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Abstract—RRAM-based in-memory computing (IMC) effectively accelerates deep neural networks (DNNs). Furthermore, model
compression techniques, such as quantization and pruning, are necessary to improve algorithm mapping and hardware performance.
However, in the presence of RRAM device variations, low-precision and sparse DNNs suffer from severe post-mapping accuracy loss.
To address this, in this work, we investigate a new metric, model stability, from the loss landscape to help shed light on accuracy loss
under variations and model compression, which guides an algorithmic solution to maximize model stability and mitigate accuracy loss.
Based on statistical data from a CMOS/RRAM 1T1R test chip at 65nm, we characterize wafer-level RRAM variations and develop a
cross-layer benchmark tool that incorporates quantization, pruning, device variations, model stability, and IMC architecture parameters
to assess post-mapping accuracy and hardware performance. Leveraging this tool, we show that a loss-landscape-based DNN model

selection for stability effectively tolerates device variations and achieves a post-mapping accuracy higher than that with 50% lower
RRAM variations. Moreover, we quantitatively interpret why model pruning increases the sensitivity to variations, while a lower-
precision model has better tolerance to variations. Finally, we propose a novel variation-aware training method to improve model
stability, in which there exists the most stable model for the best post-mapping accuracy of compressed DNNs. Experimental evaluation
of the method shows up to 19%, 21%, and 11% post-mapping accuracy improvement for our 65nm RRAM device, across various
precision and sparsity, on CIFAR-10, CIFAR-100, and SVHN datasets, respectively.

Index Terms—In-memory computing, RRAM, model stability, deep neural networks, reliability, pruning, quantization

1 INTRODUCTION

EEP neural networks (DNNs) outperform humans for a
Dvariety of applications, such as computer vision and
natural language processing. Higher accuracy comes at the
cost of increased computational complexity and model size,
posing great challenges to traditional architectures [1]. In
addition, limited on-chip memory capacity leads to a signif-
icant amount of communication with off-chip memory,
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whose energy consumption is 1,000x higher than that of
computations [2].

RRAM-based IMC accelerators provide a dense and
parallel structure to achieve high performance and energy
efficiency [3], [4]. Prior works with RRAM-based crossbar
architectures have shown up to 1,000x improvement in
energy efficiency as compared to CPUs/GPUs [3], [4], [5],
[6], [7]. The increased energy-efficiency is attributed to a
full-custom design following the assumption; all weights
are stored on-chip [3], [4], [5]. However, RRAM-based
IMC architectures incur a significant area overhead, espe-
cially when the DNN model size is rapidly increasing.
Hence, model compression (e.g., pruning and quantiza-
tion) is necessary for RRAM-based in-memory accelera-
tion of DNNSs.

In reality, RRAM suffers from statistical variations such
as quantization error, device-to-device write variations,
stuck-at-faults, and limited Ro/Ron ratio, posing a signifi-
cant challenge to designing reliable RRAM-based IMC
architectures [10], [11], [12]. The statistical variations in
RRAM cause deviation in the programmed resistance lead-
ing to a significant loss in post-mapping accuracy (i.e., accu-
racy in the presence of RRAM variations) for DNNs. To
mitigate the post-mapping accuracy loss in DNNSs, varia-
tion-aware training (VAT) is employed [9], [10], [12], [13],
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Fig. 1. Post-mapping accuracy for ResNet-20 on CIFAR-10 (a) across dif-
ferent RRAM levels and average RRAM variations. For a given Rqs/Ron
ratio, higher RRAM levels suffer from variations and thus lower accuracy.
Simultaneously, a lower average RRAM variation results in higher accu-
racy, (b) at 8-bit and ternary-bit precision, with 29% sparsity [8]. Model is
trained and tested with the same variation (o) [9], [10]. The 8-bit model
has more accuracy loss than the ternary model as o increases.

[14]. VAT exploits the inherent redundancy in DNN by
embedding the device variations (o), based on a log-normal
or normal distribution model, into the training process to
achieve a variation-tolerant model, with no need of re-train-
ing for each individual RRAM chip [9], [10], [13]. The con-
ventional VAT techniques train and test the DNN model at
the same level of variation.

Fig. 1a shows the post-mapping accuracy for ResNet-
20 [15] on CIFAR-10 dataset for different RRAM levels across
various average RRAM variations. The baseline accuracy for
the floating-point 32bit (FP-32) model is shown in red (dash
line). The red curve shows the variation of pre-mapping
accuracy with RRAM levels for our 65nm RRAM data with
an average variation (o,y,) of 0.3. For a given R/ R, ratio, a
higher number of RRAM levels leads to higher variation and
lower accuracy, and vice-versa. A higher variation for a
higher number of RRAM levels arises from the increased
HRS state utilization. Further, we analyze the scenario with a
reduced average variation of 0.2 and 0.15. A reduction
in RRAM variation through improved process control
improves the pre-mapping accuracy. But, though the reduc-
tion in RRAM variation improves the accuracy, it does not
achieve the same accuracy as FP-32. Hence, we establish that
the reduction in RRAM variation does not get the pre-map-
ping accuracy back to the FP-32 level (baseline).

Next, we analyze the effect of RRAM variations on a
sparse and quantized DNN. Fig. 1b shows the accuracy of
ResNet-20 for CIFAR-10 at 29% sparsity for different RRAM
write variations and data precision using the conventional
VAT method [9]. Conventional VAT proves ineffective
under pruning and quantization, resulting in reduced post-
mapping accuracy. Furthermore, a lower precision (ternary)
helps improve the post-mapping accuracy, as shown in
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Fig. 1b. Hence, there is a need for a more systematic solution
for reliable RRAM-based in-memory computing for dense,
sparse, and quantized DNNs.

