
TO APPEAR IN TC 1

Multi-node Acceleration for Large-scale GCNs
Gongjian Sun, Mingyu Yan, Duo Wang, Han Li, Wenming Li,

Xiaochun Ye, Dongrui Fan, Senior Member, IEEE and Yuan Xie, Fellow, IEEE

Abstract—Limited by the memory capacity and compute power, singe-node graph convolutional neural network (GCN) accelerators
cannot complete the execution of GCNs within a reasonable amount of time, due to the explosive size of graphs nowadays. Thus,
large-scale GCNs call for a multi-node acceleration system (MultiAccSys) like TPU-Pod for large-scale neural networks.
In this work, we aim to scale up single-node GCN accelerators to accelerate GCNs on large-scale graphs. We first identify the
communication pattern and challenges of multi-node acceleration for GCNs on large-scale graphs. We observe that (1) coarse-grained
communication patterns exist in the execution of GCNs in MultiAccSys, which introduces massive amount of redundant network
transmissions and off-chip memory accesses; (2) overall, the acceleration of GCNs in MultiAccSys is bandwidth-bound and
latency-tolerant. Guided by these two observations, we then propose MultiGCN, the first MultiAccSys for large-scale GCNs that trades
network latency for network bandwidth. Specifically, by leveraging the network latency tolerance, we first propose a topology-aware
multicast mechanism with a one put per multicast message-passing model to reduce transmissions and alleviate network
bandwidth requirements. Second, we introduce a scatter-based round execution mechanism which cooperates with the multicast
mechanism and reduces redundant off-chip memory accesses. Compared to the baseline MultiAccSys, MultiGCN achieves 4∼12×
speedup using only 28%∼68% energy, while reducing 32% transmissions and 73% off-chip memory accesses on average. It not only
achieves 2.5∼8× speedup over the state-of-the-art multi-GPU solution, but also scales to large-scale graphs as opposed to
single-node GCN accelerators.

Index Terms—Graph neural network, hardware accelerator, multi-node system, processor cluster, communication optimization.

F

1 INTRODUCTION

G RAPH Convolutional Neural Networks (GCNs) have
emerged as a premier paradigm to address the graph learn-

ing problem via generalizing the information encoding to graph
topologies that can represent extremely complicated relation-
ships [1], [2], [3], [4], [5]. In reality, GCNs have been widely
applied in many critical fields such as knowledge inference [6],
recommendation system [7], visual reasoning [8], traffic prediction
[9], Electronic design automation (EDA) [10], and GCN work-
loads can be found at many data centers [1], [9].

GCNs typically exhibit a hybrid execution pattern introduced
by two distinct execution phases, which hinder the acceleration of
GCNs in GPUs [11], [12]. The Aggregation phase traverses
all vertices and aggregates the feature vectors of neighboring
vertices into the current vertex, displaying an irregular execution
pattern like graph processing (GP). The Combination phase
further transforms the feature vector of each vertex into a new
one using a multi-layer perceptron (MLP), exhibiting a regular
execution pattern like neural network (NN). Such interleaving
execution patterns hinder the acceleration of GCNs in GPUs which
are inherently optimized for compute-intensive workloads with
regular execution pattern [13].

To tackle this hybrid execution pattern, previous efforts [11],
[14], [15], [16], [17] propose a series of single-node GCN accel-
erators. Although these accelerators have achieved great improve-
ment on both performance and energy efficiency compared with

• G. Sun, M. Yan, D. Wang, H. Li, W. Li, X. Ye, D. Fan are with the Institute
of Computing Technology, Chinese Academy of Sciences, Beijing, China
(Email: {sungongjian19s, yanmingyu, wangduo18z, lihan-ams, liwenming,
yexiaochun, fandr}@ict.ac.cn). G. Sun, M. Yan, D. Wang, H. Li, W. Li, D.
Fan are also with University of Chinese Academy of Sciences, Beijing,
China. Y. Xie is with University of California, Santa Barbara, California,
USA (Email: yuanxie@ece.ucsb.edu). Corresponding author is Mingyu Yan
(yanmingyu@ict.ac.cn).

GPUs, they suffer from two following inefficiencies in the process-
ing of large-scale GCNs. First, with limited hardware resources
from computation and buffering, a single-node accelerator cannot
complete the execution of large-scale GCNs within a reasonable
amount of time, not to mention that the sizes of real-world graphs
keep growing rapidly [1], [18]. Second, massive time and energy
have to be taken to move data between memory and hard disks [1],
because single-node accelerators do not have enough memory to
accommodate the entire large-scale graph. Thus, a multi-node
acceleration system (MultiAccSys) is highly desirable for large-
scale GCNs.

Previous efforts have proposed a series of MultiAccSyses
for NNs and GPs, achieving great improvements on both per-
formance and energy efficiency. However, they fail to tackle
the unique execution pattern in the multi-node acceleration of
GCNs. MultiAccSyses for NNs, e.g., TPU-Pod [19], tailor their
hardware datapaths to the regular execution pattern such as coarse-
grained regular communication pattern inter-node, to leverage the
regularity for high performance of large-scale NN acceleration.
Similarly, MultiAccSyses for GPs, e.g., Tesseract [20], tailor their
hardware datapaths to the irregular execution pattern of GPs
such as fine-grained irregular communication pattern inter node,
to alleviate the irregularity for high performance of large-scale
GP acceleration. Unfortunately, the multi-node acceleration for
GCNs exhibits distinct execution patterns, i.e., the coarse-grained
irregular communication inter node and hybrid execution pattern
intra node. Such execution patterns make MultiAccSyses ill-suited
for GCNs, since they are only designed to either exploit regular
execution pattern or alleviate irregular execution pattern.

In this paper, we aim to scale the single-node accelerator
to accelerate GCNs on large-scale graphs like TPU-Pod [19],
since the performance and energy efficiency of single-node GCN
accelerators are significantly higher than that of high-end GPUs.

ar
X

iv
:2

20
7.

07
25

8v
2 

 [
cs

.A
R

] 
 2

 S
ep

 2
02

2



TO APPEAR IN TC 2

(a)

One Put Per Edge

Redundant
Transmissions
Starting from 

Node 0

0 11 51

Processing 
Node

One Put Per Replica (     )

Edge...Put...

(b)

0

3

One Put Per Multicast
Longer Latency But 

Less Redundant Transmissions

(d)

5

6

7

(e)

Round Execution

(c)

20
30
70

150
60
50
30

129

0 2
0 35
0 39
0 15
0 54
0 5
0 51
41 44

All Replicas of Each Round 
in On-chip Memory

14 54 39

On-chip 
Memory

Off-chip 
Memory

0 11 14 51 39

On-chip 
Memory

54

On-chip 
Memory

ii

NiNi Vertex i
Redundant Off-chip 
Accesses to Replica Edge

0

54

40

5

41

39

15 47

51

2

11

14

35

44
15 47

15 47

iNetwork

Round 0 Round 1Round 0 Round 1

Feature
Vector

16

N0 N1 N2 N3

N4 N5 N6 N7

N8 N9 N10 N11

N12 N13 N14 N15

N0 N1 N2 N3

N4 N5 N6 N7

N8 N9 N10 N11

N12 N13 N14 N15

Inter NodeInter Vertex

1

2

15
0 540 54

0 150 15

0 20 2

0 35,510 35,51

0 390 39
i Node

…
0 50 5

v uv u Edge

Fig. 1. Comparison between MultiGCN and previous efforts on Multi-
AccSys for graph processing: (a) Examples of graph and MultiAccSys
for GCNs; (b) Disadvantage of MultiAccSys with one put per edge
message-passing model; (c) Disadvantage of MultiAccSys with one
put per replica message-passing model; (d) and (e) Advantage of
MultiGCN based on one put per multicast message-passing model
and scatter-based round execution.

To identify the unique execution pattern and the challenges of the
multi-node acceleration for GCNs, we characterize the execution
of large-scale GCNs in a straightforward design of MultiAcc-
Sys for GCNs as shown in Figure 1(a). To ensure an effective
characterization, we borrow a well-designed single-node GCN
accelerator [11] to design the processing node and a representative
message-passing model to alleviate the irregular communication
pattern inter node, i.e., one put per edge (OPPE) [20]. We
observe irregular coarse-grained communication patterns in the
execution of GCNs in MultiAccSys, which introduce massive
amount of redundant network transmissions and off-chip memory
accesses. This communication pattern is the direct result of the
following facts: (1) each transmission between nodes contains a
long feature vector of neighbor vertex and (2) it is unpredictable
when and to where it needs to be sent due to the irregular
connection pattern of neighbors. As a result, the OPPE message-
passing model invokes many redundant coarse-grained transmis-
sions because the long feature vector of each vertex must be
repeatedly sent to all of its neighboring vertices. However, many
of them may be sent to or pass through the same processing node.
For example, in Figure 1(b), the feature vector of vertex V0 in
the processing node N0 is sent to neighboring vertices V2, V35,
V51, V39... in processing nodes N2, N3, N3, N7..., respectively. To
reduce these redundant transmissions, a one put per replica
(OPPR) message-passing model is proposed [21], which only puts
one replica of the feature vector to each processing node and
shares it with all neighboring vertices in that processing node.
However, it is difficult to store thousands of replicas on-chip,
which inevitably leads to massive amount of off-chip memory
accesses. For example, Figure 1(c) shows that vertices V15 and
V47 in the processing node N15 require accesses to the replicas

of V14, V54, and V39, which were stored off-chip after receiving
because on-chip memory had been exhausted.

In light of the above challenges, we propose MultiGCN, the
first MultiAccSys for GCNs, to accelerate the inference phase
of large-scale GCNs by trading network latency for network
bandwidth. First, a topology-aware multicast mechanism with a
one put per multicast message-passing model is proposed
to alleviate network bandwidth requirements. As shown in Fig-
ure 1(d), by leveraging the latency tolerance we identified as well
as the known network and graph topologies, V0’s feature vector
is multicast in the transmission to reduce redundant transmissions.
Second, a scatter-based round execution mechanism is proposed
to cooperate with the multicast mechanism, which inherently
matches the behaviour of multicast. Specifically, each processing
node scatters the replicas of vertices’ feature vectors to remote
processing nodes which perform aggregation for their neighboring
vertices. Besides, to reduce redundant off-chip memory accesses,
the graph is partitioned into a certain number of sub-graphs, one
for each execution round, as shown in Figure 1(e). Thus, all
replicas of round 0 (i.e., V0, V11, V14, and V54) and round 1 (i.e.,
V51 and V39) from remote processing nodes can be stored on-chip
until the corresponding round completes. Intra- and inter-round
overlap are utilized for higher performance.

