
1

A Unified Cryptoprocessor for Lattice-based
Signature and Key-exchange
Aikata Aikata, Ahmet Can Mert, David Jacquemin, Amitabh Das,

Donald Matthews, Santosh Ghosh, Sujoy Sinha Roy

Abstract—We propose design methodologies for building a compact, unified and programmable cryptoprocessor architecture that
computes post-quantum key agreement and digital signature. Synergies in the two types of cryptographic primitives are used to make
the cryptoprocessor compact. As a case study, the cryptoprocessor architecture has been optimized targeting the signature scheme
’CRYSTALS-Dilithium’ and the key encapsulation mechanism (KEM) ’Saber’, both finalists in the NIST’s post-quantum cryptography
standardization project. The programmable cryptoprocessor executes key generations, encapsulations, decapsulations, signature
generations, and signature verifications for all the security levels of Dilithium and Saber. On a Xilinx Ultrascale+ FPGA, the proposed
cryptoprocessor consumes 18,406 LUTs, 9,323 FFs, 4 DSPs, and 24 BRAMs. It achieves 200 MHz clock frequency and finishes
CCA-secure key-generation/encapsulation/decapsulation operations for LightSaber in 29.6/40.4/ 58.3µs; for Saber in 54.9/69.7/94.9µs;
and for FireSaber in 87.6/108.0/139.4µs, respectively. It finishes key-generation/sign/verify operations for Dilithium-2 in
70.9/151.6/75.2µs; for Dilithium-3 in 114.7/237/127.6µs; and for Dilithium-5 in 194.2/342.1/228.9µs, respectively, for the best-case
scenario. On UMC 65nm library for ASIC the latency is improved by a factor of two due to a 2× increase in clock frequency.

Index Terms—CRYSTALS-Dilithium, Saber, Hardware Implementation, Lattice-based Cryptography, Post-quantum cryptography

F

1 INTRODUCTION

SHOR’S quantum algorithm [1] solves the integer factor-
ization and discrete logarithm problems using quan-

tum computers in polynomial time. These number theo-
retic problems are the foundations of the two most widely
used public-key cryptosystems, namely the RSA and Ellip-
tic Curve cryptosystems. Hence, if a sufficiently powerful
quantum computer is ever constructed, then the present-
day public-key cryptographic schemes can be broken using
Shor’s algorithm. Post-quantum cryptography (PQC) aims
at developing new cryptographic protocols that will remain
secure even after powerful quantum computers are built.

Acknowledging the fast progress [2], [3] made towards
the development of quantum computers, different cyber-
security agencies have recommended gradual transitions
toward post-quantum public-key encryption (PKE), key en-
capsulation mechanism (KEM), and digital signature algo-
rithm. For example, the Chinese Association for Cryptologic
Research already concluded their post-quantum cryptogra-
phy standardization ‘competition’ with LAC [4] as the win-
ner key agreement scheme. Another standardization project,
launched by the American National Institute of Standards
and Technology (NIST) in 2016, is currently in its third
round with four finalists in the PKE/KEM category, and
three finalists in the digital signature category. NIST will be

• Aikata, Ahmet Can Mert, David Jacquemin, and Sujoy Sinha Roy are with
the Institute of Applied Information Processing and Communications,
Graz University of Technology, Graz, Austria.

E-mail:
{aikata, ahmet.mert, david.jacquemin, sujoy.sinharoy}@iaik.tugraz.at

• Amitabh Das and Donald Matthews are with AMD, Austin, Texas, US.
E-mail: {Donald.Matthews, Amitabh.Das}@amd.com

• Santosh Ghosh is with Intel Labs, Intel Corporation, OR, US.
E-mail: santosh.ghosh@intel.com

announcing the standardized PQC schemes in March 2022.
As part of the transition phase, present-day RSA and

elliptic curve-based PKE/KEM and signature schemes in
various cryptographic applications will get replaced by their
post-quantum counterparts. One of the most widely used
applications is the Transport Layer Security (TLS) protocol,
which ensures the security and privacy of communications
over a computer network. TLS requires both a PKE/KEM
for secure key exchange and a digital signature scheme
for authentication. Therefore, a cryptoprocessor that runs
the TLS protocol, will need to provide support for both
PKE/KEM and signature algorithms. In a connected world,
the majority of the cryptoprocessors will be running on
resource-constrained platforms with strict silicon and mem-
ory budgets. Therefore, researching design methodologies
for compact and unified implementations of post-quantum
PKE/KEM and signature is required to make PQC deploy-
able in real-life applications. In this paper, we explore this
direction and develop design methodologies for unifying
lattice-based PKE/KEM and signature algorithms in a com-
pact silicon area.

Various works exist in the literature ([5], [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21]) that present optimized implementations of either a
PKE/KEM or a signature scheme. While such works show
how to implement a given PQC algorithm optimally, they
do not take real-world applications (i.e., both PKE/KEM
and signature) into consideration. There are only a very few
cryptoprocessors [22], [23], [24], [25] that can support more
than one PQC protocol. [22] is a cryptoprocessor coupled
with RISC-V processor implemented in ASIC for various
lattice-based Round 2 candidate schemes in NIST’s PQC
standardization. It does not provide support for the latest fi-
nalists. In [23], [24] the authors propose unified architectures

ar
X

iv
:2

21
0.

07
41

2v
1

 [
cs

.C
R

]
 1

3
O

ct
 2

02
2

2

for multiple PKE/KEM schemes only. They do not support
any digital signature scheme and are therefore not ideal for
the TLS or similar applications. The authors in [25] only
present results for the three PKE/KEM schemes and do not
include a digital signature scheme. Thus, the compact and
unified implementation of the two types of cryptographic
primitives is a less explored problem.

We propose design methodologies for realizing a
compact yet fast cryptoprocessor for performing both
lattice-based signature and key-exchange operations. In
this work, we focus on lattice-based schemes because there
are several PKE/KEM and signature schemes based on
lattice problems. In the Status Report on the Second
Round of the NIST PQC Standardization Process [26],
NIST mentioned that PKE/KEM-finalist CRYSTALS-Kyber
and signature finalist CRYSTALS-Dilithium (which we
refer to as ’Dilithium’ for the rest of the paper) ‘have
a common framework’. However, no such synergies
have been indicated for the other lattice-based finalist
candidates Saber, NTRU, or Falcon. Both CRYSTALS-
Kyber and Dilithium use Number Theoretic Transform
(NTT) friendly parameter sets. Therefore, they have some
obvious similarities. Interestingly, synergies in the other
lattice-based schemes have not been explored yet. As a
case study, in this paper, we choose the signature finalist
Dilithium [27] and PKE/KEM finalist Saber [28] for the
unified cryptoprocessor. While Dilithium is NTT-friendly,
Saber is NTT-unfriendly. Therefore, they seem to have no
obvious similarities, which makes our work interesting.

Our Contributions: Our goal is to design a unified and
flexible cryptoprocessor architecture that can compute the
lattice-based signature Dilithium and PKE/KEM Saber with
a balance between area and performance. We make the
following contributions towards our goal.

1) Polynomial multiplication is a time- and area-
consuming operation in both schemes. To real-
ize a unified polynomial multiplier, we use the
NTT method of polynomial multiplication for both
Dilithium and Saber. That particular algorithmic
choice is made as Dilithium [27] makes NTT-based
polynomial multiplication an integral part of the
scheme. To use NTT-based polynomial multiplica-
tion in Saber, we show how to choose an appropriate
prime for Saber’s NTT. Next, we show that by using
Dilithium ’s prime, Saber could use the polynomial
multiplier of Dilithium readily at the cost of a negli-
gible execution error probability. Finally, we design
a unified NTT multiplier for Dilithium and Saber.

2) Both Dilithium and Saber make use of Keccak-based
pseudo-random number generations and hash cal-
culations. At the same time, the two schemes per-
form pre-and post-processing of the data at the
input and output of the Keccak module differ-
ently. To make our cryptoprocessor compact with-
out compromising speed, we implement an op-
timized wrapper around the Keccak module for
performing scheme-specific pre/post-processing of
data on the fly. That reduces both the area and the
cycle counts significantly.

3) The building blocks that are specific to Dilithium or
Saber, are optimized to reduce their memory access
overheads and area. Although these scheme-specific
blocks have a linear time complexity, we observe
that their optimized implementations (for all the
security parameters) in hardware require low-level
bit and word manipulations.

4) Starting from the optimized building blocks, we
construct a programmable instruction-set architec-
ture (ISA). The ISA computes all the signature and
KEM routines of Dilithium and Saber and supports
all the security levels of the two schemes.

5) The designed ISA offers the parallelism to execute
several data-independent instructions concurrently
so that the KEM and signature operations get faster.
The data memory of the ISA is organized to enable
concurrent reads/writes by the parallel instructions.
With the parallel execution of instructions, we ob-
tained significant reductions in the number of cycles
for both Saber (e.g., 10%, 13%, and 15% during
decapsulation for LightSaber, Saber, and FireSaber
respectively) and Dilithium (e.g., 20%, 25%, and 28%
during signature generation for Dilithium 2, 3, and
5 respectively).

Although as a case study we took Dilithium and Saber,
a similar methodology can be used for making unified
cryptoprocessors for the other PKE/KEM and Signature
schemes. The designed instruction-set architecture can also
be generalized to support other algorithms, thus making
it ’crypto-agile’, which is a desired and a much-required
aspect of modern-day cryptoprocessor design.