To address this, in this work, we propose a new metric,
model stability, from the loss landscape to help shed light on
accuracy under variations and model compression and
guide an algorithmic solution that mitigates the loss. The
model stability is visualized by the loss landscape and evalu-
ated by the roughness score [16]. A lower roughness score
indicates a smoother loss landscape and a more stable model.
Through this, we select the more stable model that can with-
stand the variations better. The proposed model stability-
based model selection effectively tolerates device variations
and achieves a post-mapping accuracy higher than that with
50% lower RRAM variations. Next, we propose a novel vari-
ation-aware training (VAT) method for best model stability
in compressed DNNs. The proposed method utilizes VAT to
train the compressed DNN with different scales of device
variations (o) to search for the most stable model and
improve post-mapping accuracy. For a given DNN model,
higher model stability implies better tolerance of variations
and thus, higher post-mapping accuracy. We utilize a struc-
tured pruning method [8] and model quantization [17], [18]
to compress DNN. The pruning method considers the map-
ping of the DNN onto the RRAM crossbar for best IMC per-
formance. We show that pruning results in a less stable
model, while quantization improves the model stability. We
demonstrate that the proposed method achieves up to 19%,
21%, and 11% improvement in post-mapping accuracy on
CIFAR-10, CIFAR-100, and SVHN datasets, respectively.
The major contributions of this work are as follows:

e We propose a new metric, model stability, using the
loss landscape to mitigate the accuracy loss of dense
and compressed DNNs in the presence of RRAM
variations,

e Using model stability as a metric to choose the more
stable model results in similar accuracy improve-
ment as that for 50% lower RRAM variations
through costly process control,

e We further propose a model stability-based VAT
method for compressed DNNs, which searches the
most stable model under variations to achieve the
best post-mapping accuracy, without knowing the
exact amount of RRAM testing variations upfront,

e Finally, we show that the model-stability-based VAT
method achieves up to 19%, 21%, and 11% improve-
ment in accuracy for compressed DNNs on CIFAR-
10, CIFAR-100, and SVHN datasets, respectively.

2 DNN MODEL STABILITY

Given a trained DNN model, its model stability is an intrin-
sic property to withstand perturbations, such as variations
in model weights and input noise. Model stability of a
DNN, ie. the DNN generalization capability,is directly
related to the contour of the loss function [16], [19], [20],
[21]. A flatter contour of the loss function leads to a larger
region of acceptable minima, which allows the DNN model
to better tolerate variations in both weights and inputs.Vice
versa, a steeper contour of the loss function leads to a
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Fig. 2. A lower roughness score leads to a smoother loss landscape,
higher stability, and thus, higher model accuracy.

smaller region of acceptable minima [19], which implies that
any perturbations to the weights or inputs will lead to
appreciable movement of the minima point and thus,
reduce model accuracy. In this work, we utilize DNN model
stability as a metric to guide reliable RRAM-based IMC
acceleration.

2.1 Landscape Visualization

In order to quantitatively understand model stability, we uti-
lize the landscape visualization method [21] to visualize the
minima of the loss function. In [21], filter normalization is
applied to remove the scaling effect of injected noise, and a
3-dimension matrix is generated with X, y, and z coordinates,
where x and y represent the scale of two random perturba-
tions injected into the model and z is the loss function. Essen-
tially this matrix plots the fluctuation of the loss function
under the local perturbation around the local minimum.

2.2 Roughness Score

We calculate the smoothness of the loss function, defined as
roughness score, to quantify the loss landscape’s stability
further. We fit the 3-dimensional data from the landscape
using quadratic linear regression and obtain the mean
square error (MSE) of the fitting model, as shown below:

é’j = 'LU]'4{L'§ + w]3yf + wjx; + wjiry; + wjo, (1)

(2 - 4)% @

where w; represents the fitted coefficients. We denote the
stability or roughness score of the DNN model as
MSE(z; 22, %, z, y; ). A smaller MSE arises from a flat and
smooth landscape and vice-versa. Note that such a method
was previously used to improve the accuracy in continual
learning [16], while it did not consider device variations,
sparsity, and quantization. To the best of our knowledge, this is
the first time that model stability has been employedto provide sys-
tematic guidanceto improve the post-mapping accuracy for the
acceleration of dense and compressed DNNs using RRAM-based
IMC architectures.

2.3 Roughness Score and DNN Accuracy

Fig. 2 shows the accuracy and roughness score for different
DNNSs. We generate different versions for a DNN model by
utilizing different weight initialization, which leads to dif-
ferent roughness scores and corresponding accuracy. VGG-
16 for CIFAR-10 achieves 94.2% accuracy and the lowest
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Fig. 3. HRS (left) and LRS (right) cycle-to-cycle switching variation
across the 300mm wafer at 65nm. HRS state has a higher variation than
LRS.

roughness score of 118x103. At the same time, a ResNet-20
version achieves the lowest accuracy of 89.5% with a rough-
ness score of 278x107. To further understand the relation-
ship between the roughness score, loss landscape, and
DNN accuracy, we visualize the loss landscape using the
method detailed in [21]. VGG-16 has a shallow and smooth
loss landscape while the lowest accuracy ResNet-20 variant
has a rough loss landscape. Through these examples we
establish that a lower roughness score leads to a smoother
loss landscape, more acceptable local minima for the loss
function, and a higher DNN accuracy.

3 65Nm 1T1R RRAM DEVICE

To accurately model the RRAM device properties, RRAM
data is collected from a fully integrated 1T1R structure on a
300mm wafer, using a custom RRAM module within the
SUNY Polytechnic Institute’s 65nm process. The size of
each RRAM device is 100nmx100nm. The RRAM device
stack is comprised of a 6nm HfO, mem-resistive switching
layer, a 6nm PVD Ti oxygen exchange layer (OEL), and TiN
electrodes (top and bottom). Electrical characterization is
performed using a pulse-based approach having a magni-
tude 1V - 1.2V and width of 10us for the set and reset opera-
tion of RRAM devices.

Fig. 3 shows the wafer-level cycle-to-cycle switching var-
iations for the 65nm RRAM device measured using the
pulse-based switching technique. The high-resistance state
(HRS) has a higher variation up to 0.6, while the low-resis-
tance state (LRS) has a lower variation up to 0.1. The aver-
age variation (o,yg) for the entire range of HRS and LRS
amounts to 0.3.