The key contributions of this paper are as follows:

• We identify the communication pattern and challenges of multi-
node acceleration for large-scale GCNs and observe that: (1)
There are irregular coarse-grained communication patterns that
invoke massive redundant transmissions and off-chip memory
accesses; (2) Execution of GCNs in MultiAccSys is mainly
bandwidth-bound and latency-tolerant.

• Accordingly, we propose the first multi-node acceleration sys-
tem for GCNs which scales single-node GCN accelerators to
accelerate GCNs on large-scale graphs by trading network
latency for network bandwidth.

• We propose a topology-aware multicast mechanism to reduce
redundant transmissions and alleviate network bandwidth re-
quirements, along with a scatter-based round execution mech-
anism that cooperates with the multicast mechanism to reduce
off-chip memory accesses.

• We implement MultiGCN in both RTL and cycle-accurate
simulator to demonstrate its advantages. Compared with OPPE-
based MultiAccSys, MultiGCN achieves 4∼12× speedup, and
reduces 32% network transmissions as well as 73% off-chip
memory accesses on average. Besides, MultiGCN achieves
2.5∼8× speedup over the multi-GPU solution and can scale to
large-scale graph as opposed to single-node GCN accelerators.

• We explore the design of MultiGCN in detail and provide
insights into the relationships between hardware parameters,
graph characteristics, and architecture techniques.

TABLE 1
Notations used in this paper.

Notation Explanation
G = (V,E) directed graph G

V (|V |) (size of) vertex set of graph G
E(|E|) (size of) edge set of graph G

(i, j) or ei, j edge from vertex i to vertex j
dv in-degree of vertex v
Nv incoming neighbor set of vertex v

hk
v(|hk

v|) (length of) feature vector of vertex v at k-th layer
ak

v aggregated result of vertex v at k-th layer



TO APPEAR IN TC 3

1
7

3
6

2

3

Aggregation Combination

1

6

2

7

Shared
Parameters

1

7

1

7

 Graph

4
5

Image

(a) (b)

Euclidean
Data

Non-Euclidean
Data

Regular 
Structure

Irregular 
Structure

Input

Feature
Vector

Fig. 2. Illustration examples of (a) graph and (b) GCNs execution.

2 BACKGROUND

GCNs. As shown in Figure 2, typical GCNs take non-euclidean
data as input, i.e., graphs which have irregular structure and differ
from the grid-structured images as shown in Figure 2(a). GCNs
typically consist of several graph convolutional layers, each with
two main phases: Aggregation and Combination, which
can be formulated as:

ak
v = Aggregate

u∈{v}∪Nv

(
hk−1

u

)
,hk

v =Combine
(

ak
v

)
,

where v ∈ V . For clarity, by “node” we refer to the processsing
nodes in MultiAccSys, and by “vertex” we refer to the elements
of the graph vertex set.

In the k-th layer, for each vertex v, the feature vectors hk−1
u of

neighboring vertices in Nv are aggregated into ak
v , as shown in

Figure 2(b). Since Aggregation phase heavily relies on the graph
structure that can be arbitrary and sparse, it suffers from irregular
data communication patterns. The combine function further
transforms ak

v to generate hk
v using an MLP in the Combination

phase. All vertices perform combine function using a shared
MLP, which results in intensive computation and high data locality
in the Combination phase. The feature vector hk

v can be very long,
and often up to thousands in the initial feature vectors h0

v of all
vertices.

Network and Message-passing Model. Multi-node acceler-
ation becomes an inevitable trend due to the ever-increasing de-
mand on computation and storage capability in emerging domains
such as deep learning [22]. High-speed network interfaces and
well-designed network topologies are the basics of effective multi-
node acceleration. Network interfaces include NVLink for GPU
interconnection, PCIe for CPU and GPU interconnection, and so
on. Network latency is a metric used to evaluate how much time is
consumed by the network interface to send a minimal packet from
the source to the destination. Network topology includes star, bus,
mesh, torus, and so on. For example, a NVIDIA HGX houses
16 H100 GPUs networked together using NVLink and NVSwitch
in star topology 1, with a peak communication bandwidth of up
to 900GB/s. The message-passing model determines the transfer
mode of MultiAccSys, such as the OPPE and OPPR models used
in the MultiAccSys of GPs. For each vertex, the OPPE model
sends one replica of the feature vector to each neighboring vertex,
while the OPPR model only sends one replica of the feature vector
to each processing node and shares it with all neighboring vertices
in that processing node.

3 MOTIVATION

Inefficiencies of Single-node GCN Accelerators. Previous ef-
forts propose several single-node accelerators for GCN acceler-
ation, achieving significant improvements in both performance

1. https://www.nvidia.cn/data-center/hgx/

and efficiency compared with GPUs. However, the ever-growing
scale of graphs hinders efficient execution of GCNs on single-node
accelerators. For example, to tackle the hybrid execution pattern,
HyGCN [11] proposes a hybrid architecture for GCNs, which
includes two engines respectively tailored to Aggregation and
Combination phases. HyGCN achieves an average 6.5× speedup
with 10× energy reduction over high-end GPUs. However, with
limited off-chip memory bandwidth, on-chip buffer, and compute
resources, a single-node accelerator cannot process large-scale
GCNs within a reasonable amount of time, while the scale of
real-world graphs contines to grow rapidly [1], [18]. In addition,
large-scale graphs demand massive memory, which is hard to
satisfy within a single-node accelerator [1], resulting in costly
data transfers between the memory and the hard disk. Thus, a
MultiAccSys for GCNs is highly desirable.

Inefficiencies of NN and GP MultiAccSyses. Previous efforts
propose a series of MultiAccSyses for large-scale NNs and GPs.
However, they fail to tackle the unique execution pattern of the
multi-node acceleration for GCNs. For example, the designers of
TPU-Pod [19] elaborately customize an MultiAccSys for NNs
using an NVLink-like inter-node network interface to connect
TPU chips. Although TPU-Pod delivers near-linear speedup for
large-scale NNs, they are ill-suited for GCNs due to the irregu-
lar coarse-grained communication pattern and hybrid execution
patterns. Another example is Tesseract [20], whose designers
elaborately customize an MultiAccSys for GPs using a well-
designed message passing model (i.e., OPPE) to alleviate the
fine-grained irregular communication pattern. Although Tesseract
achieves significant speedup for large-scale GPs, it invokes mas-
sive amounts of redundant coarse-grained transmissions caused by
the irregular coarse-grained communication pattern. Although the
redundant transmissions can be reduced by introducing the OPPR
message-passing model [21], the replicas of feature vectors can be
prohibitively large to be stored entirely on-chip, which inevitably
leads to many off-chip memory accesses.

Characterization on A Straightforward Design. To identify
the communication pattern and challenge of the multi-node accel-
eration for GCNs, a detailed characterization is conducted on an
OPPE-based MultiAccSys and results are shown in Figure 3. Here,
we briefly introduce the experimental setup. Please see Section 5
for our detailed evaluation methodology. We use a OPPE-based
MultiAccSys consisting of 16 processing nodes, connecting in
a manner of 4× 4-sized 2D torus bidirectional network. Each
processing node is a variant of the single-node GCN acceler-
ator of previous work [11], having exactly the same hardware
resources and one disjoint part of the graph data. The message-
passing model used in this MultiAccSys is inspired by the OPPE
model, which aims to tackle the irregular communication pattern
caused by the irregular graph topology. An in-house cycle-accurate
simulator is designed and implemented to measure execution
time. We additionally implement the core modules in Verilog and
synthesized using Synopsys compilers to check clock frequency
requirement and estimate performance metrics.

We observe that the irregular coarse-grained communication
patterns exist in the execution of GCNs in MultiAccSys, which
introduce massive amounts of redundant network transmissions
and off-chip memory accesses. The irregular coarse-grained com-
munication pattern is caused by two reasons: (1) each transmission
between node contains a long feature vector of neighbor vertex,
with up to hundreds of elements, determined by the size of the
input dataset or the number of the MLP’s output neurons, and (2)



TO APPEAR IN TC 4

0
1
2
3
4
5
6

100 2000 6000 10000 50000N
or

m
. E

xe
cu

tio
n 

Ti
m

e RD OR LJ

Network Latency (ns)
(f)

0
5

10
15
20
25
30

40 80 200 400 600

Sp
ee

du
p

128 GB/s
256 GB/s
512 GB/s
1024 GB/s

Network Bandwidth (GB/s)
(e) LJ Dataset

0

1

2

3

4

1536 512 128 32N
or

m
. E

xe
cu

tio
n 

Ti
m

e

RD OR LJ

Routing Buffer Capacity (KB)
(h)

0
0.2
0.4
0.6
0.8

1
1.2

256 1024 4096 16384N
or

m
. E

xe
cu

tio
n 

Ti
m

e

RD OR LJ

Peak Performance (GOPS)
(g)

0
20
40
60
80

100
120

40 80 200 400 600

Re
du

nd
an

t 
Tr

an
sm

iss
io

n 
(%

) RD OR LJ

Network Bandwidth (GB/s)
(a)

0
20
40
60
80

100
120

40 80 200 400 600

Re
du

nd
an

t
DR

AM
Ac

ce
ss

 (%
) RD OR LJ

Network Bandwidth (GB/s)
(b)

0
5

10
15
20
25

40 80 200 400 600

Sp
ee

du
p

128 GB/s
256 GB/s
512 GB/s
1024 GB/s

Network Bandwidth (GB/s)
(c) RD Dataset

0
5

10
15
20
25
30

40 80 200 400 600

Sp
ee

du
p

128 GB/s
256 GB/s
512 GB/s
1024 GB/s

Network Bandwidth (GB/s)
(d) OR Dataset

Fig. 3. Results of characterization on OPPE-Based MultiAccSys with 16 processing nodes: (a) Ratio of redundant transmissions to total
transmissions across different network bandwidths; (b) Ratio of redundant DRAM accesses to total DRAM accesses across different network
bandwidths; Speedup of GCN across different network bandwidths (X-axis) and DRAM bandwidths (4 Lines) on (c) RD, (d) OR, and (e) LJ datasets;
Normalized execution time across (f) different network latencies, (g) different peak performances, and (h) different routing buffer capacities.

it is unpredictable when and to where a long feature vector needs
to be sent due to the irregular connection pattern of neighbors in
graph. As depicted in Figure 3(a) and (b), we observe a vast range
of redundant transmissions and DRAM accesses, ranging from
78% to 96% and 25% to 99.9%, respectively. This is because the
long feature vectors of each vertex must be repeatedly sent to all of
its neighboring vertices, many of which may be sent to or through
the same processing nodes. In addition, received feature vectors
need to be saved to DRAM upon receipt and loaded from DRAM
while in use due to the large number of long feature vectors and
limited on-chip cache capacity. These redundancies waste network
bandwidth and DRAM bandwidth, which significantly hinders the
performance and efficiency on MultiAccSys for GCNs.