The paper is organized as follows. Sec. 2 briefly describes
the Dilithium and Saber protocols and their internal sub-
routines. Sec. 3 identifies the synergies in the two schemes.
Next, in Sec. 4 the synergies are used to design the crypto-
processor. The section describes the design methodologies
in detail. Area and performance results are presented in
Sec. 5. Discussions on extending the cryptoprocessor for
supporting other schemes are presented in Sec. 6. The final
section draws the conclusions.

2 PRELIMINARIES

This section gives the specifications of Dilithium and Saber.
Saber [28] is an IND-CCA secure KEM and its security relies
on the hardness of the Module Learning With Rounding
(MLWR) problem. It has three variants: LightSaber, Saber,
and FireSaber targeting different security levels. All of these
variants use the same polynomial rings Rq = Zq[x]/〈xn+1〉
and Rp = Zp[x]/〈xn + 1〉 with polynomial degree n = 256
and the power-of-two moduli q = 213 and p = 210. The
three variants use different module-dimensions and secret-
distributions. Dilithium [27] is a digital signature scheme
and its security is based on the computational hardness
of the Module Learning With Errors (MLWE) and Module
Short Integer Solution (MSIS) problems. Depending on the
size of the module Rk×`q with k, ` > 1, Dilithium also comes
with three variants, namely Dilithium-2, 3, and 5 for the
NIST-specified security levels 2, 3, and 5 respectively [27].
All the three variants of Dilithium use the polynomial ring

3

Rq = Zq[x]/〈xn + 1〉 with n = 256 and q = 223 − 213 + 1, a
prime modulus.

2.1 Saber modules

We briefly describe the internal routines of Saber. For a de-
tailed description of them, readers may follow the original
specification of Saber [28].

• gen(): It expands a uniform seed ρ ∈ {0, 1}256
using the Keccak-based expandable output func-
tion SHAKE-128 and generates the public matrix
AAA ∈ Rl×lq .

• βµ(): It samples a secret polynomial vector (sss) from
a binomial distribution with the parameter µ.

• Hash functions: Saber uses three hash functions: F(),
H() and G(). The F() and H() are implemented
using SHA3-256 while G() is implemented using
SHA3-512. All hash functions are Keccak-based.

• Polynomial arithmetic: They include polynomial
multiplication, polynomial addition/subtraction,
coefficient-wise rounding using bit-shifting, equality
checking of two polynomials, etc.

• Verify and CMOV: Verify is used to perform ci-
phertext equality check during decapsulation. The
result of Verify is stored in a flag register that is
used by CMOV (constant-time move) to either copy the
decrypted session key or a pseudo-random string at
a specified location.

• AddPack: It performs the operation (v+ h1−2εp−1m
mod p).(εp− εT) on a message bits m using precom-
puted polynomial v and constant h1.

• UnPack: It performs the operation (v+h2−2εp−εT cm
mod p)(εp−1) on a ciphertext cm using precomputed
polynomial v and constant h2.

• AddRound: It performs the operation (((AT + s) mod
q).(εq − εp)) using pubilic matrix vector A and secret
vector s.

2.2 Dilithium modules

We briefly describe the internal routines of Dilithium. For
a detailed description of them, readers may follow the
original specification of Dilithium [27].

• ExpandA(): This function uses SHAKE-128 to gener-
ate the polynomials of the public matrixAAA ∈ Rk×`q in
parallel by expanding the common seed ρ ∈ {0, 1}256
along with different 16-bit nonce values.

• ExpandS(): It is used to generate the secret polyno-
mial vectors sss1 and sss2 ∈ S`η × Skη . For each polyno-
mial the seed ς and a 16-bit nonce are fed to SHAKE-
256 and the squeezed output is given to the rejection
sampler for sampling the signed values in the range
{−η, η}.

• Power2Roundq(): This function takes an element r =
r1 · 2d + r0 and returns r0 and r1, where r0 = r
mod ±2d and r1 = (r − r0)/2d.

• HighBitsq() and LowBitsq(): Let α be a divisor of
q − 1. The function Decomposeq() is defined in the
same way as Power2Round() with α replacing 2d in
Power2Round().

• MakeHintq()/UseHintq(): MakeHint uses
Decomposeq() to produce a hint hhh. UseHint
uses the hint hhh produced by MakeHintq() to recover
the high-bits.

• CRH(): This is a collision-resistant hash function
which utilizes 384 bits of the output of SHAKE-256.

• SampleInBall(): It fills a polynomial with only τ
coefficients set to +1 or −1 and the remaining coeffi-
cients as 0.

• ExpandMask(): This function expands (ρ́ ‖ κ) string
to generate a polynomial vector. The SHAKE output
is broken into a sequence of positive integers in the
range [0, 2γ1 − 1] and these are processed using a
rejection sampling.

• Polynomial Arithmetic and NTT(): Polynomial multi-
plications are performed using the NTT method.

The signing operation generates a potential signature and
checks a set of constraints on the generated signature. If
satisfied, a valid signature is produced as the output; other-
wise, the loop continues with generating another potential
signature.

3 SYNERGIES AND DESIGN DECISIONS

To design a compact and unified cryptoprocessor that sup-
ports multiple schemes, the most important step is to iden-
tify synergies in the cryptographic schemes. The synergies
will make resource-sharing possible and therefore reduce
area and memory overheads.

In this work, we aim for a unified architecture for
Dilithium and Saber schemes as a case study. Therefore, we
will focus on synergies between these two schemes and the
corresponding design decisions. In this section, we identify
the most important synergies in Dilithium and Saber.

Both Dilithium and Saber are based on module lattices
and therefore they share several structural similarities. For
example, both schemes operate on matrices and vectors
of polynomials where the polynomials are always of 256
coefficients. Hence, the underlying polynomial arithmetic
operators are common to Dilithium and Saber. Furthermore,
both schemes use Keccak-based hash functions and pseudo-
random number generators. Interestingly, the accumulated
time spent on polynomial multiplications, pseudo-random
number generations, and hash calculations in the two pro-
tocols is around 90% of the overall protocol execution
time [29]. In summary, we observe that the most time-critical
primitives in Dilithium and Saber have similarities.

3.1 Polynomial multiplication, pseudo-random number
generation, and hash computation
We have two options for implementing polynomial mul-
tiplications in Dilithium and Saber. The first option is to
instantiate an NTT-based multiplier for Dilithium (which
uses a prime modulus) and a schoolbook or Toom-Cook
or Karatsuba multiplier for Saber (which uses power-of-
two moduli) following [5] so that both schemes can be
executed at their optimal speeds. One big disadvantage of
this approach is that the architecture results in a large area
requirement due to the presence of scheme-specific multi-
pliers. Furthermore, a large area requirement could poten-
tially slow down the clock frequency of the implementation

4

due to the increased routing and placement complexities.
The other option is to instantiate a common polynomial
multiplier for both Dilithium and Saber. In this case, the
common polynomial multiplier must be NTT-based as the
specification of Dilithium [16] makes the use of NTT-based
multiplication an integral part of the protocol. Saber [28]
could use any type of polynomial multiplication method,
including the NTT-based one.

Both Dilithium and Saber use the Keccak-based hash
function SHA3 and pseudo-random number generator
SHAKE. Therefore, both schemes could use a common Kec-
cak core along with an appropriate wrapper around the core
for realizing different SHA3 and SHAKE functionalities.

3.1.1 Prime selection for Saber
To use the NTT-based polynomial multiplication in Saber, a
sufficiently large NTT-friendly prime q′ is needed to ensure
the correctness of the multiplication [30]. The polynomial
multiplication will be erroneous if a true modular reduction
by q′ takes place during the internal computation steps. We
have two main options for choosing the prime q′. The first
option is to choose a sufficiently large q′ to ensure no true
modular ever happens. The other option is to use a relatively
smaller prime that offers some computational advantages
over the first option while keeping the error probability
negligible. We describe both options in the following part
of this subsection.
Prime selection for error-free multiplication in Saber: To
select a prime for Saber which will work for all security
levels of Saber without any error, we consider the maximum
value that a polynomial coefficient can have after the poly-
nomial multiplication operation. In Saber, one of the input
polynomials of a polynomial multiplication operation is
always a secret key polynomial which has small coefficients
in the range [−µ2 ,

µ
2] where µ is 10, 8, 6 for LightSaber, Saber,

FireSaber, respectively [28]. Similarly, the second polyno-
mial operand of the polynomial multiplication operation in
the Saber scheme is always a polynomial with coefficients
in the range [0, q − 1] where q = 213. If we remap the coef-
ficients in [0, q − 1] to respective coefficients in [− q2 ,

q
2 − 1],

then the maximum value that a coefficient of the polynomial
multiplication result can have is µ

2 ·
q
2 ·n = 5·212·28. Similarly,

the minimum value that a coefficient of the result can have
is −5 · 212 · 28. Therefore, a 24-bit prime q′24 can be used in
Saber as it will be larger than 2 · 5 · 212 · 28 and therefore
no true modular reductions will ever take place during a
polynomial multiplication.