Fig. 4 shows the normalized variation for different
Ro¢e/Ryn ratios across 1110 1'TIR RRAM devices at 65nm.
As the ratio of Rog/Ron goes up its HRS state utilization
increases. A higher HRS state utilization results in higher
device variations and an increase in overall average varia-
tion, as shown in Fig. 3. Overall, a lower Rq/Ro, ratio
results in lower average device variation at the cost of
lower usable resistance levels and hardware performance,
and vice-versa.

Fig. 5 shows the retention of both HRS and LRS for 10°
seconds at 100°C. The grey region overlaid on the plot
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Fig. 4. Normalized variation for different Ry/Ron ratios for 1110 1T1R
RRAM devices at 65nm. A higher R/Ro, ratio leads to higher variation.

shows the static variation from the RRAM device. The 65nm
ITIR RRAM device shows low retention variation, as
shown in Fig. 5. Table 1 shows the endurance data for both
HRS and LRS states up to 1 billion cycles. Both the HRS and
LRS states show high endurance with distinction between
the two states up to 1 billion cycles. Since static write varia-
tions are dominant, in this work, we do not consider the
effects of retention or endurance. Table 2 summarizes the
device models used in the cross-layer simulation framework
described in Section 4. In this work, we use the 65nm RRAM
models for all our experiments to provide realistic results.

4 CROSS-LAYER SIMULATION FRAMEWORK

In this work, we develop an in-house simulator to perform
system-level benchmarking of the RRAM-based IMC archi-
tecture. Fig. 6 shows the block diagram of the cross-layer
benchmarking tool utilized.

The simulator incorporates device, circuits, architecture,
and algorithm under a single roof to perform system-level
benchmarking. The simulator provides post-mapping accu-
racy (hardware accuracy), the overall hardware perfor-
mance, roofline model, and model stability. The inputs to
the simulator include the DNN structure, data precision, tar-
get sparsity, technology node, bits per RRAM cell, IMC
crossbar size, ADC resolution, read-out method, frequency,
NoC topology, and NoC size, among others. Table 3 shows
the comparison between different popular IMC simulators.
Compared to prior works [22], [23], [24], the proposed simu-
lator provides supports for both SPICE and behavioral-based
computation fabric estimation, supports both accuracy and
hardware performance estimation, NoC-mesh interconnect
support, estimation of roofline model and model stability
of the DNN, and support sparsity and quantization.

65nm RRAM Retention Data at 100°C
Grey region - Static variation
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Fig. 5. The 65nm RRAM device achieves good retention for up to 10°
seconds. The grey region shows the dominating effect of static varia-
tions for the 65nm 1T1R RRAM device.

2743
TABLE 1
Endurance Measurement up to 1 Billion Cycles
Cycles 10 102 103 10° 107 10°

LRS (KQ) 5.7 55 5.7 5.6 5.8 59
HRS (KQ) 109 231 157 43.3 113.8 30.8

Furthermore, the supported sparsity follows a hardware-
friendly structure as detailed in Section 4.4.1.

4.1 Device Models

The tool incorporates device models from the 65nm 1T1R
RRAM device, as shown in Table 2. The RRAM device var-
iations are modeled using the log-normal distribution [10],
[25]. The R/ Ron ratio of the RRAM device ranges between
2 and 650. We assume that the discrete resistance levels
used to represent the weights are within the limited R/
Rgn ratio. The maximum number of resistance levels that a
single RRAM cell can handle is 16, limiting the weights to
be mapped to a single cell to 4-bits.

4.2 Circuit Estimator

The circuit estimator performs the estimation of the IMC,
peripheral circuits, and digital modules within the architec-
ture. We benchmark the overall circuit estimator with
SIAM [26]. The circuit estimator performs the mapping of
the DNN onto the RRAM-based IMC crossbar architecture.
The mapping utilized within the estimator follows that
in [26]. The IMC circuit components include the crossbar,
wordline (WL) driver, level shifters, bitline (BL) and select-
line (SL) multiplexers (MUX), column MUX, analog-to-digi-
tal converter (ADC), and shift and add circuit. In addition,
the circuit estimator benchmarks the accumulator, pooling
unit, and buffer circuits in the architecture. The estimator
utilizes the device models and the transistor properties to
perform the overall estimation.

4.3 Architecture

Fig. 6 shows the overall architecture utilized in this work.
The architecture utilized is similar to that in [4] with a
homogeneous crossbar size. The top-level consists of an
array of IMC tiles interconnected by an NoC-mesh. Each tile
consists of an array of PEs connected by an H-Tree intercon-
nect. The PE consists of an RRAM-based IMC crossbar and

TABLE 2
Device Models from 65Nm 1T1R RRAM Device
Parameter | Value
Roff/Ron ‘ 2-650

Write Variation! | '+ r.e%0~N(0, 0?)

Average Variation (cavg) | 0.3
RRAM levels (#) | 16
| 0.1,0.02 (HRS, LRS)

Aging Variation (cage)

Ir is the ideal resistance to be programmed and
r’ is the real value in RRAM. 0.1 < o < 0.5.

Ly is the ideal resistance to be programmed and v’ is the real value in RRAM.
0.1 <0<0.5.
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Fig. 6. The benchmarking tool incorporates algorithm (pruning and quantization), RRAM IMC architecture properties, circuit models, and the 65nm
1T1R RRAM device models. The tool outputs post-mapping accuracy, hardware performance, roofline model, and model stability.

associated peripheral circuits. The peripheral circuits
include an ADC, column MUX, switch matrix, WL decoder
and driver, level shifters, and SL and BL MUX. In addition,
the PE consists of a local buffer that is utilized for the move-
ment of activations and partial sums into and out of the PE.

The architecture utilizes an NoC-mesh to perform the on-
chip data movement at the tile-level. Each tile is associated
with an NoC router that performs the packet scheduling
and routing. The NoC utilizes an X-Y routing mechanism.
To benchmark the NoC interconnect, we utilize a cycle-
accurate simulator that is benchmarked against the NoC
module within SIAM [26]. To perform the estimation, we
generate traces for the packets communicated between the
tiles similar to that detailed in [26]. These traces are then
utilized as the input to the NoC estimator to evaluate the
cost of on-chip communication.