We also observe that the acceleration of GCNs in MultiAccSys
is bandwidth-bound and latency-tolerant. Figure 3(c), (d), and (e)
show that the speedup across different datasets grows almost lin-
early as network bandwidth increases when DRAM bandwidth is
sufficient (i.e., greater than 256 GB/s). This is because neighboring
feature vectors with hundreds of elements for each vertex need to
be sent and aggregated in a target processing node, following the
irregular neighbor connections in Aggregation phase, which con-
sumes much network bandwidth for better performance. However,
Figure 3(f) shows that the normalized execution time is nearly
constant under different network latencies until around 20,000 ns.
This value mainly relies on the processing time which is positively
correlated with the length of the feature vector and negatively
correlated with the DRAM bandwidth of the processing node. This
is because the received feature vectors is frequently stored to or
load from DRAM as aforementioned. Figure 3(g) shows that the
normalized execution time is nearly constant under different peak
performances with more than 1024 giga operations per second
(GOPS). This is because the low utilization of network bandwidth
and DRAM bandwidth become the performance bottleneck. Fig-
ure 3(h) shows that the normalized execution time is also nearly
constant under different routing buffer capacities above 64 KB.
Since the routing buffer is used to buffer the routing packets before
they are sent, its capacity relies on the utilized network bandwidth
and network latency.

4 MULTIGCN ARCHITECTURE

Guided by the above observations, we propose MultiGCN, an
efficient MultiAccSys for large-scale GCNs that trades network
latency for network bandwidth.

4.1 Architecture Overview
Figure 4 provides an illustration of the proposed architecture.
Noting that MultiGCN does not rely on a particular network topol-
ogy, we choose a 2D torus topology consisting of 16 processing
nodes as our baseline, which is shown in Figure 4(a). For network
links we use the NVLINK protocol, which is one of the most
widely used high-speed interconnection protocols and usually used
between NVIDIA GPUs. A processing node, shown in Figure 4(b),
is composed of a compute unit, a router, a receive unit, a send
unit, an edge buffer, a scheduler, a loader, an aggregation buffer, a
weight buffer, a combination buffer, and DRAM.

The compute unit consists of eight reusable 1×128 systolic
arrays. Each processing element (PE) has four registers with two
for input, one for output, and one for internal use respectively,
and an ALU capable of multiplication and reduction (like MIN,
MAX, ADD). The eight systolic arrays work separately, either in
combination mode, like a traditional systolic array, or in aggrega-
tion mode. In aggregation mode, all PEs follow an identical three-
stage pipeline: read two operands from the input registers, perform
reduction, and write the result to the output register. Moreover, a
real-time scheduling of compute resources between aggregation
and combination is implemented in MultiGCN, since all eight
reusable systolic arrays can process workloads of both types. Note
that although a unified compute unit is used in this work, designs
in other single-node accelerators can also be integrated for better
efficiency or compatibility.

The router, receive unit, and send unit are used to transfer
vertices’ feature vectors and neighboring lists. The edge buffer
and scheduler are used to efficiently organize computation. Each
entry in the edge buffer contains the address of a vertex’s feature
vector in aggregation buffer and its neighbor list. The feature
vector is read via address and aggregated into the intermediate
result of vertices in the neighbor list. The aggregation process is
recorded aside the intermediate result in the aggregation buffer.



TO APPEAR IN TC 5

0

54

40

5

41

39

15 47

51

2

11

14

35

44

16

N0 N1 N2 N3

N4 N5 N6 N7

N8 N9 N10 N11

N12 N13 N14 N15

N0 N1 N2 N3

N4 N5 N6 N7

N8 N9 N10 N11

N12 N13 N14 N15

0

54

40

5

41

39

15 47

51

2

11

14

35

44

16

N0 N1 N2 N3

N4 N5 N6 N7

N8 N9 N10 N11

N12 N13 N14 N15 DRAM

Compute
Unit

Receive
Unit

Send
Unit

Aggregation 
Buffer

(a) (b)

Scheduler

Router

Edge Buffer

Loader
Weight 
Buffer

Combination 
Buffer

Fig. 4. Architecture of MultiGCN: (a) 2D torus network with 16 processing nodes; (b) Design of processing node.

The weight buffer and combination buffer save the weight matrix
and intermediate result for the combination process. The loader
loads the meta-data of execution, ID and degree of vertices, feature
vectors and edge lists, which the send unit and scheduler ingest to
complete execution.

Topology-aware Multicast (Section 4.2). To reduce the
requirement of network bandwidth, a topology-aware multicast
mechanism with a one put per multicast message-passing
model is proposed. Multicast is based on the simple idea that for a
vertex v, many processing nodes where v’s neighbors lie in can be
satisfied by receiving the same packet containing a replica of v’s
feature vector. To efficiently tailor multicast to the communication
pattern of GCNs, we design our multicast to be network topology-
aware and graph topology-aware. The network topology awareness
helps route and split packets guided by routers’ status and an
explicit list of destination node IDs in the packet. Thus, the packet
can be quickly and exactly multicast to all destination nodes. The
graph topology awareness is enabled by the offset list and neighbor
lists in the packet which are used to share exactly one replica
to all neighbors in the same processing node. Although these
capabilities introduce extra latency during transmission because
of the above additional info in the packets, they help eliminate
redundant transmissions and significantly reduce the need for
network bandwidth.

Scatter-based Round Execution (Section 4.3). Although
the topology-aware multicast mechanism helps reduce the re-
quirements of network bandwidth, its overhead is high for three
reasons. First, a request-response loop, required by each replica’s
transmission, significantly increases the design complexity of
MultiAccSys for the multicast mechanism. Second, the large offset
list and neighbor lists are coupled into a single packet, resulting
in an unacceptable routing latency in multicast. Third, on-chip
memory is unable to buffer all thousands of replicas of long feature
vectors, which leads to frequent replacements of replicas between
on-chip memory and off-chip memory. To this end, a scatter-
based round execution mechanism is proposed, which inherently
matches the behaviour of multicast. Specifically, each processing
node scatters the replicas of vertices’ feature vectors to remote
processing nodes who perform the aggregate function for these
vertices’ neighboring vertices, so that the request-response loop is
eliminated. Besides, the graph is partitioned into multiple sub-
graphs, one for each execution round. Thus, the large neighbor
lists are partitioned and transmitted over several rounds, avoiding
the unacceptable routing latency. Moreover, only a small number

of replicas in each round are stored on-chip until the corresponding
round completes, reducing redundant off-chip memory accesses.

4.2 Topology-aware Multicast Mechanism
To enable efficient multicast, we propose a one put per
multicast message-passing model based on the DyXY routing
algorithm [23] to implement the multicast mechanism for a given
network topology and graph topology.

One Put per Multicast. Our one put per multicast model
is inspired by multicast on Ethernet. In Ethernet, multicast is a
group communication where data transmission is addressed to
a group of destination computers simultaneously. In MultiGCN,
put refers to putting the replica of a vertex’s feature vector to
its neighboring vertices, while multicast means the packet
generated by put is scattered to all its destinations in Ethernet
multicast-like fashion.

The basic routing algorithm we use is DyXY [23], which
provides adaptive routing based on congestion status nearby.
The algorithm is adaptive in that it makes routing decisions by
monitoring the congestion status nearby. It is also deadlock-free
and livelock-free since the path of a packet in the network to one
of the shortest paths between the source and the destination is
limited. If multiple shortest paths are available, the routers will
help the packet to choose one of them based on the congestion
condition of the network. A stress value, i.e., the occupation ratio
of the routing buffer, is used to represent the congestion condition
of a router in this work. Each router stores instant stress values
for all neighbors, which are updated periodically. The detailed
routing algorithm is shown in Algorithm 1 and a routing example
for the replica of V0’s feature vector is depicted in Figure 5(a).
See Section 4.3 for details of graph mapping.

To couple the multicast mechanism with the DyXY routing
algorithm, step 1 in Algorithm 1 is modified to split packets
as shown in Algorithm 2. Figure 5(b) shows the packet format
used in Algorithm 2, which consists of four parts including the
position of the next destination node (x, y), network topology
(neighbor-ID (nID) list and its size), graph topology (offset list,
neighbor lists), and the replica of feature vector. In the line 2
of Algorithm 2, all nIDs in the nID list are transformed into the
new coordinate [x,y] by taking the current node (Tx, Ty) as the
Origin of coordinates and donated as a set D = {[x,y]}, when a
packet arrives at the destination node (Tx, Ty). Figure 5(c) gives
an example for the transformation of nID, new node position [x,y],
and fixed node position (x,y). In this example, N1 (1, 0) is taken



TO APPEAR IN TC 6

On the Path to 
Destination

Packet
Split

(x,y)
Packet

Destination

Reach 
DestinationGraph Topology Network Topology 

nID List 
& List Size

Offset 
List

Neighbor
 Lists Feature 

Vector

x y

(a)

(d)

Routing 
Path

(b)

N2 N3

N5 N6 N7

N1(1,0)

(3,0) (3,1)

(2,1)

(2,1)

(3,0)

(3,1)

(3,1)

(x,y) (x,y)[x,y] (x,y)
Node Position 

in the Origin of N1

Fixed 
Node Position 

Shared by 
V35 and V51N12 N13 N14

N0 N2

N4 N5 N6

x

y

[0,0]

(1,0)

[-1,1]

(0,3)

[-1,0]

(0,0)

[-1,-1]

(0,1)

[0,-1]

(1,1)

[1,-1]

(2,1)

[1,0]

(2,0)

[1,1]

(2,3)

[0,1]

(1,3)

(c)

N2

N5 N6

N1

1

54
Smallest 

Stress Value

3

00

00
2

(2,1)

(2,1) (2,1)

On The Path 
to Destination

Reach 
Destination

Routing 
Path

(x,y)

(x,y)

(x,y)

Packet
Destination

P8

N1

P7

P6

P5

P4 P3

P2

P1

For V54 For V39

Fig. 5. Illustration of topology-aware multicast based on DyXY routing algorithm: (a) Example of DyXY routing algorithm; (b) Packet format for
topology-aware multicast; (c) Packet split of topology-aware multicast in the step 1 of DyXY; (d) One possible multicast of V0’s feature vector from
N1 (Origin) to V35 and V51 in N3, V39 in N7, and V54 in N6.