In Saber, polynomial matrices and vectors are multiplied
and therefore several polynomial multiplication results are
accumulated. These accumulations can be performed di-
rectly in the NTT domain to avoid unnecessary inverse NTT
transforms. Taking the accumulation into consideration, the
maximum and the minimum values that a coefficient of the
accumulated result can have will be larger than µ

2 ·
q
2 · n

or lower than −µ2 ·
q
2 · n, respectively. The exact maximum

value will depend on the dimensions of the matrices and
vectors. The public polynomial matrix of Saber has the
dimension l × l where l is 2, 3, and 4 for LightSaber, Saber,
and FireSaber respectively [28]. The vectors are of size l
polynomials. Hence, the maximum value that a coefficient
can take after a matrix-vector multiplication is l · µ2 ·

q
2 · n,

which will be at most 3 · 4 · 212 · 28when Saber or FireSaber
is used. Similarly, the minimum value that a coefficient can
take after a matrix-vector multiplication is −3 · 4 · 212 · 28.
Therefore, q′ is required to be at least 25-bit to ensure the
zero error probability for the matrix-vector multiplication in
Saber. We selected the 25-bit prime q′25 = 225 − 214 + 1 for
implementing the error-free matrix-vector multiplication of
Saber. The sparse structure of the prime enables a fast and
lightweight modular reduction circuit.
Prime selection for ensuring a negligible error probability:
In the previous subsection, we saw that a 25-bit prime
is required when we consider the worst-case scenario. In
practice, the probability of having a polynomial coefficient
close to the worst-case bound is negligible as the coefficients
of the secret polynomials are binomially distributed in the
range [−µ2 ,

µ
2] and the coefficients of the public polynomials

are uniformly distributed in the range [0, q − 1]. One attrac-
tive choice is the 23-bit prime modulus of Dilithium. With
this special prime, Saber can trivially use the NTT-based
polynomial multiplier of Dilithium for computing its own
polynomial multiplications. At the same time, we must be
sure that the smaller prime does not cause a non-negligible
error probability.

Now we describe a method for estimating the probability
of getting an error when a prime smaller than 25-bit is
used in Saber’s NTT. Note that, an error will happen when
any resultant coefficient after a matrix-vector multiplication
satisfies |coeff.| > q′/2 causing a true modular reduction by
q′. To keep the analysis simple, we assume that the secret
coefficients are also uniformly distributed in [−µ2 ,

µ
2]. When

we perform a polynomial multiplication between a secret
polynomial and a public polynomial, both of which follow
uniform distributions, Irwin-Hall states that the coefficients
of the resultant polynomial will follow a normal distribu-
tion [31]. Note that a binomially distributed polynomial is
significantly sparse compared to a uniformly distributed
polynomial in the same range. Hence, the assumption that
the secret coefficients follows uniform distribution enables a
more conservative approximation (i.e., an upper bound) of
the computation error probability.

We experimentally verified the above statement. We
used a python script to generate pairs of polynomials where
the coefficients of the first polynomial are uniformly random
in the range [−µ2 ,

µ
2]. For the coefficients of the second

polynomial, we experimented on both [−q/2, q/2 − 1] and
[0, q− 1], and selected [0, q− 1] to get the more conservative
measurement. Then the two polynomials within a pair are
multiplied. The experimentation was performed for millions
of independent pairs. The scattered cyan plot in Fig. 1 shows
the distribution of the resultant coefficients from our exper-
imentation. We observe that the experimental distribution
closely resembles a normal distribution, and therefore the
Irwin-Hall statement is found to be valid in this polynomial
multiplication scenario. From the experimental data, the
mean and the standard deviation were calculated to plot
the theoretical normal distribution (in black color) in Fig. 1.

When such l independent polynomial multiplication re-
sults are accumulated, the resultant coefficients will follow
a normal distribution with the mean and standard deviation
increasing by l and

√
l times respectively. In Table 1 the dis-

tribution parameters are presented for all the three security

5

Fig. 1. Distribution of a coefficient after a multiplication between a secret
and a public polynomial. The secret and public coefficients are in the
range [−µ

2
, µ
2
] and [0, q − 1], respectively.

TABLE 1
Distribution parameters and error probabilities

LightSaber Saber FireSaber
Mean 115.72 48.06 -29.32
Std. dev. 119708.81 97825.69 75672.40
Accumulated mean 231.45 144.18 -117.28
Accumulated std. dev. 169293.83 169439.06 151344.81
P(|coeff.| > q′24/2) 2−1774 2−1837 2−2219

P(|coeff.| > q′23/2) 2−449 2−448 2−558

levels of Saber.
Next, we used the cumulative distribution function of

the normal distribution to estimate the upper bound for
the error probability. Table 1 shows the error calculation for
a 23-bit prime (q′23 = 223 − 213 + 1) and a 24-bit prime
(q′24 = 224 − 214 + 1). We can see that the upper bound
is extremely low for both the primes. Therefore, the use of
Dilithium’s 23-bit prime in Saber’s NTT-based polynomial
multiplication causes negligible error possibilities for all
three security levels of Saber.

The authors in [32] also provide an error probability es-
timate, when Dilithium’s prime is used for Saber. They used
combinatorics to count all the possible combinations of a
polynomial pair that can lead to an error after a polynomial
multiplication. Their approach is specific to a single poly-
nomial multiplication as they do not take the accumulation
of polynomial multiplication results into consideration for
calculating the error probabilities.

3.2 Remaining scheme-specific building blocks

The remaining building blocks in the two schemes do not
share many similarities and they mostly perform simpler
operations (i.e., addition, packing) of linear time complexity
compared to the polynomial multiplication and pseudo-
random number generation operations. To further reduce
the area consumption, an option could be to resource-share
a common set of arithmetic circuits (e.g., addition and
subtraction) with algorithm-specific finite state machines for
generating the control signals. This design decision might
decrease the area and at the same time might make the
overall design complex and serial instead of parallel. There-
fore, to make the design simple and easily configurable,
we decide to keep the scheme-specific blocks separate in
the implementation. However, we do perform optimizations
within these blocks. For example, we combine all the differ-

Fig. 2. The high-level design of the cryptoprocessor with the Saber,
Dilithium and common modules are in green, blue and red, respectively.

ent packing and unpacking methods required by Dilithium
to make a unified pack/unpack unit that consumes much
less area when compared to separate implementations.

4 OPTIMIZED HARDWARE ARCHITECTURE

In this section, we describe how we design a compact and
unified architecture for the lattice-based signature scheme
Dilithium and PKE/KEM Saber. Our target is to support all
the subroutines and all the security levels of Dilithium and
Saber in the same cryptoprocessor. Therefore, we choose
the instruction-set architecture (ISA) framework for devel-
oping our unified cryptoprocessor. In this framework, the
primitive building blocks are ‘instructions’ that are called in
an appropriate sequence during the execution of a crypto-
graphic protocol. Therefore, programmability or flexibility is
inherent to the ISA framework, which is a desirable feature
for supporting multiple cryptographic schemes.

The high-level block diagram of the proposed unified
cryptoprocessor is shown in Fig. 2. The unified crypto-
processor for Dilithium and Saber has a common NTT-
based polynomial multiplier, a common Keccak-core (with
a wrapper around it), and all the scheme-specific building
blocks. The first two are the most expensive in terms of both
computation time and area requirements, and thus they
must be well optimized to make our unified cryptoprocessor
compact and efficient.

4.1 NTT-based unified polynomial multiplier

This section describes the design decisions we make for
implementing the NTT-based polynomial multiplier archi-
tecture for Dilithium and Saber.

Following the official reference code of Dilithium, we
use the Cooley-Tukey (CT) and Gentleman-Sande (GS) but-
terfly configurations for the NTT and inverse NTT (INTT)
respectively. Fig. 3 shows the internal blocks of the uni-
fied butterfly core. The proposed unified butterfly core can
work with both CT and GS butterfly configurations. Both
butterfly configurations perform operations using unsigned
arithmetic in a unified butterfly core. The circuits are all
pipelined to achieve high clock frequency.
Efficient modular reduction unit: If Dilithium’s prime is
used for Saber’s NTT, then just having an efficient modular

6

Fig. 3. Internal architecture of the unified butterfly unit. The dotted
routing lines for signals a and b are used to represent long interconnects

Fig. 4. Unified modular reduction unit

reduction circuit for the 23-bit prime will be sufficient.
Otherwise, if Saber uses the 24-bit or 25-bit primes (that
are different from Dilithium’s prime) then a resource-shared
modular reduction circuit will be required. As the primes
have a similar pseudo-Mersenne structure, designing and
implementing a unified modular reduction unit will have
a very small area overhead compared to a single prime-
specific reduction unit. We followed the add-shift-based
modular reduction method [33] and used a similar fast mod-
ular reduction technique for a unified modular reduction
unit. Both Dilithium and Saber primes have the form of
q = 2x − 2y + 1 which allows efficient modular reduction
operation by using the property 2x ≡ 2y − 1 (mod q)
recursively.

When the Dilithium prime is used for both schemes, a
modular reduction unit for 223 − 213 + 1 is implemented
and used for both schemes. The property 223 ≡ 213 − 1
(mod q) is used recursively (i.e., c[45 : 23] · 223 + c[22 : 0] =
c[45 : 23] · (213− 1) + c[22 : 0]) to generate six partial results
which are added efficiently using a carry save adder tree.
Finally, a correction is performed to bring the result to the
range [0, q − 1].

