a random solution as the
initial solution to lower the execution time of HGSA. This
solution does not affect the approximate optimal solution
found at the end.

TABLE 2: Symbols and corresponding meaning used in
HGSA

Notation Description
T0 Initial temperature
Tend Final temperature
T Solid temperature
k Counter
q Cooling velocity
NIND Population size
Pc crossover probability
Pm Mutation probability
n Number of computing nodes in data centers
Head The capacity of each node
Solution workload distribution scheme

Step 2 Selection: The purpose of selection operations
is to select the fittest chromosomes and pass their genes to
the next generation. Based on the initial solutions, HGSA
invokes Algorithm 2 to perform evolutionary reversal and
mutation operations to generate new solutions (see Line
5 in Algorithm 1). The mutation strategy in HGSA is to
randomly select evolutionary reversal positions on two
chromosomes for recombination. More specifically, let two
randomly generated positions on the two chromosomes be
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r1 and r2, where both r1 and r2 ∈ [1, n]. HGSA swaps the
values of r1 and r2 to obtain a new solution (see Lines 1 -
14 in Algorithm 2).

Algorithm 2 Reverse operation and mutation operation

Input: Solution, Pm, n, head,D,
Output: NewSolution;

Solutionnew ← Reverse (solution, D)// Evolutionary
reversal operation;
function(solution, head, Ctotal)
While rand > Pm do
Selecting a nonzero element Solutionnew[r1] randomly;
R← Solutionnew[r1]
e ← random(1,R);//choosing a random number e be-
tween 1 and R
choose an element solutionnew[r2] randomly;
if (r1 == r2)||(Solutionnew[r2] + e) > head[r2]
choose another element Solutionnew[r2] randomly;
end if
Solutionnew[r1]← Solutionnew[r1]− e;
Solutionnew[r1]← Solutionnew[r1] + e;
NewSolution← Solutionnew;
end While

Step 3 Evaluation: Metropolis criterion is applied to
evaluate generated solutions and determine whether or not
a generated solution will be adopted as a new current
solution (see Line 7 in Algorithm 1). Specifically, we set
an initial solution at the maximum peak temperature to
S; correspondingly, the peak temperature is f(S). Next,
we temporarily set the solution obtained from the reversal
operation and mutation strategy in Step 2 as S′; therefore,
the peak temperature value after reversal and mutation
is f(S′). Then, we calculate the temperature difference as
∆T = f(S) − f(S′). Given ∆T , we apply the following
Metropolis criterion to assess the generated solution.

P =

{
1 ∆T < 0

exp
(
−∆T

T

)
∆T ≥ 0 (14)

If ∆T < 0, accept S′ as the new current solution, otherwise
accept S as the new current solution with the probability
exp(−∆T/T ).

Step 4 Temperature Reduction: Given a cooling rate q,
HGSA follows T = q ∗ T to repeatedly reduce peak inlet
temperature. This temperature reduction process continues
until T is lower than Tend; then, HGSA will cease the
iteration process and output the current state as a final
solution.

5 EVALUATION

5.1 Experimental Setups

We conduct extensive simulation-based experiments on a
computing node equipped with an Intel(R) Core Pentium(R)
G3220 @3.00GHz CPU and a 4GB DDR3 RAM. The sim-
ulation platform used in the experiments is matlab2016b.
We quantitatively evaluate the performance of HGSA by
comparing it against five state-of-art algorithms, namely,
UT, PSOGA, XINT-GA, SA, and PPVMP. We simulate a data
center with a physical dimension of 9.6m×8.4m×3.6m (see

Fig 2). This data center is housing ten industry-standard 42U
racks, each of which contains fifty nodes contained in five
chassis (labeled as A, B, C, D, and E from bottom to top).
There is a total of 1000 processors in the data center; each
processor is configured as a DELL PowerEdge 1855. The
maximum number of workloads handled by a processor
is 1000 (i.e., maximum Ctotal = 1000). The total power
consumption is 2020W when all the nodes are in the idle
state (i.e., the utilization of the data center is 0%). The energy
overhead of transitioning from standby to active mode for
a node is 50W [9]. A cold air with a flow rate of 8 m3

/
s

is provided through the CRAC outlet on the floor, blows
away heat, and is exhausted as hot air through ceiling vents.
Moreover, we use the D matrix provided by BLUESIM to
evaluate the faulty node model. The thermal-aware matrix
array is constructed by the BLUSIM tool powered by the
CFD simulation [9].