Algorithm 1: DyXY Routing Algorithm
1 foreach packet p to (x,y) in routing buffer do
2 1 if (x == Tx) && (y == Ty) then
3 receive p in current node (Tx, Ty);
4 end
5 2 else if (x == Tx) ‖ (y == Ty) then
6 send p to neighbor on Y-axis or X-axis;
7 end
8 3 else
9 send p to neighbor with smallest stress value;

10 end
11 end

as the Origin [0,0], and the [x,y] of its neighboring nodes are
shown. In line 3 to 12 , based on the new coordinates, the packet
is partitioned into nine parts. Each part has a part of the nID list
and neighbor lists, a new offset list, and a complete replica. In
line 14 to 41 , these nine parts are received by the current node
or sent to the next destination node. Figure 5(d) gives a multicast
example based on Algorithm 2 where the replica of V0’s feature
vector is multicast from N1 to V35 and V51 in N3, V39 in N7,
and V54 in N6. Specifically, the packet arrives at N1 (1,0) and is
then split into two parts. One is P3 and consists of one destination
including [1, -1] (i.e., N6 (2, 1)). The other one is P2 and consists
of two destination nodes including [2, 0] (i.e., N3 (3, 0)) and [2,
-1] (i.e., N7 (3, 1)). Then, the former is sent to N6 via N5. The
latter is sent to N3 via N2 and is further multicast until the nID list
in packet is empty. The packet received by N3 is further shared by
the aggregation of V35 and V51 according to the neighbor list in
the packet. As a result, redundant transmissions are eliminated.

In this process, we have followed the spirit of trading latency
for network bandwidth: although the additional info in the pack-
ets induce extra transfer latencies, the topology-aware multicast
mechanism alleviates the requirement of network bandwidth.
However, this also introduces three inefficiencies: high design
complexity, low utilization of compute resource, and redundant
off-chip memory accesses. First, a request-response loop, required
by each transmission of the replica, will significantly increase the
design complexity. Second, the large neighbor lists in the packet
cause intensive transmission and unacceptable routing latency,
and most of the compute resources become underutilized. Third,

Response

0

54
39

51

35

N0 N1 N2 N3

N4 N5 N6 N7

Request (a)

N3

N3 N6

N3 N6 N7

nID List of V0 

N3

350

510

540

390

Active Send 

0

54
39

51

35

N0 N1 N2 N3

N4 N5 N6 N7

(b)

N3 N6 N7

nID List of V0 

Prepare nID List in 
Round Partition

Build nID List for 
Multicast

Fig. 6. The execution of aggregate function: (a) Gather-based method;
(b) Scatter-based method.

limited by the capacity of on-chip memory in each processing
node, the large volume of received replicas need to be frequently
moved between on-chip memory and off-chip memory. This is
because thousands of replicas are received and shared by many
vertices’ aggregation in each processing node, but it takes a long
time to process the long feature vectors, which means most of
these replicas need to be first stored in off-chip memory and then
reloaded when needed.

4.3 Scatter-based Round Execution Mechanism

To address the above inefficiencies, we propose a scatter-based
round execution mechanism that well suits the topology-aware
multicast mechanism. The key idea of the scatter-based round
execution mechanism is simple but effective: we first partition the
graph into a set of sub-graphs and then process one sub-graph per
round. In each round, all replicas are kept on-chip until no longer
needed. To improve resource utilization, we also implement intra-
and inter-round overlaps.

Scatter or Gather. There are two ways to execute the
aggregate function: gather-based and scatter-based methods.
As shown in Figure 6(a), in the gather-based method, each pro-
cessing node (e.g., N3, N6, and N7) first requests feature vectors



TO APPEAR IN TC 7

Algorithm 2: Packet Split of Multicast
1 1 if (x == Tx) && (y == Ty) then
2 transform nID list into D = {[x,y]} by taking node (Tx,

Ty) as the Origin of coordinates;
3 split packet p into the following nine parts:
4 P0 = {[0, 0]} ∩ D ;
5 P1 = {[x, y] | y > 0, y ≤ x} ∩ D ;
6 P2 = {[x, y] | y ≤ 0, y > -x} ∩ D ;
7 P3 = {[x, y] | x > 0, y ≤ -x} ∩ D ;
8 P4 = {[x, y] | x ≤ 0, y < x} ∩ D ;
9 P5 = {[x, y] | y < 0, y ≥ x} ∩ D ;

10 P6 = {[x, y] | y ≥ 0, y < -x} ∩ D ;
11 P7 = {[x, y] | y ≥ -x, x < 0} ∩ D ;
12 P8 = {[x, y] | x ≥ 0, y > x} ∩ D ;
13 receive and share P0 in current node (Tx, Ty);
14 if (P1 6= ∅) && (P2 6= ∅) then
15 send P1 ∪ P2 to [MIN(P1.x ∪ P2.x), 0];
16 end
17 else
18 send P1 to [MIN(P1.x), MIN(P1.y)];
19 send P2 to [MIN(P2.x), MAX(P2.y)];
20 end
21 if (P3 6= ∅) && (P4 6= ∅) then
22 send P3 ∪ P4 to [0, MAX(P3.y ∪ P4.y)];
23 end
24 else
25 send P3 to [MIN(P3.x), MAX(P3.y)];
26 send P4 to [MAX(P4.x), MAX(P4.y)];
27 end
28 if (P5 6= ∅) && (P6 6= ∅) then
29 send P5 ∪ P6 to [MAX(P5.x ∪ P6.x), 0];
30 end
31 else
32 send P5 to [MAX(P5.x), MAX(P5.y)];
33 send P6 to [MAX(P6.x), MIN(P6.y)];
34 end
35 if (P7 6= ∅) && (P8 6= ∅) then
36 send P7 ∪ P8 to [0, MIN(P7.y ∪ P8.y)];
37 end
38 else
39 send P7 to [MAX(P7.x), MIN(P7.y)];
40 send P8 to [MIN(P8.x), MIN(P8.y)];
41 end
42 end

of neighboring vertices (e.g., V0) for each vertex (e.g., V35, V51,
V54, and V39) from the remote processing node (e.g., N0) and then
waits for the responded feature vectors. Afterwards, the replicas
of feature vectors are aggregated in the processing node of the
requester (e.g., N3, N6, and N7). As a result, a request-response
loop for each transmission of the replica is introduced. Besides,
to support multicast, the remote processing node needs to collect
requests for each vertex’s feature vector to build an nID list and
then performs multicast based on this nID list.

As shown in Figure 6(b), in the scatter-based method, each
processing node has an nID list derived from round partition
(described in the next paragraph). Each processing node (e.g.,
N0) actively sends the feature vector of each vertex (e.g., V0)
to the remote processing nodes (e.g., N3, N6, and N7) where
the out-going neighboring vertices (e.g., V35, V51, V54, and V39)
reside. Then, the feature vectors are aggregated in the remote
processing nodes. As a result, message passing only happens
in a single direction. From the above analysis, it can be seen
that the scatter-based method inherently matches the behavior
of topology-aware multicast mechanism, helping eliminate the

39

0

rIDvID nID
nx+n31

Round ID

2
x ≤ < 2x+1 α*M

S
Capacity of Aggregation 

BufferM

S Size of Feature Vector

(a)

0

54

40

5

41

39

15
47

51

2

11

14

35

44

M = 60 bytes; S = 20 bytes; x = 1; n = 4.

N0 N1 N2 N3

N4 N5 N6 N7

N8 N9 N10 N11

N12 N13 N14 N15

N0 N1 N2 N3

N4 N5 N6 N7

N8 N9 N10 N11

N12 N13 N14 N15

16

i Round 1i Round 0

(b)

Processing 

Node ID

Round 1

35 5451

 V0 
N3 N6 N7

0 432

44

V5 
N12

0 1

...44

V40 

N12

0 1

Vi 
Neighbor Lists

Offset List

nID List

Round 0

2 155

 V0 

N2 N5 N15

0 321

15

V54 
N15

0 1 ...

Fig. 7. Illustration of round partition: (a) Generation of round ID; (b)
Example of round partition.

request-response loop, and thus achieves lower design complexity
than the gather-based method. Hence, we employ the scatter-based
method for MultiGCN.

Round Partition and Execution. To avoid unacceptable
routing latency and redundant off-chip memory accesses, a round
execution method coupled with a simple round partition is pro-
posed. Figure 7 illustrates the round partition which is based on a
simple graph mapping method to reduce the mapping overhead
and simplify packet routing. As illustrated in Figure 7(a), for
a vertex, the bits in range [0,n) in the vertex ID (vID) will be
the ID of the processing node to which the vertex is partitioned
and mapped. The bits in range [n,x+ n) in the vID are used to
partition and map 2x vertices with interleaving vIDs into the same
processing node together. The bits in range [x+n,32) in the vID
will be the index of round (rID) for simplicity. The value of n is
determined by the total number of processing nodes (#total node)
in MultiAccSys, which is equal to blog2(#total node)c. The value
of x can be reconfigured for different datasets to better utilize
on-chip memory, which is determined by 2x ≤ αM

S < 2x+1, where
M is the capacity of the aggregation buffer and S is the size of
aggregated feature vector. The value of α must be less than 1
to reserve space for network communication and round overlap.
In our implementation, we set α to 0.75. For each vertex, all its
in-coming edges are partitioned into the same round, and used
to build the nID list, offset list, and neighbor lists of its all in-
coming neighboring vertices for multicast. The compressed sparse
row format is used to reorganize the neighbor lists to reduce needs
for both memory and network bandwidth. These information of
each vertex is mapped into the same processing node with this
vertex’s feature vector. Note that after the round partition, if a
vertex still has too many outgoing neighbors in a round, this packet
is further divided into several packets before being sent to network.
Figure 7(b) provides an example for round partition with M = 60
bytes, S = 20 bytes, x = 1, and n = 4. In this figure, a graph is first



TO APPEAR IN TC 8

Algorithm 3: Round Execution
/ 1 Initialization .

1 load round info and configure round execution;
/ 2 Load and Send .