4.4 Algorithm

The algorithm component of the simulator performs the
DNN training, pruning, quantization, variation-aware-train-
ing (VAT), evaluation of model stability, and hardware-
aware training. The VAT training performed in this work uti-
lizes the device models detailed in Table 2. We utilize the log-
normal distribution to add the variations for each weight.
The variations are added such that the variations depend on
the weight value, thus having one-to-one correlation to the
real hardware. In addition, for the hardware-aware training
we include the effect of the limited precision of the RRAM,
the ADC, and the accumulator within the shift and add cir-
cuit. Finally, the algorithm component of the simulator eval-
uates the model stability of the DNN after training. To
achieve this, we evaluate the roughness score of the loss
function and visualize the loss landscape as detailed Sec-
tion 2. In the following sections we detail the pruning and
quantization methodologies utilized in this work.

4.4.1  Pruning

In this work, we adopt the structured pruning method
in [8]. It utilizes a weight-penalty clipping with a self-adapt-
ing threshold, as shown below:

L G;
L= LWL, O +AY D min([Willy;8)  G)
=1 i=1
1 &
8 = a~a; IWiillss 4)

where §; denotes the layer-wise self-adapting clipping thresh-
old, L is the number of layers, G is the number of groups in
the [-th layer, ) is the hyper-parameter to be tuned based on
the dataset, and « is the scaling coefficient. The pruning is con-
ducted group-wise along the output channel dimension: for-
layer | with weight matrix W; € R¥os*NirKexKy we choose a
group of size N, along the NN;; dimension, where NN, is deter-
mined by the crossbar size. Groups of K, x K, x N, weights
are pruned across output channels to favor the IMC.

4.4.2 Quantization

The pruned model is further compressed by applying quan-
tization. For 4-bits or higher precision, we employ uniform
in-training quantization [18]. Furthermore, for ternary bit
precision, we follow the ternarization method in [17]. For
both ternary and higher bit precision, we employ the
straight-through-estimator (STE) method in the backward-
propagation to counteract the non-differential issues of the
discrete quantization function. In this work, we focus on 8-
bit and ternary weight quantization.

4.4.3 Convergence Analysis

There exist several works to analyze the convergence of
DNN when performing pruning and quantization[27], [28],
[29]. First, for the weight quantization, [27] finds that if

Model

TABLE 3
Comparison Between Different IMC Simulators
. Computation Communication | Accuracy Estimation | Hardware Performance | Roofline & Model Stability | Sparsity
Simulator . . . . . .
Fabric Fabric Support Estimation Estimation Support
NeuroSim [22] | SPICE-based | P2P (H-Tree) | Yes \ Yes \ No | No
Zhang et al. [23] | NA \ NA \ Yes \ No \ No | No
MNSIM 2.0 [24] | Behavioral Model |  NoC-mesh | Yes \ Yes \ No | No
Ours ‘ SPICE & Behavioral ‘ NoC-mesh ‘ Yes ‘ Yes ‘ Yes ‘ Yes
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assuming the loss function is L-Lipschitz smooth and the
gradients are bounded, the loss of the quantized model will
converge to an error related to the weight quantization reso-
lution Aw and weight dimension d as shown below:

R(T) d doA?,
TgO(\/—T)—i—LD( D?+T>, (5)

R(T) is the evaluated regret, which is equal to Zthl F(Wy) —
f(W;), where W; is the best model parameter, T is the
number of iterations, and D is the finite diameter in the
domain. It can be seen that the smaller the Aw or d, the
smaller is the error. In addition, [29] provides the con-
vergence analysis of the group Lasso-based pruning
method. By setting suitable smoothing parameters, [29]
proves the weak and strong convergence of the training
process for the smoothing of neural networks, respec-
tively. In practice, they show that weak convergence
indicates that the norm of the gradients of the smooth
cost function goes to zero, and the strong convergence
implies that the weight sequence tends to a fixed point
W/. Moreover, they demonstrate that such a convergence
result of smoothing of the network is consistent with the
original non-smoothing one with group-lasso penalty.
The consistency between the smooth error function

E(W,) and original error function E(W;) is shown below:

lim E(W,) = lim E(W,) = B(W/). 6)

t—o00

5 MODEL STABILITY FOR RRAM-BASED IMC

In this section, we detail the algorithm utilized to evaluate
the model stability of DNN under the presence of RRAM
variations, sparsity, and quantization.

Algorithm 1 details the methodology utilized in this
work to evaluate the model stability. First, for each DNN
model we perform training to generate the floating-point
model A. We perform inference with model A to calculate
the inference accuracy. Next, we quantize the DNN
model to fixed-point weights and activations across all
layers of the DNN, to generate model B. Uniform quanti-
zation is employed to maximize the hardware perfor-
mance for the RRAM-based IMC architecture. The
quantized model is then pruned to generate the struc-
tured sparse DNN model C. Thereafter, we add the
RRAM variations (044i,) and perform hardware-aware
training for the quantized model to generate model D. In
addition to adding the RRAM variations, hardware-aware
training involves breaking the convolution or fully-con-
nected (FC) layer into partial convolutions and FC layer
operations based on the size of the crossbar and adding
the ADC quantization for the column sum from each
crossbar. We then perform inference for the hardware-
aware trained model D in the presence of the RRAM test-
ing variations (o) to generate the realistic hardware
accuracy. Next, to evaluate the model stability for each
model, we plot the loss landscape as defined in Sec-
tion 2.1. Finally, we evaluate the roughness score of the
loss landscape (models A, B, C, and D) to quantify the
stability of the DNN model. In this work, we propose to
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use model stability as a metric for reliable RRAM-based
IMC accelerations. To achieve this, we propose two direc-
tions, first, a model stability-based model selection, and
second, a model stability-based VAT method.