5.2 Algorithms for Comparison
A variety of workload distribution strategies have been
proposed to distribute workloads across computing nodes
in data centers. Let us briefly introduce the basic ideas of five
state-of-art schemes, namely, UT, XINT-GA, SA, PSOGA,
and PPVMP.

UT (Uniform Task) [9]: Workloads are distributed evenly
on all nodes. Consequently, the power consumption for each

node will be: c̃i = C̃total
/
n, ∀i ∈ [1, n]. where n is the total

number of nodes in a data center.
SA (Simulated Annealing) [2]: Simulated annealing is

a stochastic global search optimization algorithm, which
mimics the slow cooling of metals. The simulated annealing
algorithm has attracted widespread attention due to its
ability to jump out of local optima. We configure the initial
temperature of SA to 10000°C, and its final temperature is
set as 10−3 °C. Its maximum iteration at each temperature
and the cooling rate is set to 150 and 0.9, respectively.

XINT-GA (Genetic Algorithm) [9]: XINT-GA allocates
workloads across computing nodes to enhance CRAC cool-
ing efficiency. GA is an iterative approach using a pool of
genomes. Through a set of iterations, GA explores a solution
space to reach a near-optimal solution. In each iteration,
GA generates various solutions and then performs crossover
and mutation operations to pick up one of them as the new
solution. XINT-GA assigns workloads on computing nodes
to minimize the maximum inlet temperature. In our experi-
ments, we set the number of iterations of the compared GA
and its probability of mutation to 300 and 0.05, respectively.

PSOGA (hybrid Particle Swarm Optimization and Ge-
netic Algorithm) [27]: The hybrid PSO-GA algorithm effi-
ciently assigns workloads to the resources to reduce the
makespan and balance the workloads of the dependent
workloads over the heterogeneous resource in cloud data
centers. PSOGA crosses particles and self-mutates to search
for an optimal solution. In our comparison experiments, the
number of PSOGA’s iterations is set to 300. Its population
size and mutation rate are set to 100 and 0.05, respectively.
Crossover operations belong to a single point. The accelera-
tion coefficients C1, C2 are 1 and 1.1, respectively.

PPVMP(Power-aware and Performance-guaranteed Vir-
tual Machine Placement) [14]: The PPVMP algorithm caters
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to the problem of high PM power consumption and VM
performance degradation. The PM power consumption
model and VM performance model formulate VMP as
a bi-objective optimization problem. The PPVMP extends
the ant colony optimization to solve this problem. In the
simulations, pheromone importance factor and heuristic
informance importance factor are 1 (α = 1, β = 1); local
pheromone evaporating parameter and global pheromone
evaporting parameter are 0.1 (ρl = 0.1, ρg = 0.1), fix
parameter is 0.9 (q0 = 0.9); the maximum iteration time
is 300 (Nmax

iter = 300).

5.3 Selection and Analysis of HGSA Algorithm Param-
eters

We start our experiments by investigating the impacts of
HGSA’s parameters on its performance. Algorithm 1 sug-
gests that the parameters affecting HGSA include cooling
velocity q, crossover rate Pc, mutation probability Pm, initial
temperature T0, end temperature Tend, chain length L, the
amount of initial population NIND, and the number of
workloads Ctotal. Recall that (see Section 4.1) to avoid
changing the total number of workloads distributed on
computing nodes, HGSA - a hybrid of GA and SA - per-
forms evolutionary reversal operations instead of crossover
operations. For fair comparisons, the initial temperature T0,
end temperature Tend, chain length L, initial population
NIND, and the number of workloads CTotal in HGSA are
the same as those in the original GA and SA algorithms.
More specifically, we have T0 = 1000°C, Tend = (10−3)°C
, L = 150, NIND = 100, and CTotal = 1000, where L is
the number of iterations per workload T . Since the above-
mentioned parameters remain unchanged, we pay heed to
the impacts of cooling rate q and mutation probability Pm
on HGSA’s performance. We examine the effects of cooling
rate and mutation probability on the maximum supplied
temperature Tsup. Recognizing that the cooling rate and the
probability of mutation are normally set to 0.8-0.99 [2] and
0.0001-0.1 [28], we let cooling rate q be 0.9 and 0.95 in our
HGSA; besides, we set the mutation probability Pm to 0.05
and 0.1, respectively. The threshold temperature TUB of
computing nodes is 25°C. Because the focus of this group of
experiments is the cooling rate q and mutation probability
Pm, node failures are set to non-existent.
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Fig. 4: The supplied temperature Tsup value under different
parameters of cooling rate q and mutation probability Pm