2 foreach vertex v in local do
3 load v’s feature vector, network topology, and graph

topology;
4 if current node has v’s neighbor u then
5 save a replica in aggregation buffer;
6 save {buffer address, list of all neighbor u} to edge

buffer;
7 end
8 send v’s data to remote processing nodes;
9 end

/ 3 Receive .
10 receive v’s feature vector and graph topology;
11 save a replica in aggregation buffer;
12 save {buffer address, v’s neighbors} to edge buffer;

/ 4 Compute .
13 perform aggregate function using buffer address and

neighbors’ vID in items of edge buffer;
14 perform combine function when aggregation is complete;
15 store final combined result to off-chip memory;

/ 5 Synchronization .
16 synchronize and complete the current round;

partitioned into two sub-graphs corresponding to two rounds. For
example, V15 and V44 are partitioned into round 0 and round 1
with their in-coming edges, respectively. Second, the vID of each
vertex (e.g., V15) is included into the neighbor lists of its incoming
neighbors (e.g., V0 and V54) to support the scatter-based method.
As a result, the large neighbor lists of high out-degree vertices
(e.g. V0) are sliced over several rounds, avoiding large packets.

Algorithm 3 demonstrates the round execution method which
includes five steps: 1 Initialization, where each process-
ing node loads the round info and is configured for a new round. 2
Load and Send, where each processing node loads graph data
including feature vectors, graph topology, and network topology,
and then sends the graph data to other nodes. 3 Receive, where
each processing node receives the replica of feature vector and
graph topology from remote nodes into the aggregation buffer
and the edge buffer. 4 Compute, where each processing node
executes the aggregate function or combine function to pro-
cess graph data in local or from remote. 5 Synchronization,
where each processing node broadcasts an end signal to others
when its workload in the current round is completed, and the
current round is terminated after all signals from other nodes are
collected. Note that other synchronization mechanisms can also
be used for better efficiency. Besides, execution overlap technique
is utilized in the round execution to improve resource utilization.
After step 1 , step 2 , 3 , and 4 can be overlapped intra round.
Moreover, these three steps can also be overlapped inter round.
Furthermore, step 4 is able to actively process the graph data
locally to keep compute resources busy when no graph data is
received.

The round partition and round execution method provide two
benefits. First, large neighbor lists are sliced, avoiding compute
resource underutilization due to the intensive transmission and
unacceptable routing latency for a single packet. Second, the large
volume of replicas are split and processed over a set of rounds, so
that replicas in each round can be totally saved in on-chip memory,
avoiding the frequent transfer of replicas between on-chip memory

TABLE 2
System parameters of MultiGCN @1GHz & TSMC 12 nm.

Network Parameters
Network Topology #Processing Node Network Bandwidth Network Latency

2D Torus 16 600 GB/s 500 Cycles
Memory Parameters of Each Processing Node

Buffer in Router Buffer in Send Unit Buffer in Loader Edge Buffer
1.5 MB 512 KB 896 KB 128 KB

Aggregation Buffer Weight Buffer Combination Buffer HBM Bandwidth
1 MB 2 MB 256 KB 256 GB/s

Compute Parameters of Each Processing Node
8 Reusable Systolic Arrays (each size 1×128)

TABLE 3
Graph datasets used in evaluation [28].

Name |V | |E| dv |h0| |h1| Topology
Size

Feature
Size

Real-world Graphs
Reddit (RD) 233K 114M 489 602 128 460 MB 561 MB
Orkut (OR) 3M 117M 39 500 128 481 MB 6 GB

LiveJournal (LJ) 5M 69M 14 500 128 295 MB 10 GB
Synthetic Graphs

RMAT-19 (RM19) 0.5M 16.8M 32 512 128 67 MB 1 GB
RMAT-20 (RM20) 1M 33.6M 32 512 128 134 MB 2 GB
RMAT-21 (RM21) 2.1M 67.1M 32 512 128 269 MB 4 GB
RMAT-22 (RM22) 4.2M 134M 32 512 128 537 MB 8 GB
RMAT-23 (RM23) 8.4M 268M 32 512 128 1074 MB 16 GB

and off-chip memory.

5 EVALUATION METHODOLOGY

Evaluation Tools. We design and implement an in-house simula-
tor to measure execution time in number of cycles. The simulator
has a cycle-level model for many microarchitectural components,
including multi-bank on-chip buffer, HBM (high bandwidth mem-
ory), NVLink, systolic arrays, and so on. To measure critical path
delay (in cycles) of the router, receive unit, send unit, loader,
scheduler, and compute unit, we implement and synthesize these
modules in Verilog. We use the Synopsys Design Compiler with
the TSMC 12 nm standard VT library for the synthesis and
estimate power consumption using Synopsys PrimeTime PX. The
slowest module has a critical path delay of 0.83 ns including the
setup and hold time, putting MultiGCN comfortably at 1 GHz
clock frequency. The access latency, energy, and area of the on-
chip buffer and FIFO are estimated using Synopsys DesignWare
Memory Compiler. The access latency and energy of HBM are
simulated by Ramulator [24], a cycle-accurate DRAM simulator
and estimated with 7 pJ/bit as in [25], respectively. The access
latency and energy of NVLink are estimated with around 500 ns
as in [26] and 8 pJ/bit as in [27], respectively.

Baselines and System Configurations. To demonstrate the
advantages of MultiGCN, we compare MultiGCN with a single-
node GCN accelerator (i.e., AWB-GCN [15]) using identical
hardware resources, two GPU-based solutions (i.e., PyG [29] and
GNNAdvisor [30]) running on T4 GPU, OPPE-based MulAccSys,
and OPPR-based MulAccSys. Three configurations of MultiGCN
are evaluated to assess MultiGCN. The first configuration is Multi-
GCN only employing the topology-aware multicast mechanism
(TMM), denoted by MultiGCN-TMM. The second configuration
is MultiGCN only employing the scatter-based round execution
mechanism (SREM), denoted by MultiGCN-SREM. The last
configuration is MultiGCN employing both TMM and SREM,
denoted by MultiGCN-TMM+SREM. All these configurations
use the system parameters described in Table 2.

Workloads. We implement three well-known GCNs in Multi-
GCN, namely GCN [31], GINConv (GIN) [32], and GraphSAGE
(SAG) [33]. Due to the long simulation time on large-scale graphs,
we simulate only the first layer of these models. Since runtime



TO APPEAR IN TC 9

11.1

2.5

10.6

2.5 1.8 2 1.5
2.9

1.5 1.8 1.5 1.8 2.1 1.9 2.3 1.9

12.2

5.5

12.2

5
4.2 4.5 4

5.8

0
2
4
6
8

10
12
14

GCN.RD GCN.OR GIN.RD GIN.OR GIN.LJ SAG.OR SAG.LJ GM

Sp
ee

du
p

OPPE-based MulAccSys MultiGCN-TMM MultiGCN-SREM MultiGCN-TMM+SREM

63 45

90

Fig. 8. Performance comparison between OPPE-based MulAccSys and MultiGCN (normalized to OPPE-based MulAccSys).

TABLE 4
Utilization ratio (%) of network bandwidth, DRAM bandwidth, and compute unit of OPPE-based MulAccSys and MultiGCN.

OPPE-based MulAccSys MultiGCN-TMM MultiGCN-SREM MultiGCN-TMM+SREM
Network

Bandwidth
DRAM

Bandwidth
Compute

Unit
Network

Bandwidth
DRAM

Bandwidth
Compute

Unit
Network

Bandwidth
DRAM

Bandwidth
Compute

Unit
Network

Bandwidth
DRAM

Bandwidth
Compute

Unit
GCN.RD 19 12 2 4 29 20 28 17 3 87 14 22
GCN.OR 17 15 6 6 41 16 31 20 12 69 32 35
GCN.LJ 16 20 14 7 41 26 34 23 30 60 31 68
GIN.RD 19 12 2 4 21 21 28 17 3 87 14 24
GIN.OR 17 15 8 6 41 21 31 19 15 62 29 41
GIN.LJ 15 19 19 7 41 34 33 22 40 51 26 80

SAG.RD 19 19 9 8 39 17 45 29 20 76 36 39
SAG.OR 16 18 10 7 42 21 31 21 20 60 31 46
SAG.LJ 15 23 21 8 40 32 34 24 47 53 30 84

GM 17 17 8 6 37 22 33 21 15 66 26 44

20%

40%

60%

80%

100%

0%

characteristics of GCNs are input-dependent, we use several real-
world and synthetic graphs as inputs to each GCN model, as shown
in Table 3. Topology size of graph refers to the total size of edges,
|E|∗4 Bytes. Feature size of graph refers to the total size of feature
vectors, |V | ∗ |h0| ∗4 Bytes.

6 RESULTS

6.1 Overall Results
Performance. Figure 8 compares the performance of the proposed
MultiGCN against that of OPPE-based MulAccSys. In this figure,
the last set of bars, labeled GM, indicates the geometric mean
across all workloads. Our evaluation shows that MultiGCN with
only the TMM mechanism or only SREM mechanism outperforms
OPPE-based MulAccSys by 2.9× or 1.9× on average. When both
mechanisms are employed, MultiGCN achieves 4∼12× speedup
over OPPE-based MulAccSys, and 5.8× on average.

To provide more insights into the performance improvement
of MultiGCN, Table 4 shows the utilization ratios of network
bandwidth, DRAM bandwidth, and compute unit in MultiGCN.
Compared with OPPE-based MulAccSys, the utilization ratio
of network bandwidth, DRAM bandwidth and compute unit of
MultiGCN-TMM+SREM improve by 3.88×, 1.53×, and 7.33×
on average, respectively. This points to the main contributor of the
large speedup achieved by our design: the TMM mechanism and
the SREM mechanism.

Area and Power. Table 5 provides the detailed characteristics
of MultiGCN. The area and power of each processing node are
12.4 mm2 and 3671.13 mW respectively. The buffers including
edge buffer, aggregation buffer, weight buffer, and combination
buffer occupy most area of the processing node and accounts for
48% power of the processing node. The area and power produced
by the compute unit are 6.8% and 17.72%. For the computation
precision, we use 32-bit fixed point which is enough for accurate
GCN inference. The area and power produced by router are
22.59% and 18.78% due to the large routing buffer and heavy
packet transmissions.

Energy and its Breakdown. Figure 9 shows the energy con-
sumption of MultiGCN-TMM+SREM in detail. Figure 9(a) de-
picts that MultiGCN costs only 28%∼68% energy of OPPE-based

TABLE 5
Characteristics of processing node @1GHz & TSMC 12 nm.