Algorithm 1. Model Stability

1: Input: DNN, weight precision (I¥), activation precision (4),
RRAM training variations (o4in), RRAM testing variations
(04est), crossbar size, and ADC precision
2: Output: Roughness Score (R,) and loss landscape
3: for DNN Model do
4:  Perform DNN training
/* Model A */

5:  if Quantize then

6:  Perform DNN quantization (Section 4.4.2)
/* Model B */

7: end
8:  if Pruning then
9: Perform pruning for DNN Model as in Equation 3 and
Equation 4
/*Model C */
10:  end

11: ~ Add RRAM variations (04i,) and perform hardware-
aware training
/* Model D */
12:  Plot loss landscape using tool in [21] for models A, B, C,

and D

13:  Calculate roughness score of loss landscape for models
A,B,C,and D

14: end

Given a dataset, Fig. 2 illustrates that the choice of the
DNN model significantly affects the accuracy. Based on this
observation, we propose a novel loss landscape-based
model selection for stability that tolerates RRAM device var-
iations and achieves higher post-mapping accuracy. Such an
observation is attributed to the DNN model stability. Model
stability of a trained DNN is the intrinsic property to with-
stand perturbations such as variations and noise. A more
stable model with higher model stability will be more
robust under RRAM variations and have higher post-map-
ping accuracy.

Model stability-based model selection provides a viable
solution when there is a choice for the target DNN. But, if
the DNN cannot be changed and is compressed, model
selection cannot be utilized. To address this, in this work,
we propose a novel model stability-based VAT to improve
the post-mapping accuracy of DNNs under sparsity and
quantization. Previous VAT approaches focus on non-
pruned DNNSs and require the precise knowledge of RRAM
testing variations and apply that to the training [9], [10].
Distinct from that, we first train the sparse and quantized
DNN model with different scales of device variations
(0train), without knowing the exact amount of RRAM testing
variations. The range of /.4y, is from 0.1 to 0.5, as suggested
by the 65nm 1T1IR RRAM data.Furthermore, we evaluate
the loss landscape and the roughness score for each of the
different VAT variants to help identify the optimal model
with the highest model stability (Algorithm 1). A higher
model stability from the optimal scale of training variation
leads to higher post-mapping accuracy.
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ResNet-20 on CIFAR-10 with Pruning and Quantization
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Fig. 7. Energy-delay product (EDP) normalized to the largest value (at
0% sparsity with 128 x 128 crossbar size) across different sparsity, quan-
tization (8-bit and ternary), and crossbar sizes for ResNet-20 on CIFAR-
10.

6 EXPERIMENTS AND RESULTS

6.1 Experimental Setup

We evaluate the proposed model stability metric for reliable
RRAM-based IMC acceleration using two main methods.
First, we demonstrate a DNN model selection for higher
model stability which improves the overall DNN accuracy.
We evaluate the proposed method for ResNet-20 on CIFAR-
10, DenseNet-40 for CIFAR-10 and CIFAR-100, and ResNet-
32 for CIFAR-100. All experiments are done for a crossbar size
of 256x256 with a 5-bit ADC at the periphery. We evaluate for
different RRAM levels ranging from 2 to 16.

Next, we extend the model stability metric to present a novel
model stability-based VAT method to mitigate the accuracy
degradation in RRAM-based IMC architectures. We evaluate
the proposed VAT method for ResNet-20 on CIFAR-10, VGG-
16 on CIFAR-10, ResNet-32 on SVHN, and ResNet-56 for
CIFAR-100. We evaluate the VAT method in the presence of
RRAM variations that range from 0.1 to 0.5, ternary and 8-bit
quantization, and different levels of structured sparsity gener-
ated using pruning method detailed in Section 4.4.1. The prun-
ing group size is chosen equal to the crossbar size for maximum
hardware inference performance. We utilize the same crossbar
size of 256 x 256 with a 5-bit ADC at the periphery.

6.2 Pruning and Quantization
6.2.1 Effect of Pruning and Quantization on RRAM IMC

We follow the mapping as in [26]. In the pruning method,
we set the group size in accordance with the number of
rows of the crossbar. For example, for a crossbar of size
72x64 and kernel size of 3x3, we set the group size to be 8.
Hence, we prune groups of 3x3x8 weights along the output
feature dimension. Therefore, we are able to skip the map-
ping of 3x3x8 weights along the column dimension of the
RRAM crossbar while maintaining high utilization. In this
work, we set the group size to be 8 and the crossbar size as
72x64. Fig. 7 shows the energy-delay product for ResNet-20
on CIFAR-10 across different sparsity, quantization (8-bit
and ternary), and crossbar sizes. A higher sparsity and
lower quantization leads to lower EDP and vice-versa. At
higher rates of sparsity, the EDP reduces exponentially
across different grades of quantization, thus increasing the
hardware performance.
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- - 3
Model Baseline (32-bit) P'”'(';';‘:?A?"'y P’”';';?tfﬁg ")
Roughness Score
(x10%) 172 192 130
Accuracy (%) 92.35 92.16 92.62

Fig. 8. Loss landscape for floating-point 32-bit, pruned only (29%), and
pruned and quantized (29% and 8-bit) variants of ResNet-20 on CIFAR-
10. Model pruning results in a model with lower stability and accuracy,
while quantization to a low-precision model improves the stability and
the roughness score, leading to higher accuracy.

Fig. 8 shows the loss landscape, roughness score, and
accuracy for the floating-point 32-bit (FP-32), pruning only
(29%), and pruned and quantized (29% and 8-bit) versions
of ResNet-20 on CIFAR-10. Pruning and quantization follow
the methodology detailed in Sections 4.4.1 and 4.4.2, respec-
tively. The pruned model has a roughness score higher than
the FP-32 model, resulting in a rougher loss landscape, less
stability, andlower accuracy. At the same time, the addition
of quantization to the pruned model results in a reduced
roughness score, making it more stable with a smoother
loss landscape and a higher accuracy. Hence, we quantita-
tively establish through the roughness score and loss land-
scape that quantization helps improve the model stability
and is a necessary step for reliable RRAM-based IMC accel-
eration of sparse DNNs.