Fig. 4 unveils the maximum supplied temperature Tsup

as a function of cooling rate q and mutation probability Pm.

We can observe from Fig. 4 that regardless of the values
of cooling rate and mutation probability, the maximum
supplied temperature under all the four configurations de-
creases as the data center utilization increases. When the
cooling rate and mutation probability are set to 0.9 and 0.1,
the supplied temperature Tsup has the highest value among
the four configurations. In other words, the cooling cost is
the lowest under this configuration. Thus, we adopt in this
study a configuration where cooling rate q and mutation
probability Pm are 0.9 and 0.1, respectively. Moreover, Fig.4
reveals that cooling rate has a higher impact on the supplied
temperature Tsup than mutation probability. For example,
the maximum supplied temperature Tsup is 16.8971°C when
the data center utilization is set to 10%, the cooling rate
q is set to 0.9, and the mutation probability Pm is set
to 0.1. Under this configuration, a decrease of 0.05 in the
mutation probability Pm causes a decline of 0.2796°C in the
maximum supplied temperature Tsup (0.2796°C = 16.8971°C
- 16.6175°C). In contrast, a surge of 0.05 (q is changed to 0.9
from 0.95) in the cooling rate leads to a reduction of 1.5202°C
in the maximum supplied temperature Tsup (1.5202°C =
16.8971°C - 15.3769°C).

5.4 Correlations Between Failure Nodes

We are now in a position to characterize the temporal and
spacial distributions of failures.

Spacial Distribution: The placement of nodes in a data
center follow the Zipf distribution [15] [16], which can be
expressed as:

B = f(r) ∗ rα (15)

where B is a constant; α is a skewness parameter. The
lower the α, the more evenly the data nodes are placed. For
example, when α is set to 0.01, nodes in a data center tend
to be evenly distributed. However, when α increases to 0.09,
the node distribution is likely to be skewed. In other words,
node failures occur intensively in certain areas. Thus, it is
prudent to reduce the number of node failures by tuning the
parameters of the Zipf distribution of the node placement.

Temporal Distribution: Computing nodes in a data cen-
ter temporally obey the Weibull distribution [15] [16]. We
propose a system failure rate function, aiming to character-
ize occurrences of node failures concerning time. Assuming
that node failures occur in the period between t and t+ ∆t,
we express the failure rate in this period as

C(t) = lim
∆t→0

{
p(t < T < t+ ∆t)|T > t

∆t

}
=

pdf(t)

1− prof(t)
(16)

prof(t) =
[
shape/scale

]
×
[

t

scale

]
× e−[ t

shape ]
shape

(17)

where pdf(t) denotes a probability-density function, prof(t)
is a probability function. Then, the system failure rate that
obeys theweibull(scale, shape) distribution is calculated as:

C(t) =
pdf(t)

1− prof(t)
=

[
shape

scale

]
×
[

t

scale

]shape−1

(18)