Component or Block Area (mm2) % Power (mW ) %
Processing Node 12.4 100 3671.13 100

Breakdown by Functional Block
Edge Buffer 0.23 1.88 9.03 0.25
Aggregation Buffer 1.87 15.06 578.3 15.75
Weight Buffer 3.74 30.11 614.13 16.73
Combination Buffer 0.47 3.76 551.42 15.02
Compute Unit 0.84 6.8 650.63 17.72
Router 2.8 22.59 689.45 18.78
Loader 1.52 12.24 320.51 8.73
Send Unit 0.93 7.53 257.6 7.02
Scheduler 4.73E-04 0.00 0.00 0.00
Others 1.89E-03 0.02 0.04 0.00

0

20

40

60

80

100

RD OR LJ RD OR LJ RD OR LJ

GCN GIN SAG

En
er

gy
 B

re
ak

do
w

n 
(%

)

Compute Unit Router

Loader Scheduler

Buffers Others

Norm.
Energy Total NVLink DRAM Processing 

Nodes
GCN.RD 28% 15.34 13.35 1.64 0.35
GCN.OR 61% 31.24 22.77 7.9 0.57
GCN.LJ 57% 20.22 14.13 5.44 0.65
GIN.RD 28% 15.34 13.35 1.64 0.35
GIN.OR 61% 31.44 22.77 7.9 0.77
GIN.LJ 57% 20.22 14.13 5.44 0.65
SAG.RD 68% 2.61 1.88 0.67 0.06
SAG.OR 62% 19.51 13.7 5.27 0.54
SAG.LJ 58% 14.39 9.75 4.11 0.53

(a) Normalized Energy over 
OPPE-based  MulAccSys and Energy 

Consumption ( J ) (b) Energy Breakdown ( % )

Fig. 9. Energy: (a) Normalized energy over OPPE-based MulAccSys
and energy details; (b) Energy breakdown of processing nodes.

MulAccSys. The energy consumed by network (i.e., NVLink) is
larger than DRAM and processing nodes in all cases, since the
feature vector loaded from DRAM can be shared across multiple
remote processing nodes. Figure 9(b) shows that the compute unit,
router and buffers consume most energy of the processing nodes.

6.2 Effect and Overhead of Optimizations
To dissect the effect of our optimizations, the normalized network
transmission and DRAM access of MultiGCN (normalized to
OPPE-based MulAccSys) are shown in Table 6. The reduction



TO APPEAR IN TC 10

TABLE 6
Normalized network transmission and DRAM access of MultiGCN

(normalized to OPPE-based MulAccSys).

MultiGCN-TMM MultiGCN-SREM MultiGCN-SREM
+TMM

Trans. Access Trans. Access Trans. Access
GCN.RD 2% 21% 100% 93% 37% 10%
GCN.OR 14% 112% 100% 72% 75% 39%
GCN.LJ 25% 114% 100% 53% 79% 33%
GIN.RD 2% 16% 100% 93% 37% 10%
GIN.OR 14% 112% 100% 72% 75% 39%
GIN.LJ 25% 118% 100% 53% 79% 33%

SAG.RD 20% 102% 100% 63% 88% 41%
SAG.OR 22% 116% 100% 60% 81% 38%
SAG.LJ 35% 115% 100% 48% 86% 33%

GM 13% 75% 100% 66% 68% 27%

of redundant transmissions and DRAM accesses as well as the
overhead analysis of these optimizations are also shown in Table 7.

Effect. The TMM mechanism helps eliminate the redundant
transmissions. Table 6 shows that the network transmission of
MultiGCN-TMM is only 13% that of OPPE-based MulAccSys.
This is because a single packet containing a replica of the feature
vector is sent to many other processing nodes that also request
it via multicast. Note that the number of DRAM access in RD
dataset decreases, but extra DRAM accesses are introduced in
most datasets. This is because a feature vector in RD dataset
loaded from DRAM can be shared by many remote processing
nodes due to its extremely high average degree (e.g., 489). The
SREM mechanism avoids the frequent transfer of replicas between
on-chip memory and off-chip memory. Specifically, the rounds
are properly partitioned so that the replicas of all vertices and
intermediate results in a round always stays on-chip until the
computation is done. Compared with OPPE-based MulAccSys,
MultiGCN-SREM introduces only 66% number of DRAM ac-
cesses on average.

Table 6 shows that when these two mechanisms are employed,
both the network transmission and number of DRAM accesses
are reduced significantly to only 68% and 27% on average,
respectively. Note that the effect of TMM mechanism is hurt by the
SREM mechanism because each round may introduce a multicast
of the same feature vector. In contrast, TMM mechanism promotes
the effect of SREM mechanism since a feature vector loaded from
DRAM can be multicast to and shared by many remote processing
nodes. Table 7 depicts that MultiGCN-TMM+SREM reduces 32%
redundant network transmissions and 100% of redundant DRAM
accesses on average compared to OPPE-based MulAccSys.

Overhead. The main optimization overheads are the extras of
transmission latency and preprocesing time for round partition,
but all of them are small, only 0.21% and 6.1% on average, as
shown in the last two columns in Table 7. Note that as more
redundant transmissions are reduced, the network topology and
graph topology information in the packet increases transmission
latency. The round partition accounts for less than 12% time of
the graph mapping because it can be coupled into the process of
graph mapping. Besides, it is a one-time overhead for each dataset
that can be amortized over the execution of different GCN models.

6.3 Comparisons with the State of the Arts
The performance of MultiGCN (1 node) is slightly lower than
that of GNNAdvisor running on one T4 GPU, 0.7× on average.
However, MultiGCN aims to scale single-node accelerator to
accelerate GCNs on large-scale graphs efficiently, such as average
3.4× speedup of MultiGCN (4 nodes) over GNNAdvisor.

TABLE 7
Reduction of redundant transmission and redundant DRAM access,
extra transmission latency, and extra preprocessing time compared

with OPPE-based MulAccSys.
MultiGCN-TMM+SREM

Redundant
Transmission

Redundant
DRAM access

Transmission
Latency

Round Partition
Time

GCN.RD -64% -100% +0.52% +6.6%
GCN.OR -30% -100% +0.15% +12%
GCN.LJ -30% -100% +0.13% +2.8%
GIN.RD -64% -100% +0.52% +6.6%
GIN.OR -30% -100% +0.15% +12%
GIN.LJ -30% -100% +0.13% +2.8%

SAG.RD -17% -100% +0.07% +6.6%
SAG.OR -25% -100% +0.11% +12%
SAG.LJ -24% -100% +0.1% +2.8%

GM -32% -100% +0.21% +6.1%

0

2

4

6

8

10

RD OR LJ GM

Sp
ee

du
p

AWB-GCN
PyG (4x T4 GPU)
GNNAdvisior
MultiGCN (1x Node)
MultiGCN (2x Node)
MultiGCN (4x Node)

(a)

0
2
4
6
8

10
12
14

ST TW FS GM

Sp
ee

du
p

OPPE-based
MulAccSys (2TOPS)
OPPE-based
MulAccSys (8TOPS)
OPPR-based
MulAccSys (2TOPS)
OPPR-based
MulAccSys (8TOPS)
MultiGCN (2TOPS)

(b)

Fig. 10. Comparisons with the state-of-the-arts: (a) Speedup of PyG
(4 T4 GPUs), GNNAdvisor (1 T4 GPU), MultiGCN (2 nodes), and
MultiGCN (4 nodes) over AWB-GCN; (b) Speedup of MultiGCN (128
nodes) over OPPE-based and OPPR-based MulAccSyses (128 nodes).

To demonstrate the advantages of MultiGCN, we compare
MultiGCN against the state-of-the-arts. Figure 10(a) shows that
the average speedup of MultiGCN (1 node) is slightly lower than
that of AWB-GCN and GNNAdvisor. However, MultiGCN aims
to scale single-node accelerator to accelerate GCNs on large-scale
graphs efficiently, such as on average 4× and 3.4× speedup of
MultiGCN (4 nodes) over AWB-GCN and GNNAdvisor respec-
tively. Moreover, the peak performance, DRAM bandwidth, and
maximum power of MultiGCN (1 node) are respectively only
25%, 85%, and 5% of T4 GPU. MultiGCN (4 nodes) achieves
4× speedup on average over PyG with 4 T4 GPUs. This is
because GPUs aim at workloads with regular execution pattern,
but they cannot efficiently tackle irregular execution patterns of
GCNs [11], [15], [16], [34], [35]. Note that GPU performance
of PyG is estimated by accumulating the kernel execution time
which does not account for the memory copy time and system
stack overhead. Besides, PyG leverages mini-batch to make each
GPU execute inference independently, so that inter-GPU commu-
nications are eliminated. However, mini-batching multiplies data
volume in system due to massive copies of neighboring feature
vectors in each GPU. Figure 10(b) shows that MultiGCN (128
nodes and 8 TOPS) achieves average 9.6× and 2.3× speedup over
OPPE-based MulAccSys (128 nodes and 8 TOPS) and OPPR-
based MulAccSys (128 nodes and 8 TOPS) respectively due to
less network transmissions and DRAM accesses. MultiGCN has
different speedup on the FS dataset when compute capability
increases because the number of network transmissions of FS is
little while the number of compute for local data processing is
large.

6.4 Exploration of Design

We conduct several experiments on the GCN model to explore
our architecture design in terms of hardware sensitivity and graph
characteristic sensitivity as follows. Due to the long simulation



TO APPEAR IN TC 11

0
2
4
6
8

10

4 8 16 32

Sp
ee

du
p

y=2^(x-1), x={1,2,3,4}
RD
OR
LJ

Number of Processing Nodes
(a)

0
4
8

12
16

256 512 1024 2048

N
or

m
. E

xe
cu

tio
n 

Ti
m

e y=2^(x-1), x={1,2,3,4}
RM20
RM21
RM22

Feature  Vector Length
(c)

0
10
20
30
40

N
or

m
. E

xe
cu

tio
n 

Ti
m

e y=2^(x-1), x={1,2,3,4,5}
Norm. Execution Time

(d)

0
2
4
6
8

1184 296 74 19 5 1N
or

m
al

ize
d

Va
lu

e Execution Time
DRAM Access

Number of Rounds
(b)

Fig. 11. Hardware sensitivity: (a) Speedup over number of processing
nodes; (b) Normalized execution time, normalized amount of network
transmission, and normalized amount of DRAM access across number
of rounds. Graph characteristics sensitivity: Normalized execution time
across (c) feature vector length and (d) scale of vertex number.

time, we simulate the processing for 10% of vertices for each
experiment in this subsection.