6.3 System-Level IMC Analysis
6.3.1 Precision and Variation

The inherent variations with the RRAM device result in sig-
nificant accuracy degradation. Section 1 details the effect of
RRAM variation for ResNet-20 on CIFAR-10 with full preci-
sion and pruned and quantized models (8-bit and ternary).
Through this, we establish that higher RRAM levels lead to
higher variation and degradation in post-mapping accuracy.

Next, we evaluate the effect of ADC precision on post-
mapping accuracy. Fig. 9 shows the total inference energy
breakdown for ResNet-20 on CIFAR-10 at two ADC preci-
sions, 8-bit and 5-bit. We divide the total energy into ADC,
buffer, and other (accumulator, NoC, crossbar, ReLU, pool-
ing, etc.) components. It can be seen that a higher ADC pre-
cision leads to higher energy dominated by the ADC and
higher post-mapping accuracy. At the same time, a lower
precision reduces the ADC component resulting in reduced
total energy. At higher RRAM levels, the ADC cost reduces
due to reduced crossbars and associated peripherals. Con-
sidering the dramatic design challenge and cost, a low-
power and high throughput, and high-precision ADC may
not be practical soon for RRAM IMC.

6.3.2 Roofline Model

In this section, we develop a roofline model that comprises
of the number of RRAM levels, RRAM variation, stuck-at-
faults, Rog/Rop ratio, and ADC precision. We evaluate the
post-mapping accuracy for two DNNs, DenseNet-40 and
ResNet-32 for the CIFAR-100 dataset, for our fabricated
HfO, based RRAM device.
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Roughness Score and Post-Mapping Accuracy for Different
DNN Models under RRAM Variation and a 5-Bit ADC
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Fig. 9. ADC dominates the energy consumption, especially under high
ADC precision. With higher RRAM levels, its portion reduces due to
reduced number of crossbars and associated peripherals.

Fig. 10 shows the roofline model for the two DNNs, Den-
seNet-40 and ResNet-32, on the CIFAR-100 dataset. The
black curve shows the post-mapping accuracy for different
RRAM levels with (black) and without considering the
ADC precision (grey). A higher number of RRAM levels
leads to lower post-mapping accuracy and vice-versa. A
similar trend is seen for both ResNet-32 and DenseNet-40.
Next, we consider the ADC precision in the accuracy esti-
mation and evaluate the post-mapping accuracy. The red
curve shows the maximum achievable post-mapping accu-
racy with a 5-bit ADC. Hence, the RRAM-based IMC accu-
racy at lower RRAM levels is limited by the ADC precision,
while at higher RRAM levels, the RRAM device limits the
accuracy. Finally, for our 16-level 65nm 1T1R RRAM devi-
ces, only 4-6 levels are useful to achieve the best perfor-
mance due to the ADC precision, RRAM variations, and
algorithm limits.

6.4 Model Stability-Based Model Selection

In this section, we show the efficacy of the model stabil-
ity-based model selection method. Here the training and
testing RRAM variations are the same (o) [10]. Table 4
shows the post-mapping accuracy of various DNNs for
CIFAR-10 and CIFAR-100 datasets. We evaluate ResNet-
20 and DenseNet-40 for CIFAR-10. For our 65nm RRAM
device with a device variation (o) of 0.3, ResNet-20
achieves 68.83% accuracy. A 50% reduction in RRAM var-
iation (o = 0.15) through process control results in 72.04%
accuracy, a 4% increment. At the same time, DenseNet-
40, which has higher model stability, achieves a higher
accuracy of 72.34% at a o of 0.3, a 0.3% and 4% improve-
ment over ResNet-20 with 0.15 and 0.3 o, respectively.
For CIFAR-100 dataset, we evaluate ResNet-32 and

CIFAR-10
ResNet20 03m) | 03" | 278 | 6883
| o015 | | 7204
DenseNet-40 (0.2M) | 0.3* | 173 | 7234
CIFAR-100
ResNet32 05M) | 03 | 130 | 3676
| 015 | | 4341
DenseNet-40 (02M) | 03* | 121 | 4468

A more stable model (lower roughness score) effectively improves the accuracy,
more than that by reducing RRAM variation by 50% only.

DenseNet-40. For our 65nm RRAM device, ResNet-32
achieves 36.76% and 43.41% post-mapping accuracy at o
of 0.3 and 0.15, respectively. DenseNet-40 (more stable
model) achieves 44.68% post-mapping accuracy at a o of
0.3, a 1.27% improvement over ResNet-32 at of 0.15 (7.9%
higher than ResNet-32 at o of 0.3). We note that the more
stable model has a smaller model size and attributes to
improved hardware performance. The improved accuracy
is attributed to the lower roughness score and higher
model stability from the proposed loss landscape-based
model selection. Through this, we establish that a loss
landscape-based model selection achieves higher post-
mapping accuracy than a 50% reduction in RRAM device
variation through process control.

6.5 Model Stability-Based VAT

In this section, we detail the efficacy of the proposed
model stability-based VAT method. Fig. 11 shows the
loss landscape, roughness score, and post-mapping accu-
racy for ResNet-20 at 29% sparsity and 8-bit quantization
for a testing variation (o) of 0.1 on the CIFAR-10 dataset.
The model is trained with different scales of variations
(0) from 0.1 to 0.3 to generate each of the VAT models.
The most stable VAT model, o equal to 0.15, has the low-
est roughness score of 91x107, resulting in a smoother
loss landscape, higher model stability, and post-mapping
accuracy. As the roughness score increases, the loss land-
scape becomes more rough, and the post-mapping accu-
racy reduces. Fig. 12 shows the detailed result. The
optimal scale of training variation is different for each
testing variation and is chosen based on the model

Training 01

65 Roofline Model for 65nm Data with 5-Bit ADC on CIFAR-100 |
col ® —=— DenseNet-40 (0.2M) —A— ResNet-32 (0.5M)
et 256x256 |
X551+ i
gs0f = 2 n .
s A e \
§ 45 . E
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s e e
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Variation (o) ik 02 03
Landscape ‘ﬁ \ .
Roughness
Score (x1 0.3) 94 91 120 139
Post-mapping
Accuracy (%) 84.7 86.0 72.3 62.8
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Fig. 10. ADC precision and RRAM device variations govern the maxi-
mum and realistic post-mapping accuracy. A more stable DNN model
improves the realistic post-mapping accuracy.