Given Eq. (18), we analyze the reliability of comput-
ing nodes. Let us consider two faulty nodes housed in
chassis(K) and chassis(L), where the next failure time
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intervals are uptime(K) and uptime(L), respectively. Us-
ing Eq. (17), we calculate the failure rates of chassis(K)
and chassis(L) as CK = C(uptime(K)) and CL =
C(uptime(LK)). If uptime(K) > uptime(L) and shape <
1, then we obtain CK < CL. Thus, chassis(K) is more
reliable than chassis(L). The analyses reveal that (1) a node
that has just failed has a high likelihood of failure; once
the faulty node resumes work, it will become more stable.
(2) It is mandatory to periodically perform reliability tests
on recently failed nodes. More times than not, computing
nodes in data centers obey failure rules based on temporal
or special distribution. The correlation rule among failure
nodes is mainly used to evaluate the reliability of each node.
Our HGSA delineated in Section 4 redistributes workloads
to select active nodes that exhibit high reliability. When
a node fails, the node that has just failed is more likely
to fail again. Therefore, it is necessary to shut down the
failed nodes, which generates a significant impact on the
heat recirculation among nodes. Our HGSA strategy can
reduce the impact of heat recirculation through reasonable
workloads distribution, thereby achieving energy saving in
a data center.

5.5 Evaluating the Efficiency of CRAC with Failures

In this group of experiments, we evaluate the impacts of
our HGSA on the CRAC efficiency in terms of minimum
inlet temperature T iin, maximum supplied temperature Tsup,
and cooling cost PAC . We compare our HGSA with the five
state-of-art schemes - UT, PSOGA, XINT-GA, PPVMP, and
SA in four failure scenarios. The threshold temperature TUB

(redline temperature) of computing nodes is set as 25°C.

5.5.1 Scenario 1: The Non-failure Case
In the first scenario, the number of failures is zero for all
the six compared schemes. We denote these six zero-failure
workload distribution schemes as NF-PSOGA, NF-XINT-
GA, NF-UT, NF-SA, NF-PPVMP, and NF-HGSA. Fig. 5
shows the CRAC efficiency of the six zero-failure schemes
with respect to data center utilization. Fig. 5(a) depicts
the minimum inlet temperature T iin of NF-PSOGA, NF-
XINT-GA, NF-UT, NF-SA, NF-PPVMP, and NF-HGSA as a
function of the data center utilization. We keep the supplied
temperature Tsup to 10°C in this experiment. Fig. 5(a) reveals
that regardless of the workload distribution schemes, the
minimum inlet temperature increases as the data center
utilization grows. The scheme without the heat percep-
tion ability (NF-UT) leads to the highest inlet temperature,
whereas our NF-HGSA obtains the lowest minimum inlet
temperature Tin. Recall that the lower Tin a workload dis-
tribution algorithm yields, the higher CRAC efficiency. We
conclude that a data center managed by NF-HGSA has the
highest cooling efficiency among its peers. Fig. 5(b) depicts
the maximum supplied temperature Tsup of NF-PSOGA,
NF-XINT-GA, NF-UT, NF-SA, NF-PPVMP, and NF-HGSA
as a function of the data center utilization. We configure the
threshold temperature TUB of computing nodes to 25°C.
Fig. 5(b) indicates that the maximum supplied temperature
of the six workload distribution schemes plummets as the
data center utilization goes up. Regardless of the utilization
rate of the data center, NF-HGSA always leads to the highest

maximum supplied temperature Tsup compared with the
other competitors. The findings confirm that with NF-HGSA
in place, the CRAC consumes the lowest energy because
a high supplied temperature helps to conserve the power
consumption of CRAC.

Fig. 5(c) shows the cooling cost PAC of the six workload
distribution schemes under various data center utilization.
The results plotted in Fig. 5(c) illustrate that our NF-HGSA
is superior to the other schemes in terms of conserving
cooling energy. In addition, as the data center utilization
climbs to more than 10%, cooling-cost savings in NF-HGSA
becomes more remarkable.

5.5.2 Scenario 2: The Single-failure Case
In the second scenario, we set the number of failures to one
by randomly selecting a faulty node in the simulated data
center. Similar to Scenario 1, we compare HGSA with the
other six schemes in terms of the efficiency of a single-failure
data center. We denote these six schemes in this single-node-
failure scenario as F-PSOGA, F-XINT-GA, F-UT, F-SA, F-
PPVMP, and F-HGSA, respectively.