Hardware Sensitivity. First, Figure 11(a) illustrates the
speedup across different number of nodes of the 2D torus network
topology. MultiGCN gains performance improvement on RD and
OR datasets as the number of nodes increases, and the speedup
remains linear as the number of nodes increases to 32. Limited
by the network bandwidth, the performance gain on LJ dataset
gradually decreases as the number of node increases. This is due
to the low reusability of feature vector in the network transmission
since the average vertex degree of the LJ dataset is low. Second,
Figure 11(b) shows that the amount of network transmission
decreases as the number of round decreases in the processing of
LJ dataset because the number of multicast for the same feature
vector decreases. Besides, the execution time and number of
DRAM accesses are variable across different numbers of rounds.
This leaves room for further optimizing the design to fit different
requirements, which will be explored in our future work.

Graph Characteristic Sensitivity. First, the length of fea-
ture vector (i.e., |h0|) doubles in Figure 11(c), which means
the amount of workload in both the Aggregation phase
and Combination phase double, and network transmission
increases even more. However, the execution time increases to
more than 2×. In particular, the performance is sensitive to the
length of the feature vector, which is mainly because the increased
network traffic imposes heavier burdens on network. Second, the
number of vertex in graph doubles in Figure 11(d), which means
the amount of workload in both the Aggregation phase and
Combination phase and network transmission doubles too.
However, the execution time increase to more than 2×. That is,
the performance is sensitive to the scale of vertex number, since a
larger scale of vertex number with the same average degree means
higher graph sparsity, which hinders the performance.

7 RELATED WORK

Many software frameworks for GCNs have been developed to re-
lieve programming efforts while improving performance on mod-
ern architectures [1], [29], [36], [37], [38]. For example, PyG [29]
is built upon PyTorch for easy implementation of graph neural
networks (GNNs). It consists of easy-to-use mini-batch loaders for

giant graphs and multi-GPU support. GNNAdvisor [30] propose
an adaptive and efficient runtime system for GNN acceleration
on GPUs. DGL [36] is a scalable GNN framework that simplifies
the development of efficient GNN-based training and inference
programs at a large scale in multi-GPU and distributed systems.
Unfortunately, the distinct execution pattern in GCNs causes
processing inefficiencies on conventional architectures. Therefore,
GCNs demand specialized architecture design.

Characterizing the execution pattern and execution semantic
of GNNs on GPUs is important for both software and hardware
optimizations for GNNs, which has been extensively studied in
previous work [12], [39], [40], [41], [42], [43]. Yan et al. [12]
reveal the computation and memory accessing pattern of GCNs on
GPU. Yan et al. [41] disclose the execution pattern and execution
semantic of heterogeneous graph neural networks (HGNNs) on
GPU. Zhang et al. [39] focus on understanding the computational
graph of GNN, from the perspective of computation, IO and
memory. Zhang et al. [40] characterize the computation of a
large portion of GNN variants concerning general-purpose and
application-specific architectures.

Hardware acceleration for GCNs has been recently explored.
Many single-node domain-specific architectures and frameworks
have been designed for GCN acceleration [11], [14], [15], [16],
[17], [44], [45], [46], [47], [48], [49], [50], [51]. For example,
HyGCN [11] proposes a hybrid architecture to address the hybrid
execution pattern of GCNs. AWB-GCN [15] targets workload
imbalance in the acceleration of GCNs. GCNAX [17] proposes
a flexible and optimized dataflow for GCNs that simultaneously
improves resource utilization and reduces data transfer. RE-FLIP
[52] designs PIM-featured crossbar architectures to build a unified
architecture to perform the hybrid execution pattern of GCNs.

The ever-growing scale of graphs has posed new challenges
that single-node accelerators cannot sufficiently address. Thus, a
multi-node acceleration system is highly desirable. Although a
straightforward multi-node design for large-scale GCNs follows
Tesseract [20] or other Tesseract-based architectures [21], [53], it
suffers from two inefficiencies including a vast of redundant trans-
missions and off-chip memory accesses. To this end, we propose
MultiGCN, an efficient MultiAccSys for large-scale GCNs.

8 CONCLUSION

In this work, we aim to scale the single-node GCN accelerator
to accelerate execution of GCNs on large-scale graphs. We first
characterize the communication pattern and challenges of multi-
node acceleration for GCNs. Guided by our observations, we
then propose MultiGCN, an efficient MultiAccSys for large-scale
GCNs that trades network latency for network bandwidth. Multi-
GCN achieves 4∼12× and 2.5∼8× speedup over baseline Mul-
tiAccSys and multi-GPU solution respectively. Designing multi-
node acceleration systems is vital to enable practical execution of
GNNs on real-world large-scale graphs. We believe our work will
draw more attention to the design of domain-specific processor
clusters for increasingly important GNNs and graph-structured
data.

ACKNOWLEDGMENTS

We sincerely thank Prof. Guang R. Gao for his guidance and
contribution to this work. We also would like to express our
gratitude to all reviewers’ constructive comments for helping



TO APPEAR IN TC 12

us polish this paper. This work was supported by the National
Natural Science Foundation of China (Grant No. 61732018, and
61872335), Austrian-Chinese Cooperative R&D Project (FFG
and CAS) (Grant No. 171111KYSB20200002), CAS Project for
Young Scientists in Basic Research (Grant No. YSBR-029), Open
Research Projects of Zhejiang Lab (NO. 2022PB0AB01), and
CAS Project for Youth Innovation Promotion Association.

REFERENCES

[1] H. Yang, “Aligraph: A comprehensive graph neural network platform,”
in Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2019, pp. 3165–3166.

[2] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions on
neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[3] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,”
AI Open, vol. 1, pp. 57–81, 2020.

[4] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,”
IEEE Transactions on Knowledge and Data Engineering, 2020.

[5] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: going beyond euclidean data,” IEEE Signal
Processing Magazine, vol. 34, no. 4, pp. 18–42, 2017.

[6] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov,
and M. Welling, “Modeling relational data with graph convolutional
networks,” in European Semantic Web Conference. Springer, 2018,
pp. 593–607.

[7] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale recom-
mender systems,” in Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2018, pp. 974–983.

[8] X. Chen, L.-J. Li, L. Fei-Fei, and A. Gupta, “Iterative visual reasoning
beyond convolutions,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2018, pp. 7239–7248.

[9] L. Oliver and P. Luis. Traffic prediction with advanced graph neural
networks. [Online]. Available: https://deepmind.com/blog/article/traffic-
prediction-with-advanced-graph-neural-networks

[10] Y. Ma, H. Ren, B. Khailany, H. Sikka, L. Luo, K. Natarajan, and B. Yu,
“High performance graph convolutionai networks with applications in
testability analysis,” in 2019 56th ACM/IEEE Design Automation Con-
ference (DAC), June 2019, pp. 1–6.

[11] M. Yan, L. Deng, X. Hu, L. Liang, Y. Feng, X. Ye, Z. Zhang, D. Fan,
and Y. Xie, “Hygcn: A gcn accelerator with hybrid architecture,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2020, pp. 15–29.

[12] M. Yan, Z. Chen, L. Deng, X. Ye, Z. Zhang, D. Fan, and Y. Xie, “Char-
acterizing and understanding gcns on gpu,” IEEE Computer Architecture
Letters, vol. 19, no. 1, pp. 22–25, 2020.

[13] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia tesla: A
unified graphics and computing architecture,” IEEE micro, vol. 28, no. 2,
pp. 39–55, 2008.

[14] H. Zeng and V. Prasanna, “Graphact: Accelerating gcn training on cpu-
fpga heterogeneous platforms,” in The 2020 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2020, pp. 255–265.

[15] T. Geng, A. Li, R. B. Shi, C. S. Wu, T. Q. Wang, Y. F. Li, P. Haghi,
A. Tumeo, S. Che, S. Reinhardt, and M. C.Herbordt, “Awb-gcn: A graph
convolutional network accelerator with runtime workload rebalancing,”
in 2020 53rd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), Oct. 2020.

[16] S. Liang, Y. Wang, C. Liu, L. He, L. Huawei, D. Xu, and X. Li, “Engn:
A high-throughput and energy-efficient accelerator for large graph neural
networks,” IEEE Transactions on Computers, 2020.

[17] J. Li, A. Louri, A. Karanth, and R. Bunescu, “Gcnax: A flexible and
energy-efficient accelerator for graph convolutional neural networks,” in
2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2021, pp. 775–788.

[18] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning on
graphs,” arXiv preprint arXiv:2005.00687, 2020.

[19] N. P. Jouppi, D. H. Yoon, G. Kurian, S. Li, N. Patil, J. Laudon, C. Young,
and D. Patterson, “A domain-specific supercomputer for training deep
neural networks,” Communications of the ACM, vol. 63, no. 7, pp. 67–
78, 2020.

[20] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” in Proceedings of
the 42nd Annual International Symposium on Computer Architecture,
2015, pp. 105–117.

[21] M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis,
and X. Qian, “Graphp: Reducing communication for pim-based graph
processing with efficient data partition,” in 2018 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA). IEEE,
2018, pp. 544–557.

[22] A. Li, S. L. Song, J. Chen, J. Li, X. Liu, N. R. Tallent, and K. J. Barker,
“Evaluating modern gpu interconnect: Pcie, nvlink, nv-sli, nvswitch and
gpudirect,” IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 1, pp. 94–110, 2019.

[23] M. Li, Q.-A. Zeng, and W.-B. Jone, “Dyxy: A proximity
congestion-aware deadlock-free dynamic routing method for network
on chip,” in Proceedings of the 43rd Annual Design Automation
Conference, ser. DAC ’06. New York, NY, USA: Association
for Computing Machinery, 2006, p. 849–852. [Online]. Available:
https://doi.org/10.1145/1146909.1147125

[24] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible dram
simulator,” IEEE Comput. Archit. Lett., vol. 15, no. 1, pp. 45–49, Jan.
2016.

[25] M. O’Connor, “Highlights of the high-bandwidth memory (hbm) stan-
dard,” in Memory Forum Workshop, 2014.

[26] C. Lutz, S. Breß, S. Zeuch, T. Rabl, and V. Markl, “Pump up the volume:
Processing large data on gpus with fast interconnects,” in Proceedings
of the 2020 ACM SIGMOD International Conference on Management of
Data, 2020, pp. 1633–1649.