Fig. 11. Loss landscape for ResNet-20 on CIFAR-10 trained with differ-
ent device variations at 29% sparsity and 8-bit quantization, tested at
0.1 variation. The optimal scale of training variation (o) of 0.15 has the
lowest roughness score and smoother loss landscape and hence, higher
model stability and post-mapping accuracy.
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ResNet-20 on CIFAR-10 at 29% sparsity and 8-bit
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Fig. 12. Post-mapping accuracy for ResNet-20 on CIFAR-10 at 29%
sparsity and 8-bit precision for three different RRAM variations under
test. The optimal scale of training variation (green circle) has the lowest
roughness score and highest post-mapping accuracy.

stability. Thus, the proposed method is also applicable to sit-
uations with unknown precise RRAM testing variation.

We repeat the same experiment for VGG-16 on
CIFAR-10 with ternary quantization and 83% sparsity as
shown in Fig. 13. Table 5 shows the detailed results for
VGG-16 on CIFAR-10 across the entire range of testing
variations. Conventional methods refer to using the
same scale of variation for both training and testing [9],
[10]. In contrast, in this work, we show that an optimal
scale for training variation results in higher model stabil-
ity and post-mapping accuracy. Furthermore, at a higher
range of testing variations, the proposed method pro-
vides greater improvement in post-mapping accuracy.
Hence, the systematic model stability-based VAT method
is effective in choosing the optimal VAT model at differ-
ent precision and sparsity for best accuracy across a
range of DNN models.

£ | vG6G-16 on CIFAR-10 at 82.3% sparsity and Ternary bit
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Fig. 13. Post-mapping accuracy for VGG-16 on CIFAR-10 at 82.3% spar-
sity and ternary precision for three different RRAM testing variations (o).
The optimal model (green circle) has the lowest roughness score result-
ing in higher accuracy.
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TABLE 5
Post-Mapping Accuracy and Improvement for VGG-16 on
CIFAR-10 (82.3% Sparsity and Ternary Precision) Conventional
Method: Same Training and Testing Variation

Testing | Optimal Training | Post-Mapping Accuracy (%) | Accuracy
Variation ‘ Variation (o) ‘ Conventional [9, 10] ‘ Optimal ‘ Improvement (%)
0.1 | 0.15 | 87.9 | 85 | 0.6
0.2 | 0.15 | 84.8 | 877 | 2.9
03 | 0.15 | 81.2 | 88 | 4.6
0.4 | 0.10 | 64.9 | 839 | 19.0
0.5 | 0.20 | 64.6 | 800 | 15.4
6.5.1 Overall Results With Proposed VAT

Table 6 shows the overall results across different models
and datasets. All post-mapping accuracy is compared to
that of conventional VAT, where the training and testing
variations are the same. ResNet-20 on CIFAR-10 at 29%
sparsity and 8-bit precision shows 11.5% improvement in
post-mapping accuracy with the proposed method at 0.3
testing variation. At the same time, VGG-16 at 88.3% and
82.3% sparsity and ternary bit quantization achieve 2.2%
and 19% improvement post-mapping accuracy for 0.2 and
0.4 testing variations (o), respectively. We evaluate ResNet-
32 on SVHN dataset at ternary quantization and two spar-
sity (48.4% and 71.5%) and achieve up to 11.2% improve-
ment in post-mapping accuracy. Finally, for ResNet-56 for
CIFAR-100, at 17.8% sparsity, 8-bit quantization, and testing
variation of 0.15, we achieve a 21.1% improvement in post-
mapping accuracy.

6.5.2 Comparison With Other Work

We compare the proposed model-stability-based VAT
method with the state-of-the-art method as proposed in [9].
Table 7 shows the post-mapping accuracy for VGG-16 on
CIFAR-10. The proposed method achieves a 5.1% higher
average improvement (as defined in [9]) in post-mapping
accuracy as compared to [9]. Furthermore, the proposed
method provides an improvement in the presence of struc-
tured sparsity, which reduces the model stability due to the
presence of more sensitive weights. Finally, the proposed
method does not require precise prior knowledge of the
testing variations (instead requires only the expected
range), hence providing a more generic solution for reliable
RRAM-based IMC acceleration

7 RELATED WORK

7.1 RRAM-Based IMC Architectures

IMC-based hardware architectures have emerged as a
promising alternative to conventional von-Neumann
architectures. The crossbar-based IMC structure effi-
ciently combines both memory access and analog-
domain computation into a single unit for the accelera-
tion of DNNs. RRAM-based IMC architectures provide a
promising alternative to conventional von-Neumann
architectures [3], [4], [5], [6], [7], [26], [30]. Authors of
ISAAC [5] proposed an RRAM-based IMC architecture
for DNN inference. The architecture utilizes a crossbar
of size 128x128 to perform the multiply-and-accumulate
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TABLE 6
Comprehensive Results Using the Proposed Model Stability-Based VAT Method Conventional Method: Same Training and
Testing Variation

Dataset ‘ Network (Size) | Quantization ' Sparsity (%) | Testing Variation

Optimal Training |
Variation (o)

Post-Mapping Accuracy (%) Accuracy

Improvement (%)

| Conventional [9, 10] | Optimal

\ \ \

\ \ \ \
| ResNet20 (027M) | &Bit | 200 | 030 \ 020 \ 357 | w72 | 115

CIFAR-10

| vecieasy | Temay | 823 | 040 \ 010 \ 649 | 839 | 19.0
\ \ | 883 | 020 \ 010 \ 847 | 869 | 22
SVHN | ResNet32 0.45M) | Temnary | %84 | 015 ‘ 020 ‘ 910 | 96 | 06
\ \ | s | 030 \ 015 \ 751 | 863 | 112
CIFAR-100 | ResNet-56 (0.85M) |  8Bit | 178 | 015 \ 010 \ 305 | 516 | 211