Fig. 6(a) and (b) exhibit similar trends to those of Fig. 5(a)
and (b). Regardless of the utilization rate, our F-HGSA
outperforms F-XINT-GA, F-UT, F-SA, F-PPVMP, and F-
PSOGA, harvesting the lowest minimum inlet temperature
T iin and the highest maximum supplied temperature Tsup.
Fig. 6(c) demonstrates that our F-HGSA has a clear edge
over the F-PSOGA, F-XINT-GA, F-SA, F-PPVMP, and F-UT
algorithms in terms of the cooling cost. Among these six
algorithms, the performance of F-UT is close to our F-HGSA.
This close performance is expected because F-UT distributes
workloads evenly on all nodes, where one faulty node has
an insignificant effect on overall performance.

5.5.3 Scenario 3: The Multiple-failure Case
To investigate the impact of multiple failures on the CRAC
efficiency, we set up in this scenario multiple faulty nodes in
our simulated data center. We denote the six workload dis-
tribution schemes in the multiple-failure case as MF-HGSA,
MF-PSOGA, MF-XINT-GA, MF-SA, MF-PPVMP, and MF-
UT. In the multi-faulty node scenario here, we set the
number of faulty nodes to 3. Fig. 7 depicts the CRAC
efficiency of the six schemes under various data center uti-
lization. Fig. 7(a) shows our MF-HGSA achieves the lowest
minimum inlet temperature Tin among the six strategies.
MF-HGSA’s advantage is attributed by the fact that as the
number of failures increases, our MF-HGSA is able to redis-
tribute workloads of faulty nodes to the other normal active
nodes that generate less heat. Moreover, Fig. 7(a) indicates
that except for our MF-HGSA, multiple-node failures spur
an increasing burden on the CRAC in the cases of the other
workload distribution schemes. For example, the minimum
inlet temperature of MF-PSOGA sharply goes up when the
data center utilization exceeds 60%.

Fig. 7(b) reveals that our MF-HGSA exhibits the best
performance in terms of maximum supplied temperature.
More specifically, MF-HGSA obtains the highest maximum
supplied temperature Tsup across all the data center uti-
lization. The maximum supplied temperature of MF-HGSA
decreases slower than those of the five alternatives when
the data center utilization goes up. This effect becomes more
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Fig. 5: Minimum inlet temperature Tin, Maximum Tsup and Cooling Cost PAC of the different algorithms in Scenario 1
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Fig. 6: Minimum lnlet temperature Tin, Maximum Tsup and Cooling Cost PAC of the different algorithms in Scenario 2
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Fig. 7: Minimum lnlet temperature Tin, Maximum Tsup and Cooling Cost PAC of the different algorithms in Scenario 3

pronounced if the utilization exceeds 60%. Unlike the other
five techniques, the maximum supplied temperature of
HGSA in this multiple-failure scenario is nearly the same as
that of HGSA in the single-failure counterpart. For example,
the range of Tsup obtained by HGSA in the single-failure
scenario is [13.6912°C, 16.3841°C], and the range in the
multiple-failure scenario becomes to [13.0492°C, 16.3398°C].
In other words, our HGSA is less sensitive to node failures
compared with the other five solutions. Fig. 7(c) shows
the cooling cost caused by the six distribution schemes
under various utilization. Fig. 7(c) demonstrates a similar
trend as the one depicted in Fig. 6(c). That is, MF-HGSA
outpaces the other five competitors in terms of conserving
cooling energy. The other schemes’ cooling costs reduced by
our MF-HGSA become larger as the data center utilization
grows. The reduced cooling cost reaches its peak when the
data centers utilization is 90%. Our experimental results
confirm that when the utilization is low, a node failure has a
negligible impact on cooling performance. However, when
the utilization is 30%, the cooling cost of a single failure and
multiple failures is higher than that of a non-failure by an
average of 1.18%, 13.03%. When the utilization is 40%, the
cooling cost of single failure and multiple failures is higher
than that of a non-failure by an average of 1.32%, 15.02%.
This cost grows with increasing utilization. We also refer to
a related study for this mechanism [16], where the impact of
failures is a critical factor to the waste of resources and low
energy efficiency.