[27] D. BILL. Gtc china 2020 keynote. [Online].
Available: https://live.nvidia-china.com/20201215-gtc-china-2020/deck-
assets/GTC China 2020 Keynote.pdf

[28] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[29] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning on
Graphs and Manifolds, 2019.

[30] Y. Wang, B. Feng, G. Li, S. Li, L. Deng, Y. Xie, and Y. Ding, “Gnnad-
visor: An adaptive and efficient runtime system for {GNN} acceleration
on gpus,” in 15th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 21), 2021, pp. 515–531.

[31] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” CoRR, vol. abs/1609.02907, 2016. [Online].
Available: http://arxiv.org/abs/1609.02907

[32] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?” CoRR, vol. abs/1810.00826, 2018. [Online].
Available: http://arxiv.org/abs/1810.00826

[33] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information Processing
Systems 30, 2017, pp. 1024–1034. [Online]. Available: http://papers.nips.
cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf

[34] M. Yan, X. Hu, S. Li, A. Basak, H. Li, X. Ma, I. Akgun, Y. Feng,
P. Gu, L. Deng, X. Ye, Z. Zhang, D. Fan, and Y. Xie, “Alleviating
irregularity in graph analytics acceleration: A hardware/software
co-design approach,” in Proceedings of the 52Nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’52. New
York, NY, USA: ACM, 2019, pp. 615–628. [Online]. Available:
http://doi.acm.org/10.1145/3352460.3358318

[35] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi, “Graphi-
cionado: A high-performance and energy-efficient accelerator for graph
analytics,” in 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), Oct. 2016, pp. 1–13.

[36] Deep graph library. [Online]. Available: https://docs.dgl.ai
[37] J. Thorpe, Y. Qiao, J. Eyolfson, S. Teng, G. Hu, Z. Jia, J. Wei, K. Vora,

S. Fraser, R. Netravali, M. Kim, and G. H. Xu, “Dorylus: affordable,
scalable, and accurate gnn training with distributed cpu servers and
serverless threads,” in 15th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 21), 2021, pp. 495–514.

[38] S. Gandhi and A. P. Iyer, “P3: Distributed deep graph learning at
scale,” in 15th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 21). USENIX Association, Jul. 2021,
pp. 551–568. [Online]. Available: https://www.usenix.org/conference/
osdi21/presentation/gandhi

[39] H. Zhang, Z. Yu, G. Dai, G. Huang, Y. Ding, Y. Xie, and Y. Wang,
“Understanding gnn computational graph: A coordinated computation,
io, and memory perspective,” Proceedings of Machine Learning and
Systems, vol. 4, pp. 467–484, 2022.

https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks
https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks
https://doi.org/10.1145/1146909.1147125
https://live.nvidia-china.com/20201215-gtc-china-2020/deck-assets/GTC_China_2020_Keynote.pdf
https://live.nvidia-china.com/20201215-gtc-china-2020/deck-assets/GTC_China_2020_Keynote.pdf
http://snap.stanford.edu/data
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1810.00826
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf
http://doi.acm.org/10.1145/3352460.3358318
https://docs.dgl.ai
https://www.usenix.org/conference/osdi21/presentation/gandhi
https://www.usenix.org/conference/osdi21/presentation/gandhi


TO APPEAR IN TC 13

[40] Z. Zhang, J. Leng, L. Ma, Y. Miao, C. Li, and M. Guo, “Architectural
implications of graph neural networks,” IEEE Computer Architecture
Letters, vol. 19, no. 1, pp. 59–62, 2020.

[41] M. Yan, M. Zou, X. Yang, W. Li, X. Ye, D. Fan, and Y. Xie, “Charac-
terizing and understanding hgnns on gpus,” IEEE Computer Architecture
Letters, pp. 1–4, 2022.

[42] H. Lin, M. Yan, X. Yang, M. Zou, W. Li, X. Ye, and D. Fan, “Characteriz-
ing and understanding distributed gnn training on gpus,” IEEE Computer
Architecture Letters, vol. 21, no. 1, pp. 21–24, 2022.

[43] K. Huang, J. Zhai, Z. Zheng, Y. Yi, and X. Shen, “Understanding and
bridging the gaps in current GNN performance optimizations,” in PPoPP
’21: 26th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, Virtual Event, Republic of Korea, February 27-
March 3, 2021, J. Lee and E. Petrank, Eds. ACM, 2021, pp. 119–132.
[Online]. Available: https://doi.org/10.1145/3437801.3441585

[44] X. Chen, Y. Wang, X. Xie, X. Hu, A. Basak, L. Liang, M. Yan, L. Deng,
Y. Ding, Z. Du, and Y. Xie, “Rubik: A hierarchical architecture for ef-
ficient graph neural network training,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, pp. 1–1, 2021.

[45] B. Zhang, R. Kannan, and V. Prasanna, “Boostgcn: A framework for
optimizing gcn inference on fpga,” in 2021 IEEE 29th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM). IEEE, 2021, pp. 29–39.

[46] J. R. Stevens, D. Das, S. Avancha, B. Kaul, and A. Raghunathan, “Gn-
nerator: A hardware/software framework for accelerating graph neural
networks,” arXiv preprint arXiv:2103.10836, 2021.

[47] S. Mondal, S. D. Manasi, K. Kunal, and S. S. Sapatnekar, “Gnnie: Gnn
inference engine with load-balancing and graph-specific caching,” arXiv
preprint arXiv:2105.10554, 2021.

[48] Z. Zhou, S. Bizhao, Z. Zhang, G. Yijin, S. Guangyu, and L. Guojie,
“Blockgnn: Towards efficient GNN acceleration using block-circulant
weight matrices,” in 2021 58th ACM/IEEE Design Automation Confer-
ence (DAC). IEEE, 2021.

[49] T. Geng, C. Wu, Y. Zhang, C. Tan, C. Xie, H. You, M. Herbordt,
Y. Lin, and A. Li, “I-gcn: A graph convolutional network accelerator
with runtime locality enhancement through islandization,” in MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture,
2021, pp. 1051–1063.

[50] A. Auten, M. Tomei, and R. Kumar, “Hardware acceleration of graph
neural networks,” in 2020 57th ACM/IEEE Design Automation Confer-
ence (DAC). IEEE, 2020, pp. 1–6.

[51] B. Zhang, H. Zeng, and V. Prasanna, “Hardware acceleration of large
scale gcn inference,” in 2020 IEEE 31st International Conference
on Application-specific Systems, Architectures and Processors (ASAP).
IEEE, 2020, pp. 61–68.

[52] Y. Huang, L. Zheng, P. Yao, Q. Wang, X. Liao, H. Jin, and J. Xue, “Accel-
erating graph convolutional networks using crossbar-based processing-in-
memory architectures,” in 2022 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), 2022, pp. 1029–1042.

[53] Y. Zhuo, C. Wang, M. Zhang, R. Wang, D. Niu, Y. Wang, and X. Qian,
“Graphq: Scalable pim-based graph processing,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
2019, pp. 712–725.

Gongjian Sun received the B.S. degree from
University of Chinese Academy of Sciences,
Beijing, China in 2019. He is currently a post-
graduate at Institute of Computing Technology,
Chinese Academy of Sciences, Beijing, China.
His current research interests include high-
throughput computer architecture and graph-
based hardware accelerator.

Mingyu Yan received his Ph.D. degree from Uni-
versity of Chinese Academy of Sciences, Beijing,
China in 2020. He is currently an Assistant Pro-
fessor at Institute of Computing Technology, Chi-
nese Academy of Sciences, Beijing, China. His
current research interests include graph-based
hardware accelerator and high-throughput com-
puter architecture.

Duo Wang received his B.S. degree from South-
east University, Nanjing, China in 2018. He is
currently a Ph.D. candidate at Institute of Com-
puting Technology, Chinese Academy of Sci-
ences, Beijing, China. His current research inter-
ests include high-performance computer archi-
tecture and software simulation.

Han Li received the B.S. degree from Jilin Uni-
versity, Changchun, China in 2016. She is cur-
rently a Ph.D. candidate at Institute of Comput-
ing Technology, Chinese Academy of Sciences,
Beijing, China. Her current research interests
include computer architecture and graph-based
hardware accelerator.

Wenming Li received the Ph.D. degree in com-
puter architecture from Institute of Computing
Technology, Chinese Academy of Sciences, Bei-
jing, in 2016. He is currently an associate pro-
fessor in Institute of Computing Technology, Chi-
nese Academy of Sciences, Beijing. His main
research interests include high-throughput pro-
cessor architecture, dataflow architecture and
software simulation.

Xiaochun Ye received his Ph.D. degree in com-
puter architecture from Institute of Computing
Technology, Chinese Academy of Sciences, Bei-
jing, in 2010. He is currently an associate pro-
fessor in Institute of Computing Technology, Chi-
nese Academy of Sciences, Beijing. His main re-
search interests include high-performance com-
puter architecture and software simulation.

Dongrui Fan received his Ph.D. degree in
computer architecture from Institute of Comput-
ing Technology, Chinese Academy of Sciences,
Beijing, in 2005. He is currently a professor
and Ph.D. supervisor in Institute of Comput-
ing Technology, Chinese Academy of Sciences,
Beijing. His main research interests include
high-throughput computer architecture and high-
performance computer architecture.

Yuan Xie received his Ph.D. degrees from Elec-
trical Engineering Department, Princeton Uni-
versity, Princeton, NJ, USA in 2002. He was
a Professor with Pennsylvania State University,
State College, PA, USA, from 2003 to 2014. He
is currently a Professor with the Department of
Electrical and Computer Engineering, University
of California at Santa Barbara, Santa Barbara,
CA, USA.

https://doi.org/10.1145/3437801.3441585

	1 Introduction
	2 Background
	3 Motivation
	4 MultiGCN Architecture
	4.1 Architecture Overview
	4.2 Topology-aware Multicast Mechanism
	4.3 Scatter-based Round Execution Mechanism

	5 Evaluation Methodology
	6 Results
	6.1 Overall Results
	6.2 Effect and Overhead of Optimizations
	6.3 Comparisons with the State of the Arts
	6.4 Exploration of Design

	7 Related Work
	8 Conclusion
	References
	Biographies
	Gongjian Sun
	Mingyu Yan
	Duo Wang
	Han Li
	Wenming Li
	Xiaochun Ye
	Dongrui Fan
	Yuan Xie