When Saber uses 25-bit (or 24-bit) prime, a unified
modular reduction unit for 223 − 213 + 1 and 225 − 214 + 1
(or 224 − 214 + 1) is implemented. Since both primes have
similar structures, six partial results are generated for each
reduction. Then, partial results are selected based on the
scheme in use and the same steps are followed as modular
reduction unit for the Dilithium prime. Fig. 4 shows the
high-level diagram of unified modular reduction unit.
Memory arrangement: As one butterfly core consumes two
coefficients and simultaneously produces two coefficients
every cycle, we always keep two coefficients in a single
memory-word following [34]. This enables reading/writing
two coefficients by just one memory-read/write. Our NTT

Fig. 5. High-level architecture of polynomial arithmetic unit

unit has two such butterfly cores in parallel to reduce the
cycle count of NTT. To feed the two butterfly cores, we
spread the coefficients into two BRAM sets. This spreading
is necessary as one BRAM-set could feed only one butterfly
core due to the limitations in the number of read/write
ports. In this way, a polynomial of 256 coefficients occupies
a total of 128 memory words of which 64 are in the first
BRAM set and the remaining 64 are in the other BRAM set.
Note that generally, the efficient implementations propose
that the coefficients which are to be processed are stored
together, and this is maintained throughout the NTT/INTT
iterations. However, since the coefficients are generated
sequentially we plan to utilize them in the same way instead
of preprocessing them to use the strategies existing in the
literature.

Fig. 6 shows the arrangement of coefficients in memory
words during NTT loop-iterations using a toy example.
During the NTT loops, the newly generated coefficients
are written back in the BRAMs such that during the next
iteration of the NTT loop, the required coefficients for each
butterfly can be read as a pair from the memory. In the
first iteration, the coefficients (shown in blue color in Fig. 6)
zero-and-eight are input to the first butterfly unit and the
coefficients one-and-nine are input to the second butterfly
unit. After the first iteration, we want the processed coeffi-
cients eight-and-nine to be stored in BRAM1, at the address
where currently coefficients four-and-five are stored. This
will simplify the coefficient read pattern during the next
iteration of the loop. Because coefficients four-and-five have
not been processed yet, we can not write new values to
their memory location. We solve this problem by changing
the order in which the coefficients are processed. Hence,
we read the coefficients four-and-five, and similarly twelve-
and-thirteen immediately after reading the coefficients zero-
and-one, and eight-and-nine respectively.

We add pipeline stages in between to avoid conflicts
when writing coefficients eight-and-nine while reading co-
efficients four-and-five. Thus simplifying the control logic
of the NTT and avoiding any read-write conflict. One NTT
or INTT operations take 512 clock cycles only. A high-level
view of the complete polynomial arithmetic unit architec-

Fig. 6. Coefficients in memory for 3 iterations of NTT for n = 16

7

ture is shown in Fig. 5. For simplicity, we have designed two
separate controllers for NTT/INTT and remaining arith-
metic operations.
Post-processing elimination after INTT operation: At the
end of the INTT operation, the resulting coefficients are
scaled by 1/n, which requires extra n modular multipli-
cations. In our design, this extra scaling is removed by
performing division by two in (mod q) for each butterfly
operation output in Gentleman-Sande configuration during
INTT operation. The division by two in (mod q) can be
performed using only add and shift operations as shown in
Eqn. 1 [33]. This way both the NTT and INTT implemen-
tations in our architecture are of the same cost and require
no post-processing. This technique reduces the cost of INTT
operation by 20% at the expense of slight increase in the
hardware logic.

x

2
(mod q) = (x� 1) + (x & 0x1)× (q + 1)

2
(1)

4.2 SHA3-256/512 and SHAKE-128/256 unit
Many PQC schemes such as Dilithium and Saber use
Keccak-based operations such as hash function SHA3 and
pseudo-random number generator SHAKE. For implement-
ing the Keccak-based hash and expandable output func-
tions, we instantiate a single high-speed Keccak core in the
proposed cryptoprocessor architecture. Implementation of
the Keccak core is similar to the high-speed Keccak core
available on the website of Keccak-team [35]. We use a
wrapper module around the Keccak core to perform parsing
of input and output data bits. Additionally, the state buffer
has been changed so that the pseudo-random polynomial
coefficients can be generated in scheme-specific optimal
representations and then stored immediately in the memory
of the cryptoprocessor. This strategy helps reduce the overall
cycle counts for both Dilithium and Saber.

The type of parsing varies for different operation modes.
For example, the public polynomials of Saber are gener-
ated by directly picking 13-bit coefficients from SHAKE-
128 output. Whereas, the secret polynomials are generated
by passing the SHAKE-128 output to a binomial sampler.
Similarly, Dilithium’s public and secret polynomials are
generated using different types of rejection samplers. To
explain the wrapper, we take Saber’s public polynomial
generation as a case study and later discuss how we use
a similar methodology for different samplers.
Generating Saber’s public polynomials: Saber’s public
polynomials, generated using SHAKE-128, have a 13-bit co-
efficient size. Before these polynomials are multiplied, they
are converted into the NTT representation in our unified
cryptoprocessor. As described in Sec. 4.1, the NTT unit re-
quires its operand data to be present in ‘two coefficients per
BRAM word’ format, for reading and writing the coefficients
efficiently. One option for processing the public polynomials
will be to generate a continuous bitstream in 64-bit words
(which is the default output format of Keccak), then store
the words in BRAMs, and later parse them into 13-bit co-
efficients using separate parser hardware. This approach is
sequential by nature and results in a bloated cycle count and
area consumption due to required parsing buffers. To avoid
such a redundant memory read/write step, we modify the

Fig. 7. Example of bookkeeping with 18 remaining bits

output buffer of Keccak to directly produce a pair of 13-bit
coefficients during the generation of the public matrix AAA.
However, this strategy requires a book-keeping mechanism
as the output length of a SHAKE-128 squeeze operation is
1,344 bits which is not a multiple of 13. Therefore, after
each squeeze of SHAKE-128, there will be leftover bits that
must be prepended to the output string generated by the
next SHAKE-128 squeeze operation. We observe that during
the generation of AAA in Saber, the number of leftover bits is
always an even number in [0, 24]. We use this observation
to simplify the implementation of the Keccak-output buffer.

The prepending of the leftover bits to a newly generated
SHAKE-128 squeeze output requires shifting and filling of
the buffer bits. As the size of the Keccak output buffer (when
operated as SHAKE-128) is 1,344 bits, which is quite large,
we investigated efficient implementation techniques that
reduce the area-overhead without affecting the cycle count.
The naive method is to implement a simple multiplexer
that updates the output buffer with 1,344 bits of the Keccak
state and the leftover bits. But since there can be 13 (even
numbers in [0, 24]) such possibilities we will require a
13-to-1 multiplexer for assigning to a buffer of size 1,368
(=1344+24) bits. With this implementation option, there are
13 shift possibilities and as a consequence, the multiplexing
overhead is ≈8000 LUTs, which is large. We aim to make a
very efficient and lightweight design on hardware, therefore
we need a much better solution.

We proposed an efficient method for handling the re-
maining bits using a small ‘left-over-bits buffer’. After the
Keccak squeeze is done, we write the remaining bits to
the left-over-bits buffer. To avoid using a multiplexer for
deciding on the number of remaining bits we need to pick,
we just write the last 24 bits, which is the maximum possible
number of remaining bits. To put these remaining bits in
the Keccak output buffer, we first need to align the bits in
the left-over-bits buffer to the left. In order to reduce the
hardware cost, we decide to use only ’shift by two’ or ’shift
by four’ operations for this alignment. Finally, the content
of this left-over-bits buffer is concatenated at the beginning
of the Keccak output buffer, using only ’shift by two’ or
’shift by four’ operations. An example for handling 18
leftover bits using the proposed left-over-bits buffer method
is illustrated in Fig. 7. Since we run Keccak in parallel with
NTT, the extra cycle count for this bookkeeping does not
account for an increase in the total cycle count.
Other sampling operations: Saber uses a binomial sampler
for generating secret polynomials which is implemented as
a separate unit. Dilithium requires three different rejection

8

Fig. 8. High level architecture of Keccak that supports all the modes of
Keccak as well as samplers

sampling: uniform, η, and γ sampling. For the uniform and
η sampling, we need to extract 24 and 4 bits from the Keccak
output buffer, respectively, and we can utilize Keccak output
fully after every squeeze. On the other hand, the γ sampling
needs 18 or 20 bits from the Keccak output and it does
not utilize the Keccak output fully after every squeeze with
some leftover bits.

The same approach of shifting the output buffer and
leftover bit buffer as described in the previous section can be
used for γ sampling as well. However, this leads to a Keccak
output buffer generating six different types of outputs 4,
13, 18, 20, 24, and 64 bits. This can be controlled using a
multiplexer, which in hardware is very expensive. In order
to reduce the cost, we take an intermediate smaller buffer
of size 192 bits (=lcm(4, 24, 64)) and use it for squeezing the
results for 4, 24, and 64 bits. The Keccak output buffer then
outputs only four different types of outputs 13, 18, 20, and
192 bits, thus saving around ≈1200 LUTs in FPGAs. A high-
level view of the complete architecture of SHA-SHAKE unit
with samplers is shown in Fig. 8. The datapaths for Keccak
modes and samplers are coalesced together into one unit.
This is then controlled by the squeeze controller.

4.3 Remaining scheme-specific building blocks

In the above sections, we discussed how we efficiently im-
plement a common polynomial arithmetic unit for Dilithium
and Saber. We also discussed the optimized implementation
of other major area-consuming blocks. In this section, we
discuss how we implement the remaining building blocks
and various instructions that our cryptoprocessor provides
to realize a flexible instruction-set cryptoprocessor. Note
that the output given after the polynomial multiplication
now has two coefficients per word instead of 4 coeffi-
cients per word storage style used in [5]. This causes Saber
building blocks to consume more clock cycles however,
we are able to avoid the extra clock cycles required for
pre-processing the input for feeding into these modules.
Architectures for the Saber-specific modules are as follows.