5.5.4 Scenario 4: The Impact of Failure Locations
In this scenario, we examine the impact of failure locations
on maximum supplied temperature Tsup. To this end, we
investigate the failure location impact with respect to two
cases. Fig. 8 depicts the maximum supplied temperature as
a function of failure locations. Recall that our simulated data
center embraces ten racks placed in Row 1 and Row 2, where
each rack has five chassis labeled as A, B, C, D, and E from
bottom to top to house computing nodes (see Fig. 2). In
Fig.8, D1 and E1 in Row 1 denote node failures near the top
of rack 1; A1 and B1 in Row 1 denote node failures near the
bottom of rack 1. Similarly, D2 and E2 in Row 2 represent
node failures near the top of rack 2; A2 and B2 in Row 2
denote node failures near the bottom of rack 2.

Case 1: Failures occur at multiple locations in the same
rack.

In this case, we compare the maximum supplied temper-
ature Tsup where node failures occur near the top against
that where node failures occur near the bottom in the same
rack. For this reason, we compare Tsup where nodes D1 and
E1 in Row 1 fail against the counterpart Tsup where nodes
A1 and B1 in Row 1 fail (similarly, D2 and E2 in Row
2 vs. A2 and B2 in Row 2). Fig. 8 reveals that regardless
of the utilization, the Tsup with faulty nodes A1 and B1 is
greater than that with faulty nodes D1 and E1. Compared
with node failures that occur near the bottom of racks, node
failures near the top of racks lead to a lower maximum
supply temperature consuming more energy in data centers.

Case 2: Failures occur at the same locations in different
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racks.
In this case, we investigate the maximum supplied tem-

peratures Tsup caused by node failures that occur at the
same locations in different racks. For example, we compare
Tsup caused by node failures near the top of rack 1 (i.e., D1
andE1 in Row 1) against that incurred by node failures near
the top of rack 2 (i.e., D2 and E2 in Row 2) under various
data center utilization. Fig. 8 unfolds that there is no obvious
gap between these two curves. This finding indicates that
node failures that occur at the same locations in different
racks have similar impacts on the CRAC efficiency.
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Fig. 8: The experiments of failure nodes residing in
different positions in Scenario 4

5.6 Total Power Consumption and Execution Time

Now we compare HGSA with PSOGA, XINT-GA, UT,
PPVMP, and SA in terms of power consumption and exe-
cution time under different failure scenarios.

Total Power Consumption Evaluation: Fig. 9 depicts the
total power consumption of HGSA, PSOGA, XINT-GA, UT,
PPVMP, and SA with respect to data center utilization in
three failure scenarios. Compared with PSOGA, XINT-GA,
UT, PPVMP, and SA, our HGSA reduces the total power
consumption of a data center. More importantly, when the
data center utilization becomes high, HGSA still maintains
its energy-efficiency edge over the other five techniques.
Such an energy-saving effect becomes more pronounced in
the multiple-failure scenario (Scenario 3). For example, our
HGSA cuts down the power consumption of XINT-GA by
approximately 24% when the utilization is 90% in Scenario
3. Fig. 9 also shows that the total power consumption of UT
is relatively high across all the utilization measures and the
node failure scenario. The reason is that UT is a non-failure-
aware load distributor, which has low energy efficiency.
Moreover, we observe that the total power consumption
of data centers with fewer faulty nodes is always greater
than that with multiple faulty nodes. This result is expected
because node failures give rise to a concentrated workload
distribution to a small number of active nodes, which
strengthens the heat recirculation effect, thereby increasing
the total power consumption. In a nutshell, HGSA is more
thermal-efficient than the other workload distribution al-
gorithms in multiple-node-failure environments. First, the
HGSA algorithm can optimize the cost of the cooling system
by finding an approximate optimal solution. Second, HGSA
can optimize the power consumption of computing nodes
by controlling the number of nodes activated. Therefore,
compared to other state-of-the-art methods, HGSA can re-
duce more total power consumption of data centers.