(MACQ) operations. A parallel read-out method is utilized
to accelerate the MAC computations in the analog
domain. In addition, a digital-to-analog converter (DAC)
and an ADC are employed to switch between digital and
analog domains. The array of RRAM-based IMC tiles is
interconnected by an NoC (c-mesh). In contrast, [3] uti-
lized spike-based computation to perform MAC opera-
tions in the time domain. Such an architecture does not
need DAC and ADC units. An atomic computation-
based RRAM IMC architecture for both training and
inference of DNNs is proposed in [31]. Authors in [30]
proposed a systolic array-based RRAM IMC design for
DNN inference. Authors in [4] proposed a methodology
to optimize the IMC utilization, area and energy by uti-
lizing a heterogeneous IMC structure and a custom NoC
router-to-tile mapping and scheduling. But, prior works
do not focus on the non-idealities associated with an
RRAM-based IMC. To address this, in this work, utiliz-
ing model stability as a metric, we propose a novel
model selection and VAT method to improve the post
mapping accuracy of RRAM-based IMC architecture. The
proposed methods incorporate the effect of architectural
and circuit properties into the accuracy estimation while
ensuring the best performance.

7.2 Pruning and Quantization

Pruning has been an effective method to reduce the DNN
model size. Pruning can be classified into element-wise
pruning, kernel-wise or channel-wise pruning for struc-
tured sparsity, and group-wise pruning using the under-
lying  hardware  execution flow. Element-wise
pruning [32], [33] prunes weights of DNN in a random
manner, while structured pruning techniques [34], [35]
produce a structured sparse DNN. Such sparsity is more
hardware-friendly to achieve better performance as com-
pared to random pruning. Other works have focused on
crossbar-aware pruning and FPGA-aware pruning by
incorporating the crossbar structure [36] and the

TABLE 7
Post-Mapping Accuracy of VGG-16 on CIFAR-10

Accuracy (%)

Method | Sparsity (%) | Quantization |
| | | Baseline | Post-Mapping (Average)
DFP+DVA [9] | - | 8Bt | gpgs | 80.1
Ours \ 83.2 |  Terary | \ 85.2

underlying FPGA execution flow [37]. Simultaneously,
quantization provides an efficient method to reduce the
bit precision of the weights and activations within the
DNN. A quantized DNN model results in improved
hardware performance while reducing the overall infer-
ence accuracy. Prior works have focused on weight and
activation quantization using uniform and non-uniform
methods [17], [18], [38].

In contrast, in this work, we utilize group-wise struc-
tured sparsity along the output channel dimension,
where the size of the group is determined by the number
of rows in the crossbar. Such a pruning requires no
additional hardware overhead or special mapping tech-
niques. Furthermore, we combine pruning with quantiza-
tion to generate a structured sparse low-precision DNN
model. We utilize both uniform (4-bits and higher) [18]
and ternary quantization [17]. Furthermore, we analyze
the effect of sparsity and quantization on the DNN
model by utilizing the model stability and the loss land-
scape visualization. Through our results, we show that
pruning reduces the model stability while quantization
improves the stability. Finally, we analyze the effect of
non-idealities associated with RRAM-based IMC archi-
tecture in the presence of lower precision and sparsity
for the DNN.

7.3 Mitigation of Post-Mapping Accuracy Loss
Several VAT methods have been proposed to mitigate
the post-mapping accuracy loss due to RRAM variations.
Closed-Loop-on-Device (CLD) and Open-Loop-off-Device
(OLD) perform iterative read-verify-write (R-V-W) opera-
tions at the RRAM device level until the resistance con-
verges to the desired value [39], [40]. Other approaches,
such as [41], involve VAT based on known device varia-
tion (o) characterized from devices, while [9] combines
VAT with dynamic precision quantization to mitigate the
post-mapping accuracy loss. These approaches partially
recover the accuracy but fail to consider the effect of
sparsity and quantization on the DNN model. Further-
more, these works do not provide a systematic metric
to provide a reliable DNN model. In addition,
these methods assume a known RRAM device variation
and utilize the same scale of variation in training and
testing. Hence, precise variations models need to be
extracted by mapping the weights onto the fabricated
RRAM device.
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To address these drawbacks, in this work, we propose
model stability as a metric for reliable RRAM-based in-
memory computing. Utilizing the roughness score and
loss landscape, as defined in Section 2, we show that a
lower roughness score leads to higher model stability and
higher accuracy. Second, we propose a model stability-
based model selection where the choice of the model is
driven by the inherent model stability in the presence of
the variations within the RRAM-based IMC architecture.
Finally, based on model stability, we provide a systematic
VAT method that searches for an optimal scale of variation
during training for the best accuracy. The proposed VAT
method is agnostic to the actual variations within the
RRAM device and provides a generic solution for reliable
RRAM-based IMC acceleration.

8 CONCLUSION

In this work, we explore the model stability of DNNs as a met-
ric for reliable RRAM-based in-memory acceleration. Utiliz-
ing the loss landscape and roughness score, we show that a
more stable model has a lower roughness score, a smoother
loss landscape, and higher accuracy under variations. To pro-
vide realistic evaluation, we measured statistical variations
from a 65nm 1T1R RRAM test chip and integrated them into a
cross-layer benchmark tool to access model accuracy and
other performance metrics under variations. Based on the
model stability of DNNs, we propose two methods to achieve
reliable RRAM-based in-memory acceleration. First, a novel
model stability-based model selection that effectively tolerates
RRAM device variations and achieves higher accuracy than
that with 50% lower RRAM variations for both CIFAR-10 and
CIFAR-100 datasets. Second, we propose a variation-aware
training (VAT) method to mitigate the post-mapping accuracy
loss in sparse and quantized DNNs. We conclude that quanti-
zation improves the stability under variations, leading to
higher accuracy, but pruning reduces the model stability. The
proposed VAT method searches for the most stable model to
mitigate the post-mapping accuracy loss without pre-knowl-
edge of testing RRAM variations and no re-training during
mapping. Experimental evaluation shows up to 19%, 21%,
and 11% improvement in post-mapping accuracy at different
sparsity, quantization, and device variations on CIFAR-10,
CIFAR-100, and SVHN datasets, respectively.
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