• Modules ’Unpack (Saber)’, ’AddPack’, and ’Ad-
dRound’, provided in Table 2 Instruction Set-
2, which can run in parallel with Keccak’s
SHA/SHAKE and all the other instructions provided
in Instruction-Set 1.

• ’CMOV’, ’Verify’, and ’COPY’ also have the ability to
run in parallel with instructions in Set-1.

• Instruction ’Binomial Sampler’ is provided in Set-1.
Thus, while one polynomial is being generated and
passed through the binomial sampler, the previously

generated polynomial can be transformed to the NTT
domain in parallel.

• Instruction ’BS2POLVEC’ converts byte-stream to
vector form as required by the NTT module for one
polynomial at a time. and can be run in parallel with
Set-2 instructions.

Architectures for the Dilithium-specific modules are as
follows.

• Module ’Pack-Unpack (Dilithium)’, in Table 2
Instruction-Set 1, allow unpacking/packing of poly-
nomials while performing transformation or polyno-
mial arithmetic on already/to-be unpacked/packed
polynomials, in parallel.

• Module ’SampleInBall’ requires the memory to be
refreshed with zeroes. For this ’Refresh Memory’
instruction is provided in Set-1. Once the memory is
refreshed, SampleInBall instruction provided in Set-2
can be used.

• Instruction ’Encode H’ provided in Set-2 is used to
pack the polynomials which are then fed to SHAKE-
256 for hashing.

• Instructions ’Decompose’ and ’Power2Round’, in
Set-1 and Set-2 respectively, are implemented as per
the specification, consuming 128 clock cycles for pro-
cessing one polynomial.

• ’MakeHint’ and ’UseHint’ modules require Decom-
pose function. Since this is an instruction-set proces-
sor we use the existing Decompose module instead
of making duplicate implementations and just imple-
ment the equality checkers in MakeHint and UseHint
modules, which return the desired output.

• Instruction ’Counter ref’ is provided in Set-2, to en-
sure that the MakeHint counter for the hamming
weight becomes zero if the loop exit conditions are
not satisfied.

• Dilithium uses the same seed with different nonce
values for generating polynomials. Naively in hard-
ware, we can make copies of seeds with differ-
ent nonce values to generate different polynomials.
However, this is inefficient and occupies extra mem-
ory. We provide a ’Write instruction’ in Set-1 which
can be used to store a nonce of user’s choice after the
seed. Thus, not only saves memory but allows the
user flexibility to generate polynomials in any order.

• Instruction ’Verify (Dilithium)’ in Set-1 is used to
verify the conditions for a valid signature during the
signing procedure. In case the verification conditions
are not met, it sends back the instruction pointer to
the instruction which marks the start of the for loop.

4.4 Parallel processing of instructions

We observe that both Dilithium and Saber protocols have
data-independent instructions. Therefore, it is possible to
speed up the two protocols by executing data-independent
instructions in parallel (when possible). Such parallel pro-
cessing of low-level operations has been explored in the
works [36], [37]. They design block-pipelined architectures
(that are different from instruction-set architectures) and

9

Fig. 9. Operation scheduling of LightSaber PKE encryption

place the building blocks in such a way that several data-
independent computation steps are overlapped (i.e., exe-
cuted in parallel) using the dedicated blocks in the cor-
rect order. While an instruction-set-based cryptoprocessor
offers significant flexibility over a block-pipelined (there-
fore specific) architecture, overlapping of data-independent
‘instructions’ becomes a relatively challenging task. Imple-
menting the parallel processing of instructions requires a
complicated synchronization and control mechanism, e.g.,
scheduling of instructions, detecting completions of con-
current instructions, initiating new instructions, managing
the data memory, etc. In our work, we apply overlap-
ping of data-independent computations in the context of
an instruction-set architecture and execute data-independent
Keccak-based and polynomial arithmetic-based operations
in parallel. This strategy effectively reduces the overall cycle
count at the cost of a negligible area overhead.

When the instructions are run in parallel they need to
read/write data from memory simultaneously. Since one
BRAM can only offer us one set of read/write ports, we
needed to come up with an efficient solution. To support
the parallel execution of Keccak and polynomial arithmetic,
we split the memory unit into four BRAM sets. While
the NTT unit occupies read and write ports of any two
BRAM sets, the Keccak unit works with the remaining
two sets. This is discussed in detail later in Section 4.5.
We also add a program controller unit that loads all the
instructions in an instruction RAM and then sends them
one by one to the compute core for processing in parallel
or sequence as specified in the instruction. The two types
of instructions are stored together along with 4 control bits
in the Instruction RAM. Fig. 9 shows the instruction flow
for LightSaber.PKE.Enc(). We can see the instructions in
Set-1 working in parallel with instructions in Set-2 given
in Table 2. We achieve a reduction of 10%, 13%,and 15%
in cycle count during decapsulation for LightSaber, Saber,
and FireSaber respectively. For Dilithium signature gener-
ation we reduce the cycle count by 20%, 25%,and 28% for
Dilithium 2, 3, and 5 respectively.

4.5 Organization of data memory

We need to ensure that our cryptoprocessor has sufficient
memory to support all the variants of both Dilithium and
Saber. For this, we consider the highest security variants
as they require matrices and vectors of the highest di-
mensions. The signature generation function in Dilithium

TABLE 2
Instructions where an instruction from the first column can be run in

parallel with an instruction from the second column.

Instruction Set-1 Instruction Set-2

S+
D

Reset Keccak NTT
SHA-256/512 INTT
SHAKE-128/256 Coefficient-wise multiply
SHAKE intermediate reset Coefficient-wise add
SHAKE resume Coefficient-wise subtract

Sa
be

r SHAKE-128 (writing 26 bits) AddRound/AddPack
BS2POLVEC Unpack (Saber)
Binomial Sampler Verify/CMOV/COPY

D
ili

th
iu

m
SHAKE-128 rej. [0, q − 1] SampleInBall
SHAKE-256 rej. [-η, η] Encode H
SHAKE-256 rej. [-(γ - 1), γ - 1] Power2Round
Pack-Unpack (Dilithium) MakeHint
Decompose/Verify (Dilithium) UseHint
Write Inst./Refresh Memory Counter ref

and the decapsulation function in Saber are the most time-
consuming functions and also require the highest amount
of data storage. For the Dilithium variant with the NIST
security level 5, the public matrix consists of 56 polynomials.
During signing operation, we need to precompute and store
the secret key consisting of 23 polynomials, in the NTT
domain. FireSaber has much smaller requirements as its
public matrix and secret vector comprise only 16 and the 4
polynomials respectively. Thus Dilithium-5 determines the
overall memory requirement of the cryptoprocessor.

Storing the entire public matrix in the memory makes the
signing operation faster as it is used in the for a loop several
times. If we pre-compute and store all the polynomials, we
require storage for 79 polynomials before the signing loop
starts along with seeds and hash values. Also, we need
to store intermediate results during the signing operation,
which further increases the memory requirement. In the
proposed work, we use the ability of our cryptoprocessor
to process data-independent instructions in parallel. Instead
of generating and storing the public matrix at once, we
generate it on the fly in parallel to the polynomial multipli-
cation operation, thus reducing more than half the memory
requirement without compromising the performance.

As we discussed in the previous section our data mem-
ory length is 64-bit and so we store 2 coefficients per word
of data memory. With all the constraints in consideration
and flexibility requirements in place, the implementation of
Saber requires only four BRAM36K units while Dilithium
requires 20 BRAM36K. The proposed cryptoprocessor uses
parallel memory organization to ensure efficient load and
storage of polynomials. This is especially important for the

10

parallel execution of NTT and Keccak operations. To that
end, the memory was split across four major blocks, with
each of them having five BRAM36K elements, which enables
the parallel execution of NTT and Keccak. The constants
for NTT and inverse NTT are kept in a ROM which is also
interpreted using one BRAMs in our implementation. Along
with this, the program controller which is used to load all in-
structions at once and then handle all the data-independent
executions in parallel requires three BRAM36K.

5 RESULTS

We present three different versions of cryptoprocessor
implementation: (i) the first implementation uses 23-bit
Dilithium prime 223−213+1 for both Dilithium and Saber’s
NTTs, (ii) the second implementation uses 23-bit Dilithium
prime and 24-bit prime 224 − 214 + 1 for Dilithium and
Saber’s NTTs respectively, and (iii) the third implemen-
tation uses 23-bit Dilithium prime and 25-bit prime 225 −
214 + 1 for Dilithium and Saber’s NTTs respectively. They
give us comparative area consumption for the three choices.
The first, second, and third implementations are referred to
as 23-bit, 24-bit, and 25-bit implementations, respectively.
The 23-bit and 24-bit implementations ensure negligible-
error probability for multiplications in Saber while the 25-
bit implementation performs error-free multiplication for
Saber. All three implementations support all the subroutines
and all the security levels of Dilithium and Saber using an
instruction-set architecture framework.