Execution Time Evaluation: Fig. 10 plots the execution
time of these six schemes to obtain the minimum inlet air
temperature. We conduct this group of experiments under
various data center utilization in three failure scenarios. The
execution time of UT is much shorter than those of PSOGA,
XINT-GA, SA, PPVMP, and our HGSA. This is because these
five schemes are iterative-based algorithms in nature. Fig. 10
also illustrates that the execution time of the five algorithms
is insensitive to the data center utilization. HGSA’s execu-
tion time spent in distributing load is higher than those of
SA and UT; HGSA is faster than PSOGA, PPVMP, and XINT-
GA. We conclude that the execution time of HGSA falls in a
reasonable range. Moreover, Fig. 10(a), (b), and (c) indicate
that although the number of node failures varies in scenarios
1, 2, and 3 (zero-failure, single-failure, and multiple-failure
scenarios), the execution time of each algorithm does not
significantly increase.

5.7 The Impact of Failure Rate
Schroeder and Gibson [15] investigated the failure rates of
22 high-performance computing (HPC) systems composed
of 4750 computing nodes at Los Alamos National Lab-
oratory (LANL). Their survey results show that average
failure rates differ wildly across systems, ranging from 20-
1000 failures per year, and that time between failures is
modeled well by a Weibull distribution with decreasing
hazard rate. Furthermore, their results indicate that the
failure rate of computing nodes in a period is greatly related
to the number of workloads or the utilization rate of the
data center. Based on the above analysis, we evaluated the
total power consumption of the data center by optimizing
workload distribution under different failure rates by using
different algorithms. Fig. 11 shows that the HGSA algorithm
achieves the lowest total power consumption among the six
schemes. It is observed that the total power consumption
has a visible discrepancy with the node failure rate ranging
between 10% and 50%. This is because heat recirculation
has a great influence on the cooling power consumption of
data centers when the failure rate is less than 50%, thereby
affecting the total power consumption of data centers. This
means that the failure of computing nodes is a critical factor
to lower energy efficiency. However, if the failure rate varies
between 60% and 90%, the total power consumption under
different algorithms is significantly reduced. This is because
all normal computing nodes are required to participate
in workload processing, which makes the effects of heat
recirculation more stable. Unfortunately, the total power
consumption decreases rapidly as the failure rate increases
due to the excessive failure rate of computing nodes. Ad-
ditionally, our HGSA algorithm performs better in terms
of reducing total power consumption under different node
failure rates compared with UT, SA, XINT-GA, PSOGA, and
PPVMP. This is because the HGSA algorithm enables the
workloads to be distributed to computing nodes where the
heat recirculation affects less compared with other schemes.

6 CONCLUSION

In this paper, we proposed a heuristic algorithm - HGSA - to
optimize workload distribution driven by a holistic failure-
aware model, with the purpose of boosting the thermal and
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Fig. 9: Total power consumption (i.e.,cooling and IT equipment cost) of data centers managed by the different algorithms
in a) Scenario 1 (see Section 5.5.1), b)Scenario 2 (see Section 5.5.2), and c) Scenario 3 (see Section 5.5.3)
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Fig. 10: Execution time of the HGSA, PSOGA, XINT-GA, UT, PPVMP, and SA algorithms.
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Fig. 11: Total power consumption of data centers managed
by the different algorithms with different failure rates

energy efficiency of data centers. We introduced a novel
model to characterize the energy efficiency of data centers
by taking into account including workloads, computing and
cooling costs, inlet temperature, and node failures. More-
over, we delineated temporal–spacial distributions of node
failures in our model to precisely reflect the impact of node
failures.

We carried out extensive experiments to quantitatively
evaluate the performance of our proposed HGSA by com-
paring it with SA, XINT-GA, PSOGA, PPVMP, and UT.
The experimental results unveil that HGSA outperforms the
other five methods in terms of minimum inlet temperature,
maximum supplied temperature, cooling cost, and total
power. In addition, our experiments have also confirmed
that node failures cause an increase in cooling cost and the
overall power consumption of data centers. Meantime, the
findings suggest that the location of faulty nodes affects
the cooling temperature and power consumption of data
centers. Specifically, the power consumption of a data center
with faulty nodes near the top of racks is higher than that
with faulty nodes near the bottom of racks.

As a future research direction, we plan to extend our
research to secondary-storage-level failures. We will de-
velop a workload redistribution strategy that facilitates data
movement from faulty disk drives to functioning ones.
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