The proposed unified cryptoprocessor architecture is
described entirely in Verilog and it is implemented for FPGA
and ASIC platforms. For FPGA, the 23-bit, 24-bit, and 25-bit
implementations are synthesized and implemented using
Vivado 2019.1 for the target platform Zynq Ultrascale+
ZCU102 with an area-optimized implementation strategy.
The FPGA implementations achieve a 200 MHz clock fre-
quency. In Table 3, we present the resource utilization of
the proposed cryptoprocessor and its main building blocks.
While the multiplier and Keccak (with sampler) blocks
are able to achieve a maximum frequency of 260MHz, the
remaining building blocks can operate at higher frequency.
The implementations with 23-bit/24-bit/25-bit prime use
18,490/18,494/18,406 LUTs (6.9%), 9,308/9,319/9,323 DFFs
(1.7%), 4 DSPs (0.1%) and 24 BRAMs (2.6%). The number of
BRAMs in our cryptoprocessor is determined by the mem-
ory requirement of Dilithium since it is significantly more
memory-consuming than Saber. The Keccak and multiplier
units together consume more than half of the overall area.
For ASIC, the 24-bit implementation is synthesized with
UMC 65nm library with low leakage (LL) process device
option using Cadence tool. For the ASIC implementation,
DSP blocks used for integer multiplications in FPGA are
replaced with ASIC multipliers. The rest of the arithmetic
logic remains the same. The ASIC implementation synthesis
achieves 400 MHz clock frequency with 0.317mm2 area
(≈220 kGE) excluding on-chip memory.

Table 4 presents the cycle count and latency (in µs) for
the operations of Dilithium and Saber for different security
levels in FPGA. With 200 MHz clock frequency in FPGA,
the CCA-secure key generation, encapsulation, and decap-
sulation operations for Saber take 54.9, 69.7, and 94.9 µs, re-

TABLE 3
Area of the cryptoprocessor on the Zynq Ultrascale+ ZCU102 FPGA

platform. All security levels of Dilithium and Saber are supported.

Unit LUTs FFs DSPs BRAMs
ComputeCore 17,164 9,027 4 21

Sa
be

r

bAddPack 398 548 0 0
bAddRound 359 362 0 0
bBS2POLVEC 340 360 0 0
bUnpack (Saber) 393 406 0 0
bVerify (Saber) 103 208 0 0
bCMOV 12 34 0 0
bCOPY 28 98 0 0
bSampler 934 710 0 0

D
ili

th
iu

m

bDecompose 548 286 0 0
bPower2Round 160 64 0 0
bMakeHint 245 119 0 0
bUseHint 609 393 0 0
bEncode H 122 231 0 0
bPack (Dilithium) 740 151 0 0
bUnpack (Dilithium) 296 156 0 0
bSampleInBall 485 260 0 0
bRefresh 4 7 0 0
bVerify (Dilithium) 28 69 0 0

S+
D

bMemory 268 12 0 20
bKeccak+Sampler 8,738 3,482 0 0
bMultipliera 2,341 1,048 4 1
bMultiplierb 2,347 1,059 4 1
bMultiplierc 2,257 1,079 4 1
ProgramController 1,371 260 0 3
Total 18,494 9,319 4 24

a:for 23-bit implementation.
b:for 24-bit implementation. (used for total computation)
c:for 25-bit implementation.

TABLE 4
Performance results for Saber-KEM and Dilithium in FPGA

Operation
LightSaber Saber FireSaber
Dilithium-2 Dilithium-3 Dilithium-5

Cycle Lat.? Cycle Lat.? Cycle Lat.?
Sab.Keygen 5,935 29.6 10,980 54.9 17,523 87.6
Sab.Encaps 8,081 40.4 13,941 69.7 21,603 108.0
Sab.Decaps 11,678 58.3 18,991 94.9 27,890 139.4
Dil.Gen 14,183 70.9 22,957 114.7 38,841 194.2
Dil.Signpre 7,554 37.7 9,273 46.3 12,448 62.2
Dil.Sign 21,115 105.5 35,865 179.3 52,955 264.7
Dil.Signpost 1,689 8.4 2,280 11.4 3,057 15.2
Dil.Verify 15,044 75.2 25,535 127.6 45,789 228.9
?: Latency for FPGA implementation in µs.

spectively. We divide Dilithium’s signature generation into
three parts, pre-sign, sign, and post-sign, and report their
performances separately. For a signature generation, the pre-
sign and post-sign parts are performed only once while the
sign part is repeated until a valid signature is generated.
We report the performance for the best-case scenario where
the valid signature is generated after the first loop iteration.
The key generation, signing and verification operations for
Dilithium-3 take 114.7, 237, and 127.6 µs, respectively, in the
FPGA. In ASIC the speed of the cryptoprocessor improves
by 2× as the clock frequency increases by 2×.

5.1 Comparison with the existing results

We provide comparisons of our cryptoprocessor with re-
lated works in the literature in terms of area, performance,
and flexibility for Dilithium-3 and Saber as shown in Table 5
and Table 6, respectively. A graphical representation of the
performance and resource consumption is given in Fig. 10.
For simplicity and better understanding, we divide the
comparisons into three parts: (i) comparisons with other
designs supporting multiple schemes, (ii) comparisons with

11

standalone implementations of Dilithium, and (iii) compar-
isons with standalone implementations of Saber.
Comparisons with unified architectures: We note that
only a few works target unified architectures that support
multiple PQC schemes [22], [23], [24], [25]. Their area and
performance results along with our architecture are pre-
sented in Table 6. In [22], the authors present Sapphire,
a cryptoprocessor coupled with RISC-V processor imple-
mented in ASIC for various lattice-based Round 2 schemes
in NIST’s PQC standardization. It does not support Saber,
while the results provided for Dilithium use the outdated
Round-2 specifications. In [23], the authors present a RISC-
V architecture tightly coupled with hardware accelerator
for Crystals-Kyber, NewHope, and Saber. Compared to the
Saber implementation in [23], our FPGA and ASIC imple-
mentations show up to 304× and 564× better performances,
respectively. The work in [24] presents a HW/SW co-design
of Crystals-Kyber and Saber. Our implementation shows
superior performance in terms of both speed and area as we
target an implementation entirely in hardware. The authors
in [25] present high-speed design results for Kyber, NTRU,
and Saber. Our unified architecture consumes much less
area compared to their Saber results.
Comparisons with Dilithium-only implementations:
There are only a few FPGA-based implementations of
Dilithium [12], [13], [14], [15], [16] in the literature. Their
area and performance results along with our work are pre-
sented in Table 5. Similar to ’Saber only architecture’, these
architectures have an obvious limitation of providing sup-
port for only digital signature and not PKE/KEM. Zhou et
al. [12] propose a HW/SW co-design by offloading compu-
tationally intensive operations such as SHA3/SHAKE and
polynomial multiplication to the hardware while keeping
the rest of the operation in the software. Their implementa-
tion has a small area as they implement only a few building
blocks in hardware. Our pure-hardware solution shows
almost up to two orders of magnitude better performance
compared to their HW/SW co-design solution.

In [13], the authors present three high-performance ar-
chitectures for Dilithium targeting FPGA. Their implemen-
tations can perform key generation, signature generation,
and verification operations in 51.9, 63.1, and 95.1 µs, respec-
tively. Although they show better performance than our im-
plementation, their implementation for sign operation- con-
sumes 3.5×, 9.2×, 241.2×, and 6× more LUTs, DFFs, DSPs,
and BRAMs compared to our implementation. Moreover,
our work can perform all three operations in a single im-
plementation. The FPGA implementation of Dilithium [14]
targets reducing LUT utilization by employing extra DSP
units for computations. Their implementation utilizes 1.5×
more LUTs and 11.2× more DSPs units. Our work shows
1.47×, 1.08×, and 1.36× better performance for the key gen-
eration, signature generation, and signature verification op-
erations, respectively. In [15], a high-performance Dilithium
implementation is presented. It shows better performance
at the expense of 3× and 4× more LUT/DFF and DSP,
respectively. Similarly, in [16] the authors achieve better
performance at the expense of area. Our implementation
is 2× slower but consumes 1.5× less area and provides the
flexibility to do the operations in parallel or sequentially.
Comparisons with Saber-only implementations: There are

TABLE 5
Comparison Table for Dilithium-3

Ref. Plat. Performance Freq. Area (mm2 or LUT/
(in µs) (MHz) FF/DSP/BRAM)

[12]† Zynq -/12.6K/9.9K 100 2.6K/-/-/-
[13]a

US+
51.9/-/- 350 54.1K/25.2K/182/15

[13]b,d -/63.1/- 333 68.4K/86.2K/965/145
[13]c -/-/95.1 158 61.7K/34.9K/316/18
[14]d Ar.-7 229/0.3k/0.2k 145 30.9K/11.3K/45/21[14]e 229/0.85k/0.2k
[16]d Ar.-7 60/0.12k/63.8 96.9 30K/10.34K/10/11[16]e 60/0.46k/63.8
[15]d US+ 32/63/39 145 55.9K/28.4K/16/29[15]e 32/193/39

Ourd,f
US+ 114.7/237/127.6 200 18.5K/9.3K/4/24
65nm ≈57.4/118.5/63.8 400 ≈0.317+1.230 mm2

a: Works for K.Gen. b: Works for Sign. c: Works for Verify.
d: Reports best-case scenario. e: Reports average-case scenario.
f : Supports multiple schemes. †: HW/SW co-design.

TABLE 6
Comparison Table for Saber-KEM

Ref. Plat. Performance Freq. Area (mm2 or LUT/
(in µs) (MHz) FF/DSP/BRAM)

[23]b 65nm 16K/21K/26K 45.47 0.914 mm2

[10] 65nm 7.1/7.1/9.3 1000 0.314 mm2

[11] 40nm 2.7/3.6/4.3 400 0.380 mm2

[21] 65nm 89,6/116.9/146.18 40-160 0.158 mm2

[24]†,b Ar.-7 3.6K/4.9K/5.5K 62.5 20K/11K/13/36.5
[9]† Ar.-7 3.2K/4.1K/3.8K 125 7.4K/7.3K/28/2
[8] Ar.-7 –/467.1/527.6 100 6.7K/7.3K/32/0
[7] US+ 48.9/63.2/78.5 250 10.1K/7.7K/0/3
[6]† US+ -/60/65 322 12.5K/11.6K/256/4
[5] US+ 21.8/26.5/32.1 250 23.6K/9.8K/0/2
[20] US+ 10.2/12.6/15.6 250 41.5K/22.3K/64/2
[25] US+ 7.6/10.5/14.2 400 21.6K/12.25K/24/10.5

Oura,b US+ 54.9/69.7/94.9 200 18.5K/9.3K/4/24
65nm ≈27.5/34.9/47.5 400 ≈0.317+1.230 mm2

a:On-chip memory area is estimated as ≈1.230 mm2.
b:Supports multiple schemes. †: HW/SW co-design.

several works in the literature implementing Saber in hard-
ware, e.g., [5], [6], [7], [8], [9], [24] on FPGA and [10],
[11], [21], [23] on ASIC platforms. Their area and per-
formance results along with our work are presented in
Table 6. Their obvious limitation is that they only provide
support for PKE/KEM but not a digital signature scheme.
As we discussed in Section 4.5, the area of our design is
determined by the Dilithium scheme, therefore it is ex-
pected to consume more area than Saber-only implemen-
tations. However, when we compare our design to high-
performance implementations of Saber, we consume much
less area compared to [5], [20], and almost a similar area
compared to [10], [11]. We consume 2×more area compared
to [21] and deliver 3.5× better performance. Our unified
cryptoprocessor outperforms [8], [9] and shows a similar
performance compared to the architectures in [6], [7].

6 DISCUSSIONS

In this work, we focused on Dilithium and Saber as a case
study. As the proposed cryptoprocessor is an instruction
set architecture, it can be extended to provide support for
various other lattice-based schemes.

For example, the support for the lattice-based scheme
CRYSTALS-Kyber [38] can be added to our cryptoproces-
sor. Kyber has an NTT-friendly prime modulus and uses
Keccak-based hash functions and pseudo-random number
generation, which are the major time- and area-consuming
building blocks. Our architecture already has building

12

101 102

Area in LUT+FF+DSP(in LUT)

101

102

103

104
Ti

m
e

co
ns

um
pt

io
n

in
 m

icr
os

ec
on

ds

D[12]
D[13]
D[14]
D[16]
D[15]
Our work-D
S[24]
S[9]
S[8]
S[7]
S[6]
S[5]
S[20]
S[25]
Our work-S

Fig. 10. The figure presents a graphical representation of time-
consumption and resource comparisons between our work and existing
works. The lower the time-consumption and resource consumption the
better. Logarithmic scale is used for both axes. With both the schemes
included, our cryptoprocessor still consumes reasonable resources and
provides optimal performance. Each DSP unit is assumed to consume
483 LUTs (obtained with Xilinx Vivado IP Generator).

blocks for NTT and Keccak-based operations, which can be
utilized using ’instructions’. However, Kyber uses an incom-
plete NTT and a slightly different algorithm for point-wise
multiplication operation. Therefore, our cryptoprocessor can
support Kyber by modifying the NTT unit and integrating
Kyber-specific building blocks.

In this work, our goal was to design an efficient and
compact cryptoprocessor for Dilithium and Saber. A knowl-
edge of compatibility between different schemes is very
important to use in real-life applications. However, the
security of such implementations is also a valid concern.
Several works exist in the literature for masking Saber [39]
and Dilithium [40], individually. We note that the traditional
masking schemes are sufficient for masking the common
building blocks of our compact cryptoprocessor. The Keccak
block can be efficiently secured against side-channel analy-
sis using a boolean masking scheme [41]. For the polynomial
arithmetic operations, arithmetic masking is required. We
can either use the same unit for operations on all multiple
shares, saving area but consuming more clock cycles, or
instantiate multiple times for each share, saving clock cycles
but consuming more area.

7 CONCLUSION

By designing a unified hardware architecture for the two
finalists Dilithium and Saber KEM of the NIST Post Quan-
tum Cryptography Standardization, we showed that it is
possible to realize a compact yet fast cryptoprocessor for
performing both post-quantum key exchange and digital
signature on ASIC and FPGA platforms.

The optimized cryptoprocessor architecture greatly ben-
efits from the algorithmic and structural similarities in the
two implemented cryptographic schemes. The most expen-
sive operations in both Dilithium and Saber are polyno-
mial multiplications, and Keccak-based SHA3 and SHAKE
computations. We demonstrated that by instantiating a uni-
fied NTT-based polynomial multiplier, we can compute the
polynomial multiplications of both schemes. Furthermore,

by using a special prime modulus for computing the NTTs
of Saber, we can greatly minimize the area overhead of the
unified multiplier compared to a Dilithium-only multiplier.
Similarly, starting from a high-speed Keccak core, we de-
signed an optimized wrapper around it to pre-process the
inputs and post-process the outputs of SHA3 and SHAKE
on the fly, and by doing so we effectively reduced the
number of unnecessary memory read and write cycles.

Finally, with all the optimizations, our unified cryptopro-
cessor on a Xilinx FPGA computes Saber’s key generation,
encapsulation, and decapsulation in 54.9, 69.7, and 94.9
µs respectively; and Dilithium-3’s key generation, signing
(best case), and verification in 114.7, 237, and 127.6 µs
respectively. The designed cryptoprocessor is even faster or
smaller than several of the previously published works on
Dilithium-only implementations on hardware platforms.

In the future, we intend to integrate more lattice-based
schemes while keeping the design lightweight. We also
intend to design and implement unified countermeasures
for protecting our cryptoprocessor from side-channel and
fault attacks in low time and area overheads.

ACKNOWLEDGMENTS

This work was supported in part by the Semiconductor Re-
search Corporation through SRC task 3043.001, and by the
State Government of Styria, Austria – Department Zukun-
ftsfonds Steiermark.

REFERENCES

[1] P. W. Shor, “Algorithms for quantum computation: Discrete loga-
rithms and factoring,” in 35th Annual Symposium on Foundations of
Computer Science, Santa Fe, New Mexico, USA, 20-22 November 1994.
IEEE Computer Society, 1994, pp. 124–134.

[2] F. Arute1, K. Arya, R. Babbush, D. Bacon1, J. C. Bardin, R. Barends,
R. Biswas et al., “Quantum supremacy using a programmable
superconducting processor,” Nature, 2019.

[3] Q. Zhu, S. Cao, F. Chen, M.-C. Chen, X. Chen, T.-H. Chung,
H. Deng, Y. Du, D. Fan, M. Gong et al., “Quantum computational
advantage via 60-qubit 24-cycle random circuit sampling,” Science
Bulletin, vol. 67, no. 3, pp. 240–245, 2022.

[4] X. Lu, Y. Liu, Z. Zhang, D. Jia, H. Xue, J. He, and B. Li, “LAC:
practical ring-lwe based public-key encryption with byte-level
modulus,” IACR Cryptol. ePrint Arch., p. 1009, 2018.

[5] S. S. Roy and A. Basso, “High-speed instruction-set coprocessor for
lattice-based key encapsulation mechanism: Saber in hardware,”
IACR Trans. on CHES, vol. 2020, no. 4, pp. 443–466, 2020.

[6] V. B. Dang, F. Farahmand, M. Andrzejczak, and K. Gaj, “Im-
plementing and benchmarking three lattice-based post-quantum
cryptography algorithms using software/hardware codesign,” in
2019 Int. Conf. on Field-Programmable Technology, 2019, pp. 206–214.

[7] P. He, C.-Y. Lee, and J. Xie, “Compact coprocessor for kem saber:
Novel scalable matrix originated processing.”

[8] A. Abdulgadir, K. Mohajerani, V. B. Dang, J.-P. Kaps, and K. Gaj,
“A lightweight implementation of saber resistant against side-
channel attacks,” Crypto. ePrint Arch., Report 2021/1452, 2021.

[9] J. Maria Bermudo Mera, F. Turan, A. Karmakar, S. Sinha Roy,
and I. Verbauwhede, “Compact domain-specific co-processor for
accelerating module lattice-based kem,” in 2020 57th ACM/IEEE
DAC, 2020, pp. 1–6.

[10] M. Imran, F. Almeida, J. Raik, A. Basso, S. S. Roy, and S. Pagliarini,
“Design space exploration of saber in 65nm asic,” 2021.

[11] Y. Zhu, M. Zhu, B. Yang, W. Zhu, C. Deng, C. Chen, S. Wei, and
L. Liu, “Lwrpro: An energy-efficient configurable crypto-processor
for module-lwr,” IEEE Trans. on CAS I: Regular Papers, vol. 68, no. 3,
pp. 1146–1159, 2021.

[12] Z. Zhou, D. He, Z. Liu, M. Luo, and K.-K. R. Choo, “A
software/hardware co-design of crystals-dilithium signature
scheme,” ACM Trans. Recon. Technol. Syst., vol. 14, no. 2, Jun. 2021.

13

[13] S. Ricci, L. Malina, P. Jedlicka, D. Smekal, J. Hajny, P. Cibik, and
P. Dobias, “Implementing crystals-dilithium signature scheme on
fpgas,” Cryptology ePrint Archive, Report 2021/108, 2021.

[14] G. Land, P. Sasdrich, and T. Güneysu, “A hard crystal - implement-
ing dilithium on reconfigurable hardware,” IACR Cryptol. ePrint
Arch., vol. 2021, p. 355, 2021.

[15] L. Beckwith, D. T. Nguyen, and K. Gaj, “High-performance hard-
ware implementation of crystals-dilithium,” Crypto. ePrint Arch.,
Report 2021/1451, 2021, https://ia.cr/2021/1451.

[16] C. Zhao, N. Zhang, H. Wang, B. Yang, W. Zhu, Z. Li, M. Zhu, S. Yin,
S. Wei, and L. Liu, “A compact and high-performance hardware
architecture for crystals-dilithium,” IACR Trans. Cryptogr. Hardw.
Embed. Syst., vol. 2022, no. 1, pp. 270–295, 2022.

[17] M. Bisheh-Niasar, R. Azarderakhsh, and M. M. Kermani,
“Instruction-set accelerated implementation of crystals-kyber,”
IEEE Trans. CAS I Regul. Pap., vol. 68, no. 11, pp. 4648–4659, 2021.

[18] T. Pornin, “New efficient, constant-time implementations of fal-
con,” IACR Cryptol. ePrint Arch., p. 893, 2019.

[19] A. Marotzke, “A constant time full hardware implementation
of streamlined ntru prime,” Cryptology ePrint Archive, Report
2020/1067, 2020.

[20] W. Tan, A. Wang, Y. Lao, X. Zhang, and K. K. Parhi, “Low-latency
VLSI architectures for modular polynomial multiplication via fast
filtering and applications to lattice-based cryptography,” CoRR,
vol. abs/2110.12127, 2021.

[21] A. Ghosh, J. M. B. Mera, A. Karmakar, D. Das, S. Ghosh, I. Ver-
bauwhede, and S. Sen, “A 334uw 0.158mm2 saber learning with
rounding based post-quantum crypto accelerator,” in IEEE Custom
Integrated Circuits Conference, CICC 2022, Newport Beach, CA, USA,
April 24-27, 2022. IEEE, 2022, pp. 1–2.

[22] U. Banerjee, T. S. Ukyab, and A. P. Chandrakasan, “Sapphire:
A configurable crypto-processor for post-quantum lattice-based
protocols,” IACR Trans. on CHES, vol. 2019, no. 4, pp. 17–61, 2019.

[23] T. Fritzmann, G. Sigl, and J. Sepúlveda, “Risq-v: Tightly coupled
risc-v accelerators for post-quantum cryptography,” IACR Trans.
on CHES, vol. 2020, no. 4, p. 239–280, Aug. 2020.

[24] T. Fritzmann, M. Van Beirendonck, D. B. Roy, P. Karl, T. Scham-
berger, I. Verbauwhede, and G. Sigl, “Masked accelerators and
instruction set extensions for post-quantum cryptography.” IACR
Cryptol. ePrint Arch., vol. 2021, p. 479, 2021.

[25] V. B. Dang, K. Mohajerani, and K. Gaj, “High-speed hardware
architectures and FPGA benchmarking of crystals-kyber, ntru, and
saber,” IACR Cryptol. ePrint Arch., p. 1508, 2021.

[26] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang,
J. Kelsey, Y.-K. Liu, C. Miller, D. Moody, R. Peralta, R. Perlner,
A. Robinson, and D. Smith-Tone, “Status Report on the Second
Round of the NIST Post-Quantum Cryptography Standardization
Process,” NISTIR 8309, 2020, https://doi.org/10.6028/NIST.IR.
8309.

[27] S. Bai, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe,
G. Seiler, and D. Stehlé, “CRYSTALS-Dilithium,” Proposal to NIST
PQC Standardization, Round3, 2021.

[28] J.-P. D’Anvers, A. Karmakar, S. S. Roy, F. Vercauteren, J. M. B. Mera,
M. V. Beirendonck, and A. Basso, “SABER,” Proposal to NIST PQC
Standardization, Round3, 2021.

[29] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen,
“pqm4: Testing and benchmarking nist pqc on arm cortex-m4,”
Crypto. ePrint Arch., Report 2019/844, 2019.

[30] C. M. Chung, V. Hwang, M. J. Kannwischer, G. Seiler, C. Shih, and
B. Yang, “NTT multiplication for ntt-unfriendly rings new speed
records for saber and NTRU on cortex-m4 and AVX2,” IACR Trans.
on CHES, vol. 2021, no. 2, pp. 159–188, 2021.

[31] N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous univariate
distributions, volume 2. John wiley & sons, 1995, vol. 289.

[32] A. Basso, F. Aydin, D. Dinu, J. Friel, A. Varna, M. Sastry, and
S. Ghosh, “Where star wars meets star trek: Saber and dilithium
on the same polynomial multiplier,” Crypto. ePrint Arch., Report
2021/1697, 2021.

[33] F. Yaman, A. C. Mert, E. Öztürk, and E. Savas, “A hardware
accelerator for polynomial multiplication operation of CRYSTALS-
KYBER PQC scheme,” in DATE 2021, Grenoble, France, Feb. 1-5,
2021. IEEE, 2021, pp. 1020–1025.

[34] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Ver-
bauwhede, “Compact ring-lwe cryptoprocessor,” in CHES 2014.
Springer Berlin Heidelberg, 2014, pp. 371–391.

[35] K. Team, “Keccak in VHDL: High-speed core,” https://keccak.
team/hardware.html, Accessed on Nov. 2021.

[36] K. Gaj, “Implementation and Benchmarking of Round 2 Candi-
dates in the NIST Post-Quantum Cryptography Standardization
Process Using FPGAs,” NIST PQC Round 3 Seminars, October 2020.

[37] V. B. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D. T.
Nguyen, and K. Gaj, “Implementation and benchmarking of
round 2 candidates in the NIST post-quantum cryptography stan-
dardization process using hardware and software/hardware co-
design approaches,” IACR Crypto. ePrint Arch., vol. 2020, p. 795,
2020.

[38] P. Schwabe, R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lep-
oint, V. Lyubashevsky, J. M. Schanck, G. Seiler, and D. Stehle,
“CRYSTALS-KYBER,” Proposal to NIST PQC Standardization,
Round3, 2021.

[39] M. V. Beirendonck, J.-P. D’Anvers, A. Karmakar, J. Balasch, and
I. Verbauwhede, “A side-channel resistant implementation of
saber,” Crypto. ePrint Arch., Report 2020/733, 2020.

[40] V. Migliore, B. Gérard, M. Tibouchi, and P.-A. Fouque, “Masking
dilithium: Efficient implementation and side-channel evaluation,”
Crypto. ePrint Arch., Report 2019/394, 2019.

[41] H. Gross, D. Schaffenrath, and S. Mangard, “Higher-order side-
channel protected implementations of keccak,” in 2017 Euromicro
Conference on Digital System Design (DSD), 2017, pp. 205–212.

Aikata Aikata is a PhD student at Institute of Applied Information
Processing and Communications, Graz University of Technology. Her
research interests include lattice-based cryptography and HW design.

Ahmet Can Mert is a postdoctoral researcher at the Institute of Applied
Information Processing and Communications, Graz University of Tech-
nology, Austria. His research interest include homomorphic encryption,
lattice-based cryptography and HW design.

David Jacquemin is a PhD student at Institute of Applied Information
Processing and Communications, Graz University of Technology. His
research interests are isogeny, lattice-based cryptography.

Amitabh Das is a Principal Member of Technical Staff in the area of
HW security architecture in the Product Security Office/Security R&D
group at AMD, Austin, Texas, USA. His research interests include HW
cryptography, physical SCA and countermeasures, ML security, and
SoC & IP HW security.

Donald Matthews works at AMD in the Product Security Organization
on a variety of projects including leading the AMD PQC effort.

Santosh Ghosh is a Research Scientist in Intel Labs. His research in-
terests include LWC and PQC algorithms, low overhead memory safety
architecture using LWC to solve long-lasting SW bugs & vulnerabilities
and to resist SCA, cryptographic HW microarchitecture and RTL, investi-
gate and develop timing, power, EM and Photon SCA countermeasures.

Sujoy Sinha Roy is an Assistant Professor of cryptographic engineering
at IAIK, Graz University of Technology. He is a Co-Designer of “Saber”,
which was a finalist KEM candidate in NIST’s PQC Standardization
Project. He is interested in the implementation aspects of cryptography.

https://ia.cr/2021/1451
https://doi.org/10.6028/NIST.IR.8309
https://doi.org/10.6028/NIST.IR.8309
https://keccak.team/hardware.html
https://keccak.team/hardware.html

	1 Introduction
	2 Preliminaries
	2.1 Saber modules
	2.2 Dilithium modules

	3 Synergies and Design Decisions
	3.1 Polynomial multiplication, pseudo-random number generation, and hash computation
	3.1.1 Prime selection for Saber

	3.2 Remaining scheme-specific building blocks

	4 Optimized hardware architecture
	4.1 NTT-based unified polynomial multiplier
	4.2 SHA3-256/512 and SHAKE-128/256 unit
	4.3 Remaining scheme-specific building blocks
	4.4 Parallel processing of instructions
	4.5 Organization of data memory

	5 Results
	5.1 Comparison with the existing results

	6 Discussions
	7 Conclusion
	References
	Biographies
	Aikata Aikata
	Ahmet Can Mert
	David Jacquemin
	Amitabh Das
	Donald Matthews
	Santosh Ghosh
	Sujoy Sinha Roy

